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OSCILLATOR DESIGN

The development of electronic oscillators was strongly related to the invention of the vacuum tube at the
beginning of the twentieth century. The first oscillator circuits were presented by Meissner, Hartley, and
Colpitts, among others, and basic ideas for a theory of such circuits were presented by Vallauri in 1917 (1).
In 1914 Zenneck considered an oscillatory arrangement with an arc as the active device, and he discussed
nonlinear aspects of electronic oscillators by means of an energy balance equation. Unfortunately, he did not
derive the corresponding differential equations for the currents and voltages. A differential equation for a
triode oscillator was presented for the first time by van der Pol in 1920. His studies became the starting point
for a long series of research in mathematics, physics, and electrical engineering on oscillatory networks and
systems. As a result, a first monumental monograph about this subject was published by Andronov et al. in
1937 (2) that included the essential aspects of the theory of oscillatory circuits and systems and was illustrated
by many examples. At the same time Krylov and Bogoliubov (3) published essential results about the analysis of
oscillatory circuits. Both groups started from the work of van der Pol and used ideas and results from the work
of the French mathematician and physicist Henri Poincaré. Short presentations of the history of these methods
can be found in Sanders and Verhulst (4) and Mathis (5). Although the results of these authors were discussed
several times in the literature, most of them were unknown to many researchers until the late sixties. Maybe
this is one of the reasons that, in contrast to the linear analysis of oscillatory circuits and systems, details of the
nonlinear theory due to the above-mentioned Russian research groups were not included in a design theory of
oscillators. We will show in this article that the design of oscillators can be clarified if their ideas are included.

Foundations

Properties of Electrical Oscillators. In order to understand the difficulties related to electronic
oscillators it is useful to discuss the main properties of the behavior of such electronic circuits and consider
some aspects of their modelling. It is well known that the basic behavior of an electronic oscillator should be
characterized as follows (e.g. Parzen (6)]:

• Some voltages and/or currents should behave in a periodic manner. The most important shapes of the
output are sinusoidal, saw tooth, and square waves.

• The oscillator frequency should be well determined.
• After a transient, the oscillator amplitude should be well determined and independent of the initial condi-

tions.
• Perturbations of the oscillatory behavior in the steady state should die out after some transient behavior.
• The oscillatory behavior should not be destroyed by parasitic circuit elements (structural stability).

From these qualitative properties the main features of electronic oscillators can be extracted and serve
as main specifications:
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2 OSCILLATOR DESIGN

• Oscillator frequency
• Oscillator amplitude
• Rate of the startup and decay

Obviously we have to add further properties if electronic oscillators are to be designed. The signal-to-
noise ratio, the stability of the oscillator frequency and amplitude and the distortions with respect to a desired
waveform are a few of these properties. The basic behavior of electronic oscillators cannot be realized or
modelled by using linear (time-invariant) circuits, because such circuits have to be nondissipative (no ohmic
resistors can be included) if periodic behavior is desired. Therefore, the energy is conserved and their oscillatory
amplitude depends on the initial conditions. Furthermore, such linear (nondissipative) oscillator models are not
structurally stable (see the above characterization), because the periodic behavior is destroyed by arbitrarily
small dissipative elements (e.g. ohmic resistors). Thus mathematical models of electronic oscillators have to
be nonlinear. In 1963 it was emphasized by Hale (7) that our knowledge of nonlinear systems is still far from
complete, and only a few mathematical techniques are available to analyze such models. Although intensive
research has been carried out in this area for more than thirty years, many problems still have to be solved to
obtain a satisfactory theory. Good illustrations of this statement can be found in Guckenheimer’s discussion of
the van der Pol equation (8).

Oscillator Models. Although a linear LC-circuit without dissipation is not suitable as a complete model
for electronic oscillators, it is useful to start with such a circuit and to introduce the following changes:

• Compensation of the dissipation with negative resistors or positive feedback
• Comparison of the oscillator amplitude with a prescribed value in an implicit or explicit manner, and control

the negative resistor or the feedback

It should be emphasized that compensation is a linear technique, whereas amplitude control by using
parameter variation is an inherently nonlinear technique.

These two steps can be described mathematically if we start from the differential equation for an LC
circuit with a rather small resistor (dissipation).

where γ is proportional to the (positive) resistance. Using a compensation technique, γ can be cancelled. For
example, this can be done by adding a negative resistor in series (or parallel) with the positive resistor, with
the same magnitude. If Eq. (1) is converted to the state-space form ẋ= Ax by the notation x1: = x, x2: = ẋ, it is
easy to see that applying a compensation technique results in a pair of eigenvalues of A on the imaginary axis.
In more general cases the state space has dimension n > 2, since there are more than two reactances. Usually
the matrix A has at least one pair of eigenvalues other than those with negative real parts. In the subsection
“The Linear Design Theory of Sinusoidal Oscillators” below, several approaches are discussed that can be used
to find a set of parameters where a pair of eigenvalues with zero real part occur. Furthermore, it should be
emphasized that it is not necessary that we start with an LC circuit, since it is for example, possible, to realize
inductors in an active manner by means of resistors, capacitors, and (operational) amplifiers. In contrast to LC
oscillators, these kind of oscillators are called RC oscillators [see e.g. Millman and Grabel (9)]. The first RC
oscillator was presented by Heegner (10) in 1927; see also Sidorowicz (11) further references.

If the resistor, or in other words γ, is controlled by the state variables (x, ẋ), we get the following nonlinear
differential equation:
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Special choices of the function γ = γ(x, ẋ) lead to particular nonlinear oscillator models. In the next subsection
this problem is discussed by means of the theorem of Poincaré, Andronov and Hopf.

It is mentioned above that the van der Pol (vdP) equation was the first model of an oscillator circuit. The
normalized version of this equation has the following form (with normalized ω2

0 = 1):

Note that this differential equation is of the above-mentioned form. Another differential equation of a similar
type is the (R) Rayleigh equation (with normalized ω2

0 = 1)

Unfortunately, the equilibrium solution O : = {x(t) = 0 |t ε IR} is the only solution that is known in exact terms.
All other solutions, and in particular the periodic solution, have to be calculated with perturbation methods.
Therefore we consider a modified differential equation (with normalized ω2

0 = 1),

with the periodic solution xp :={x(t) = cos t t ε IR}, which can be calculated in a simple manner. Obviously, this
solution is unique up to an additive phase ϕ, and the periodic solution does not depend on the parameter ε.
An advantage of this equation is that it can be interpreted very easily. For this reason xp is represented in the
state space (x1 := ẋ, x2 : = x) as a circle. The state-space representation of Eq. (5) is

Within the circle the (nonlinear) coefficient of the second term in Eq. (5) is negative, and outside the circle the
coefficient is positive. If this coefficient is constant, both differential equations correspond to the descriptive
equation of an LC circuit with linear damping through an ohmic resistor. If we assume the (nonlinear) coefficient
in Eq. (5) to be constant for a moment, the first case corresponds to an LC circuit with a negative resistor, and
the second case to a circuit with a positive resistor. From this heuristic point of view it is easy to interpret the
global behavior of Eq. (5). Although its solutions cannot be calculated analytically if the initial conditions are
prescribed within or outside the circle xp, the qualitative behavior of the differential equation follows from the
analogy with an LC circuit with damping. We find that the amplitude of every solution that starts within the
circle increases and approaches xp as t → ∞. On the other hand, the amplitude of every solution that starts
outside the circle decreases and approaches xp as t → ∞. From a physical point of view the two-dimensional
state space of the differential equation (5) is decomposed by the circle xp into two areas that have different
meanings:

• The negative-damping area (inside the circle), where energy is supplied to the system
• The positive-damping areas (outside the circle) where energy is dissipated by the system.

The periodic solution xp can be interpreted as a dynamical equilibrium between the negative and the
positive damping area. Stable periodic solutions of this kind are called limit cycles [see e.g. Jordan and Smith
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Fig. 1. Negative-damping area of the Rayleigh–van der Pol equation.

Fig. 2. Damping areas: vdP van der Pol equation; R Rayleigh Equation.

(12)]. In contrast to limit cycles, a stable equilibrium O is embedded in a positive-damping area. Both types of
solutions are called steady-state solutions. In Fig. 1 the state space and the steady-state solutions of Eq. (5)
are shown together with the damping area.

The physical situation of this rather special differential equation is the typical case in two-dimensional
state-space systems. In Fig. 2 we show the damping areas of the van der Pol equation and of the Rayleigh
equation, which extend infinitely in the x2 and x1 directions, respectively. It is clear why sinusoidal solutions
are impossible, since the damping areas are not symmetric with respect to the unstable zero solution point.

The parameter ε can be interpreted as a measure of deviation from the sinusoidal case. If ε << 1, we
have a sinusoidal oscillator that is discussed in the next sections. For large ε >> 1 we obtain a relaxation
oscillator that is considered in this subsection. The latter case is much more complicated from a mathematical
point of view, because circuits of this kind have to be described by differential–algebraic equations or analyzed
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by singular perturbation methods [see e.g. Mathis (5)]. However, the design of square-wave oscillators can be
simplified if the transistors are modelled as switches. Such models are piecewise linear. In the case of sinusoidal
oscillators an overall model is available.

The Mandelstam–Papalexi–Andronov Oscillator Model. Although the simple oscillator equations
in the last section are very suitable for illustrating the physical reason for periodic steady-state solutions, a
more extended model should be considered that includes additional parameters. From a systematic point of
view a family of differential equations is considered that is parametrized by means of the mentioned parameter,
and the following questions are studied:

• Is there a subset of equations that permit a periodic steady-state solution?
• If so, what is the critical value of the parameter where a qualitative change within the family arises?

These questions are crucial for the design of electronic oscillator circuits. Therefore these problems
were studied around 1930 by Mandelstam, Papalexi, and Andronov using ideas from Poincare’s theory of
celestrial mechanics. As a result they proved a theorem including a criterion for the occurrence of a limit
cycle in differential equations depending on a certain parameter. In the mathematical literature this theorem
is known as the Hopf bifurcation theorem because Hopf, rediscovered it in 1944 while studying problems in
hydromechanics [see Arnold (13)], p. 271) for further information about the reception of this theorem]. The
Mandelstam–Papalexi–Andronov oscillator model contains a parameter that is suitable for generating a limit
cycle if a critical value is passed. In oscillator design this parameter corresponds to a circuit parameter. (e.g.
the load resistor). Before formulating the Poincaré–Andronov–Hopf theorem, we will demonstrate the birth of
a limit cycle. For this purpose a modification of Eq. (5) is used, since it can be solved exactly. This equation is
formulated in the state-space representation [see e.g. Nicolis and Prigogine (14)]

where the parameter is included in another way. To solve this differential equation we transform it into the
magnitude–phase–angle representation

Obviously the system of two differential equations is decoupled, and in this case solutions of both equations
are known. We have

In Fig. 3 the steady-state behavior of Eqs. (8), (9) is illustrated for µ < 0 and µ > 0, and we find that in the
latter case we have the desired limit cycle. The above-mentioned critical parameter value is zero.
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Fig. 3. Bifurcation of a limit Cycle: (a) µ < 0, (b) µ > 0.

It can be shown that this case already describes a very general situation. If we consider n-dimensional
systems of differential equations that describe more complicated electronic oscillators, the so-called center
manifold theorem can be used to reduce the dimension of the system to two. [For details of this theorem we
refer to the monograph of Arrowsmith and Place. (15)]. Then the former case is obtained, but in this introductory
article we cannot discuss further details, and therefore the reader is referred, (for example) to Hassard et al.
(16).

In the following, the Poincaré–Andronov–Hopf theorem is formulated.
Theorem (Poincaré–Andronov–Hopf). Let

be a system of differential equations where f (0, µ) = 0 for all µ in a neighborhood of 0. The Jacobian Dxf (0,0) of
f in (0, 0) has the eigenvalues λ1,2 = ± jω with ω �= 0 and n − 2 other eigenvalues λk with � λk < 0. Furthermore
d dµ � {λ1 (µ)}|µ = 0 > 0, and the equilibrium point 0 is a stable spiral in µ = 0. Under these assumptions
sufficiently small positive numbers µ1 and µ2 exist such that for all µ ε (− µ1, 0) the equilibrium point 0 is a
stable spiral and for all µ ε (0, µ2) the equilibrium point 0 is an unstable spiral. In the last case the unstable
spiral is surrounded by a stable limit cycle whose amplitude increases with µ.

Instead of a proof [see e.g. Hassard et al. (16) or Mathis (5)], this theorem is illustrated by the van der Pol
equation.

Example. The van der Pol equation (3) can be formulated by a standard transformation y := ẋ into a
system of differential equations of first order. Using the normalization u : =√

εx and v : = √
εy, the following

differential equations result:

The eigenvalues of the Jacobian matrix are
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and therefore λ1,2 =±j (for ε = 0) and d dε � λ1 (ε) | ε= 0 = 1
2 > 0. It can be shown that if ε = 0, the equilibrium

point (u, v) = (0, 0) is a stable spiral. It results from the Poincaré–Andronov–Hopf theorem that a stable limit
cycle is generated for ε > 0 that encloses an unstable spiral.

This oscillator model and the theorem were formulated for the first time by Andronov and his coworkers
in 1934, studying electronic oscillator circuits, but it was 1979 before Mees and Chua published theoretical
considerations about oscillator design using this theorem [see Mees (17)]. On the other hand, a necessary
condition of this theorem—Barkhausen’s oscillatory condition—was a known long time ago and became the
basis of a linear design theory for oscillators.

Design Aspects

The Linear Design Theory of Sinusoidal Oscillators. It is known from the Poincaré–Andronov–
Hopf theorem that one pair of eigenvalues has to cross the imaginary axis, whereas the other eigenvalues have
to remain within the left half complex plane. Obviously, it is a necessary condition that oscillator circuits have
a pair of eigenvalues on the imaginary axis for a certain value of some circuit parameter. It is mentioned in
the subsection “Oscillator Models” above that this condition can be interpreted as the compensation step of
oscillator design, which can be performed in a linear manner using a linear negative resistor. This necessary
assumption of the Poincaré–Andronov–Hopf theorem has been known since the first oscillator paper of Vallauri
(1) in 1917, and during the following few years several variants of his results were published. One of the most
popular criteria was the Barkhausen oscillatory condition [see e.g. Millman and Grabel (9)]. All these variants
can be classified by using the following topological structures of oscillator circuits:

• the negative-impedance–admittance model
• the positive-feedback model

and applying corresponding methods of network analysis. It has been known for a long time that these
two models are equivalent from a network-theoretical point of view.

Many oscillator circuits contain tubes or transistors. In the case of tuned-circuit oscillators it is more
efficient to describe such a circuit as an active 3-pole with a passive impedance embedding (see Fig. 4). This
was done for the first time in 1920 by Hazeltine (18). He showed that in Fig 4 the impedances Z1, Z2, and Z3
have to be capacitive, capacitive and inductive, respectively. The reader will find systematic conderations about
this subject in the books of Spence (19) and Cassignol (20). Since this rather restricted model for oscillator
circuits can be reformulated in the form of the negative-impedance–admittance model or the positive-feedback
model, we discuss the use of the latter models in more detail. For this purpose we consider a rather simple
oscillator circuit in order to avoid tedious calculations; further examples can be found in textbooks of electronics
[e.g. Millman and Grabel (9)].

As the first step the network elements of an actual oscillator circuit have to be associated with the defining
blocks of the above-mentioned models. In general this step includes some arbitrariness. The second step uses
the conditions that a pair of eigenvalues with vanishing real parts have to occur, formulated for the special
topology of the models. As a result we obtain (necessary) conditions for the occurrence of oscillations with
respect to the oscillator frequency and the gain of the active elements parametrized by means of the network
parameters of an actual oscillator circuit. These conditions represent the linear part of the design of oscillator
circuits.

Now we compile the corresponding conditions for the above-mentioned oscillator models (see Parzen (6),
Chap. 1):
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Fig. 4. Active 3-pole structure of transistor oscillators.

Fig. 5. Negative-impedance and admittance oscillator model.

• Negative-impedance model The real and imaginary parts R and X, respectively, of the model in Fig. 5 have
to satisfy the conditions

• Negative-admittance model The real and the imaginary parts G and B, respectively, of the model in Fig. 5
have to satisfy the conditions

• Positive-Feedback model The open-loop gain consisting of the transfer functions A(s) and β(s), respectively,
of the active block and the passive block (see Fig. 6) has to satisfy the condition

In the literature these conditions are called the Barkhausen criterion [see e.g. Millman and Grabel (9)].
Instead of the decomposition of the complex equation into the real and the imaginary part, a representation
with magnitude and phase angle is preferred.



OSCILLATOR DESIGN 9

Fig. 6. Feedback oscillator model.

Of course, a network analysis in a straightforward manner leads to equivalent conditions for the occur-
rence of oscillations. For this purpose we consider the ac network model of an oscillator circuit that contains
no independent sources and derive its network equations in the frequency domain. As a result we obtain a
homogeneous system of linear equations

with the oscillation frequency jω as the parameter. Note that an oscillator circuit contains only constant
independent sources. Therefore these sources are omitted in the small-signal model. The matrix coefficients
contain the network parameters. It is known from linear algebra that nontrivial solutions are obtained if the
condition

is satisfied. The equivalence of this expression to the other criteria can be shown.
There is another method that is equivalent to a circuit analysis under certain conditions. In this case a

transfer function is defined with respect to a (sinusoidal) input source and two terminal as the output port.
This approach can be applied in a successful manner only if

• The input current or voltage source does not change the oscillator circuit substantially, that is, we recover
the initial circuit if the input source vanishes

• The circuit is controllable and observable with respect to the chosen input and output ports

The first condition is satisfied if we use pliers entry and an independent voltage source or soldering-iron
entry and an independent current source [see e.g. Desoer and Kuh (21)]. For the second condition a careful
analysis of the circuit is needed before the two-ports are chosen.

Example: Tunnel Diode Oscillator [Mees (17)]. The nonlinear network equations of the circuit in Fig. 7
can be formulated as (if R ≈ 0)
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where ũC := U0 − uC. Since the constant solution can be calculated in a simple manner as

the ac network model (linearized network equations) can be derived without distinction between large and small
signal currents and voltages. Let g′ be the derivative of g with respect to its argument; then the transformation
of this equation into the frequency domain leads to the following condition:

The roots of this quadratic equation are

and therefore a purely imaginary pair of eigenvalues is obtained if the condition

is satisfied. In this case the oscillator frequency is given by ω2
0 = 1/(LC). We find from the tunnel-diode char-

acteristic that this is possible if the operating point of the diode is located at its maximum or minimum,
where the derivative g′(U0) vanishes. If the ac network model of this tunnel-diode circuit is interpreted as the
negative-conductance model, we find the oscillatory conditions

Obviously these conditions are equivalent to the previous one. A negative-resistance model is not suitable
in this example. If the negative-conductance model is assumed, a transfer function is determined if an extra
(index E) independent sinusoidal voltage source UE is located as an input quantity in series with the linearized
tunnel diode resistor and the capacitor voltage UC is used as output quantity; both UE and UC are represented
in the frequency domain. The corresponding transfer function can be derived:

The zeros of the denomiator are the eigenvalues of this circuit. Under the same condition [g′(U0) = 0] on the
voltage U0, we obtain a pair of imaginary eigenvalues and the oscillatory frequency) given by ω2 = 1/LC. Finally
we consider the approach where the positive-feedback model is applied. For this purpose we reformulate the
negative-conductance model so that the conductances Yg = g′(U0 and − YL(jω) = −1/ZL(jω) become identical,
that is the sum of the admittances Yg and YL has to be zero. By means of ZL(jω) an interpretation as a product
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Fig. 7. Tunnel-diode oscillator model.

is possible if the sum is reformulated as

This is Barkhausen’s condition if Yg and −ZL(jω) are interpreted as transfer functions of a feedback model. Since
this reformulation is derived by means of equivalent calculation steps, the same conditions for the occurrence
of oscillations are obtained. Probably it is rather a problem of taste and/or experience which approach is used
to derive the oscillatory conditions. For example, Parzen (6) discusses the design of tuned-circuit oscillators
with transistors, and therefore he uses the above mentioned active three-pole representation with passive
embedding. Based on this model, the author applies the negative-resistance–conductance model to calculate
the oscillatory conditions. Mauro (27), prefers the positive-feedback model and derives similar conditions for
tuned-circuit oscillators as well as RC oscillators. In general both approaches can be used successfully, and
therefore the choice makes no difference from a theoretical point of view.

The Nonlinear Design Aspects of Sinusoidal Oscillators. Although many aspects of the nonlinear
theory of oscillator circuits are known, it is not trivial to make use of them to construct a systematic design
concept for these circuits. The theoretical results are at least suitable for a classification of oscillator circuits
and for the construction of simulation tools. We will discuss these subjects in this and the following sections.
Just as in other cases of circuit design, an oscillator circuit is determined if its network topology as well as its
network parameters is known. A design process starts with some specifications of the desired oscillator circuit,
and then we try to find an oscillator topology together with a certain set of network parameters in order to
fit these specifications. For this purpose the following approach can be used. Further details can be found for
example, in the monograph of Parzen (6).

(1) Basic Specifications The form of the oscillator behavior (sinusoidal, rectangle, triangle, etc.), frequency of
the oscillator, the amplitude, and so on, are taken into consideration.

(2) Choice of the Circuit Devices The application of the oscillator circuit, the working temperature, and so on,
are taken into consideration.

(3) Choice of the Type of Resonator The frequency stability, the amplitude stability, the variability of the
frequency, and the economic expense are taken into consideration.

(4) Choice of the Kind of Limiting that Maintains the Oscillator Amplitude A self-limiter, external limiting, or
automatic-level-control limiting can be chosen.

(5) First Draft of the Oscillator Circuit The above aspects are taken into consideration.
(6) Determination of Circuit Parameters The actual circuit devices and its circuit parameters have to be chosen.
(7) Optimization Circuit simulations and/or an experimental realization are necessary. If the circuit does not

meet the specifications, then some steps have to be repeated.
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This design summary shows that each design process of an oscillator circuit presents peculiar problems.
However, we will make some general remarks based on the theoretical considerations above. Although the
frequency of an sinusoidal oscillator can be determined by a linear analysis (see the Barkhausen condition
in the previous subsections, in view of the Poincaré–Andronov–Hopf theorem nonlinearities are essential for
the functionality of oscillators (see the subsection “Oscillator Models” above). We already mentioned in that
subsection that a nonlinearity is necessary for limiting the amplitude. This can be provided in one of three
ways:

(1) Self-Limiting The inherent linearity of an active device (tube, transistor, operational amplifier, etc.) is used
to build up a nonlinear differential equation with a stable limit cycle. In this case the amplitude is fixed
implicitly by the type of nonlinear characteristic. The only requirement is to calculate the amplitude with
a suitable model of the nonlinear device.

(2) External Limiting This is a variant of the first case, since the resonant circuit works in a linear mode and
the limiting is introduced by an additional device (Zener diode, symmetrical clippers, thermistors, etc.).

(3) Automatic-Level-Control Limiting The natural approach to limiting is amplitude control—that is, mea-
suring the amplitude, comparing it with a desired amplitude value, and adjusting (if necessary) a circuit
parameter that controls the damping of the circuit through a suitable control strategy. Even if the resonant
circuit is approximately linear, the entire circuit, including the control part, is nonlinear because there
is a coupling between at least one state variable and a circuit parameter. A suitable discussion for the
construction of such control devices can be found in the monograph of Parzen (6) and the dissertation of
Meyer-Ebrecht (23).

The first way of limiting of the oscillator amplitude leads to a rather simple construction of the oscillator
circuit, but in this way the damping element is influenced by the large signal gain factor. Unfortunately, this
gain factor varies with the instantaneous amplitude of the oscillator and results in spectral distortions. This
is an essential disadvantage in the case of sinusoidal oscillators. If such an oscillator with low distortion is
desired, the nonlinear damping should depend on an indefinite integral

∫
x(t) dt of the amplitude x(t) instead of

the instantaneous amplitude. In mathematical terms this statement can be formulated as follows if we restrict
our discussion to an oscillator circuit of van der Pol type. Then the descriptive equation is of the form

instead of

Although the structure of an oscillator circuit and its amplitude stabilization are essential, analysis
methods are necessary in order to calculate at least the amplitude and the frequency as a function of certain
circuit parameters for a suitable design of a sinusoidal oscillator. Since analytical solutions of the corresponding
network equations of an oscillator are not available, perturbation methods have to be applied for this purpose.
Several approaches are available:

• Perturbation methods
• Averaging or harmonic balance, methods
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• Describing-function method
• Volterra series method

Most of the different variants of perturbation methods start with some Fourier polynomial and, based on
this first step derive a set of associated differential equations. Therefore these methods can be interpreted as
time-domain methods, which are considered and illustrated in the monograph of Nayfeh (24). The first-order
perturbation results are of special interest in practical oscillator design. Also the averaging (harmonic balance)
methods can be interpreted as time-domain methods. A very efficient variant of an averaging method that
can be implemented in a computer algebra program uses Lie series [see Kirchgraber and Stiefel (25)]. It was
applied for studying electronic oscillators by Keidies and Mathis (26).

Another time-domain method can be interpreted as an extension of the convolution description of linear
time-invariant input–output systems, which is implemented in Volterra series methods. In this case a series
of integrals is used as a first step and the coefficients are convolution kernels of higher order. Illustrations of
this method are included in the paper of Chua and Tang (27).

An efficient iterative procedure for calculating the steady-state output waveform of almost sinusoidal
nonlinear oscillators using the feedback formulation is presented by Buonomo and Di Bello (28). In their paper
this method is compared with the alternative methods of Mathis and Keidies as well as Chua and Tang. Just
like the other methods, the interative approach can be implemented by means of a computer algebra system.

Since frequency-domain methods are very successful in the case of linear time-invariant circuits and
systems, many electrical engineers are greatly interested in extensions of these approaches to nonlinear
circuits and systems. The describing-function method is very popular because it can be interpreted as an
extension of the transfer-function method, which is a standard method in the analysis of linear time-invariant
networks. We have to assume that only the first-harmonic part of the response of a nonlinear block to a
sinusoidal input function is of interest, because the other parts will be filtered out. If the functionality of
the sinusoidal oscillator is interpreted in terms of the feedback structure in Fig. 6, this filter is realized
within the feedback loop. Although the nonlinear block produces an entire spectrum of output frequencies as
a response to a sinusoidal input function, only the first-harmonic part is essential for the functionality of a
sinusoidal oscillator. Therefore the describing-function method is illustrated by means of the feedback model
of a sinusoidal oscillator, although extensions of the negative-impedance and admittance models, respectively,
are possible [see e.g. Cassignol (20)].

We restrict our discussion to the case where only the A block in Fig. 6 contains nonlinear elements and
the input signal is x(t) =© cos ωt. Then a first-harmonic part can be extracted from the output signal

where we assume that no constant part is included in the output signal. Clearly the amplitudes y1, y2, and the
phases ϕ1, ϕ2, . . . depend on © and ω. The describing function is defined by

As a result we obtain a generalization of the Barkhausen oscillatory condition:

In many cases N(© ω) is independent of ω. Then β(ω) can be plotted as a single polar curve in the complex
plane, graduated in ω, and likewise the locus of −1/N(©) can be plotted, graduated in ©. The intersection
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Fig. 8. Two-port oscillator.

of these curves corresponds to a limit cycle, whose stability properties can be studied. More details of this
approach are included in the monograph of Mees (17), where its problems are also discussed.

Design of Two-Port Oscillators. In the following we consider the two-port oscillator formed by a
frequency-dependent linear feedback two-port and a nonlinear active two-port as depicted in Fig. 8. The output
signal of the linear two-port is amplified in the nonlinear active two-port and then fed back to the input of the
linear two-port. A necessary condition for the occurrence of a stationary harmonic oscillation is that the phase
and the amplitude of the signal, after passing both two-ports, are unchanged. Due to the frequency-dependent
linear feedback two-port, the phase condition is only fulfilled for one frequency. Due to the nonlinearity of the
active two-port, the amplitude condition is only fulfilled for one value of the amplitude of the signal.

In our example we consider the simple model of an active two-port formed by a voltage-controlled current
source. The voltage–current characteristic of the voltage-controlled current source is assumed to be nonlinear.
If the active two-port contains additional linear elements, these elements may be moved to the linear two-port.
In our example the linear frequency-dependent two-port consists of a transformer with primary inductance
L1, secondary inductance L2, and mutual inductance M; a capacitor C; and a conductor G. The primary and
secondary coils of the transformer are in antiphase, and therefore M < 0. The secondary inductance L2 and
the capacitor C together form a parallel resonant circuit. This inductor-coupled resonant circuit is the most
compact model we can establish for the linear feedback circuit.

In more complex cases we can replace the reactive part of the feedback two-port by the canonical Foster
representation (29). In the neighborhood of the resonant frequency the essential part of the canonical Foster
realization is given by a transformer-coupled resonant circuit, as assumed in our model. In the case of small
losses it is also possible to include the losses in this model (30). The conductor G accounts for the losses in the
passive and the active two-ports. At the resonant frequency of the parallel resonant circuit,

the phase change in the linear two-port is 180◦. This compensates for the 180◦ phase change occurring in the
active circuit, and the phase condition for oscillation is fulfilled.

The nonlinear dependence of the output current i2a(t) of the linear two-port on its input voltage i1a(t) is
given by

The active two-port is considered to be frequency-independent. It is assumed that all reactive elements of the
active element have been moved to the linear two-port. This can be done easily if the reactive elements are
linear, and if it is possible to concentrate all reactive elements in a � equivalent circuit. The relation between
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the spectra of the input current I1l(ω) and the output voltage U2l(ω) of the linear feedback network is given by

where A21 is the matrix element of the chain two-port representation. According to Fig. 8 we obtain u1a = u2l
and i1l =− i2a. Furthermore, we consider i1l(t) I1l(ω) and u2l(t) U2l(ω), where (·)(t) (·)(ω) denotes in a symbolic
manner a pair of Fourier-transformed functions in time and frequency domain.

We assume that in the oscillator circuit, Fig. 8, oscillations are excited by an initial perturbation. After
some period of growth of amplitude due to the nonlinearity of the active element, the oscillator will saturate in
a stationary state oscillating at a frequency ω0. In the case of a weak nonlinearity the oscillation exhibits only
low harmonics. The linear feedback network acts as a bandpass filter and attenuates the harmonics. In the
case of a sufficiently high Q factor of the resonant circuit and a weakly nonlinear active element, the transient
of the oscillator from excitation to the stationary state exceeds the period of oscillation by orders of magnitude.
We also can assume that the time constants governing the decay of the perturbation of the stationary state of
the oscillator exceed the period of oscillation by orders of magnitude. Under these assumptions we can make
for u2l the first step

where V(t) and ϕ(t) denote the amplitude and the phase of the oscillator signal. Due to the nonlinearity of the
active two-port, the output amplitude I at the fundamental frequency ω0 depends nonlinearly on the input
amplitude V. With ω0t = ξ we obtain from Eq. (36) the fundamental frequency component of the output current,

This relation holds also for slowly time-varying amplitudes, and we obtain

With a21(t) A21 (ω) we obtain from Eq. (37) the relation between the input current i1l(t and the output voltage
u2l(t of the linear feedback circuit in the time domain:

Representing Eq. (40) by

and expanding into a first-order power series yields
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Inserting this expression into Eq. (41) gives

With the substitution t − t1 = t2 we obtain

Using a21(t) A21 (ω) and ta21 (t) j A′
21 (ω) with A′

21 (ω) = dA21 (ω)/dω, we obtain

With Eq. (40) and i1l = −i2a it follows that

Introducing the conductance G0 and the susceptance B0 by

yields

where the prime (·)′ denotes the derivative with respect to ω evaluated at ω= ω0. For the stationary state it
follows that
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We now investigate the influence of small perturbations V1 of the stationary amplitude V0. With the first
step

we linearize I(V) – VG0 in a neighborhood of the stationary amplitude V0. With

we obtain for small-amplitude deviations V1 from the stationary state the linear differential equation

The stationary state of oscillation is stable if any perturbation V1 is decaying. This holds for

The relation between I and V may be expressed by a nonlinear transconductance S given by

In this case the stability condition (58) can be written in the following form:

For the Meissner oscillator with transformer feedback circuit according to Fig. 8 the parameters G0 and B0 are
given by

The condition (54) yields the frequency of oscillation ω0 in the stationary state according to Eq. (35). Due to
Eq. (53), the stationary amplitude V0 can be determined from
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From

and Eq. (60) it follows that the stationary state of the two-port oscillator considered is stable for

that is, for a transconductance S that decreases with increasing amplitude V.
Design of Relaxation Oscillators. In the subsection “Oscillator Models” it was mentioned that the

van der Pol equation is suitable also as a model for relaxation oscillators if ε << 1 is considered. Unfortunately,
analytical solutions are not available in this case, and for the derivation of approximative solutions advanced
mathematical methods are necessary [see e.g. Andronov et al. (2) or Mathis (5)]. Therefore almost all design
methods for relaxation oscillators are based on more simplified models for the active devices (e.g. transistors or
operational amplifiers). If the transistors are replaced by switches [see e.g. Horenstein (31)] we obtain piecewise
linear oscillator models; note that such models are nonlinear, as was always the case. Some disadvantages of
this approach are known:

• The transient to the steady state (or limit cycle) cannot be obtained in a simple manner.
• A limit cycle has to be assumed.
• The results are independent of certain parameters of the active devices.

However, under these assumptions simple design formulas can be derived, since only linear (time-
invariant) networks have to be analyzed. We illustrate this approach in the case of a symmetrical multivibrator
that is working in saturated mode. More complicated situations (e.g. if transistors are not working in saturated
mode) will be found for example in Gray and Meyer (32).

Example: Symmetrical Multivibrator. We consider the multivibrator that is shown in Fig. 9. Let us assume
that at the initial instant t = 0, the left transistor T1 conducts and the right transistor T2 is cut off. If the voltage
across the left capacitor is near to zero while that across the right capacitor reaches the voltage U0, a switching
event occurs. During the commutation where T1 switches to the cut-off state while T2 changes to the conducting
state, the left Capacitor charges and the right capacitor discharges. The situation for t > 0 can be analyzed by
means of a simple analysis of the network in Fig. 10. The following differential equation results:

where uC(0) = U0. The solution is derived by well-known calculations:

A switching event takes place if uC(t) that corresponds to the base–emitter voltage of T2 exeeds the cutoff
voltage (which is simplified to zero in our case). From the above solution we have
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Fig. 9. Symmetrical multivibrator.

Fig. 10. Dynamic operation.

and therefore the period of the square wave is T ≈ 1.38 RbC. It is an easy matter to include cutoff and saturation
quantities for the transistors [e.g. Cassignol (20)]. In the same way, results for other relaxation oscillators can
be derived that include operational amplifiers or digital gates [see e.g. Horenstein (31) or Kurz and Mathis
(33)]. Furthermore, saw tooth-wave oscillators can be analyzed if piecewise linear models of the active devices
are used. The reader is referred to the literature for further details [e.g. Davidse (34)].

Advanced Microwave Oscillator Design Tools

Problems in Microwave Oscillator Design. Although this article is concerned with design methods
for all kinds of oscillators, the design of microwave oscillators has been of special interest during the last 15
years. Many results are published in the literature. Therefore an overview is presented in this section. But it
should be mentioned that almost all methods can be used to design other kinds of oscillators.

The design of monolithic integrated microwave and millimeter-wave oscillators requires accurate and
efficient tools for numerical modelling and optimization. Today the design of microwave oscillators in many
cases is based on a linear analysis of the oscillation conditions. To predict and to optimize the oscillator output
power or the oscillator spectral behavior, however, a nonlinear design approach is indispensable.

The task of oscillator modeling can be separated into two parts:

• Nonlinear modeling of the unperturbed oscillator
• Modeling of the noise properties of the oscillator
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The nonlinear modeling of the unperturbed oscillator may be done in the time domain by numerical
integration (35,36,37) in the frequency domain using harmonic balance or Volterra series methods (38,39,
40,41,42) or by using combined time–frequency-domain methods (43,44,45,46). Microwave oscillators may be
subdivided into a linear embedding circuit and one or more nonlinear subcircuits. By this subdivision, the
computational effort may be reduced considerably. The easiest approach is to subdivide the active element
of the oscillator into a linear embedding network and a single nonlinear controlled source. In this way, the
modeling may be improved over the linear approach, as shown for example in Refs. 47,48. This method is
restricted to a single dominant nonlinearity in the oscillator circuit.

More accurate circuit modeling requires the inclusion of numerous nonlinear circuit elements in the
simulation. Approximating the distributed elements within a broad but finite frequency interval by a lumped-
element equivalent circuit facilitates the description of the unperturbed network by a set of nonlinear and
autonomous first-order differential equations in the normal form

The components of the vector x are the state variables of the system. Time-domain integration of the network
equations describing the equivalent lumped-element circuits usually requires an enormous computational
effort, since the system of differential equations is usually high-dimensional and also exhibits high stiffness.
One method for reducing the computational effort is to combine time-domain and frequency-domain calculations
(43). The periodic steady-state solution can be found in the time domain by solving the periodic boundary-value
problem (35). The solution obtained in the time domain is exact and in this respect superior to that from
harmonic balance. Using the multiple shooting algorithm of Bulirsch, the convergence of the time-domain
boundary-value problem may be improved (49,50).

Schwab et al. have applied the time-domain boundary-value method to the self-consistent determination
of the steady-state solution of oscillators (37). The time-domain method has the advantage that it is not
necessarily restricted to a certain number of harmonics of the signals.

The most common method for frequency-domain analysis of oscillators is the harmonic balance method.
Using that method, a nonlinear system of equations

has to be solved. In this equation X is the system state vector summarizing the amplitudes of n signals at
the fundamental frequency ω0 and at K harmonics (38,39,40,41,42). The advantage of the harmonic balance
method is that distributed circuits can also be considered in the analysis.

In the combined time–frequency-domain method the oscillator circuit is subdivided into a linear circuit
and a nonlinear circuit (43,44). The linear part of the circuit is described in the frequency domain, whereas
a state-variable description in time domain is applied to the nonlinear part. This allows one to combine the
advantages of frequency-domain and time-domain methods. In the linear part of the circuit, distributed circuit
elements can also be considered.

Time-Domain Method. The computation of the steady-state solution of the oscillator by solving the
initial-value problem (86) for t → ∞ has the disadvantage of large numerical effort. For most practical cases
interest is restricted to the periodic steady-state solution x(t) = x(t + T0) for the nonlinear oscillator waveform.
The period of oscillation T0 is not known. In order to determine it we include T0 as an additional variable with
the state variables x and introduce the normalized time variable τ = t/T0. We have now to solve the two-point
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boundary-value problem for τ ∈ [0,1]:

The n + 1 boundary conditions are

where the last condition fixes the phase of the limit cycle. Let us denote the solution of the initial-value problem
(71) at τµ+1 with the initial conditions sµ at τµ by e(sµ, τµ, τµ+1). The solution of the boundary-value problem is
equivalent to the determination of the zeros of the vector-valued function

This algorithm is called the single-shooting method, and in general it has only a small domain of convergence.
A better way to solve the boundary-value problem is to use the multiple-shooting algorithm (43,49,50).

This algorithm is more stable and has a wider domain of convergence than the single-shooting one. By this
method the region between the boundaries is divided into several subregions,

and for every subregion a starting point is chosen:

These starting points are varied until a continuous solution fulfilling the boundary condition is found, which
can easily be seen to be the zero of the vector-valued function

where the last two rows represent the boundary conditions and the others the continuity conditions.
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Because of the special structure of Eq. (77), the zeros can be computed in a very efficient way (49). To
achieve starting values for T0 and x, the set of nonlinear differential equations (86) is linearized at the unstable
stationary point x0, with the Jacobian

with x0 given by F(x0) = 0. Then T0 and x(t) can be estimated by

where λ1,. . .,λn the n eigenvalues and e1,. . .,en the corresponding eigenvectors of the Jacobian J. Here λv is
the eigenvalue with � λv > 0. The stiff-stable Gear algorithm (36) has proven to be an effective method for
numerical integration.

Frequency-Domain Method. Using the harmonic balance technique, the steady state of the unper-
turbed oscillator may be computed in the frequency domain. The n state variables of the oscillator are summa-
rized in the state vector X:

Since all state variables are periodic in the limit cycle, the time-domain state variables xi can be expanded into
Fourier series with the Fourier coefficients Xi,l. The frequency range considered is limited to K harmonics:

The Fourier coefficients of the state variables X0 are determined by the solution of a nonlinear system of
equations

This system, with dimension n(2k + 1) and n(2k + 1) unknowns, exhibits an infinite one-dimensionl manifold
of solutions, since the phase of a free-running oscillator is arbitrary. The solution can be made unique by
specifying the phase of one Fourier coefficient. The frequency of oscillation is an unknown variable and is also
determined by solution of the system equations.

Time–Frequency-Domain Method. Time-domain methods are efficient for the analysis of circuits
exhibiting strong nonlinearities. However, it is not possible to include linear distributed circuits in the time-
domain analysis. Especially in microwave oscillator design, the linear embedding circuits usually contain
distributed circuits. The method described in the following is based on the subdivision of the oscillator network
into the following two subsets:

• The linear embedding network
• The nonlinear subnetworks with neighboring low-pass structure
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Fig. 11. Linear and nonlinear parts of oscillator Network.

Fig. 12. Separation of the linear and nonlinear network parts.

Therefore the network can be represented by a circuit model as shown in Fig. 11.
The linear embedding network may be described effectively in the frequency domain. The linear and

nonlinear parts of the oscillator network are connected via a number M of ports. The port voltages and currents
are described by the vector l(t) = [vT(t), iT(t)]T. Nonlinear resistors and nonlinear conductances are replaced by
voltage and current sources and described, in common with all other sources within the nonlinear subnetwork,
by the vector l(t) = [v0(t), i0(t)]T. In a subsequent step the linear and the nonlinear subnetworks are separated
from each other, and the port voltages and currents represented by the vector l(t) are also replaced by voltage
and current sources, as shown in Fig. 12.

Based on the time-domain description (36), the nonlinear subnetwork is characterized by

where x are the independent state variables, and w is a function of the state variables and their time derivatives,
w = w(w, ẋ). The matrices A, B, C, and D, representing also nonlinear capacitors and inductors, depend on
x and ẋ. Due to the dependence of the matrices A, B, C, D and the vector w on ẋ, the system of differential
equations (83) is implicit. This system can be made explicit and put into the normal form by imposing the
condition that the matrices A, B, D and vector w depend only on x and not on ẋ. This condition is fulfilled if:
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• In the nonlinear subnetwork no current source is connected to a node that is connected only to current
sources and to inductors.

• In the nonlinear subnetwork no voltage source is within a mesh containing only voltage sources and
capacitors.

Under these conditions the matrix C vanishes. If we also require that w depend only on the system state
variables x and not on their time derivatives, we obtain from Eq. (83)

The vector cT(t) = [ir (t), ur(t)], dual to l(t), is given by

By appropriate separation into a nonlinear and a linear subnetwork, large time constants (originating for
example from feedback loops or bias networks) may be eliminated. As a result, the differences between the
time constants are smaller, and the stiffness of the system is reduced considerably. If we treat the whole
network totally in the time domain, the linear subnetwork does not exist, and therefore the term D(x)l(t) in
Eq. (84) vanishes and we obtain

The nonlinear oscillator subnetwork is described by Eqs. (84) and (85). In addition to the periodic boundary
condition x(t) = x(t + T0), the voltages and currents of c(t) and c′(t) must coincide. c′(t) may be expressed by

where V(t) is the impulse response of the linear subnetwork. As in the previous section we normalize the time
variable with respect to T0 and obtain

Since the oscillator signals are assumed to be periodic, it is possible to represent the port variables l(t) by
periodic Fourier series,

From Eq. (87) we obtain
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where Vν is the hybrid matrix of the linear multiport, at the νth harmonic, which can be computed with
standard linear network analysis methods. The Fourier series expansion representing the port variables is
truncated after the kth element. In this case, due to the sampling theorem, it is necessary and sufficient that
the condition c(t) = c′(t) be fulfilled for 2K + 1 discrete time values within the interval T0). We obtain

The solution of Eq. (91) and the periodic boundary condition may be expressed, as in the subsection “Time-
Domain Method as the solution of a boundary-value problem. The state equations of the nonlinear subnetwork
are therefore supplemented by (2K + 1)M additional state equations

The required n + (2K + 1)m boundary conditions are

Notice that the boundary conditions are no longer only given at τ = 0 and τ = 1, but at 2K + 2 points τ = (ν−1)/(2K
+ 2), ν = 1, . . ., 2K + 2. Because of the special structure of the boundary-value problem the multiple-shooting
algorithm can be adapted in a numerically efficient way (43).

Noise in Oscillators

Problems in Microwave Oscillator Noise Analysis. Noise analysis of microwave oscillators is usu-
ally based on the assumption that the unperturbed state of the oscillator is almost sinusoidal. This allows the
application of a describing-function method for the characterization of the nonlinear devices in the oscillator
(51). Based upon this method, the noise behavior of microwave oscillators has been analyzed by Spälti (52),
Edson (53) and Kurokawa (54,55). These methods have been applied and extended to special cases (56,57,58).

The above methods provide a good qualitative and to some extent also a quantitative description of the
oscillator noise behavior. However, their applicability is restricted to simplified oscillator models, since their
accuracy depends on the validity of the approximation of the dynamic behavior of the nonlinear elements by a
describing function (55). Another severe limitation is that the upconversion of low-frequency noise such as 1/f
noise cannot be treated by these methods.
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Kärtner has developed a time-domain method for noise analysis of oscillators, based on the solution of
the Langevin equations (59, 60). Adding the noise terms to the normal-form equations (69) yields

The vector ξ describes white noise sources, and y1,. . ., yM represent f − α noise sources. Colored noise sources may
be derived from white noise sources by inserting linear systems transforming the white noise sources to colored
noise. For considering f −α noise sources infinite-dimensional systems are required. However, as shown in Ref.
60, these infinite-dimensional systems may be treated with analytical formulas, so that f −α noise sources may
be treated with low computational effort. Using the perturbation method, the correlation spectra of the phase
and amplitude noise due to white noise sources as well as due to f − α noise sources can be calculated. The
method has been applied to bipolar transistor oscillators (59,60), to planar integrated microwave oscillators
(61,62), and to varactor tunable oscillators (63).

Frequency-domain noise analysis can be performed on the basis of the harmonic balance method (64,65,
66). Starting from the harmonic balance equations (70), we obtain a nonlinear system of equations

In this equation XT is the system state vector summarizing the signal spectra of n signals at a frequency ω

close to the fundamental frequency ω0 and at k harmonics. The subscript T denotes that the signals are time-
windowed (67,68). The vector NT summarizes the r noise-source spectra at a frequency ω and at κ harmonics.
The numerical solution of this equation is based on correlation-matrix techniques.

Combining time- and frequency-domain techniques is also possible in noise analysis (69). The phase noise
is computed in the time domain. The linear subcircuits are described by noise multiports. This method again
exhibits the advantages of the time–frequency-domain method.

In Ref. 66 the results of measurements on designed and fabricated integrated oscillators are compared
with numerical simulations based on the methods discussed above. Furthermore that paper considers a method
to minimize oscillator phase noise by numerical optimization. Based on the computation of the oscillator steady-
state and spectral behavior in the time domain, single-sideband phase noise is minimized using a method for
optimal-control problems, a direct collocation algorithm (69,70)

Another essential requirement is the simulation of the startup behavior of oscillators. If the resonator
is weakly damped, it is well known that many oscillations occur on the way to the steady state. Although
some analytical results are available [see e.g. Rusznyak (71). where a simplified model of a crystal oscillator is
used, the corresponding simulation problem is very complicated [see Schmidt-Kreusel (72)]. Recently Schmidt-
Kreusel published an efficient solution for this problem, which is based on the idea that the transient trajectory
of a weakly damped oscillator consists of nearly closed trajectories in the state space. If only a few parts of
this transient are approximated by periodic solutions, the envelope of the transient behavior can be calculated
in a fast manner. This approach is described in detail by Mathis (73). Recently, an alternative approach was
published by Brachtendorf and Laur (74) that uses a certain kind of partial differential equations for calculating
the envelope.

Description of Noisy Circuits. In linear noisy circuits we usually have to deal with stationary Gaus-
sian noise signals. Such signals may be characterized completely by their correlation spectra (75). For a signal
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s(t) unlimited in time, the average power within the time interval of length 2T centered around t is given by

If for large time intervals 2T the average power approaches a limit, which is independent of t, the signal s(t) is
called stationary. The average power 〈P〉 of a stationary signal can be exactly defined by

We investigate the more general function

Which is called a correlation function. For i = j, the function Cii(τ) is the autocorrelation function of the signal
si(t) and for i �= j we have the cross-correlation function Cij(τ) of the signals si(t) and sj(t). With the time-windowed
function sT(t) of the signal s(t) defined by

we can write Eq. (98) in the form

The average power 〈P〉 of the signal Si(t) is given by

We denote the Fourier transform of the time-windowed function siT(t) by SiT(f ):

As mentioned before, the symbol represents the correspondence between a pair of Fourier transforms. From
Eq. (102), we obtain
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The symbol ∗ denotes the convolution operation

The correlation spectrum Cij(f ), given by

is the Fourier transform of the correlation function:

Cii(f ) with i �= j is the autocorrelation spectrum of the signal si(t) and Cii(f ) with i = j is the cross-correlation
spectrum of the signals si(t) and sj(t). With the exception of a dimensional factor, Cii(f ) is a spectral power density
or a power spectrum. Since the autocorrelation function is a real and even function of τ, the autocorrelation
spectrum is a real and even function of frequency.

The cross-correlation function is complex. Changing the sign of the frequency or interchanging the indices
i and j yields its complex conjugate.

The factor 2 results from considering both the positive- and negative-frequency parts. In general for random
signals no amplitude spectra exist, whereas power spectra may be calculated even for random signals.

For a stationary noise signal sni(t) the Fourier integral does not exist. However, a correlation function

can be defined, in which the brackets indicate the statistical mean over signals measured on an ensemble of
identical circuits. If the signals sni(t) and snj(t) have zero mean, in general, the mean of the product sni(t)snj

∗(t − τ)
approaches 0 with arbitrary order for τ → ∞, so that the integral (108) and also its Fourier transform exist.
Since the Fourier integral of a time-windowed function exists in general, the correlation spectrum may also be
defined by

In this case, T → ∞ has to be carried out after the ensemble averaging. The autocorrelation and cross-correlation
spectra Cij(f ) of the noise sources of a linear network are given by
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where SiT(t), SjT(t) are the spectra of the time-windowed signals of the noise sources. The correlation spectra
Cij(f ) can be combined in the correlation matrix

The correlation matrix C(f ) can be represented as the product of the column vector

and its Hermitian conjugate row vector

in matrix notation by

We now formally use the complex amplitudes SiT(f ) in the same way as the amplitudes of deterministic signals.
SiT(f ) is the spectrum of a time-windowed noise signal. We can measure the noise signal within some finite
interval of time, and we may calculate the spectrum of this sample. This specific sample of a noise signal
has to be considered as a deterministic signal, since we have exact knowledge of its time dependence. The
transition from deterministic signals to random signals is carried out in our description by performing the
ensemble average. After doing so, in the case of random signals, the decomposition of the correlation matrix
into a product of a column vector and a row vector will be impossible. For example in the case of a signal vector
describing independent random noise sources, the nondiagonal elements will be averaged out to zero and the
correlation matrix will be diagonal.

In general, the network equations have the following form in matrix notation:

The coefficient matrix M(f ) combines the complex amplitude vectors ST(f ) and S′
T(f ). Multiplying Eq. (115) on

the right by its Hermitiean conjugate, we obtain
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Fig. 13. Noisy two-port oscillator.

Evaluating the ensemble average on both sides and subsequently carrying out the transition T → ∞ we obtain

This establishes a general rule for deriving equations for the correlation matrices from linear equations
for the signal amplitudes. A linear noisy two-port may be characterized by two equivalent noise sources. These
sources may be located at the input or at the output. If both sources are located at the same port, one must be
a voltage source in series with the port and the other must be a current source in parallel with the port. If one
equivalent noise source is assigned to every port, in general we may choose an equivalent current source or an
equivalent voltage source at each port.

Noise in Two-Port Oscillators. We analyze the noise behavior of the simple two-port oscillator shown
in Fig. 13. The left two-port is the linear frequency-determining feedback two-port. In our example the feedback
network of the Meissner oscillator was chosen. The right two-port is the nonlinear amplifying two-port. In our
example, all internal noise sources of the linear two-port as well as the nonlinear two-port are summarized in
the noise current source IT

r(f ). This equivalent noise source is obtained in the following way: In the first step,
describe the noise properties of the linear feedback two-port by an equivalent output noise located at its output,
and the noise properties of the active two-port by equivalent noise sources located at its input. To extract the
noise parameters of the active two-port, we consider it to be linear. After connecting the output of the feedback
two-port to the input of the active two-port, we can contract the four equivalent noise sources into one noise
source IT

r(f ).
For the oscillator circuit depicted in Fig. 13 the following equations are valid:
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The variables I1lT (f ), V2lT (f ), V1aT (f ) and I2aT (f ) are the noise current and voltage amplitudes at the ports
of the two-ports. To investigate of the oscillator noise behavior we have to consider the nonlinear saturation
properties of the active two-port. A21(f ) and A22(f ) are circuit parameters of the feedback two-port in chain
representation. In our simple model we describe the active element by a nonlinear voltage-controlled current
source. With the real amplitude V of the oscillator signal at the input of the nonlinear two-port we describe
the relation between input and output noise signals by the amplitude-dependent transconductance S(V). From
Eqs. (118) to (121) we obtain

The autocorrelation spectra CI(f ) and CV (f ) of the noise current source Ir
T (f ) and the voltage current

source Vr
T (f ) are given by

With Eq. (122) we obtain

For the Meissner oscillator the circuit parameters of the linear feedback two-port are given by
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where M is the mutual inductance of the transformer and L2 is the inductance of the secondary coil. Substituting
into Eq. (125), we obtain

The power spectral density at the load conductance G is

and the total power flowing into G is given by

With

we obtain

The frequency deviation �f from the carrier is given by �f = f − f 0. For �f << f 0 we can approximate

To characterize the oscillator noise we introduce the noise measure Mr. The noise measure is the factor by
which the power spectral density of a noise source exceeds the thermal noise. The autocorrelation spectrum of
the equivalent noise source of a conductance G exhibiting thermal noise at a temperature T is given by 2kTG.
From this definition it follows that

From Eqs. (130), (131), (135), and (136) we obtain the power spectral density of the oscillator,
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From Eqs. (132) and (136) we obtain the average total power

We define the spectral width of the oscillator as the ratio of the average power P̄0 to the power spectral density
W (f 0) at the center frequency f 0,

and obtain

In the oscillator without noise, S equals G0, whereas in the noisy case we have G0 − S > 0. The oscillator
amplitude is determined by the nonlinear gain characteristics of the active element. It is only slightly influenced
by the noise source. The ratio G0/(G0 − S) is determined by the ratio of the saturation power P̄0 to the injected
noise power. Using Eq. (138), we can express G0 − S the ratio of the power spectral density of the equivalent
noise source to the saturation power of the oscillator and obtain

The spectral width of the oscillator is directly proportional to the noise measure Mr, and inversely
proportional to the reciprosal saturation power and to the square of the quality factor Q of the resonant circuit.
Low-noise design of oscillators requires a low-noise active element, a high quality factor of the active circuit,
and a high saturation power of the oscillator. Since the amplitude of the oscillator is stabilized by the nonlinear
saturation behavior of the oscillator, an oscillator exhibits primarily amplitude noise.

Noise Analysis in the Frequency Domain. In the following a frequency-domain perturbation method
for simulating the noise behavior of free-running microwave oscillators is presented (66). The method is based
on a piecewise harmonic balance technique. The single-sideband phase noise of the oscillator is derived from
the system equations. The method is limited neither to certain circuit topologies nor to certain types of noise
sources.

Fluctuations of the State Variables. In the frequency-domain method, noise sources may be consid-
ered by extending the nonlinear system of equations (82). Introducing the noise source vector NT(ω), which
summarizes the time-windowed spectra of the noise sources, the system equations now exhibit the following
form:

The index T denotes the time-windowed signal spectra as defined in Eq. (102). The vector NT ε Cr(2k+1) summa-
rizes the amplitudes at the fundamental frequency ω0 and at the harmonics up to Kω0 of a number r of noise
sources of arbitrary spectrum. In Eq. (142) all harmonics up to kth order and their fluctuations are considered.
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This allows us to compute the complete correlation spectrum at the frequency deviation ωm = ω − ω0. All noise
processes, including the upconversion of low-frequency noise, are considered. Since the noise contribution is
small compared with the deterministic part of the oscillator signal, the noise contribution may be considered
as a first-order perturbation. From Eq. (142) we obtain

with G(X0
T, ω) ε Cn(2k+1)×r(2k+1) and

The matrix G(X0
T, ω) describes the coupling of the noise sources NT with the system. It is assumed that noise

sources effect only a small perturbation of the limit cycle of the oscillator:

Therefore the system of nonlinear equations (143) may be linearized in the neighborhood of the limit cycle, and
we obtain

with the Jacobian matrix J(X0
T, ω) ε Cn(2k+1)×n(2k+1) of the unperturbed system equations given by

This equation describes the perturbation of the oscillator by the noise sources. It includes the mixing of the
injected noise signals NT with the unperturbed state variables XT

0. From the solution of the linearized system
of equations (146) the correlation spectra of the state variables may be computed.

A problem arises from the fact that the Jacobian matrix J(X0
T, ω0) is singular for the limit cycle of the

unperturbed system (35,76) The linearized perturbed system equations cannot be solved by inversion or by
LR decomposition. The smallest eigenvalue of the Jacobian is λ1 = 0. A perturbation δXT corresponding to
the eigenvalue 0 of the Jacobian induces a perturbed solution X0

T + δXT, which is again a solution of the
system equations (142). The eigenvector corresponding to the eigenvalue λ1 = 0 is tangent to the limit cycle.
The fluctuations in direction of this eigenvector are the phase fluctuations. The subspace spanned by the other
eigenvectors of the Jacobian is the space of the amplitude fluctuations. This subdivision of the eigenvector
space of the Jacobian allows a clear and well-defined distinction between phase and amplitude fluctuations.

Solution of the System Equations Including Noise. The Jacobian is singular at the steady state, and
for a small frequency deviation f m of the carrier frequency the deviations of the matrix elements are small and
the condition number of the Jacobian remains high (76). The condition number cond, defined by
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provides a measure for the numerical error in the solution of a linear system of equations (77, 50). Here ‖J‖ is
the matrix norm of the Jacobian J. The condition number of a matrix may be approximated by the ratio of its
largest to its smallest eigenvalue (77). The largest eigenvalue is much larger than the frequency of oscillation
f 0, because it is related to the fastest process of the system. The smallest eigenvalue is of the order of the
frequency deviation f m, as we will show later in Eq. (166). Therefore the condition number cond of the Jacobian
is much larger than the ratio of the carrier frequency to the frequency deviation of interest (78):

This means that the steady state of an oscillator has to be determined to a much higher precision than the
reciprol of the condition number to achieve a relative error smaller than 1 (50). Considering a 10 GHz oscillator
and a frequency deviation of say, f m = 10 kHz, the condition number is much larger than 106. To overcome the
numerical problems the Jacobian is linearized at the carrier frequency with respect to the frequency:

with the abbreviation

An eigenvalue decomposition (77) of the Jacobian with left- and right-side eigenvectors is used. Thus the
complete correlation spectra can be calculated in a numerically stable way. First we want to analyze the
unperturbed Jacobian Jω(X0

T, ω0). The left- and right-side eigenvectors of the Jacobian are denoted by V†
j and

Wi, and the eigenvalues by λV
j and λW

j respectively. We have

The eigenvalues of the Jacobian are equal for a set of left- and right-side eigenvectors:

The left- and right-side eigenvectors satisfy the orthogonality relations (76)
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According to these equations, the eigenvector V1 is orthogonal to all right-side eigenvectors Wi with the
exception of W1. The eigenvectors corresponding to the eigenvalue λ1 = 0 are denoted by V1 and W1. These
eigenvectors will be investigated in the following in detail.

The eigenvector W1 is determined by the steady-state solution (64,79):

where K ε IRn(2k+1)×n(2k+1) is a matrix that has only nonvanishing diagonal elements consisting of the numbers
of the harmonics:

Figure 14 illustrates the meaning of the eigenvectors υi(t) and ωi(t) in the time domain. The vector υ1(t) V1(f )
is the tangent vector to the steady-state limit cycle x0(t), and ω1 W1(f ) is the normal vector defining a plane
N that is mapped onto itself by the unperturbed flux of the linearized set of differential equations (Poincaré
map); see Ref. 60. The left-side eigenvector V1 is determined via

which is a linear homogeneous system of equations and can be solved with a standard LU decomposition. The
length of the vector V1 has to be normalized to satisfy, Eq. (155):

The eigenvectors Wi are a complete basis for the state space, and due to Eq. (155) a multiplication of V†
1 with a

vector within the state space is a projection onto the complementary space of the plane N. This means that the
projection operator W1V†

1 applied to any vector z =�n
i = 1 aiWi results in a vector with a tangential component

a1 with respect to the limit cycle. So if this projection operator W1V†
1 is applied to the noise sources in the state

space G(X0T,ω)NT the contributions of the noise sources that cause a phase shift of the unperturbed steady
state are separated. This will be shown in the following. For a small frequency deviation f m the deviations of
the elements of the Jacobian are small. Therefore the deviations of the eigenvalues and eigenvectors of the
Jacobian are small too (77):
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The eigenvalues and eigenvectors of the perturbed Jacobian Jω (X0
T, ω0) are denoted by a prime. It is sufficient

to consider the deviations of the eigenvalues and eigenvectors up to the first order in ωm:

The eigenvalue λ′
1 is of special interest, since it is identical with the deviation δλ1 from the lowest eigenvalue

λ1 = 0 of the unperturbed system. Using Eq. (156), we obtain

The smallest eigenvalue of the perturbed Jacobian λ′
1 = δλ1 is therefore of the same order of magnitude as

the small frequency deviation ωm. The inverse J − 1
ω (X0

T, ω0) of the Jacobian is represented by an eigenvalue
decomposition with the eigenvalues and left- and right-side eigenvectors of the Jacobian Jω (X0

T, ω0):

This inversion will not be performed, due to the ill-conditioning of the Jacobian. We have derived this equation
only to calculate the correlation spectrum of the state-variable fluctuations. Later on we take into account the
special eigenvalue λ′

1 that causes the ill-conditioning of the matrix and the problems associated with numerical
inversion.

The state-variable fluctuations are given by

Correlation Spectrum of the Oscillator Noise. The correlation spectra of the state variables CδX (f ) and
the noise sources CN (f ) are given by
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Fig. 14. Limit cycle in a two-dimensional phase space.

where the brackets denote the ensemble average. The correlation spectra of the state variables are derived
using Eqs. (169), (171) and the equation (168) of the state-variable fluctuations:

with the abbreviation

The approximations Eqs. of (163), (164), and (165) for the eigenvalues and eigenvectors of the perturbed
Jacobian are used to derive the correlation spectra of the state-variable fluctuations. The term with the major
contribution to the correlation spectrum is the term with i = j = 1, due to the small eigenvalue λ′

1 = δλ′
1 given

in Eqs. (27). This term represents, as already described, the phase noise of oscillators. As the perturbations
of the eigenvectors δW1 and δV1 are of the order of ωm and therefore small compared with the unperturbed
eigenvectors, they are negligible, and we have

Due to the special situation of the eigenvalue λ′
1 and the eigenvectors δW1 and δV1, the terms with i = 1

and j �= 1 or i �= 1 and j = 1 in Eq. (171) represent the amplitude-phase correlation spectra. Finally, the terms
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with i �= 1 and j �= 1 in Eq. (171) represent amplitude noise. These noise contributions are small compared with
the phase noise, due to their larger eigenvalues, and are not taken into account in the following.

Single-Sideband Phase Noise. The single-sideband phase noise L(f m) is the ratio of the noise power in
a sideband of bandwidth 1 Hz at a frequency deviation f m = f − f 0 from the carrier frequency to the total signal
power PS. The value of L(f m) is the same for all state variables, and therefore we can choose any state variable
xi to calculate the single-sideband phase noise:

In order to obtain the single-sideband phase noise at the fundamental frequency, the matrix element corre-
sponding to the ith state variable is chosen, which represents the noise power at the fundamental frequency.
We have to select the element |X0

i,1|2 of the matrix KX0X0†X and obtain for the noise power PNi (f m) in a 1 Hz
bandwidth

Here Rn is a normalization resistance. The signal power of the fundamental frequency is represented by

With the definition of the single-sideband phase noise in Eq. (174) we derive an equation for L(f m) using the
approximations of the noise power (175) and the signal power (176):

where V1 is the solution of the homogeneous linear system of equations

which can be obtained very easily with a standard LU decomposition of the Jacobian. The derivative of
the Jacobian with respect to the frequency, J†

ω(U0, 2πF0), can be calculated numerically, as we will show
in our example. The denominator of the second factor is constant for different frequency deviations and
needs to be calculated only once. The numerator consists of the correlation spectrum of the noise sources
multiplied by the vector V†

1 on the left side and by V1 on the right side. As we already described, this
multiplication is a projection of all noise sources of the state space onto the tangent vector to the steady state.
That means the vector V1 selects the contributions of the noise sources that are tangential to the steady state
and therefore induce phase noise. The noise sources (1/f α noise and white noise and their modulation are taken
into account in the correlation matrix CGN . The correlation spectrum of a 1/f α-noise source decreases at 10α dB
per frequency decade, and therefore L(Fm) decreases at 20 + 10α dB per decade. The single-sideband phase noise
decreases at 20 dB per decade due to white noise sources, because the correlation spectra of white noise sources
are independent of frequency. This method results in a numerically stable calculation of the phase noise of
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free-running oscillators, where all effects of the noise sources converted with harmonic signals are taken into
account.

Synchronization of Oscillators

In the previous sections electronic oscillators without excitation are considered but even in the early days
of oscillators an undesired entrainment phenomena in forced oscillators was described by Möller (80) and
others [see van der Pol (81) around 1920. Although van der Pol mentioned forced oscillations in his 1920
paper he only considered circuits with positive (differential) resistances. In 1922 Appleton (82) discussed
“automatic synchronization” of forced triode oscillators (only another expression for entrainment), and in the
following years this subject was studied in more detail [see van der Pol’s review paper (83)], but a sound
mathematical basis for entrainment phenomena was not presented until the paper of Andronov and Vitt (84)]
in 1930, where again mathematical ideas of Poincaré were used. A modern presentation can be found for
example in the monograph of Jordan and Smith (12). In 1945 Tucker emphasized (85), “The synchronization
(or entrainment) of oscillators was originally investigated because of difficulties experienced with early radio
transmitters of “pull-in” to adjacent-station frequencies. Since then, however, the properties of oscillators under
the influence of injected tones have been utilized in several ways,” and he mentioned ideas from his Ph.D. thesis
about applications to carrier telephone systems, and Kirschstein’s (86) miscellaneous applications in radio and
other applications in communication engineering. Today many of these early applications of entrainment and
synchronization of forced oscillators are discussed in the context of so-called phase-locked loops [see e.g. Stensby
(87) for further details and references]. Although it seems that PLL circuits and forced electronic oscillators
differ in their circuit structure, a mathematical analysis shows similar phenomena in both circuits.

In this section some aspects of entrainment will be illustrated using the forced van der Pol equation (with
normalized ω2

0 = 1)

where ε > 0. Following Jordan and Smith (12), where van der Pol’s idea is used, we look for responses approxi-
mately of the form

where a, b are slowly varying functions. Neglecting ä, b̈, we obtain after some calculations a system of differ-
ential equations for the amplitude functions a and b:

where r2 = a2 + b2. The periodic solutions with the frequency ω of the input function � cos ωt [r.h.s. of
Eq. (179)] correspond to the equilibrium points (ȧ= 0, ḃ= 0) of these equations. Using the abbreviations
ν = (ω2 − 1)/εω (detuning) and γ = �/εω, we obtain from the equilibrium equations the following condition for
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Fig. 15. Response Diagram of the van der Pol equation.

response solutions

Analysis of this polynomial equation shows that there are one or three real roots (since r > 2), depending
on the parameter values ν and γ. A graphical representation of r2 in dependence on |ν| called the response
diagram can be found for example, in Jordan and Smith (12). Based on these equilibrium points, a stability
analysis has to be performed. As a conclusion it can be found that for certain values of the parameters ν and γ,
around the frequency ω2

0 = 1 (ν= 0) of the free oscillator (i.e. zero input function) there is a finite region (lock-in
band) of detunings ν where a stable harmonic solution (with frequency ω) exists. This region of frequencies
corresponds to the region of entrainment or synchronization. Outside this region of frequencies there are no
stable harmonic solutions with the input frequency ω, and in the a–b plane limit cycles appear. In Fig. 15
a variant of the response diagram is shown using the coordinates r and ω. A first curve subdivides the r–ω

plane into stable and unstable areas, whereas the upper semicircle corresponds to the stable solutions of the
polynomial equation (183). The dashed lines bound the entrainment or synchronization region. These results
were first published by Andronov and Vitt (84).

Note, that the forced vdp equation is nonlinear, and in contrast to linear differential equations with
constant coefficients, where general solutions are consist of a superposition of free and forced oscillations, this
distinction makes no sense, although it seems obvious if the frequencies ω0 and ω are widely separated.

By means of the above mathematical concept some basic aspects of entrainment synchronization phenom-
ena can be discussed, but there are other effects (e.g. higher harmonics, subharmonics) where more involved
techniques have to be applied. The reader is referred to the monograph of Jordan and Smith (12) for further
details. For the analysis of PLL circuits with feedback structure the monograph of Stensby (87) is very helpful.

Finally we should mention that there is a close relationship between synchronization and chaotic behavior.
This subject is treated in an interesting paper of Tsang et al. (88) As a conclusion of their discussion it can be
emphasized that each circuit with synchronization properties is a candidate for a chaotic system.
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Miscellaneous Problems of Oscillator Design

Besides the design problems discussed above, there are further problems that are essential in the design of
oscillators. Some of these are mentioned here but the reader is referred to the literature; the monographs
of Parzen (6), Frerking (89), and Kurz and Mathis (33) discuss many interesting design aspects. Several
monographs are available that consider the design of microwave oscillators [e.g. Vendelin (90)]. We will discuss
only some more general aspects of oscillator design. Most spurious oscillations are caused by the parastic
inductances and capacitances in the active devices (e.g. transistors) or the physical layout of the components
of the oscillator circuit. A main approach to avoid these oscillations is to introduce additional damping (e.g.
additional resistors). Parasitics that are related to the layout and to poor design can be reduced only by an
experienced designer, since general rules to avoid it are not available.

In crystal oscillators there is a tendency to spurious signals due to the crystal itself. For studying these
effects a more complete model of the crystal with additional resonances (so-called modes) has to be taken into
consideration [see Parzen (6)].

Another effect is self-produced amplitude modulation of the high-frequency oscillation; this effect is often
called squegging. The physical reason for squegging is related to an interaction between the time constant of
the bias and coupling circuits and the time constants of the high-frequency tuned circuits of the oscillation part.
Squegging occurs more frequently in self-limiting oscillators with low Q’s than in crystal oscillators, where a
high Q is usual. Furthermore, a suitable thermal design is necessary, especially if a crystal resonator is chosen.
Some hints about this subject can be found in the literature [see e.g. Kurz, and Mathis (33)].
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27. R. Knöchel K. Schünemann Noise in multiple-device oscillators, Arch. Elekktron übertragungstech. 36 (10): 31–39,

1982.
28. A. Buonomo C. Di Bello Asymptotic formulas in nearly sinusoidal nonlinear oscillators. IEEE Trans. Circuits Syst. I,

Fundam. Theory Appl., 43: 953–963, 1996.
29. V. Belevitch Classical Network Theory, San Francisco CA: Holden-Day, 1968.
30. T. Mangold P. Russer Full–wave modeling and automatic equivalent-circuit generation of millimeter-wave planar and

multilayer structures, IEEE Trans. Microw. Theory Tech., MTT-47: 851–858, 1999.
31. M. N. Horenstein Microelectronic Circuits and Devices, Englewood Cliffs, N: Prentice-Hall, 1996.
32. P. R. Gray R. G. Meyer Analysis and Design of Analog Integrated Circuits, New York: Wiley, 1993.
33. G. Kurz W. Mathis Oszillatoren, Heidelberg: Hüthig Buch Verlag, 1994.
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