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QUALITATIVE ANALYSIS OF DYNAMIC CIRCUITS

Explicit solutions of the voltages and currents in a nonlinear dynamic circuit are generally not available. In
many cases, however, a qualitative description of the circuit behavior is possible and useful. Instead of solving
the circuit equations exactly, we ask questions such as: Is the circuit stable? Does the circuit oscillate? Do the
solutions remain bounded? Although circuit simulators, such as SPICE, give accurate solutions to the circuit
equations, generally they cannot answer these questions because they give us only the solution for a specific
set of initial conditions. To know whether the circuit is stable for all initial conditions, a new run needs to
be performed for each set of initial conditions, which is impractical. Furthermore, a qualitative analysis of a
circuit also tells us about its behavior when the circuit parameters are changed, which is difficult to do with a
circuit simulator.

Many techniques of the mathematics of dynamic systems theory are useful for qualitatively analyzing
dynamic (and resistive) circuits. A very useful technique for analyzing complicated dynamical systems is to
study a quantity derived from the system, such as energy, and use it to draw conclusions regarding the system.
Most of the methods of analysis in this article are of this nature. We assume that the reader is familiar with
basic circuit theory (1). We assume that the voltages or currents in external sources in a dynamic circuit are
bounded functions of time.

Abstractly speaking, a dynamic circuit is a network whose behavior changes over time. The following
definition, however, is sufficient to classify a large enough class of useful circuits, especially under the lumped
circuit approximation, where we do not consider wave propagative phenomena. A dynamic circuit is a network
composed of n-terminal (possibly nonlinear) resistors, capacitors, and inductors. A resistor is a resistive element
whereas a capacitor or an inductor are called dynamic elements. For one-port or two-terminal elements, their
notation along with reference directions are shown in Fig. 1. For simplicity in this article, we assume that all
elements are two-terminal elements. A nonlinear resistor is described by a relationship between the voltage
across it and the current through it. Similarly, a nonlinear capacitor is described by a relationship between
the charge on the capacitor q and the voltage across the capacitor v, and a nonlinear inductor is described by a
relationship between the flux φ and the current i. More formally, nonlinear resistors, capacitors and inductors
are defined by the relationships

respectively. These equations are the constituency relationships of the elements. If an element is time-varying,
then we need to write the relationships as R(v, i, t) = 0, C(q, v, t) = 0, and L(φ, i, t) = 0. A resistor is voltage-
controlled if the current i is a function of the voltage across the resistor, that is, the constituency relationship
R(i, v) = 0 is expressed as i = ı̂(v). A resistor is current-controlled if the constituency relationship is written
v = v̂(i). A capacitor is voltage-controlled if the charge is a function of the voltage across the capacitor, that
is, C(q, v) = 0 is rewritten q = q̂(v). Similarly, a capacitor is charge-controlled if we write the constituency
relationship v = v̂(q). An inductor is flux-controlled if it is described by a function i = ı̂(φ) and current-controlled
if it is described by φ = φ̂(i).
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Fig. 1. Two-terminal nonlinear elements along with their reference directions.

Passivity

Because many of the results in this article rely on energy-like quantities, the concept of passivity is important.
Passivity implies that the nonlinear element dissipates energy (or at least does not supply energy), which is
the case for elements without a power source.

Definition 1. A nonlinear resistor with a constituency relationship i = g(v) is passive if vg(v) ≥ 0 for all v. It is
strictly passive if vg(v) > 0 for all v �= 0. It is eventually passive if there exists a k > 0 such that vg(v) ≥ 0 for |v|
> k. It is eventually strictly passive if vg(v) > 0 for |v| > k.

If the constituency relationship is given by v = r(i), the previous definition still holds when v is replaced
by i. Passive resistors are such that the power vi fed into the resistor is always nonnegative, that is, the
constituency relationship lies in the first or third quadrant of the v-i plane.

Definition 2. A nonlinear element (resistor, inductor, or capacitor) with a constituency relationship y = f (x) is
strongly locally passive if there exists a, b > 0 such that the following holds for all x, x′:

It is eventually strongly locally passive if Eq. (2) holds for all |x| > k, |x′| > k for some k > 0.

A strictly locally passive nonlinear element has a constituency relationship that is strictly increasing and
is not necessarily passive.

Stationary or Equilibrium Points

The state of a capacitor and an inductor is the charge and the flux, respectively. The state of a dynamic circuit
consists of the charges and fluxes of the capacitors and inductors, respectively. A dynamic circuit is autonomous
(or time-independent) if it does not contain any time-varying circuit elements or sources. A stationary or
equilibrium point of a dynamic circuit is defined as the state of the circuit such that the state does not change
with time. This is also called the dc-operating point. Because the change of charge and flux with respect to time
is the current through the capacitor and the voltage across the inductor, respectively, an equilibrium point is
the state where all the branch currents of the capacitors and branch voltages of the inductors are zero. Thus,
at the equilibrium point, we can replace a capacitor by an open circuit, and an inductor by a short circuit, and
reduce the dynamic circuit to a resistive circuit. Thus finding equilibrium points of a dynamic circuit consists
of two steps. First the operating points of the corresponding resistive circuit are found. These operating points,
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which are expressed as branch currents and branch voltages, are used to find the equilibrium points of the
dynamic circuit as follows: for each capacitor Ci, the branch voltage vi at the operating point is used to find all
the qi’s which satisfy Ci(qi, vi) = 0. Similarly this is done for inductors to find the φi’s. Each operating point of
the resistive circuit can correspond to many equilibrium points of the dynamic circuit.

State Equations and Uniqueness and Existence of Solutions

The equations governing a dynamic circuit consists of Kirchhoff’s current law (Ai = 0), Kirchhoff’s voltage law
(Bv = 0), the constituency relationships of the elements, and the equations i = dq/dt, v = dφ/dt. This forms a
set of constrained differential equations. Suppose that we can eliminate the variables v and i, so that we are
left with the equations:

where qc is the vector corresponding to the charges on the capacitors and φl is the vector of fluxes of the
inductors. These are the state equations of the dynamic circuit.

If all the capacitors are charge-controlled and have differentiable and invertible constituency relation-
ships v = v̂(q) and all the inductors are flux-controlled and have differentiable and invertible constituency
relationships i = ı̂(φ), then we can express the state equations in terms of capacitor voltages vc and inductor
currents il. Let us write vc = gc(qc) and il = gl(φl). The hypothesis implies that ∇gc, g− 1

c, ∇gl, and g− 1
l exist.

This form is more desirable in practice because voltages and currents are more easily measured than charge
or flux.

Even if the state equations of the system exist, there is still no guarantee that solutions to the equations
exist, let alone that they are unique for each initial conditions. A mild requirement guaranteeing the existence
and uniqueness of solutions for all time t of ordinary differential equations of the form ẋ = f (x, t) is that f is
continuous and uniformly Lipschitz continuous with respect to x (2).

In this article, unless otherwise stated, we assume that we can always write the state equations [Eq. (3)]
of a dynamic circuit and that solutions to ẋ = f (x, t) exist and are unique for all time and that f is continuous.

Simple First- and Second-Order Nonlinear Dynamic Circuits

For a dynamic circuit with only two-terminal dynamic elements is called the order of the system, because, in
general, the resulting state equations (when they can be written) consist of this many first-order equations
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Fig. 2. First-order autonomous dynamic circuit consisting of a resistor in parallel with a capacitor.

(except for cases such as where there are loops of capacitors, in which case there are less equations than the
number of dynamic elements). The simplest types of dynamic circuits are the first-order and second-order
circuits. In this section we study some simple first-order and second-order dynamic circuits in some detail and
illustrate how the qualitative behavior of these systems is derived.

One Nonlinear Resistor and One Nonlinear Capacitor. Consider the first-order circuit consisting
of a nonlinear capacitor coupled with a nonlinear resistor (Fig. 2). If the resistor is voltage-controlled with
driving-point characteristic i = g(v) and the capacitor is charge controlled with driving-point characteristic
v = c(q), then the state equation of the circuit is written

What is the possible behavior of this system? The following theorem shows that nothing very interesting can
happen in this case:

Theorem 1. Suppose that c and g are continuous functions. Any solution q(t) of Eq. (4) is monotonic with no
inflection points (isolated points with slope 0). Thus, q(t) converges to an equilibrium point, or q(t) becomes
unbounded.

This can be proved as follows. Existence and uniqueness of solutions imply that, if dq/dt = 0 at some
time t0, dq/dt = 0 for all time t. Because g and c are continuous and q(t) is continuous, q̇= dq/dt = −g[c(q)] is
a continuous function of time. Suppose that q̇ > 0 at some time t0 and that q̇ < 0 at some time t1. Then, by
the mean value theorem (18), q̇= 0 at some time t2, which contradicts the above. So q̇ always has the same
sign, and q is either constant or a strictly monotonic function. If q(t) is bounded, then it converges to some
number q∗. Because q(t) is monotonic, there exists a sequence tn → ∞ such that −g{c[q(t)]}= q̇ → 0, as n →
∞. Therefore −g[c(q∗)] = 0 which implies that q∗ is an equilibrium point.

One Resistor, One Capacitor, and One Periodic Input. Now assume that a periodic voltage source
u(t) is connected in series with a nonlinear capacitor and resistor as shown in Fig. 3. We assume that u(t) is a
continuous function of t. Again assuming that the capacitor is charge-controlled and that the resistor is voltage
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Fig. 3. First-order nonautonomous dynamic circuit obtained from Fig. 2 by adding a periodic voltage source in series with
the capacitor.

controlled, we get the state equation:

For the initial condition q(t0) = q0, we denote the corresponding solution as q(t, t0, q0). Let T be the period of
u(t). Then, by uniqueness of solutions, q(t + nT, t0, q0) for n an integer depends only on q(t, t0, q0). This implies
that a map Pt0 exists, which maps q0 to q(t0 + T, t0, q0). Note that Pt0 depends on t0. The map Pt0 is called
a Poincaré map. By continuity of solutions of ordinary differential equations, Pt0 is continuous because u(t) is
continuous. Pt0 is also invertible by uniqueness of solutions. This implies that Pt0 is a strictly monotonic map.
Note that uniqueness of solutions also implies that q(t0 + 2T, t0, q0) = Pt0 [Pt0 (q0)] etc., so that q(t0 + nT, t0, q0)
is just the nth iterate of the map Pt0 evaluated at q0. Because Pt0 is monotonic, its iterates either diverge or
converge toward an equilibrium point. This implies that q(t, t0, q0) as a function of t either diverges to infinity
or converges toward a periodic waveform with period T.

One Resistor, One Capacitor, and One Inductor. Consider a second-order circuit consisting of
a capacitor, an inductor, and a resistor connected in parallel (Fig. 4). Assuming that the resistor is voltage-
controlled, the inductor is flux-controlled, and the capacitor is charge-controlled with constituency relationships
i = f (v), i = g(φ), v = h(q), respectively, then the state equations are given by

The Poincaré–Bendixson theorem (2) states that second order autonomous circuits cannot exhibit behavior
more complicated than periodic solutions.

Theorem 2. If the trajectory of an autonomous second-order system is bounded and does not approach an
equilibrium point, then it must approach a periodic solution.
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Fig. 4. Second-order autonomous dynamic circuit consisting of a resistor, a capacitor, and an inductor in parallel.

In particular, in second-order autonomous systems with one unstable equilibrium point, almost all
bounded trajectories must approach a periodic solution.

If the characteristics of the nonlinear elements are of a certain form, the Levinson–Smith theorem (2)
allows us to conclude that there exists a periodic solution which is stable in the sense that nearby solutions
converge toward it.

Theorem 3. If the following conditions are satisfied:

(1) the inductor is linear and strictly passive;
(2) the capacitor is strictly passive such that h is odd and differentiable;
(3) the function F(x) = f (h(x)) is odd and differentiable and there exists a > 0 such that F(x) < 0 on 0 < x < a,

F(x) > 0 on x > a, and F′(x) > 0 on x > a:
(4)

∫
x

0 h(s)ds → ∞, as |x| → ∞; and
(5) F(x) → ∞, as x → ∞;

then Eq. (5) has a nonconstant periodic solution which is stable.

This nonconstant periodic solution is unique if, in addition, the following conditions are satisfied (3):

(1) F(x) is zero only at x = 0, x = a and x = −a; and
(2) F(x) → ∞ monotonically, as x → ∞ for x > a.

By using index theory (19), it can be proved that any periodic solution encircles at least one stationary
point.

When the circuit is autonomous but higher than second-order (e.g., Chua’s circuit) or the circuit is second-
order but nonautonomous, that is, driven by an external input, the behavior can be very complex. In fact,
circuits of this type can be chaotic and can exhibit complicated bifurcation phenomena (4,5,6). See the article
(Circuits exhibiting chaotic behavior) for an introduction to bifurcation and chaos in nonlinear circuits and
systems.
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Fig. 5. The function x(t) = a/(b − t) goes to infinity in finite time.

No Finite Escape-Time Criteria

General ordinary differential equations can have solutions which diverge to infinity in finite time, such as
x(t) = a/(b − t) (Fig. 5). In this case the solutions do not exist for all time and this is a nonphysical situation.
The following criterion guarantees that dynamic circuits do not have such solutions (7).

Theorem 4. A dynamic circuit does not have solutions which escape to infinity in finite time if the following
conditions are satisfied:

(1) There are no loops nor cut sets consisting only of capacitors and/or inductors.
(2) All capacitors and inductors are eventually strongly locally passive.
(3) All resistors are eventually passive.

Eventually Uniformly Boundedness of Trajectories

Even if the solutions exist for all time, we do not want the voltages and currents in practical circuits to diverge
to infinity. Therefore, we want the trajectories of the system to be bounded.

Definition 3. A dynamic circuit is eventually uniformly bounded if there exists a bounded set K such that, for
each initial condition x(t0), there exists a time T for which the state x(t) remains in K for all t ≥ T.

The following result states that dynamic circuits which consist of independent sources and passive ele-
ments eventually have uniformly bounded solutions (7).

Theorem 5. Suppose that the constituency relationships of the elements are differentiable functions. A dy-
namic circuit is eventually uniformly bounded if the following conditions are satisfied:

(1) There is no loop in the circuit formed exclusively by capacitors, inductors, and/or voltages sources.
(2) There is no cut set in the circuit formed exclusively by capacitors, inductors, and/or current sources.
(3) All resistors (not including sources) are eventually strongly locally passive.
(4) All capacitors and inductors are eventually strongly locally passive.
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Stability of Equilibrium Points

Consider an autonomous dynamic circuit. Let us rewrite the state equations [Eq. (3)] in a general form as:

In terms of Eq. (6), an equilibrium point is a state x∗ such that ẋ = 0, that is, f (x∗) = 0.
The property of uniqueness and existence of solutions allows us to show that, if the state of the circuit is

at an equilibrium point, then it remains there for all time. Because of physical noise, we are also interested
in behavior near the equilibrium point. Compare this with a ball balanced on the tip of a needle. This is an
equilibrium state, and theoretically the ball remains balanced for ever. But, because of small noise, the ball
invariably leaves the equilibrium state. We call such equilibrium states unstable. On the other hand, a ball
lying at the bottom of a bowl is at a stable equilibrium state because a ball lying near the bottom will move
toward the bottom of the bowl. More precisely, an equilibrium point is (Lyapunov) asymptotically stable if all
initial conditions nearby do not leave a neighborhood of the equilibrium and converge toward the equilibrium
point as time goes on. If initial conditions nearby do not stay within a neighborhood of the equilibrium point,
the equilibrium point is called unstable.

A consequence of the Hartman–Grobman linearization theorem (8) is that it allows us to deduce the
stability of an equilibrium point by looking at the eigenvalues of the linearization.

Theorem 6. Consider Eq. (6). Let xe be an equilibrium point, that is, f (xe) = 0. Suppose that Df (xe), the Jacobian
matrix of f at xe, does not have purely imaginary eigenvalues. If all the eigenvalues have negative real parts,
then xe is asymptotically stable, and otherwise it is unstable.

Lyapunov Functions and Lyapunov’s Direct Method

As alluded to before, many of the techniques for studying the qualitative behavior of dynamic circuits are based
on studying a simple quantity related to the circuit. One class of such techniques is called Lyapunov’s methods.
In these methods, a Lyapunov function is constructed that maps the state of the system x into a simple (usually
scalar) quantity V(x). We then observe how V(x) evolves with time and draw conclusions about the system. For
general nonlinear systems, there are no systematic ways for constructing Lyapunov functions. In some cases,
an energy-like quantity is used for the Lyapunov function.

Definition 4. Let a and b be strictly increasing continuous functions such that a(0) = b(0) = 0. A function V :
R

n → R is a Lyapunov function if b(|x|) ≤ V(x) ≤ a(|x|) for all x.

The basic Lyapunov asymptotic stability theorem is as follows (20):

Theorem 7. Consider the system ẋ = f (x). If V is a differentiable Lyapunov function such that ∇V · f (x) ≤
−c(|x|) for some strictly increasing function c with c(0) = 0, then the origin is globally asymptotically stable,
that is, all trajectories converge toward the origin.

The construction of V to show stability in this way is called Lyapunov’s direct method. A local version of
this theorem is also true when “for all x” in Definition 4 is replaced by “in a neighborhood of 0.”

An extension of this theorem, called LaSalle’s invariant principle (9), is stated (for autonomous systems)
as follows:
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Theorem 8. Consider the system ẋ = f (x). Let V : R
n → R be a differentiable function such that V(x) ≥ C for

all x and some constant C and

for all t > 0 and some continuous W. Define

Then each solution x(t) of ẋ = f (x) approaches E ∪ {∞}. Although V does not necessarily satisfy the conditions
in Definition 4, we still call V a Lyapunov function when used in the context of Theorem 8.

Content, Co-Content, Energy, and Co-Energy of Two-Terminal Elements

Consider a dynamic circuit consisting of two-terminal elements. We can define energy-like quantities for each
element. For resistive elements, we define content and co-content whereas for dynamic elements, we define
energy and co-energy.

Content and Co-content. A resistive two-terminal element’s driving-point characteristic is a relation-
ship between v and i. For a current-controlled resistor, the content is defined as

where v̂(i) is the voltage-vs-current characteristic of the nonlinear resistor. Similarly, the co-content of a voltage-
controlled resistor is defined as

This is illustrated in Fig. 6. The co-content is the area below the curve, and the content is the area above the
curve within the rectangle. For resistors, which are both voltage- and current-controlled, it is easy to see from
Fig. 6 that, for V = v̂(I), G(I) + Ḡ(V) = VI is the power dissipated by the resistor.

Energy and Co-energy. We assume that the charge on the capacitors and the flux in the inductors
are zero at time t = 0. For a two-terminal, charge-controlled capacitor with the device characteristic v = v(q),
the capacitive energy (10) is defined as:

The capacitive energy is derived as the work done by the capacitor:
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Fig. 6. The co-content of a resistor is the area under the curve bounded by the coordinate axes and the dashed vertical
line. The content of a resistor is the area above the curve bounded by the coordinate axes and the dashed horizontal line.

For a two-terminal, voltage-controlled capacitor with the device characteristic q = q(v), the capacitor co-energy
is defined as

A graphical interpretation of the energy and the co-energy is shown in Fig. 7 for the case when the capacitor
is both voltage-controlled and charge-controlled. The co-energy is the area below the curve, and the energy is
the area above the curve bounded by the rectangle. It is clear that, for V = v̂(Q), U(Q) + Ū(V) = QV.

Dually, the energy and co-energy of an inductor are defined as

and

respectively, and, for I = ı̂(�), T(�) + T̄(I) = �I.



QUALITATIVE ANALYSIS OF DYNAMIC CIRCUITS 11

Fig. 7. The co-energy of a capacitor is the area under the curve bounded by the coordinate axes and the dashed vertical
line. The energy of a capacitor is the area above the curve bounded by the coordinate axes and the dashed horizontal line.

Using Content and Energy to Derive the Qualitative Behavior of Dynamic Circuits

Conservation of Energy. Consider a dynamic circuit where all the capacitors are charge-controlled
and all inductors are flux-controlled. Let Dj = vjij be the power dissipated by the nonlinear resistor Rj. Let Uk
and Tl be the energies of capacitor Ck and inductor Tl, respectively. Then the law of conservation of energy
(expressed as a particular form of Tellegen’s theorem: � vnin = 0) implies that

at each instant.

Completely Stable Behavior. Definition 5. A dynamic circuit is convergent (or completely stable) if
all of its trajectories converge toward an equilibrium point.

Theorem 9. Consider a dynamic circuit with only charge-controlled capacitors and resistors. Assume that
the characteristics v = v̂(q) of the capacitors are differentiable and have positive slope everywhere. Assume
also that the resistors are either independent voltage sources or voltage-controlled, eventually strictly passive
resistors with differentiable constituency relationships. If the circuit has a finite number of equilibrium points,
then the system is convergent.

The proof is based on LaSalle’s invariant principle. The resistors are combined into a resistive n-port
whose constituency relationship is the gradient of a potential function which we choose as the Lyapunov
function. The passivity is used to guarantee eventually bounded solutions. The local passivity of the capacitor
guarantees the negativity of the derivative of the Lyapunov function with respect to the trajectories. Here we
give the simple proof from (11). The Lyapunov function equals the sum of the co-contents of the resistors: V = �∫ vk

0 ı̂k(v)dv where the summation is over all resistors. Because of the eventual strict passivity of the resistors, a
C can be chosen such that V ≥ C. By Theorem 5, the solution of the circuit is eventually bounded. The derivative
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of V with respect to t is given by

where the second equality is from Tellegen’s theorem. By applying LaSalle’s theorem (Theorem 8), the conclu-
sion follows.

The following theorems provide criteria for a circuit to have a unique equilibrium point and be convergent
(7):

Theorem 10. An autonomous dynamic circuit is convergent and has a unique equilibrium point if the following
conditions are satisfied:

(1) There is no loop in the circuit formed exclusively by capacitors, inductors, and/or voltages sources.
(2) There is no cut set in the circuit formed exclusively by capacitors, inductors, and/or current sources.
(3) All resistors (not including sources) are strongly locally passive.
(4) All capacitors and inductors are strongly locally passive.

Theorem 11. An autonomous dynamic circuit is convergent and has a unique equilibrium point if the following
conditions are satisfied:

(1) There is no loop in the circuit formed exclusively by capacitors, inductors, and/or voltages sources.
(2) There is no cut set in the circuit formed exclusively by capacitors, inductors, and/or current sources.
(3) Every loop containing a voltage source also contains a capacitor.
(4) Every cut set containing a current source also contains an inductor.
(5) All resistors (not including sources) are strictly passive.
(6) All capacitors and inductors are eventually strongly locally passive.

Equivalent Resistors, Capacitors, and Inductors. Even though the elements are nonlinear, the
content, co-content, energy, and co-energy enjoy the following linear superposable property. Consider a one-port
N consisting only of arbitrarily connected, nonlinear, charge-controlled capacitors and its equivalent capacitor,
an example of which is shown in Fig. 8. The energy of the equivalent capacitor is the sum of the energies of the
capacitors in N. Similarly, this result is also true for the co-energy of a one-port of voltage-controlled capacitors.
By duality, this result is also true for a one-port consisting only of inductors.

We give the proof here for the energy of a one-port N composed only of capacitors. The sum of the energies
of the capacitors is given by
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Fig. 8. A one-port N consisting of arbitrarily connected capacitors and its representation as an equivalent capacitor.

where the summation is over all branches b in the one-port N. By Tellegen’s theorem, � vb(τ)ib(τ)= v0(τ)i0(τ),
and thus

which is the energy of the equivalent capacitor.
For a one-port consisting only of resistors, this theorem is true for the content and co-content, provided

that all of the resistors are passive (12).
We give the proof here for the content. Consider a nonlinear one-port as in Fig. 8, except that all the

capacitors are replaced by passive resistors. We wish to show that the sum of the contents of the resistors in
the one-port is equal to the content of the equivalent resistor. The derivative of the sum of the contents of the
resistors with respect to i0 is given by
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where the summation is over all capacitors in the one-port. By Tellegen’s theorem,

Therefore ∂�bGb/∂i0 = v0 and

Suppose that i0 = 0. Passivity of the resistors implies that ib = 0 for all b and consequently Gb = 0 for all b.
Putting this into the above equation, we get c = 0 and therefore �bGb = ∫ i0

0 v0di0 which is the content of the
equivalent resistor.

Stationary Principles. The total content G of a circuit consisting only of current-controlled resistors is
the sum of the contents of each resistor. The total co-content Ḡ of a circuit consisting only of voltage-controlled
resistors is the sum of the co-contents of each resistor. Because the branch currents are uniquely determined
by a link (or co-tree) branch vector, the total content G is expressed as a function of the link branch vector il.
Similarly, the total co-content Ḡ is a function of the tree branch voltage vector vt. Millar’s theorem on stationary
content (12) states that a set of link branch currents is a solution of the circuit if and only if it is a stationary
point of the total content G, that is, ∂G/∂il = 0 if and only if il is the link branch current vector corresponding
to a solution of the circuit equations. Similarly, a tree branch voltage vector is a stationary point of the total
co-content if and only if it is a solution of the circuit.

Here we give the proof presented in (13). Let i be the branch current vector. By Kirchhoff’s Current Law,
i = BTil, where il is the link branch current vector. Let v be the corresponding voltage vector across the resistors,
v and i satisfy the constituency relationships of the resistors:

which is zero if and only if v satisfies Kirchhoff voltage law, that is, i and v are solutions of the circuit.
These results are also valid for inductor-only and capacitor-only circuits. The total energy of a dynamic

circuit consisting only of charge-controlled capacitors is defined as the sum of the energies of the capacitors.
Similar definitions exist for the total co-energy. Then, in a circuit of charge-controlled capacitors, the link
branch current vector corresponding to a solution of the circuit is a stationary point of the total energy at every
instant. Similar for a circuit of voltage-controlled capacitors, a tree branch voltage vector is at a stationary point
of the total co-energy. In a circuit of flux-controlled inductors, the tree branch voltage vector is at a stationary
point of the total energy, whereas, in a circuit of current-controlled inductors, the link branch current vector is
at a stationary point of the total co-energy.

Unique Asymptotic Behavior

In many applications, we want the circuit to behave roughly the same way, no matter what the initial charges
and fluxes are on the capacitors and inductors, respectively. This is difficult to achieve because the initial
conditions vary widely, so we are content if the circuit behaves roughly the same way after a long enough time
regardless of the initial conditions, that is, the transient behavior dies down.
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In linear systems, we can separate the system response into two parts: the transient or zero-input response
due to the initial states and the zero-state response due to the input. The transient response goes to zero if the
system is stable, leaving us with only the zero-state response, which we call the steady-state solution, and this
gives us the desired property.

In nonlinear circuits and systems, this separation does not exist any longer, but the convergence toward
a steady-state solution regardless of initial condition can still be defined as follows (14):

Definition 6. Assume that the state equations of the system exist and are written as

If all solutions are bounded and any two solutions of Eq. (7) converge toward each other asymptotically, that is
if x(t) and y(t) are solutions of Eq. (7), we get

then we say the system has a unique steady-state solution.

The following theorem gives criteria for a dynamic circuit to have a unique steady-state solution (7,15):

Theorem 12. A dynamic circuit has a unique steady-state solution if the following conditions are satisfied:

(1) There is no loop in the circuit formed exclusively by capacitors, inductors, and/or voltage sources.
(2) There is no cut set in the circuit formed exclusively by capacitors, inductors, and/or current sources.
(3) All capacitors and inductors are weakly nonlinear and passive.
(4) All resistors (not including sources) are strongly locally passive.

There is a tradeoff between the local passivity of the resistors and the nonlinearity of the capacitors and
inductors. The more locally passive the resistors are, the more nonlinear the capacitors and inductors can be,
and the theorem still remains valid.

Qualitative Behavior of Dynamic Circuits Driven by Periodic Inputs

We have mentioned earlier that even simple, second-order, nonautonomous circuits driven by periodic input
can exhibit complicated chaotic behavior. In these cases the state trajectory can contain frequency components
which are not integral combinations of the driving frequencies. In this section we present some conditions
(7) guaranteeing that solutions of circuits driven by periodic inputs generate only frequency components at
integral combinations of the driving frequencies (harmonics).

Theorem 13. Consider a dynamic circuit driven by periodic inputs. The circuit has a unique steady-state
waveform with frequency components only at integral combinations of the driving frequencies if the following
conditions are satisfied:

(1) There is no loop in the circuit formed exclusively by capacitors, inductors, and/or voltages sources.
(2) There is no cut set in the circuit formed exclusively by capacitors, inductors, and/or current sources.
(3) All capacitors and inductors are linear and passive.
(4) All resistors (not including sources) are strongly locally passive.
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(5) The external driving sources are defined by differentiable periodic functions.

Theorem 14. Consider a dynamic circuit driven by periodic inputs. The conclusion of the previous theorem
holds if the following conditions are satisfied:

(1) There is no loop in the circuit formed exclusively by capacitors, inductors, and/or voltages sources.
(2) There is no cut set in the circuit formed exclusively by capacitors, inductors, and/or current sources.
(3) The circuit either has no capacitors or no inductors.
(4) All resistors (not including sources) are linear and passive.
(5) The external driving sources are defined by differentiable periodic functions.

Theorem 15. Consider a dynamic circuit driven by periodic inputs. The conclusion of the previous theorem
holds if the following conditions are satisfied:

(1) There is no loop in the circuit formed exclusively by capacitors, inductors, and/or voltages sources.
(2) There is no cut set in the circuit formed exclusively by capacitors, inductors, and/or current sources.
(3) All capacitors and inductors are strongly locally passive and have twice-differentiable (C2) constituency

relationships.
(4) All resistors (not including sources) are strongly locally passive.
(5) The external driving sources are combinations of dc sources and sufficiently small periodic sources.

Manley–Rowe Equations

A characteristic feature of nonlinear circuits is the ability to generate beat frequencies ωm,n = mω1 ± nω2 given
two sinusoidal input signals of radial frequencies ω1 and ω2. For resistive networks this can be seen as follows.
Given an input signal sin ω1t + sin ω2t, the output is written as y(t) = f (sin ω1t + sin ω2t). Expressing f as a
Taylor expansion around zero, we obtain

which gives terms of the form αm,n sin[(mω1 + nω2)t].
The Manley–Rowe equations describe the relative power in the various beat frequency components. In

particular, consider the following nonlinear circuit driven by two sinusoidal voltage sources v1(t) = E1 sin(ω1t)
and v2(t) = E2 sin(ω2t) with incommensurable frequencies ω1 and ω2 as shown in Fig. 9. Two frequencies ω1 and
ω2 are incommensurable if their ratio ω1/ω2 is an irrational number, that is, there do not exist integers n and
m such that nω1 + mω2 = 0. The ω1 filter indicates an ideal filter, which is a short circuit for sinusoids with
frequency ω1 and an open circuit for all other frequencies. We assume that the capacitor is charge-controlled.
Let Pm,n denote the average power corresponding to the frequency ωm,n which is flowing into the nonlinear
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Fig. 9. A circuit driven by two periodic voltage sources illustrating the Manley–Rowe equations.

capacitor. The Manley–Rowe equations are expressed as (16):

The same result is valid when the capacitor in Fig. 9 is replaced by a flux-controlled inductor.

Duality

Many of the results in this chapter have dual counterparts. A theorem about RC circuits is also valid for
RL circuits, etc., because of the dual properties of current and voltage. If we look at the circuit equations
(Ai = 0, Bv = 0, constituency relationships, i = dq/dt, v = dφ/dt) and interchange v with i and interchange q
with φ, then we obtain another set of constrained differential equations. When do these correspond to the
circuit equations of another circuit (the dual circuit)? The equations i = dq/dt, v = dφ/dt are interchanged after
the variable interchange. For each constituency relationship, we get the constituency relationship of a dual
element. For a resistor with constituency relationship f (v, i) = 0, the dual element is a resistor with constituency
relationship f (i, v) = 0. For a capacitor with constituency relationship g(q, v) = 0, the dual element is an inductor
with constituency relationship g(φ, i) = 0. For an inductor with constituency relationship h(φ, i) = 0, the dual
element is a capacitor with constituency relationship h(q, v) = 0. Finally Kirchhoff’s Laws becomes Av = 0,
Bi = 0. Are these the Kirchhoff Laws of another circuit? The answer is affirmative if and only if the underlying
graph of the circuit is planar, that is, it can be drawn on the two-dimensional plane so that branches intersect
only at the nodes.

For a circuit with a connected planar underlying graph, the dual circuit is found by the following algorithm
(17):

(1) Draw the underlying graph in planar form with n nodes and b branches. It partitions the plane into (b − n
+ 2) connected regions by Euler’s formula. The dual graph has (b − n + 2) nodes and b branches. Draw
exactly one node of the dual graph lying in each region.
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Fig. 10. (a) A nonlinear circuit and its associated graph. The dual graph is shown with dashed branches. (b) The dual
circuit of (a) and its associated graph.

(2) Each branch of the graph lies exactly between two regions. Draw a branch of the dual graph connecting the
nodes of the dual graph in these two regions.

(3) The direction of the branch in the dual graph is found as follows. For a branch in the graph, find the region
adjacent to the branch which is bounded. If the branch encircles this region clockwise, the corresponding
branch of the dual graph points toward the region. Otherwise, it points away from this region.

(4) A branch of the dual graph corresponds to each branch of the original graph. The dual circuit has the
topology of the dual graph, and the element of each branch is the dual element of the original circuit at the
corresponding branch.

For example, in Fig. 10(a), we show a circuit and its corresponding graph. The dual graph is shown with
dashed lines. In Fig. 10(b), we show the dual circuit along with its corresponding graph. From the previous
discussion, a circuit and its dual circuit have the same qualitative dynamics, because they share the same state
equations except for a renaming of the variables.

Note that the dual of the dual circuit is the original circuit, but with all the nonlinear elements turned
upside down.
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Thus for a circuit with a planar underlying graph, the operation of turning all the elements upside down
results in a circuit with the same qualitative dynamics as the original circuit. In fact the underlying graph
needs not be planar.

Theorem 16. By turning all the elements of a circuit upside down, we obtain a circuit with the same state
equations.

This can be shown as follows. Turning all the elements upside down reverses the directions of all the
branch currents and branch voltages but does not change the constituency relationships nor the equations
i = dq/dt and v = dφ/dt. If Kirchhoff’s laws are Ai = 0, Bv = 0 for the original circuit, they are now −Ai = 0 and
−Bv = 0 for the new circuit. So the same Kirchhoff laws for the original circuit also hold for the new circuit.
Note that the underlying graph does not need to be planar for this theorem to be true.

Many of the results in this article can be extended to general circuits with multi-terminal devices. In
some of the results, e.g., the results on completely stable behavior, an additional technical requirement of
reciprocity is imposed on the circuit elements. Unfortunately, many of today’s circuits contain nonreciprocal
circuit elements such as transistors (17,18,19).
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