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NONLINEAR DYNAMIC PHENOMENA
IN CIRCUITS

When we look at the behavior of the state in a nonlinear cir-
cuit, its long-term time response is sometimes remarkably dif-
ferent from that of a linear circuit. In some cases we come
across phenomena that never occur in linear circuits. These
are termed nonlinear phenomena. The existence of multista-
ble states, self-excited oscillation, nonlinear resonances, syn-
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chronizations, and chaotic states, all of which occur naturally stable steady state in the state space. The steady state works
as if it absorbs every neighboring state into itself. Such ain simple nonlinear circuits, illustrate typically these particu-

lar phenomena. In a linear circuit or system, there exists only steady state is called an attractor, and the existence of at-
tractors is the most significant property of a dissipative systemone steady state and all transient states die out after appro-

priately long time duration. Linear systems have a nice prop- such as the circuit dynamics. On the other hand, a lossless cir-
cuit containing only inductors and capacitors is formulated aserty such that we can always analyze the steady and tran-

sient states separately by the principle of superposition. an energy conservative system similar to classical mechanics.
In this case we have no attractors and the distinction betweenHence we know all the properties of linear systems by analyti-

cal treatment. In nonlinear systems, on the other hand, be- transient state and steady state becomes difficult.
sides the local property of linear systems there may appear
some combined or mixed states that have qualitatively differ- Examples of Steady State and Attractor
ent features, and this fact causes some complicated behavior

Among all possible states in the state space, some particular
of states in time. Because there is no general analytical solu-

states have a special property such that they are invariant in
tion for these nonlinear phenomena, the problem is difficult.

some sense during the time evolution. They are candidates to
Much attention has been paid to the problem, however, in the

be attractors or steady states of the system. Equilibrium
last two decades, and the progress of theoretical and applied

point, periodic state, quasiperiodic state, and a more compli-
study in the field of nonlinear dynamics has developed

cated state, called chaotic state, are typical invariant sets of
rapidly.

the system. An equilibrium point, also called a rest point, is a
Apart from the circuit dynamics, these nonlinear phenom-

single point in the state space which always rests at the same
ena are very commonly observed in many other disciplines,

point during the time evolution. This is the simplest steady
such as mechanics, physical systems, chemical reactions, op-

state and corresponds to a dc operating point in a real circuit.
tics, fluid dynamics, and population dynamics. The mathe-

Periodic state is a periodically repeated state with a definite
matical model of these systems is expressed by a system of

period or frequency. This state is commonly observed in
ordinary differential equations which defines a deterministic

forced circuits driven by an ac voltage or current source. An
process, called a dynamical system. The theory of dynamical

oscillator also produces a periodic state. Many biological
systems is then concerned primarily with making qualitative

rhythms are also modeled as periodic states generated by bio-
investigations into the behavior of states which evolve in

logical oscillators. A state containing several distinct frequen-
time, as the initial state and parameter of the system are

cies is called a quasiperiodic state. It appears sometimes in a
varied. Most of the models derived from practical problems

forced oscillator with periodic input signal. When the differ-
cannot be solved by analytic method, so that the topological

ence of free and driving frequencies is appropriately large,
or geometrical approach (called the qualitative method) and

both frequencies can survive and doubly periodic oscillation
numerical analyses are of fundamental importance in under-

becomes possible. In this case the time response is a beat or
standing of various phenomena observed in dynamical sys-

quasi-periodic oscillation. Chaotic state is the most compli-
tems. Fortunately, among many nonlinear systems, electrical

cated state whose long-term time response looks like a noisy
circuits are considered simple and convenient physical sys-

or random nature. Later we will discuss this state more pre-
tems to implement real nonlinear phenomena. They are

cisely. The concept of stability of the above invariant sets is
themselves widely used in various fields of electrical engi-

also important. Roughly speaking, a steady state is stable if
neering.

every neighboring state always stays in the neighborhood of
the steady state in future evolution. If a steady state satisfies

Dynamical Process, State, State Space, and Attractor a stronger condition such that all neighbors approach the
steady state, then we say that the state is asymptotically sta-Now we proceed with a little more detailed overview of some
ble. An attractor is an asymptotically stable steady state. Intypical nonlinear phenomena, some of which will also be dis-
a real system a physically observable state is an attractor. Incussed in later sections. Mathematically, the dynamic process
the theory of dynamical systems the above invariant sets areof a circuit is formulated as a set of ordinary differential equa-
called nonwandering sets. On the other hand, a transienttions, where the time is the independent variable and states
state corresponds to a wandering set. Figure 1 shows sche-of the circuit are dependent variables in time. The equations,
matic diagram of states of dynamical systems and their bifur-say circuit dynamics, give a law of the evolution of the state
cations.and determine the time evolution of all states of the circuit.

All possible states are then characterized by the points of
Role of System Parameterssome point set or space, called a state space. The state space is

also called a phase space, borrowing from classical mechanics. A steady state of a circuit depends also on parameters con-
Actually, the specification of a point in the state space is suf- tained in circuit dynamics. Associated with the change of pa-
ficient to describe the initial or current state, as well as to rameters, the qualitative property of a steady state may
determine its future evolution. Then, for a given initial point change at some particular value of the parameters. For exam-
in the state space, the state evolves by the circuit dynamics. ple, the appearance of a couple of steady states, stability
One of the salient features of circuit dynamics is its dissipa- change of a steady state, or the creation of a new type of
tive property, which is achieved by resistors. Usually a circuit steady state, and so on, may occur under the variation of pa-
consists of energy-storing elements (i.e., inductors and capaci- rameters. We may imagine the parameters as a controlling
tors) and energy dissipative elements (i.e., resistors). Hence device of the qualitative property of states. That is, by chang-
along the time evolution of state the energy stored in the cir- ing system parameters we can see a morphological process of

steady states, which is referred to as a bifurcation of state orcuit will be lost at resistors and its state will approach some
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periodic inputs or periodic forces. But a dc operating point
(i.e., an equilibrium point) becomes unstable because of the
negative resistance and a periodic state appears. The oscilla-
tory state is then represented as a closed curve in the phase
plane and is called a limit cycle. A small initial state grows
up and approaches the closed curve, whereas a large initial
state shrinks asymptotically into the same closed curve.
Hence the limit cycle is a unique attractor of the circuit. This
is a simplest mechanism of self-excited oscillatory process. A
sinusoidal time response is obtained for a weak nonlinear sys-
tem, called a nearly harmonic oscillator. On the other hand,
if the nonlinear characteristics is strong, we may observe a
nearly square wave response, called a relaxation oscillation.

Wandering
states

Transient states Steady states (invariant set)

Nonwandering states

Equilibrium states

Periodic states

Regular states Chaotic states

Homoclinic
statesPDB

PDB

HB

TB
NS

Quasiperiodic
states

Complex
and

composed
states

Nonlinear Resonance. This phenomenon occurs mainly in a
Figure 1. Schematic diagram of states of dynamical systems and nonlinear resonant circuit driven by a periodic input signal.
their bifurcations. TB, HB, NS, and PDB indicate tangent bifurcation, A ferro-resonant circuit forced by an ac voltage source is a
Hopf bifurcation, Neimark–Sacker bifurcation, and period doubling typical example of this type of circuit. As the system is forced
bifurcation, respectively. by a periodic external input signal, the steady state may be

realized by a periodic, quasiperiodic, or chaotic state. For a
moment we consider only the case where the steady state os-

a bifurcation phenomenon. Bifurcations indicated by arrows
cillates with the same frequency as that of the injected peri-

in Fig. 1 will be discussed in later sections.
odic signal. Keeping the amplitude of the forcing function con-
stant and also changing the frequency of the input signal, we

Typical Nonlinear Phenomena
observe a range of frequencies for which several possible sta-
ble periodic states coexist. Under the gradual change of fre-In the following we will present a short review of typical non-

linear phenomena. More concrete examples will be given in quency a hysteretic effect between the stable steady states
occurs for increasing and decreasing frequencies. This issubsequent sections. Figure 2 shows a schematic diagram of

nonlinear phenomena and related bifurcations. called a jump phenomenon of nonlinear resonance. Other peri-
odic states can be also observed such as subharmonic or
higher-harmonic oscillations, whose frequency is a fraction orMultistable States. Several stable steady states can coexist

in nonlinear systems. The simplest example is a flip-flop ac- an integral multiple of that of the input signal, respectively.
Therefore by nonlinear resonances there may appear multi-tion with two stable equilibrium points as attractors. De-

pending on a given initial state, the state starts to evolve and stable states of periodic oscillations with various frequencies.
Bifurcations of steady states occur by changing external in-falls into one of the attractors. Which attractor is finally real-

ized is uniquely determined by the choice of the initial state. jected frequency. The same phenomenon is also observed by
changing the amplitude of the external signal whereas the
frequency is held constant. Note also that a driven nonlinearSelf-Excited Oscillation. An LC resonant circuit with a neg-

ative resistance is a simple sinusoidal oscillator which gener- resonant circuit exhibits many other phenomena, such as the
period doubling bifurcation, the appearance of quasiperiodicates a stable periodic state in two-dimensional state space,

called a phase plane. The circuit has only a dc source and no states, chaotic states, and so on.

Figure 2. Schematic diagram of typical nonlinear
phenomena: synchronization, self-excited oscilla-
tion, nonlinear resonance, and parametric exci-
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Period Doubling Bifurcation. In a periodically driven circuit is called a frequency entrainment or phase locked phenomenon,
whereas the latter is called a mutual synchronization. Humanwe may observe that a stable periodic state becomes unstable

and there appears another stable periodic state with half-fre- circadian rhythms being entrained by the earth rotation clock
is a former example. For the latter example, we see that de-quency under the variation of system parameters. That is, the

new periodic state has a period that is exactly twice as long. spite many power stations being connected, a power network
operates at a single frequency.This is a period doubling bifurcation and is one of the general

bifurcation processes of the periodic state. In many cases un-
der the finite change of parameters, this doubling process re- Parametric Excitation. Parametric excitation or parametric
peats successively infinitely many times. At every doubling resonance is an oscillatory phenomenon observed in a system
process a new periodic state with half-frequency is produced. with periodically varying parameters. A periodic external sig-
Hence after this cascade of period doubling bifurcations we nal is injected into a system parameter in this case. An RLC
observe a strange and complicated oscillatory state possibly parallel circuit with a mechanically varying capacitance is a
with very low frequencies, called a chaotic state. The cascade simple example of this type of circuit, called a parametric am-
is thus considered one of the routes to produce a chaotic plifier. Applying a sinusoidal signal, the pump signal, to the
state. mechanical part, we can realize a periodically varying capaci-

tance. In this circuit under appropriate setting of parameters
Chaotic State. A chaotic state is a set of bounded composite there appears a period doubling bifurcation of state; that is,

steady states composed of infinitely many unstable periodic a stable equilibrium point becomes unstable and there ap-
and nonperiodic states. Hence the long time response of the pears a periodic state with half-frequency of the external me-
state looks like a noisy or random oscillation. In a chaotic chanical input. The vertically pumping of a swing by a child
attractor every state is unstable in one direction and stable is another example of a parametrically excited system. In an
in another direction so that the neighboring states diverge at oscillatory regime the horizontal frequency is approximately
some instant and converge at another instant during the time half that of the body of the child.
evolution. All states in the attractor are thus mixing each
other according to the nonlinear property of the dynamics. Method of Analysis
Thus two states starting from slightly different initial states

For understanding dynamical processes we have to knowdiverge rapidly so that the initial information of states will
many mathematical objects: the geometry of phase portrait,be violated. This property is referred to as a sensitive depen-
approximation methods of periodic states, time series analy-dence of intial states. A chaotic state is commonly observed
sis for chaotic responses, mechanism of bifurcation process,after a cascade of period doubling bifurcation stated above.
and so on (see Fig. 3). Various methods of analyses have beenBecause we cannot explicitly solve the circuit dynamics, the
proposed to this end. Here we point out briefly three differentcomplexity of the attractor is still mathematically unsolved.
approaches as follows.We can see, however, some qualitative properties by topologi-

cal and/or numerical approaches.
Analytical Method. The method of analyzing periodic states

is well developed for weakly nonlinear systems. Various per-Synchronization. A synchronization effect can readily be
realized by a sinusoidal oscillator driven by an external sinu- turbation methods and averaging methods are classically ap-

plied to determine the periodic states of free and forced elec-soidal signal. When the frequency difference of the free oscil-
lator and driving input signal is appropriately large, quasipe- trical circuits. For systems with strong nonlinearity, little is

known. Galerkin’s method of combining numerical analysis isriodic states appear. At a certain difference of the frequencies
the quasiperiodic states suddenly disappear and there re- one of the methods for obtaining periodic states for such

strong nonlinear systems. Probability theory or ergodic theorymains an entrained periodic state with single external fre-
quency. Similar entrainment can occur when we couple two will be applied to the analysis of chaotic state in order to

know the long-term behavior.or more oscillators with nearly equal frequencies. The former

Figure 3. Schematic diagram of the analysis of
dynamical systems.
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Geometrical or Topological Method. Although nonlinear or- are the state vector and the system parameter, respectively,
and the dot over x denotes differentiation with respect to thedinary differential equations cannot generally be solved ex-
time: ẋ � dx/dt. In most cases the voltages across capacitorsplicitly by quadrature, we can know the existence of a solu-
(or charges stored in capacitors) and the currents through in-tion with a given initial condition, the uniqueness property of
ductors (or magnetic flux linkages in inductors) will constitutethe solution, extendability of the solution in long time inter-
the set of state variables x1, x2, . . ., xn. The state x is thenval, asymptotic property of solution, stability of the solution,
considered as a point of n-dimensional Euclidean space: x �and so on. These properties depend upon the geometrical or
Rn, where n is the sum of the number of capacitors and induc-mainly topological property of dynamical systems. A qualita-
tors in the circuit. The function f of the right-hand side of Eq.tive approach is then directed to the study of phase portraits,
(1) gives the velocity vector at each point in the state spacestability theory, and bifurcation processes.
and determines the dynamics of the circuit. That is, Eq. (1)
defines a vector field in the state space. If f does not containNumerical Method or Simulation. Many numerical integra-
the time explicitly, then Eq. (1) is called autonomous. Other-tion methods are now available. Combining these integration
wise, Eq. (1) is called nonautonomous. An autonomous equa-methods and the qualitative approach, we can calculate any
tion defines a time-invariant vector field in the state spacetype of steady state, stability condition, bifurcation condition,
Rn, whereas a nonautonomous equation defines a time vary-statistical test condition for chaotic states, and so on. New-
ing vector field in Rn. In circuit dynamics an autonomous sys-ton’s method and other root finding methods are effectively
tem arises mainly from a circuit containing only dc sources.used for the numerical computations.
A typical example of a nonautonomous system is a circuit
driven by an ac source.

References in This Section
Remark 1. 1. In the above definition we assume that theThe theory of dynamical systems, especially classical mechan-
state space of Eq. (1) is an entire n-dimensional Euclideanics, has a long history and has developed many useful tech-
space Rn. In some cases it may happen that the vector fieldniques to study the time evolution of state. During the early
(1) is defined only some bounded region or some subset ofpart of the twentieth century, the theory of nonlinear oscilla-
Rn. The same situation occurs for other variables: time andtions arose in electrical and mechanical engineering and has parameters. For convenience we assume that the state space

been developed also in parallel with that of dynamical sys- is simply the whole Rn. In our circuit application, however,
tems. After discovering the chaotic state in many applied we interest the time evolution of the state within the
fields, the nonlinear dynamics has become popular during the bounded region.
last two decades. Many books and references are now avail- 2. The function f in Eq. (1) reveals the element characteris-
able. We refer to only classical books (1–9) about nonlinear tics and the connection of the circuit elements. Hence, if the
oscillations in circuit dynamics and dynamical systems. element characteristics are defined by continuous or differ-

entiable functions, then f becomes continuous or differenti-
able functions, respectively. If the characteristics is assumedBASIC MATHEMATICAL FACTS
as a piecewise linear function, then f is expressed by a
piecewise linear function. In the following we will mainly con-

In this section we review minimal mathematical tools for un- sider the case where f is defined everywhere and differen-
derstanding the circuit dynamics as a time-evolving process tiable with all variables t, x and �.
called a dynamical system. We also mainly treat a smooth 3. For the nonlinear circuit with weakly nonlinear charac-
system; that is, the functions or maps defining the system will teristics, Eq. (1) may be expressed by the form
be differentiable as many times as we want. In the remainder
of the article the term dynamical system refers to a differenti- ẋ = Ax + g(t) + εf(t, x) (2)
able dynamical system or simply a smooth dynamical system.

where A is an n � n constant matrix and 	 is a small parame-
ter of real number. In this case we say Eq. (2) a quasilinearCircuit Dynamics, State and State Equation
system or a weakly nonlinear system.

Every lumped electrical circuit obeys two basic physical laws:
Example 1. 1. An RLC resonant circuit. Consider the RLC(1) Kirchhoff ’s voltage and current laws and (2) the element
resonant circuit with a negative conductor shown in Fig. 4(a).characteristics derived from the constitutive relation of circuit

element. Combining these two constraint relations and elimi-
nating auxiliary variables, we can obtain a system of first-
order ordinary differential equations in normal form as the
state equation or circuit dynamics of the circuit:

ẋ = f(t, x, λ) (1)

where t is the time: t � R,
vC

iG = g(v)

v

iG

iL
iCiG

iG = I

i

R

L

E

(a) (b)

G vC

vC = V

Figure 4. (a) RLC resonant oscillator and (b) characteristics of the
nonlinear conductor.
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
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We assume that the capacitor and inductor have linear char- where we put the parameters as
acteristics whereas the conductor G has a nonlinear charac-
teristics with voltage controlled type [see Fig. 4(b)]. For conve-
nience we assume the nonlinear characteristics as a cubic
polynomial. Then the constitutive relations are written as

γ1 = g1

√
L
C

, γ3 = g3

C

√
L
C

, k = R

√
C
L

, B = e
√

C

(12)

In the case where R � 0 and E � 0 (i.e., k � 0 and B � 0),
by eliminating the state y from Eq. (11) we have the following
second-order equation, called the van der Pol equation:

iC = C
dvC

dt
,

vL = L
diL

dt
,

iG = g(vG) = IG − G1vG − G2v2
G + G3v3

G;
G1, G2, G3 > 0

(3)

d 2x
dτ 2 − γ1

(
1 − 3

γ3

γ1
x2
)

dx
dτ

+ x = 0 (13)

By choosing the capacitor’s voltage and the inductor’s current
as the state variables we have the state equations: Equation (13) exhibits a typical self-oscillatory process of the

circuit as we shall see later. Note also that if we eliminate
the variable x, then we have the Rayleigh equation:C

dvC

dt
= iL − iG = iL − g(vC)

L
diL

dt
= −vC − RiL + E

(4)

d 2y
dτ 2

− γ1

{
1 − γ3

γ1

(
dy
dτ

)2
}

dy
dτ

+ y = 0 (14)

If we put the system in vector normal form, we have Eq. (1)
with

Both Eqs. (13) and (14) are expressed by the first-order form
as Eq. (11), hence they are equivalent.

2. A forced resonant circuit. Figure 5 shows another reso-
nant circuit with a saturable nonlinear inductor driven by an
alternating voltage source E sin �t. As shown in the figure,

x =
[
vC
iL

]
, f =




1
C

iL − 1
C

g(vC)

− 1
L

vC − R
L

iL + E
L


 (5)

the linear resistor R is placed in parallel with the linear ca-
This gives an autonomous vector field in two-dimensional pacitor C, so that the circuit is dissipative. With the notation
state space (vC, iL). of Fig. 5, we have

By using the coordinate translation

vC = v + V, iL = i + I, iG = ig + I (6)

Eq. (4) becomes more compact form:

C
dvC

dt
+ vC

R
= iL

n
dφ

dt
+ vC = E sinωt

(15)

where n is the number of turns of the coil and � denotes the
magnetic flux of the inductor. The saturable reactor has a sec-

C
dv
dt

= i + g1v − g3v3

L
di
dt

= −v − Ri + e
(7)

ondary coil which only supplies a biasing direct current. Ne-
glecting hysteresis, we assume the nonlinear characteristicswhere we put
of the inductor to be

g1 = G1 + 2G2V − 3G3V
2, g3 = G3, e = V − RI + E

(8) niL = f (φ) = a1φ + a2φ
2 + a3φ

3 (16)

and V and I are determined by the following relation:

G2 − 3G3V = 0, I = IG − G1V − G2V 2 + G3V 3 (9)

For some purposes, it is convenient to renormalize the vari-
ables as

x =
√

Cv, y =
√

Li, τ = 1√
LC

t (10)

Equation (7) is then rewritten as
E sin   tω

E0

R

rC

φ

iL

Cν

Figure 5. Forced resonant circuit with a nonlinear saturable in-
ductor.

dx
dτ

= y + γ1x − γ3x3

dy
dτ

= −x − ky + B
(11)
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where a1, a2, and a3 are positive constants. Substituting Eq. ant under any translation of time. Hence without loss of gen-
erality we can choose the initial instance t0 � 0.(16) into Eq. (15), we have the state equation:

Hence the questions arise. For a given initial value prob-
lem, does Eq. (1) has a solution for all t � I � R? If Eq. (1)
has a solution, is such a solution unique and does it extend to
the entire time interval R? The answer is the following theo-
rem on the local existence and uniqueness of the solution of

dvC

dt
= − vC

RC
+ 1

nC
f (φ)

dφ

dt
= − 1

n
vC + E

n
sinωt

(17)

Eq. (1).

for the state variables (vC, �). This gives a nonautonomous
Theorem 1. Suppose that in Eq. (1) the function f (t, x, �) issystem. By eliminating vC, we have the following second-order
differentiable in all variables t, x, �, then there exists an in-equation:
terval I � R containing t0 and the solution (21) also exists for
all initial conditions (t0, x0) � I � Rn. Moreover, this solution
is unique.

d 2φ

dτ 2 + k
dφ

dτ
+ b1φ + b2φ

2 + b3φ
3 = B cos τ (18)

where Remark 2. 1. The initial value problem (24) can be equiva-
lently rewritten as the integral equation of the form:

τ = ωt − tan−1 k, k = 1
ωRC

, bl = al

n2ω2C
(l = 1,2, 3),

B = E
nω

√
1 + k2 (19) x(t) = x0 +

∫ t

t0

f(s, x, λ)ds (25)

Equation (19) can be transformed to the alternative form as Existence and uniqueness property is then discussed by pos-
ing an appropriate condition on f . One of the sufficient condi-
tions to guarantee the property is known as a local Lipschitz

d 2x
dτ 2 + k

dx
dτ

+ c1x + c3x3 = B0 + B cos τ (20)
condition. Because the differentiability is stronger than the
Lipschitz condition, we never worry about the existence andwhere x � � � b2/3b3 and c1, c3, B0 are constants determined
uniqueness problem if f is differentiable. Note that the solu-by b1, b2, and b3. Equations (19) and (20) are called Duffing’s
tion to Eq. (21) exists only in a short time interval I so thatequations and exhibit various resonant phenomena as well as
the theorem asserts a local existence property.jump and hysteresis of these responses.

2. Extendability of the solution to the entire time interval
R depends on f (t, x, �). Usually the function f (t, x, �) is de-

Local Existence and Uniqueness Theorem fined in a bounded region of state space Rn. Starting with an
of the Solutions of Circuit Dynamics initial state in the region, the state may reach the boundary

of this region after a finite time, and the solution could noBy returning to dynamical problems, let us consider the fol-
longer be extended to rest in the region. The simplest examplelowing initial value problem of Eq. (1). Suppose that an initial
of such behavior is a blow-up situation where a state ap-state x0 and an initial instant t0 is given. We say the function
proaches to infinity within a finite time. In most circuit appli-
cations, however, the solution can be extended to the entirex(t) = ϕ(t,x0, λ) (21)
time interval R.

is a solution of Eq. (1) on a time interval I � R containing t0, 3. In circuit dynamics, under some particular connection of
if Eq. (21) satisfies Eq. (1), that is, elements, the normal form of the state equation (1) may break

at some points or in some subset in the state space as the
ϕ̇(t, x0) = f(t, ϕ(t, x0, λ), λ) (22) next example shows. This pathological situation occurs by

making an oversimplified model for a real physical circuit. It
An initial value problem for Eq. (1) consists of finding the can be remedied, however, by an appropriate normalization
interval I and the solution (21) satisfying the initial condition: technique, such as inserting stray reactance elements into

suitable positions of the circuit.
x(t0) = ϕ(t0, x0, λ) = x0 (23)

Example 2. In Eq. (7), if we remove the capacitor (i.e., C �Thus we write the problem symbolically as
0), then we have

ẋ(t) = f(t, x(t), λ), x(t0) = ϕ(t0, x0, λ) = x0, t ∈ I ⊂ R
(24)

If such a solution exists, we refer to Eq. (21) as a solution

i = −g1v + g3v3

L
di
dt

= −v
(26)

passing through x0 at the instant t0. The solution (21) is also
called a trajectory starting from x0 at t � t0. It corresponds to

By eliminating i, we have the state equation:a time response of the state in the state space Rn. Note that
the solution is not only a function of time but also a function
of the initial value as well as the system parameters. In an
autonomous system the time evolution of the state is invari-

L(g1 − 3g3v2)
dv
dt

= v (27)
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or equivalently tion of the solution Eq. (21). By considering a small variation
� (t) from Eq. (21) as

x(t) = ϕ(t, x0, λ) + ξ (t) (34)
dv
dt

= v
L(g1 − 3g3v2)

(28)

and substituting this into Eq. (1), we haveHence at the point v2 � g1/3g3, Eq. (27) or (28) becomes singu-
lar; that is, the circuit dynamics could not be defined. Note
that, instead of the inductor’s current i, the conductor’s volt-
age is used for describing Eq. (27). The inductor is connected
in series with the voltage-controlled conductor with nonin-
vertible characteristics. Hence even if the element character-

ϕ̇(t, x0, λ) + ξ̇ (t) = f(t, ϕ(t, x0, λ) + ξ (t), λ)

= f(t, ϕ(t, x0, λ), λ)

+ ∂f(t, ϕ(t, x0, λ), λ)

∂x
ξ (t) + · · ·

istics are differentiable, the state equation can never be de-
scribed by the normal form of Eq. (1). The above points are where . . . denotes the higher-order terms of �(t). Comparing
called impasse points and generally appear by making an both sides of this equation and neglecting the higher-order
oversimplification of a mathematical model of the circuit. In- terms, we have a linear equation
deed if we consider a small stray capacitance C in parallel
with the nonlinear conductor, then the state equation is writ-
ten in the form of Eq. (4).

ξ̇ (t) = ∂f(t, ϕ(t, x0, λ), λ)

∂x
ξ (t) (35)

The initial value �(t0) � �0 at t � t0 is the initial variationContinuous Dependence on Initial Condition
from the initial state x0. The same argument is applied to Eq.and Parameters at a Finite Time
(31) for the system parameter �.

Knowing that the solution Eq. (21) exists for any initial state 3. Second- and higher-order derivatives with respect to x0
and parameters, we can regard the solution Eq. (21) as the and � can be obtained similarly by differentiating Eqs. (30)–
following function: (33). These higher-order derivatives give useful information

when we will consider the bifurcation problem of a specific
ϕ(t, ·, ·) : Rn × Rm → Rn; (x0, λ) 
→ ϕ(t,x0, λ) (29) steady state.

Hence we can find the continuity and the differentiability of Structure of Circuit Dynamics
the solution with respect to x0 and �. Roughly speaking, the

As stated earlier, a circuit usually consists of three kinds ofdependence of the solution Eq. (29) on (x0, �) is as continuous
circuit elements: capacitors, inductors, and resistors. If one ofas the function f . Hence we have the following result.
these types of circuit elements is never used in a circuit, the
circuit dynamics becomes a particular type of dynamical sys-Theorem 2. Suppose the function f (t, x, �) of Eq. (1) is differ-
tem. For example, dynamics of a circuit containing only ca-entiable, then the solution Eq. (21) is also differentiable with
pacitors and resistors has a special form called a gradient sys-respect to the initial state x0 and system parameter �. In fact
tem. A similar situation occurs in a circuit with anotherthe matrices ��(t, x0, �)/�x0 and ��(t, x0, �)/�� exist and they
combination of circuit elements. We illustrate some types ofsatisfy the linear matrix differential equations:
dynamical systems which arise also in other physical
systems.d

dt
∂ϕ(t, x0, λ)

∂x0
= ∂f(t, ϕ(t, x0, λ), λ)

∂x
∂ϕ(t, x0, λ)

∂x0
(30)

Gradient System. A gradient system is a system whose vec-
tor field is defined by the gradient of a scalar function of state.
Let F be a scalar function, also called a potential or dissipa-
tive function:

d
dt

∂ϕ(t, x0, λ)

∂λ
= ∂f(t, ϕ(t,x0, λ), λ)

∂x
∂ϕ(t, x0, λ)

∂λ

+ ∂f(t, ϕ(t, x0, λ), λ)

∂λ

(31)

F : Rn → R; x 
→ F(x) (36)
with the initial conditions

A system of the form

ẋ = −gradF(x) (37)
∂ϕ(t0, x0, λ)

∂x0
= In (32)

is called a gradient system, where∂ϕ(t0, x0, λ)

∂λ
= 0 (33)

respectively, where In is the n � n identity matrix. Equations gradF(x) =
(

∂F
∂x

)T

=
(

∂F
∂x1

, · · · ,
∂F
∂xn

)T

(38)
(30) and (31) are called the linear variational equations with
respect to the initial condition and the system parameters, re-

and ( )T denotes the transpose of the derivative vector �F/�x.spectively.
In gradient system, F always decreases along a trajectory
x(t). That is the total time derivative of F is negative or zero:Remark 3. 1. This result can be easily proved by differenti-

ating Eqs. (22) and (23) with respect to x0 and �.
2. The variational equation Eq. (30) is derived another way

as follows. Suppose that we want to know a neighboring solu-
dF
dt

= ∂F
∂x

dx
dt

= −∂F
∂x

(
∂F
∂x

)T

≤ 0 (39)
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Hamiltonian System, Conservative System, or Lossless Sys- Following the notation in the figure, we have the state equa-
tion:tem. In classical mechanics we study mainly Hamiltonian

systems. In circuit application, a lossless circuit is described
by this type of equation. Let an energy function H be defined
as

H : Rn × Rn → R; (x, y) 
→ H(x,y) (40)

C1
dv1

dt
= −g(v1) − G(v1 − v2)

C2
dv2

dt
= −g(v2) − G(v2 − v1)

(46)

A system of the form Defining the dissipative function

F(v1, v2) = 1
2

G(v1 − v2)2 +
∫ v1

0
g(v1)dv1 +

∫ v2

0
g(v2)dv2 (47)ẋ =

(
∂H
∂y

)T

, ẏ = −
(

∂H
∂x

)T

(41)

Eq. (46) can be rewritten as
is called a Hamiltonian system with n degrees of freedom. In
Hamiltonian system H remains constant along a trajectory of
Eq. (41). C1

dv1

dt
= −∂F(v1, v2)

∂v1

C2
dv2

dt
= −∂F(v1, v2)

∂v2

(48)

dH
dt

= ∂H
∂x

dx
dt

+ ∂H
∂y

dy
dt

= ∂H
∂x

(
∂H
∂y

)T

− ∂H
∂y

(
∂H
∂x

)T

= 0

(42) Hence Eq. (48) is a kind of gradient system. In fact, F de-
creases along a trajectory, that is,

Thus, H is constant along any solution curve of Eq. (41) and
the trajectories lie on the surfaces H � constant. This prop-
erty is called the conservation of energy.

Dissipative System. A dissipative system is a combined sys-

dF
dt

= ∂F
∂v1

dv1

dt
+ ∂F

∂v2

dv2

dt

= −
{

1
C1

(
∂F
∂v1

)2

+ 1
C2

(
∂F
∂v2

)2
}
� 0

(49)

tem of the above two systems. Let F be a dissipative scalar
function: More generally we can prove that any RC circuit, similarly

any RL circuit, is a dissipative system. In the case of C1 �
F : Rn × Rn → R; (x, y) 
→ F(x,y) (43) C2 � C, Eq. (46) becomes a symmetrical system. That is, Eq.

(46) is invariant under the linear coordinate transformations:
and let H be an energy function of the form Eq. (40).

A system of the form σ1 : R2 → R2; (v1, v2) 
→ σ1(v1, v2) = (v2, v1) (50)

and
ẋ =

(
∂H
∂y

)T

−
(

∂F
∂x

)T

, ẏ = −
(

∂H
∂x

)T

−
(

∂F
∂y

)T

(44)
ι : R2 → R2; (v1, v2) 
→ ι(v1, v2) = (−v1, −v2) (51)

is called a dissipative system. Here for simplicity we define a Hence Eq. (46) is invariant under the composition of the
typical dissipative system by assuming two states variables above transformations:
x and y have the same dimension n.

σ2 = ι ◦ σ1 : R2 → R2; (v1, v2) 
→ σ2(v1, v2) = (−v2,−v1)

(52)Example 3. 1. An RC circuit. Consider the circuit shown in
Fig. 6. We assume that the nonlinear conductors g1 and g2 are

Thus the above three linear transformations are expressed byvoltage-controlled and have the same characteristics as
the following matrices:

igl = g(vl ) = −g1vl + g3v3
l (l = 1, 2) (45)

σ1 =
[
0 1
1 0

]
, ι =

[−1 0
0 −1

]
, σ2 =

[
0 −1

−1 0

]
(53)

With the identity matrix I2, they form a transformation
group. Under these transformations we have two invariant
subspaces:

E1 = {(v1, v2) ∈ R2 | v1 = v2}
E2 = {(v1, v2) ∈ R2 | v1 = −v2}

(54)g1 g2C2

ig2ig1

C1

G

v2v1

In these subspaces, each solution of Eq. (48) remains in the
same subspace and the dynamics becomes one-dimensionalFigure 6. RC circuit with nonlinear resistors.
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systems, that is, References in This Section

For ordinary differential equations there are many excellent
books. We refer to only some of them (10–12). For the normal
form of general nonlinear circuits, see Refs. 5 and 13. The
circuit shown in Example 1(1) is found in Refs. 11 and 14,

C
dv
dt

= −g(v), v ∈ E1

C
dv
dt

= −g(v) − 2Gv, v ∈ E2

(55)

where in the latter the circuit dynamics Eq. (11) is called the
Bonhoeffer van der Pol equation (BVP equation). The circuit2. An LC circuit. Consider the circuit discussed in Example
shown in Example 1(2) is found in Ref. 3. For the impasse1(2) with R � 0. The circuit becomes a lossless circuit, so that
points and related topics, see Refs. 15 and 16. Similar circuitit becomes a Hamiltonian system. In fact we define the Ham-
shown in Example 3(a) is found in Ref. 1 as two dynamosiltonian:
working in parallel on a common load. For the gradient sys-
tem, see Ref. 12, and for the Hamiltonian systems, see Refs.
7 and 8.H(vC, φ) = 1

2n
v2

C + 1
nC

F(φ) − vCE
n

sinωt (56)

where
LOCAL PROPERTIES OF CIRCUIT DYNAMICS

The qualitative, geometrical, or topological approach of non-F(φ) =
∫ φ

0
f (φ) dφ = 1

2
a1φ

2 + 1
3

a2φ
3 + 1

4
a3φ

4 (57)

linear ordinary differential equations is a powerful tool for
understanding the nonlinear phenomena of circuit dynamics.then we have Eq. (17) as
In this and the following sections we introduce some basic
examples from this approach. For now we consider an autono-
mous system

ẋ = f(x, λ), x ∈ Rn, λ ∈ Rm (65)

dvC

dt
= ∂H

∂φ
= 1

nC
f (φ)

dφ

dt
= − ∂H

∂vC
= − 1

n
vC + E

n
sinωt

(58)

where x � Rn is a state vector and � � Rm is a system param-On the other hand, if we define
eter. Usually the terms ‘‘state’’ and ‘‘phase’’ have the same
meaning. Hence the state space Rn is also called the phase
space. In the two-dimensional case, we say the phase planeH(x, y) = 1

2
y2 + 1

2
c1x2 + 1

4
c3x4 − x(B0 + B cos τ ) (59)

instead of the state plane. Note that Eq. (65) defines the
then we obtain Eq. (20) as phase velocity vector field at every point in the phase space.

The phase portrait of Eq. (65) is the set of all trajectories in
the phase space Rn. The phase portrait contains useful infor-
mation of the behavior of trajectories. We see the number and
types of equilibrium points, their asymptotic behavior when
t � ��, and so on. In practice, only typical trajectories are

dx
dτ

= ∂H
∂y

= y

dy
dτ

= −∂H
∂x

= −c1x − c3x3 + B0 + B cos τ

(60)

illustrated in the portrait to show the behavior schematically.
In both cases, the Hamiltonian is a periodic function in time.

3. An RLC circuit. Equation (11) in Example 1(1) is a dissi- Equilibrium Point and its Topological Classification
pative system. To see this, define the energy function:

A point at which the phase velocity becomes zero is called an
equilibrium point. The point corresponds to a dc operating
point of a circuit. Hence an equilibrium point x0 � Rn is givenH(x, y) = 1

2
y2 + 1

2
x2 (61)

by the relation
and the dissipative function:

f(x0, λ) = 0 (66)

F(x, y) = −1
2

γ1x2 + 1
4

γ4x4 + 1
2

ky2 − By (62)
For every equilibrium point the solution

then, we have Eq. (17) as x(t) = x0 (67)

gives a stationary solution of Eq. (65).

Example 4. 1. Consider Eq. (11) in Example 1(1). Equation

dx
dτ

= ∂H
∂y

− ∂F
∂x

dy
dτ

= −∂H
∂x

− ∂F
∂y

(63)

(66) is given by

Hence the energy dissipation along a trajectory is f1(x0, y0) = y0 + γ1x0 − γ3x3
0 = 0

f2(x0, y0) = −x0 − ky0 + B = 0
(68)

dH
dτ

= ∂H
∂x

dx
dτ

+ ∂H
∂y

dy
dτ

= −(−γ1x2 + γ3x4 − By + ky2) (64)

The intersection of these two curves gives a solution of Eq.
(68). Hence by choosing parameters appropriately we see thatwhich will be negative for sufficiently large (x, y) � R2.
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at most three equilibria exist in Eq. (68). Substituting the Once we have an equilibrium point x0, our interest turns
into its stability or the qualitative property of the behavior offirst equation into the second, we find
trajectories near x0. To do this let � be a small variation from
the equilibrium point:(1 − kγ1)x0 + kγ3x3

0 = B (69)

Hence, if 1 � k�1, then for �B� � ��(k�1 � 1) �(k�1 � 1)/3k�3 Eq. x(t) = x0 + ξ (t) (75)
(69) has three roots. For example, if B � 0, then we have
three equilibria: Substituting Eq. (75) into Eq. (65), we have the linear varia-

tional equation as

ξ̇ (t) = Aξ (t) (76)

where A � Df (x0, �) is the Jacobian matrix with respect to x
at x0. Equation (76) gives also the linear approximation of the

(
−
√

kγ1 − 1
kγ3

,
1
k

√
kγ1 − 1

kγ3

)
, (0,0),

(√
kγ1 − 1

kγ3
, −1

k

√
kγ1 − 1

kγ3

)
(70)

original system (65) in the neighborhood of the equilibrium
For 1 � k�1 Eq. (69) has only one equilibrium point. point x0. Indeed by Taylor’s expansion we have

2. Consider Eq. (13) or Eq. (14) in Example 1(1). If �1 and
�3 are positive, then the origin (x, ẋ) � (0, 0) in Eq. (13), or
(y, ẏ) � (0, 0) in Eq. (14) is the unique equilibrium point of f(x0 + ξ, λ) = Df(x0, λ)ξ + 1

2
D2f(x0, λ)(ξ, ξ ) + · · · (77)

the systems.
3. Consider the circuit shown in Fig. 7. Using the notation It follows that the linear part A� � Df (x0, �)� is a good ap-

in the figure we have the circuit equation: proximation to the nonlinear function f ( � , �) near the equilib-
rium point x � x0, and it is reasonable to expect that the
qualitative behavior of Eq. (65) near x � x0 will be approxi-
mated by the behavior of Eq. (76). This is indeed the case if
the matrix A � Df (x0, �) has no zero or pure imaginary eigen-
values. Hence we define an equilibrium point with this condi-
tion as a hyperbolic equilibrium point. That is, an equilibrium

L1
di1

dt
= E1 − R1i1 − v

L2
di2

dt
= E2 − R2i2 − v

C
dv
dt

= i1 + i2 − g(v)

(71)

point is hyperbolic if none of the eigenvalues of the matrix
A � Df (x0, �) have zero real part. The Hartman–Grobman

where the nonlinear characteristics of the conductor G is as- theorem shows that near a hyperbolic equilibrium point, the
sumed as nonlinear system of Eq. (65) has the same qualitative struc-

ture as the linear system of Eq. (76). That is, by a homeomor-
phism (continuous mapping with its inverse) h from an openiG(vG) = −g1vG + g3v3

G, g1, g3 > 0 (72)

set U containing x0 of Eq. (65) onto an open set V containing
Hence the equilibrium point is given by the origin of Eq. (76), trajectories of Eq. (65) in U map onto

trajectories of Eq. (76) while preserving their orientation by
time. Here ‘‘qualitative structure,’’ ‘‘topological property,’’ or
‘‘topological type’’ has the same meaning.

Using this result, we can classify topologically hyperbolic

f1(i1, i2, v) = E1 − R1i1 − v = 0

f2(i1, i2, v) = E2 − R2i2 − v = 0

f3(i1, i2, v) = i1 + i2 − g(v) = 0
(73)

equilibrium point. Let

Substituting the first and second equations into the third
equation, we have the following cubic function of v: χ(µ) = det[µIn − Df(x0, λ)] = 0 (78)

be the characteristic equation and letf (v) = E1

R1
+ E2

R2
−
(

1
R1

+ 1
R2

− g1

)
v − g3v3 = 0 (74)

{µ1, µ2, · · · , µn} = {µi ∈ C | det[µiIn − Df(x0, λ)] = 0} (79)
Hence Eq. (73) has at most three equilibria under appropriate
parameter values. be the eigenvalues, also called the characteristic roots, of

A � Df (x0, �). Then the hyperbolic condition is given by

Re(µi) �= 0 (80)

for all i � 1, 2, . . ., n. Now let Eu be the intersection of Rn

and the direct sum of generalized eigenspace of A correspond-
ing to the eigenvalues �i such that Re(�i) � 0. Similarly, let
Es be the intersection of Rn and the direct sum of generalized
eigenspace of A corresponding to the eigenvalues �i such that

i1

iCiG

R2

L2

E2

G v
i2

R1

L1

E1

Re(�i) � 0. Eu or Es is called the unstable or stable subspace
of A. The Hartman–Grobman theorem shows that Eu and EsFigure 7. A three-dimensional oscillatory circuit.
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have the following properties: is called the orbit of Eq. (65) through the initial state x0. As-
ymptotic behavior in the future or in the past is also defined
as(a) Rn = Eu ⊕ Es, A(Eu) = Eu, A(Es) = Es

(b) dim Eu = #{µi | Re(µi) > 0},
dim Es = #{µi | Re(µi) < 0}

(81)

where #� � indicates the number of the elements contained in
the set � �. The topological type of a hyperbolic equilibrium

ω(x0) = ω(Orb(x0)) = ω lim(x0) =
⋂
τ≥0

⋃
t≥τ

ϕ(t, x0, λ)

α(x0) = α(Orb(x0)) = α lim(x0) =
⋂
τ≤0

⋃
t≤τ

ϕ(t, x0, λ)

(86)

point is then determined by the dim Eu or dim Es. Let kO
denotes the topological type of a hyperbolic equilibrium point

They are called the � limit set and the � limit set of x0 orwith dim Eu � k. That is, kO denotes the type of a k-dimen-
Orb(x0), respectively. Now suppose that p � Rn be a sink.sionally unstable hyperbolic equilibrium point. Then for the
Then the set of all point x0 whose � limit set is p is called then-dimensional autonomous system Eq. (65) we have n � 1
basin of attraction or the domain of attraction of the attrac-topologically different kinds of hyperbolic equilibria. Their
tor p:types are as follows:

Basin(p) = {x ∈ Rn | ω lim(x) = p} (87){0O, 1O, · · · , nO} (82)

Usually a completely stable equilibrium point 0O is called a If a system has several stable equilibria as attractors, then
sink, a completely unstable equilibrium point nO is called a each attractor has its own basin of attraction. The state space
source, and others are called saddles. considered as the set of initial states is divided into their ba-

sins of attractors. Hence the final steady state realized is com-
Remark 4. 1. Stability of equilibrium point. The stability of pletely determined by the basin in which we specify an initial
any hyperbolic equilibrium point x0 � Rn is determined by the state. This is the simplest nonlinear phenomenon of the exis-
signs of the real parts of the characteristic roots Eq. (79). A tence of multistable states.
hyperbolic equilibrium point x0 � Rn is called asymptotically
stable if and only if it is a sink: Re(�i) � 0 for all i � 1, 2,

Example 5. 1. Two-dimensional hyperbolic equilibria. We. . ., n. A hyperbolic equilibrium point is unstable if it is a
have three different types of hyperbolic equilibria: 0O, 1O, 2O.source or a saddle. The stability of nonhyperbolic equilibrium
Assume that the characteristic equation Eq. (78) is given bypoint is more difficult to determine. The definition of the sta-

bility due to Lyapunov is useful for this purpose. Let �(t, u,
�) be a solution of Eq. (65) with �(0, u, �) � u. An equilibrium χ(µ) = det[µI2 − Df(x0, λ)] = µ2 + a1µ + a2 = 0 (88)
point x0 is stable (in the sense of Lyapunov) if for every 	 � 0
there exists a � � 0 such that for every u � B(�, x0) we have

Then we have the following result:�(t, x0, �) � B(	, x0) for all t � 0, where B(d, x0) denotes an
open disk with the radius d: B(d, x0) � �u � Rn � �u � x0� �
d�. An equilibrium point x0 is unstable if it is not stable. And (a) If a1 � 0 and a2 � 0, then the equilibrium point x0 �
x0 is asymptotically stable if it is stable and limt�� �(t, x0, �) R2 is a sink 0O.
� x0. An asymptotic stable equilibrium point is the simplest

(b) If a2 � 0, then the equilibrium point x0 � R2 is a sad-attractor of dynamical systems.
dle 1O.2. Stable and unstable manifolds of a hyperbolic equilibrium

point. The subsets leaving from and approaching to a hyper- (c) If a1 � 0 and a2 � 0, then the equilibrium point x0 �
bolic equilibrium point x0 are called the unstable manifold R2 is a source 2O.
Ws(x0) and the stable manifold Wu(x0), respectively. They are
defined as

These relations are illustrated in Fig. 8. Each type of hyper-
bolic equilibrium point is also classified by the location of itsWu(x0) = {u ∈ Rn | lim

t→−∞ϕ(t, u, λ) = x0}
Ws (x0) = {u ∈ Rn | lim

t→∞ϕ(t,u, λ) = x0}
(83)

Eu and Es defined in Eq. (81) are tangent spaces to Wu(x0) and
Ws(x0) at x0, and

dimEu = dimWu(x0), dimEs = dimWs (x0),

Wu(x0) ∩ Ws (x0) = x0
(84)

3. Let �(t, x0, �) be a solution of Eq. (65) with �(0, x0, �) �
x0. The curve traced out the trajectory �(t, x0, �):

0O

a1

a2

1O

0

2O

Figure 8. Topological classification of equilibria: two-dimensional
case.Orb(x0) = {x ∈ Rn | x = ϕ(t,x0, λ), t ∈ R} (85)
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Figure 9. Distribution of the characteristic roots for a sink.
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Figure 11. Distribution of the characteristic roots for (a) a saddle
and (b) a phase portrait of a saddle.

characteristic roots in the plane of complex numbers. Figure
9 shows the typical locations of a sink. Corresponding to these
roots, we have the phase portraits shown in Fig. 10. The equi-

The only equilibrium point is the origin. The characteristiclibrium point of each case is called a node in Fig. 9(a), a spiral
equation of the origin is given byor a focus in Fig. 9(b), and a degenerate focus in Fig. 9(c).

Note that for the multiple roots, we have two types of degen-
erate focuses shown in (c-1) and (c-2) in Fig. 10. Figure 11
shows the location of characteristic roots for a saddle point (a)

χ(µ) =
∣∣∣∣∣−µ 1

−1 ε − µ

∣∣∣∣∣ = µ2 − εµ + 1 = 0 (91)

and its phase portrait (b). In a two-dimensional system, two
cases occur for a nonhyperbolic equilibrium point: (a) charac- Hence the origin is a source 2O, that is, a two-dimensionally
teristic roots are pure imaginary numbers, and (b) one root unstable hyperbolic equilibrium point.
is zero. These nonhyperbolic equilibria are called center and 3. The existence of multistable states. Consider Eq. (46)
degenerate node, respectively, (see Fig. 12). with C1 � C2 � C:

2. Consider the van der Pol equation in Example 1(1). Equa-
tion (13) is rewritten as ẋ = αx − x3 − δ(x − y)

ẏ = αy − y3 − δ(y − x)
(92)

ẋ = y

ẏ = −x + ε(1 − γ x2)y
(89)

where we put

where
v1 =

√
C
g3

x, v2 =
√

C
g3

y, α = g1

C
> 0, δ = G

C
> 0 (93)

ε = γ1 > 0, γ = 3
γ3

γ1
> 0 (90)

These two equations have the mirror reflection symmetry
with respect to the invariant subspaces given by Eq. (54), that
is, x � y and x � �y. In the case of � � 4, � � 1 we have nine
equilibria as shown in Fig. 13. Note that the stationary points
of the dissipative function in Eq. (47) give these equilibria
(see Fig. 14). The Jacobian matrix at an equilibrium point
(x0, y0) is given by

A = Df(x0, y0) =
[
α − δ − 3x2

0 δ

δ α − δ − 3y2
0

]
(94)

y1y1

y2

y2

(a) (b)

y2

y1 y1

y1 y1

y2

(a) (b)

(c-1) (c-2)

y2 y2

Figure 10. Phase portrait of a sink. (a) Node, (b) focus, (c) degener- Figure 12. Phase portrait of nonhyperbolic equilibrium point. (a)
Center, (b) degenerate node.ate focus.
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Figure 13. Equilibria for Eq. (92) with � � 4 and � � 1.
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All equilibria are hyperbolic and their types are easily calcu- Figure 15. Phase portrait of Eq. (92) with � � 4 and � � 1.
lated from Eq. (94). The phase portrait is illustrated in Fig.
15. Stable manifolds approaching four saddle points separate
the phase plane into four regions in which one sink is situ-
ated. That is, the phase plane is divided into four basins of Periodic State of Autonomous Systems
attractions whose boundaries are stable manifolds of the sad-

Consider an autonomous systemdle points.

References in This Section ẋ = f(x, λ), x ∈ Rn, λ ∈ Rm (95)

A qualitative approach of ordinary differential equations or
where x � Rn is a state vector and � � Rm is a system param-dynamical systems is found in Refs. 1, 4, 7, and 9. We recom-
eter. Suppose that Eq. (95) have a periodic solution �(t, x0, �)mend Ref. 9 as a good source for this topic. Topological classi-
with period L. The orbitfication of equilibria is found in Refs. 10–12.

C = Orb(x0) = {x ∈ Rn | x = ϕ(t,x0, λ), t ∈ [0,L]} (96)
PERIODIC STATE AND ITS STABILITY

forms a closed curve in the state space Rn. This is an invari-Periodic state plays the central role in nonlinear circuit dy-
ant set of Eq. (95). That is,namics. A basic tool for studying periodic state and its related

property is the Poincaré map by which a continuous time dy-
namical system reduces to a discrete time dynamical system. ϕ(t,C, λ) = C (97)
A periodic state is then transformed to a fixed point of the
Poincaré map. Hence a similar argument to equilibria will be A small perturbation or variation �(t) from the periodic solu-
developed for fixed points. tion obeys the following variational equation:

ξ̇ (t) = A(t)ξ (t) (98)

where

A(t) = Df(ϕ(t,x0, λ), λ) = ∂f
∂x

(ϕ(t,x0, λ), λ) (99)

is the Jacobian matrix with respect to x. By the periodicity
of �(t, x0, �), the matrix A(t) becomes a periodic matrix with
the same period L:

A(t) = A(t + L), t ∈ R (100)

Hence Eq. (98) is a linear equation with periodic coefficients.

F(x, y)

y

x Similar to the hyperbolic equilibrium point, we can discuss
the hyperbolicity of periodic solution. We will study this byFigure 14. Surface of the dissipative function, Eq. (47). Each station-

ary point corresponds to the equilibrium point in Fig. 13. example.
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be a fifth-order polynomial. Figure 17 shows the phase por-
trait for 	 � 0.2, � � 3.5. Two limit cycles C1 and C2, one of
which is stable and another unstable, exist and the origin is
a sink 0O in this case. Hence we have two attractors: a stable
limit cycle C1 and a stable equilibrium point 0O. The basin of
the latter equilibrium point is the region surrounded by the
unstable limit cycle cycle C2. The outer region of the unstable
limit cycle C2 is then the basin of the stable limit cycle C1.
According to the initial state we specify, the final steady state
becomes the sink 0O or the stable limit cycle C1. This shows
an example of the existence of multistable states. In the cir-
cuit, if the initial state is small, then the oscillatory state is
never realized. To observe an oscillatory state corresponding
to the stable limit cycle we must give an initial state large
enough to enter the basin of the limit cycle C1. This oscillatory
process is called a hard oscillation. On the other hand, the

x

y

C

2O

process stated in Example 6, item 1, is called a soft oscillation.
Figure 16. Phase portrait of the van der Pol equation, Eq. (89), with
	 � 0.5 and � � 1. The closed curve C indicates a stable limit cycle.

Poincaré Map for Autonomous Systems

The definition of a Poincaré map, or first return map, for aExample 6. 1. Self-excited oscillation. Consider the van der
periodic solution is quite simple. Suppose that Eq. (95) has aPol equation [Eq. (89)] in Example 5(2). Figure 16 shows the
periodic solution �(t, x0, �) through the point x0. We choose aphase portrait of Eq. (89) with 	 � 0.5, � � 1.0. We see that
hypersurface � � Rn to intersect transversally the periodicthe origin is a source and a closed curve C which is the �
orbit at x0, Then for each point x1 � � sufficiently near x0,limit set of any point in the phase plane except the origin.
the solution through x1 will return to � again at a point x2 �The closed curve C is the orbit of the periodic solution with
� near x0 (see Fig. 18). The mapping x1 � x2 is called thean initial state in C. As we will see later, the periodic solution
Poincaré map T. That is, T is defined asis orbitally stable. In a two-dimensional autonomous system,

an isolated closed orbit is called a limit cycle. Thus the van T : � → �; x1 
→ x2 = T(x1) = ϕ(τ, x1, λ) (102)
der Pol equation has a unique stable limit cycle. This corre-
sponds to a self-excited oscillatory phenomenon in circuit dy- where � is the return time and depends on the initial point
namics. Note that we could not solve Eq. (89) explicitly so x1. The hypersurface � is locally defined and is called a local
that an appropriate numerical algorithm, such as the fourth- cross section or a Poincaré section. Assume that � is de-
order Runge–Kutta method, is used to accomplish the phase scribed as
portrait.

2. Hard oscillation. Consider the equation � = {x ∈ Rn | q(x) = 0} (103)

where q is a scalar function from Rn to R. The transversality
ẋ = y

ẏ = −x − ε(1 − βx2 + x4)y
(101)

condition is then expressed by

Equation (101) is the van der Pol equation with a hard char-
acteristic. That is, the nonlinear characteristic is assumed to

∂q(x0)

∂x
f(x0, λ) = f(x0, λ) · grad q(x0) �= 0 (104)

Note that dim � � n � 1. Once the Poincaré map T is defined,
we have a recurrent formula or difference equation of the

y

x

C1

C2

0O
x2 =   (  (x1), x1,   )

x2 =   (L, x0,   )

(t, x0,   )λφ

(t, x1,   )

x1

x0

x2

λφ

λφ

φ τ λ

Rn

Π

Figure 17. Phase portrait of a hard oscillator equation, Eq. (101),
with 	 � 0.2 and � � 3.5. Closed curves C1 and C2 indicate a stable Figure 18. Periodic orbit and Poincaré map. Local cross section is

the hypersurface �.and an unstable limit cycle, respectively.
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form If x(t) is a periodic solution with period 2k�, then the point
x0 is a periodic point of T with period k such that Tk(x0) � x0

and Tj(x0) � x0 for j � 1, 2, . . ., k � 1. Hence there are al-xk+1 = T(xk), xk ∈ �, k = 1,2, . . . (105)
ways k points x0, x1 � T(x0), . . ., xk�1 � Tk�1(x0) which are

By the uniqueness theorem of differential equations the map all fixed points of Tk. Thus the behavior of periodic solution of
T has a unique inverse map T�1. Moreover, if the vector field Eq. (107) is reduced to the behavior of fixed or periodic points
(95) is differentiable, T and T�1 is also differentiable; that is, of the map T.
T is a diffeomorphism on � near x0. Because x0 is on the peri-
odic orbit, we have Hyperbolic Fixed Point and Its Stability

Now we consider the qualitative property of a fixed point ofT(x0) = x0 (106)
the Poincaré map T. In the following for the notational conve-
nience we consider T defined by Eq. (109). The same discus-That is, x0 is a fixed point of T. If L is the period of the peri-
sion is applied to Eq. (102). Suppose that x0 � Rn is a fixedodic solution, then the return time becomes �(x0) � L.
of T. The characteristic equation of the fixed point x0 is de-
fined byStroboscopic Mapping: Poincaré Map

for Periodic Nonautonomous Systems
χ(µ) = det(µIn − DT(x0)) = 0 (111)

Consider a nonautonomous system
where DT(x0)) � �T(x0)/�x0 denotes the derivative of T. Near

ẋ = f(t, x, λ), x ∈ Rn, λ ∈ Rm (107) x0 the map T is approximated by its derivative DT(x0). This
is indeed possible if the fixed point is hyperbolic. Here we call

where x � Rn is a state vector and � � Rm is a system param- x0 a hyperbolic fixed point of T, if DT(x0) is hyperbolic, that
eter. We assume that f is periodic in t with period 2�: is, all the absolute values of the eigenvalues of DT(x0) are

different from unity. Let x0 be a hyperbolic fixed point of Tf(t,x, λ) = f(t + 2π, x, λ) (108)
and let Eu be the intersection of Rn and the direct sum of
generalized eigenspace of DT(x0) corresponding to the eigen-for all t � R. Equation (107) describes a class of dynamic non-
values �i such that ��i� � 1. Similarly, let Es be the intersec-linear circuits with a periodic forcing term. A nonlinear cir-
tion of Rn and the direct sum of generalized eigenspace ofcuit with an ac operation is a typical example of this class.
DT(x0) corresponding to the eigenvalues �i such that ��i� � 1.Without loss of generality, we assume that the period of the
Eu or Es is called the unstable or stable subspace of DT(x0).external forcing is 2�. Suppose that Eq. (107) has a solution
The map version of the Hartman–Grobman theorem showsx(t) � �(t, x0, �) with x(0) � �(0, x0, �) � x0. This time we
that Eu and Es have the following properties:have the periodic property equation, Eq. (108). Hence for ev-

ery 2� instance the vector field equation, Eq. (107), returns
the same value so that a stroboscopic sampling of the solution
can be achieved under the fixed vector field. That is, we can

(a) Rn = Eu ⊕ Es, DT(Eu) = Eu, DT(Es) = Es

(b) dim Eu = #{µi | |µi| > 1}, dim Es = #{µi | |µi| < 1}
(112)define the stroboscopic mapping as the Poincaré map (see Fig.

19):
Let Lu � DT(x0)�Eu and Ls � DT(x0)�Es). Then the topological
type of a hyperbolic fixed point is determined by (1) the dimT : Rn → Rn; x0 
→ x1 = T(x0) = ϕ(2π, x0, λ) (109)
Eu (or dim Es) and (2) the orientation preserving or reversing
property of Lu (or Ls). The latter condition is equivalent to theIf a solution x(t) � �(t, x0, �) is periodic with period 2�, then
positive or negative sign of det Lu (or det Ls) and is the addi-the intial state x0 is a fixed point of T:
tional condition comparing with a hyperbolic equilibrium
point. We refer a hyperbolic fixed point with det Lu � 0 to aT(x0) = x0 (110)
direct type (i.e., D-type) and refer a hyperbolic fixed point
with det Lu � 0 to an inverse type (i.e., I-type). Note
that DT(x0) is an orientation preserving map, that is, det
DT(x0) � 0. Combining the dimensionality, we have 2n topo-
logically different types of hyperbolic fixed points. These types
are

{0D, 1D, . . . , nD; 1I, 2I, . . . , n−1I} (113)

where D and I denote the type of the fixed point and the sub-
script integer indicates the dimension of the unstable sub-
space: k � dim Eu. Usually a completely stable fixed point 0D
is called a sink, a completely unstable fixed point nD is called
a source, and others are called saddles.

(t, x0,   )

x1

t = 0

t = 2

t

π

x0

Rn

Rn

λϕ

Remark 5. 1. The classification stated above is also obtained
from the distribution of the eigenvalues, also called the char-Figure 19. Stroboscopic mapping. Poincaré map for a periodic non-

autonomous system. acteristic multipliers, of Eq. (111). That is, D and I correspond



NONLINEAR DYNAMIC PHENOMENA IN CIRCUITS 545

to the even and odd number of characteristic multipliers on Hence, using Eq. (121) and the periodicity of the solution, we
havethe real axis (��, �1), and k indicates the number of charac-

teristic multipliers outside the unit circle in the complex
plane. The distribution can be checked by the coefficients of ϕ̇(L,x0, λ) = �(L)ϕ̇(0,x0, λ) = ϕ̇(0,x0, λ) (122)

Eq. (111).
This means that �(L) has the unity multiplier with the eigen-2. The derivative DT(x0) � �T(x0)/�x is obtained from the
vector:solution of the variational equation with respect to the initial

state of the periodic solution x(t) � �(t, x0, �) with x(0) � �(0,
ϕ̇(0, x0, λ) = f(x0, λ) (123)x0, �) � x0. Consider the nonautonomous case, Eq. (107). We

have the identity relation: From this property the derivative of the Poincaré map defined
by Eq. (102) has at least one unity multiplier.

4. Stable and unstable manifolds of a hyperbolic fixed point.
ϕ̇(t, x0, λ) = f(t, ϕ(t, x0, λ), λ)

ϕ(0,x0, λ) = x0
(114)

The subsets leaving from and approaching a hyperbolic fixed
point x0 are called the unstable manifold, Ws(x0), and the sta-

Differentiating these relations with respect to the initial ble manifold, Wu(x0), respectively. They are defined as
state, we have

Wu(x0) = {u ∈ Rn | lim
k→−∞

Tk(u) = x0}
Ws(x0) = {u ∈ Rn | lim

k→∞
Tk(u) = x0}

(124)

Eu and Es defined in Eq. (112) are tangent spaces to Wu(x0)

d
dt

∂ϕ(t,x0, λ)

∂x0
= ∂f(t, ϕ(t,x0, λ), λ)

∂x
∂ϕ(t, x0, λ)

∂x0

∂ϕ(0,x0, λ)

∂x0
= In

(115)

and Ws(x0) at x0, and

This is the matrix version of the variational equation with
respect to the initial state. We call the solution the principal
fundamental matrix solution and write

dim Eu = dimWu(x0),

dim Es = dimWs(x0),

Wu(x0) ∩ Ws(x0) = x0

(125)

Thus stable and unstable manifolds have global information
�(t) = ∂ϕ(t,x0, λ)

∂x0
, �(0) = In (116)

of the phase portrait of the Poincaré map T. In the two-di-
From the definition of the Poincaré map, we obtain mensional case a 1D or 1I fixed point has a stable invariant

curve and an unstable invariant curve, which are also called
� branch and � branch of the fixed point, respectively.

5. Phase portrait for the Poincaré map, Eq. (109). Similar
DT(x0) = ∂T(x0)

∂x0
= ∂ϕ(2π,x0, λ)

∂x0
= �(2π) (117)

to the phase portrait of an autonomous system, we can define
From Liouville’s theorem we have the phase portrait of the Poincaré map. Suppose that a dis-

crete time dynamical system is defined by Eq. (109). We de-
fine the point set, called the orbit, through x0:

Orb(x0) = {xk ∈ Rn | xk = Tk(x0), k = · · · ,−1, 0, 1, · · · }
(126)

A fixed point x0 � T(x0) has a single-point orbit Orb(x0) �
�x0�. Similarly, a k-periodic point x0 � Tk(x0) has the orbit
Orb(x0) � �x0, x1, � � � , xk�1�. An orbit is an invariant set in

det DT(x0) = det�(2π)

= det�(0)exp{∫ L

0
trace

(
∂f(τ , ϕ(τ , x0, λ), λ)

∂x

)
dτ

}

= exp

{∫ L

0
trace

(
∂f(τ , ϕ(τ , x0, λ), λ)

∂x

)
dτ

}
> 0

(118)

Rn:
Thus T is an orientation preserving diffeomorphism.

3. In an autonomous system, Eq. (95), a periodic solution T(Orb(x0)) = Orb(x0) (127)
always has at least one characteristic multiplier that is equal

The stable and unstable manifolds defined by Eq. (124) areto unity. Indeed, a periodic solution satisfies the relation
other examples of an invariant set of T. A phase portrait of
the Poincaré map T is then the set of all orbits in the phaseϕ̇(t, x0, λ) = f(ϕ(t,x0, λ), λ) (119)
space Rn. We illustrate schematically some typical orbits and

Differentiating by t yields invariant sets to show the global structure of the phase space.
6. Numerical computation of hyperbolic fixed point. A hyper-

bolic fixed point can be found by Newton’s method as follows.ϕ̈(t, x0, λ) = ∂f(ϕ(t,x0, λ), λ)

∂x
ϕ̇(t, x0, λ) = A(t)ϕ̇(t,x0, λ) (120)

Let Eq. (110) be the form

Hence �̇(t, x0, �) is a solution of the variational equation, Eq. F(x) = x − T(x) = 0 (128)
(98). Let the principal fundamental matrix solution be �(t),
then �̇(t, x0, �) is expressed by Then from Eq. (117) the Jacobian matrix becomes

ϕ̇(t, x0, λ) = �(t)ϕ̇(0,x0, λ) (121) DF(x) = In − DT(x) = In − �(2π) (129)
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This matrix is nonsingular if a fixed point is hyperbolic.
Hence Newton’s iteration

x(k+1) = x(k) + h, k = 0, 1, 2, · · ·
DF(x(k))h = −F(x(k))

(130)

works well from an appropriate initial guess x(0).

Example 7. 1. Two-dimensional hyperbolic fixed points. We
have four different types of hyperbolic fixed points: 0D, 1D, 1I,
2D; they are called a completely stable, a directly unstable, an
inversely unstable, and a completely unstable fixed point, re-
spectively. They are obtained under the following conditions.
Let Eq. (111) be given by

χ(µ) = det[µI2 − DT(x0, λ)] = µ2 + a1µ + a2 = 0 (131)

Then we have:

y

1

0 1–1

–1

–2

S1
1D

S2

ω

ω
α

α

x

(a) If 0 � a2 � 1, 0 � �(�1), 0 ��(1), then the hyperbolic
Figure 21. Phase portrait of the Poincaré map defined by Eq. (132).fixed point is 0D, Closed dotted curves indicate periodic solutions.

(b) If 0 � a2, 0 � �(�1), then the hyperbolic fixed point is
1D,

(c) If 0 � a2, 0 � �(1), then the hyperbolic fixed point is Harmonic Resonance in Duffing’s Equation
1I,

Nonlinear resonance occurs typically in Duffing’s equation.(d) If 1 � a2, 0 � �(�1), 0 � �(1), then the hyperbolic fixed
The simplest resonant phenomenon is a harmonic resonance.point is 2D.
It is observed when the frequency of a free harmonic oscillator
is nearly equal to that of an injected external periodic signal.These relations are illustrated in Fig. 20.
In the following we will discuss this phenomenon by using an2. Periodic solutions of Duffing’s equation. Consider the fol-
analytical approach: the perturbation method and the averag-lowing Duffing’s equation [cf. Eq. (20)]:
ing method.

Perturbation Method. Let us consider the periodic solution
ẋ = y

ẏ = −0.1y − x3 + 0.3 cos t
(132)

of Duffing’s equation:

Figure 21 shows the phase portrait of the Poincaré map T. ẍ + εζ ẋ + �2x + εcx3 = B cos t (133)
Equation (132) has three periodic solutions: a nonresonant so-
lution S1, a resonant solution S2, and an unstable solution where 	 is a small parameter. Rewriting this equation as
1D. The former two solutions are sinks, and the latter a di-
rectly unstable saddle. These periodic trajectories are shown ẍ + �2x = B cos t − ε(ζ ẋ + cx3) (134)
by closed dotted curves. Two curves indicated � and � show
the unstable invariant curve Wu(1D) and the stable invariant we see that Eq. (133) is a quasilinear system. Hence we will
curves Ws(1D) of the saddle fixed point 1D. The � branch is the find periodic solutions by the standard perturbation method.
boundary curve of two basins of the attractors S1 and S2. By Assume that a periodic solution is expressed in the formal
the numerical computation in Remark 5(6), the location (x, y) power series of 	 as
of the three fixed points is found to be S1(�0.3228, 0.0360),
S2(1.1381, 0.7446), and 1D(�0.9170, 0.3812). x(t) = x0(t) + εx1(t) + ε2x2(t) + ε3x3(t) + · · · (135)

Substituting Eq. (135) into Eq. (134) and equating the same
power of 	, we have

ε0: ẍ0 + �2x0 = B cos t

ε1: ẍ1 + �2x1 = −ζ ẋ0 − cx3
0

ε2: ẍ2 + �2x2 = −3cx2
0x1 − ζ ẋ1

(136)

From perturbation theory, if Eq. (136) has an isolated periodic
solution, then for sufficiently small 	 there exists the periodic

(1) = 0χ (–1) = 0

0–1 1

1

a2

a1

2 D

0 D 1 I1 D

χ

solution in Eq. (134). Hence to find the periodic solution we
will consider two cases: a nonresonant case and a resonantFigure 20. Topological classification of fixed points: two-dimen-

sional case. case, separately.
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Nonresonant Case Where � � 1. Solving Eq. (136) consecu- is nonsingular at this root, then Eq. (142) has a periodic solu-
tiontively, we have

x1(t) =M1 cos t + N1 sin t

− 1
32

c(N2
0 − 3M2

0 )N0 sin 3t

− 1
32

c(3N2
0 − M2

0 )M0 cos 3t

(145)

x0(t) = B
�2 − 1

cos t

x1(t) = Bζ

(�2 − 1)2
sin t − 3cB3

4(�2 − 1)4
cos t

− cB3

4(�2 − 1)3(�2 − 9)
cos 3t

(137)

where M1 and N1 are still unknown coefficients. Thus Eq.
Thus for the nonresonant case we have a unique periodic (143) determines the first term of Eq. (135), called the gener-
state in the form of Eq. (135). ating solution of the first equation of Eq. (140). Although

Resonant Case Where � 	 1. As � 	 1, we put higher-order terms of 	 of Eq. (135) have little effect on this
solution, the generating solution (i.e., the zeroth order ap-

1 − �2 = εa, B = εb (138) proximate solution) determines the behavior of the periodic
solution, Eq. (135). From Eq. (143) we find the relation

Note that a indicates a measure of the frequency difference
between free and external frequencies. Hence the resonant
case Eq. (134) becomes

{(
a − 3

4
cr2

)2

+ ζ 2

}
r2 = b2 (146)

ẍ + x = ε(b cos t + ax − ζ ẋ − cx3) (139)

This simple relation gives then the amplitude relationship or
Now we will try to find the periodic solution in the form of frequency relationship of the harmonic resonance. Figure 22
Eq. (135). Substituting Eq. (135) into Eq. (139), we find shows an amplitude characteristic of Eq. (146)—that is, the

relationship between b and r—in the case where a � c � 1.0.
Also plotted in Fig. 23 is a frequency response of the harmonic
oscillation—that is, the relationship between a and r in the
case where c � 1.0 and � � 0.2. Thus we see that there are

ε0 : ẍ0 + x0 = 0

ε1 : ẍ1 + x1 = b cos t + ax0 − ζ ẋ0 − cx3
0

· · ·
(140)

three kinds of periodic solutions under certain values of b, a,
By solving the first equation of Eq. (140), we have and r. We will return these characteristics after the discus-

sion of their stability.
Stability Analysis. After finding a periodic solution of thex0(t) = M0 cos t + N0 sin t (141)

form Eq. (135), we will study the stability of the periodic solu-
where M0 and N0 are unknown coefficients. They are deter- tion. Let the periodic solution be
mined as follows: Substituting Eq. (141) into the second equa-
tion of Eq. (140), we have x(t) = x0(t) + εx1(t) + ε2x2(t) + ε3x3(t) + · · · = ϕ∗(t) (147)

For a small variation

x(t) = ϕ∗(t) + ξ (t) (148)

ẍ1 + x1 =
{
ζM0 +

(
a − 3

4
cr2

)
N0

}
sin t

+
{(

a − 3
4

cr2
)

M0 − ζN0 + b
}

cos t

+ 1
4

c(N2
0 − 3M2

0 )N0 sin 3t

+ 1
4

c(3N2
0 − M2

0 )M0 cos 3t

(142)

where r2 � M2
0 � N2

0. Equation (142) has a periodic solution if
and only if the following conditions are satisfied:

P(M0, N0) = ζM0 +
(

a − 3
4

cr2
)

N0 = 0

Q(M0, N0) =
(

a − 3
4

cr2
)

M0 − ζN0 + b = 0
(143)

When a solution (M0, N0) of Eq. (143) is an isolate root, i.e.,
the Jacobian matrix:

r

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

= 0ζ

0O

0O

1O

1.00.80.60.4
b

0.2

0.1 0.2 0.3 0.4 0.5
0.6

0.7

0

Figure 22. Amplitude characteristic curves of Eq. (146).




∂P
∂M0

∂P
∂N0

∂Q
∂M0

∂Q
∂N0


 (144)
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where

a1 = − {ξ (1)(2π) + ξ̇ (2)(2π)} = −2 − ε{ξ (1)

1 (2π) + ξ̇ (2)

1 (2π)}
− ε2{ξ (1)

2 (2π) + ξ̇ (2)

2 (2π)} − · · ·
a2 = ξ (1)(2π)ξ̇ (2)(2π) − ξ (2)(2π)ξ̇ (1)(2π)

= 1 + ε{ξ (1)

1 (2π) + ξ̇ (2)

1 (2π)}
+ ε2{ξ (1)

2 (2π) + ξ̇ (2)

2 (2π) + ξ (1)

1 (2π)ξ̇ (2)

1 (2π)

− ξ (2)

1 (2π)ξ̇ (1)

1 (2π)} + · · · (155)

Hence the conditions stated in Example 7(1) become

r

0

0.5

1.0

1.5

2.0

3.0

b = 1.0

2.0

0.5
0.3

0.2
0.1

b = 1.0

0.5

0O

0O

1O

1.0
a

0

χ(−1) = 1 − a1 + a2 = 4 + ε{· · · } + · · · > 0

χ(1) = 1 + a1 + a2

= ε2{ξ (1)

1 (2π)ξ̇ (2)

1 (2π) − ξ (2)

1 (2π)ξ̇ (1)

1 (2π)} + ε3{· · · } + · · ·
a2 = 1 + ε{ξ (1)

1 (2π) + ξ̇ (2)

1 (2π)} + · · · (156)
Figure 23. Frequency characteristic curves of Eq. (146).

where

the variational equation becomes

ξ̈ + ξ = −ε{3c(ϕ∗(t))2ξ + ζ ξ̇} (149)

Hence we calculate the fundamental solutions of Eq. (149),
that is, the solutions

ξ (1)(t) = ξ (1)

0 (t) + εξ (1)

1 (t) + ε2ξ (1)

2 (t) + · · ·
ξ (2)(t) = ξ (2)

0 (t) + εξ (2)

1 (t) + ε2ξ (2)

2 (t) + · · · (150)

ξ (1)

1 (2π) = −
∫ 2π

0
[−3c(ϕ∗(τ ))2 cos τ + ζ sin τ ] sin τ dτ = − ∂P

∂M0

ξ̇ (1)

1 (2π) =
∫ 2π

0
[−3c(ϕ∗(τ ))2 cos τ + ζ sin τ ] cos τ dτ = ∂Q

∂M0

ξ (2)

1 (2π) = −
∫ 2π

0
[−3c(ϕ∗(τ ))2 sin τ − ζ cos τ ] sin τ dτ = − ∂P

∂N0

ξ̇ (2)

1 (2π) =
∫ 2π

0
[−3c(ϕ∗(τ ))2 sin τ − ζ cos τ ] cos τ dτ = ∂Q

∂N0
(157)

with the initial conditions
From the first equation of Eq. (156) we see that an inversely
unstable periodic solution cannot exist in Eq. (139). Substitut-
ing Eq. (157) into Eq. (156) we obtain the relations

ξ (1)

0 (0) = 1, ξ (1)

0 (0) = 0, ξ (1)

k (0) = ξ̇ (1)

k (0) = 0

ξ (2)

0 (0) = 0, ξ̇ (2)

0 (0) = 1, ξ (2)

k (0) = ξ̇ (2)

k (0) = 0 (k = 1,2, . . .)

(151) χ(1) = ε2det A + ε3{· · · } + · · ·
a2 = 1 + ε trace A + ε3{· · · } + · · · (158)

Substituting Eq. (150) into Eq. (149) and equating the same
power of 	, we have

where

A =




− ∂P
∂M0

∂P
∂N0

− ∂Q
∂M0

∂Q
∂N0


 (159)

ξ̈ (1)

0 + ξ (1)

0 = 0

ξ̈ (2)

0 + ξ (2)

0 = 0

ξ̈ (1)

1 + ξ (1)

1 = −ε{3c(ϕ∗(t))2ξ (1)

0 + ζ ξ̇ (1)

0 }
ξ̈ (2)

1 + ξ (2)

1 = −ε{3c(ϕ∗(t))2ξ (2)

0 + ζ ξ̇ (2)

0 }

(152)

Finally from Eqs. (143) and (146), we have
Hence the solutions of Eq. (152) can be found as

trace A = −2ζ < 0

det A = a2 + ζ 2 − 3acr2 + 27
16

c2r4 = db2

dr2

(160)

Note that from the first equation of Eq. (160), we see that no
completely unstable type of periodic solution exists in Eq.

ξ (1)

0 = cos t, ξ (2)

0 = sin t

ξ (1)

1 (t) =
∫ t

0

[−3c(ϕ∗(τ ))2 cos τ + ζ sin τ
]

sin(t − τ )dτ

ξ (2)

1 (t) =
∫ t

0

[−3c(ϕ∗(τ ))2 sin τ − ζ cos τ
]

sin(t − τ )dτ

(153)

(139). Hence the stability of the periodic solution is deter-
mined as follows:

The characteristic equation is given by

(a) If det A � 0, that is, db2/dr2 � 0, then the periodic
solution is a completely stable type: 0D.

(b) If det A � 0, that is, db2/dr2 � 0, then the periodic
solution is a directly unstable type: 1D.

χ(µ) =
∣∣∣∣∣µ − ξ (1)(2π) −ξ (2)(2π)

−ξ̇ (1)(2π) µ − ξ̇ (2)(2π)

∣∣∣∣∣ = µ2 + a1µ + a2 = 0

(154)
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Now we return to the characteristic curves shown in Fig.
22. Considering the above conditions we find the completely
stable portion and the directly unstable portion on each curve
� � const. The vertical tangency of the curves results at the
stability limit, which is indicated by the thick curve. Starting
from the small b of Fig. 22, the amplitude r increases slowly
with increase of b. When the curve comes to the point with
vertical tangency, a slight increase b will cause a discontinu-
ous jump of r to the upper portion of the curve. With decreas-
ing b, the amplitude r jumps down from the upper portion to
the lower portion at another point with vertical tangency.
Thus the process exhibits a hysteresis phenomenon (see Fig.
24). We refer to the periodic solution with larger amplitude
as the resonant state and to the other with smaller amplitude
as the nonresonant state. Similar hysteresis phenomenon is
observed for the frequency characteristic curves illustrated in

0

2

1

–1

–2

–1–2 1

NS
R

u

v

2

Fig. 23.
Figure 25. Phase portrait of Eq. (165) with a � c � 1, � � 0.1, and
b � 0.3.Averaging Method. Averaging method is another conven-

tional method for studying periodic solution of quasilinear
systems. Consider again Eq. (139) in normal form as

That is, we have an autonomous equation
ẋ = y

ẏ = −x + ε(b cos t + ax − ζy − cx3) = −x + εG(x, y, ε, t)
(161)

We assume an approximate periodic solution of Eq. (161) as

u̇ = − ε

2

{
ζu +

(
a − 3

4
cr2

)
v
}

= − ε

2
P(u,v)

v̇ = ε

2

{(
a − 3

4
cr2

)
u − ζv + b

}
= ε

2
Q(u, v)

(165)

where P(u, v) and Q(u, v) are given in Eq. (143). An equilib-
x(t) = u(t) cos t + v(t) sin t

y(t) = −u(t) sin t + v(t) cos t
(162)

rium point of Eq. (165) gives a periodic solution Eq. (162).
Hence we have the correspondence between the equilibria ofwhere u(t) and v(t) will be found slowly varying functions.
Eq. (165) and the periodic solutions of Eq. (161). Moreover,Substituting Eq. (162) into Eq. (161), we have
the phase portrait of Eq. (165) gives information about global
behavior of the solutions of Eq. (161). Figure 25 shows a
phase portrait of the case where three equilibria exist in Eq.

u̇(t) = −εG(u cos t + v sin t, −u sin t + v cos t, ε, t) sin t

v̇(t) = εG(u cos t + v sin t, −u sin t + v cos t, ε, t) cos t
(163)

(165). We see two sinks R and N corresponding to the reso-
nant and nonresonant solutions, respectively. We also illus-

Averaging the right-hand side of Eq. (163), we obtain trate a saddle S whose stable manifold forms the basin
boundary of two attractors.

References in This Section

The Poincaré map stated in this section is discussed in any
books on nonlinear dynamics; for example, see Refs. 4, 9, and
12. Hyperbolicity of fixed point of the Poincaré map is intro-
duced in Refs. 7 and 12. The classification of the hyperbolic

u̇(t) = − ε

2π

∫ 2π

0

G(u cos τ + v sin τ,−u sin τ + v cos τ, ε, τ ) sin τdτ

v̇(t) = − ε

2π

∫ 2π

0

G(u cos τ + v sin τ,−u sin τ + v cos τ, ε, τ ) cos τdτ

(164)

fixed point is found in Refs. 17–21. Various numerical meth-
ods are well treated in Refs. 22 and 23. Various nonlinear
resonances—that is, subharmonic resonance and higher har-
monic resonance as well as harmonic resonance—are treated
in the standard books on nonlinear oscillations (see Refs. 3–
6). For the perturbation method stated in the last paragraph,
see Ref. 24. Practical applications of the averaging method
are found in Ref. 3.

BIFURCATIONS OF EQUILIBRIA AND PERIODIC STATES

When the system parameter � varies, the qualitative proper-
ties of the state space may change at � � �0. We may observe

b

0O

1O

0O

b = b2b = b10

r

the generation or extinction of a couple of equilibria or fixed
points, the branching of new equilibria or fixed or periodicFigure 24. Jump and hysteresis phenomenon on an amplitude char-

acteristic curve. points, and the change of a topological type of equilibrium
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point or fixed point. We call these phenomena the bifurcation where the symbol ⇔ indicates the relation before and after
the bifurcation and 0
 denotes the extinction of equilibria. Theof equilibrium point or fixed point and call � � �0 a bifurcation

value. These bifurcations occur when the hyperbolicity is vio- plus sign appearing in the left-hand side of the relation
means that before the bifurcation we have a couple of equilib-lated at � � �0, which corresponds to the critical distribution

of the eigenvalues or multipliers of the characteristic equa- ria of the type kO and k�1O. At the bifurcation value � � �0

these two equilibria coalesce into one nonhyperbolic equilib-tion. Typical bifurcation is observed under the single bifurca-
tional condition and is called generic or codimension one bi- rium point, and after the bifurcation they disappear com-

pletely. The bifurcation condition is then given byfurcation. Mathematically, we have to discuss the normal
form theory of vector fields, the center manifold theorem, and
the unfolding theory. For our circuit application, however, the χ(0) = det(0 − A(λ)) = an = 0 (172)
bifurcation condition is the most important to study bifurca-

Geometrically in the parameter space Rm, Eq. (172) gives ations of concrete circuit examples. Thus we will introduce only
hypersurface with the dimension m � 1. Hence this bifurca-some basic results of bifurcation problems of equilibrium
tion is called a codimension one bifurcation. The tangent bi-point or fixed point. We will discuss the bifurcation of periodic
furcation is also called a saddle-node bifurcation, a fold bifur-state as the bifurcation of fixed points of the Poincaré map.
cation, or a turning point in various contexts.

Bifurcation of Equilibrium Point The Hopf Bifurcation. This bifurcation is observed if a cou-
ple of characteristic roots becomes purely imaginary numbersConsider an autonomous system
at � � �0. The stability of the equilibrium point changes and
a limit cycle appear or disappear after the bifurcation. Sym-ẋ = f(x, λ), x ∈ Rn, λ ∈ Rm (166)
bolically we have the following relation:

where x � Rn is a state vector and � � Rm is a system param-
eter. Suppose that x0 � Rn is an equilibrium point of Eq.
(166):

kO ⇔ k+2O + LC(kD) (k = 0, 1, . . . , n − 2)

kO + LC(k+1D) ⇔ k+2O (k = 0,1, . . . , n − 2)
(173)

where LC(kD) denotes a limit cycle whose type of the corre-f(x0, λ) = 0 (167)
sponding fixed point of the Poincaré map is kD. The first rela-
tion shows that before the bifurcation a k-dimensionally un-The Jacobian matrix of Eq. (167) is given by
stable hyperbolic equilibrium point exists, and after the
bifurcation the equilibrium point becomes a (k � 2)-dimen-Df(x0, λ) = A(λ) (168)
sionally unstable and k-dimensionally unstable limit cycle of
the type kD appears. If k � 0, then a sink becomes two-dimen-The characteristic equation is written as
sionally unstable and an orbitally stable limit cycle appears.
This type of Hopf bifurcation is called a supercritical type,
whereas the second relation shows a subcritical type (see Fig.

χ(µ) = det(µIn − A(λ))

= µn + a1µ
n−1 + · · · + an−1µ + an = 0

(169)
26). The bifurcation condition is then given by

Hyperbolicity is violated at a bifurcation value � � �0 when χ( jω) = det( jωIn − A(λ)) = 0 (174)
the Jacobian A � Df (x0, �) becomes singular or a couple of
characteristic roots become purely imaginary numbers. In the where j � ��1. This condition gives two relations derived
former case we observe the number of equilibria may change, from the real and imaginary parts. By eliminating the un-
whereas in the latter case the type of equilibrium point may known �, which gives the angular frequency of the bifurcated
change; that is, the stability may change and new periodic limit cycle, we obtain a single condition. Hence this is also a
orbit will be generated. We assume that along the variation codimension one bifurcation.
of �, the above location of characteristic root actually changes,
that is, Example 8. 1. The Hopf bifurcation for low-dimensional sys-

tems. For low-dimensional systems, the condition Eq. (174) is
easily obtained as follows.

d Re(µ)

dλ

∣∣∣∣
λ=λ0

�= 0 (170)

(a) Two-dimensional system. The condition is given by
Then the generic bifurcation of equilibrium point is the two
cases described below. χ( jω) = ( jω)2 + jωa1 + a2 = 0 (175)

Hence we haveTangent Bifurcation of Equilibrium Point. If one of the char-
acteristic roots becomes zero at the bifurcation parameter
� � �0, then the generation or extinction of a couple of equilib- a1 = 0, a2 = ω2 > 0; ω = √a2 (176)
ria occurs. Symbolically we have the following bifurcation re-
lation: (b) Three-dimensional system. The condition is given by

kO + k+1O ⇔ � (k = 0, 1, . . . , n − 1) (171) χ( jω) = ( jω)3 + a1( jω)2 + jωa2 + a3 = 0 (177)
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Figure 26. Schematic diagram of Hopf bifurcation.

Equilibrium point

(a) (b)

=   0 λλ λ =   0λ λ λ

Limit cycleLimit cycle

k+1DkD

Equilibrium point

k+2O k+2OkO kO

(a) Supercritical case, (b) subcritical case.

Hence we have tangent bifurcation curve (see also Fig. 28). The diagram
shows the region in which three or one equilibrium points
exist, and on the boundary curves t1, t2 we have the tangent−a1a2 + a3 = 0, a2 > 0; ω = √a2 (178)
bifurcation. Note that at the cusp point C in Fig. 28 we have
a degenerate equilibrium point, that is, a codimension two(c) Four-dimensional system. The condition is given by
bifurcation point.

χ( jω) = ( jω)4 + a1( jω)3 + a2( jω)2 + jωa3 + a4 = 0 (179)
Bifurcation of a Fixed Point

Hence we have
Consider the Poincaré map T defined by Eq. (109). T depends
on the parameter � � Rm so that a bifurcation of a fixed point
may occur under the change of �. Suppose that x0 � Rn is aa2

4 + a2
1(a4 − a2) = 0,

a4

a2
> 0; ω =

√
a4

a2
(180)

fixed point of T:

2. Bifurcation diagram of equilibria of Eq. (165). Consider x0 − T(x0) = 0 (181)
the equilibria of Eq. (165). The equilibrium point satisfies Eq.
(146). Figure 27 shows the surface defined by Eq. (146) in the

The characteristic equation is written as(�, b, r) space, where we set a � c � 1. Projecting this surface
into the (b, r) plane, we have the amplitude characteristic
curve as illustrated in Fig. 22. On the other hand, by pro-
jecting the surface into the parameter (b, �) plane, we obtain

χ(µ) = det(µIn − DT(x0))

= µn + a1µ
n−1 + · · · + an−1µ + an = 0

(182)

a diagram, called a bifurcation diagram, which indicates the
Hyperbolicity is violated at a bifurcation value � � �0 when
the characteristic multiplier has the critical distribution: � �
�1, � � �1, or � � ej�. Hence we have actually three different
types of codimension one bifurcations for fixed point of T.
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Figure 28. Bifurcation diagram of equilibria. Tangent bifurcation oc-
curs on the curves t1 and t2, and the cusp point C is a degenerateFigure 27. Characteristic surface of Eq. (146) with amplitude char-

acteristic curves and bifurcation diagram. tangent bifurcation point.
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Tangent Bifurcation of Fixed Point. Under the change of pa- Hence by eliminating � in Eq. (188) we have the single condi-
tionrameter �, at � � �0 the generation or extinction of a couple

of fixed points occurs. The types of bifurcation are
χNS(x0, λ) = 0 (189)

Note that in this case we need an additional inequality satis-
�⇔ k−1D + kD

�⇔ k−1I + kI
(183)

fying the condition: �cos �� � 1.

where � denotes the extinction of fixed points and the symbol
Example 9. The Neimark–Sacker bifurcation for two- or⇔ indicates the relation before and after the bifurcation. This
three-dimensional systems. First consider nonautonomoustype of bifurcation is observed if one of the multipliers of Eq.
systems.(182) satisfies the condition � � 1 or, equivalently,

1. Two-dimensional system. The condition is given by
χ(µ) = det(In − DT(x0))

= 1 + a1 + · · · + an−1 + an = 0
(184)

χ(e jθ ) = e j2θ + a1e jθ + a2 = 0 (190)

and the remainder of the characteristic multipliers lies off the That is,
unit circle in the complex plane.

Period-Doubling Bifurcation. If a real characteristic multi-

cos 2θ + a1 cos θ + a2 = 0,

sin 2θ + a1 sin θ = 0
(191)

plier passes through the point (�1, 0) in the complex plane,
Hence we havethen the original fixed point changes its type and 2-periodic

points are branching. This bifurcation is called a period-dou-
bling bifurcation. The types of bifurcation are a2 = 1, −2 < a1 < 2 (192)

2. Three-dimensional system. The condition is given by

χ(e jθ ) = e j3θ + a1e j2θ + a2e jθ + a3 = 0 (193)

or equivalently

kD ⇔ k+1I + 2 kD2

kD ⇔ k−1I + 2 kD2

kI ⇔ k+1D + 2 kD2

kI ⇔ k−1D + 2 kD2

(185)

a1(a3 − a1) + a2 = 1, −2 < a3 − a1 < 2 (194)
where 2 kD2 indicates two numbers of 2-periodic point of the

Second consider autonomous systems. In this case the charac-type D. This type of bifurcation is observed if � � �1 or,
teristic equation has at least one unity multiplier. Thus weequivalently,
factor the characteristic equation as

χ(−1) = det(µIn − DT(x0))

= (−1)n + a1(−1)n−1 + · · · − an−1 + an = 0
(186) χ(µ) = µn + a1µ

n−1 + · · · + an−1µ + an = (µ − 1)χA(µ) = 0
(195)

whereThe Neimark–Sacker Bifurcation. Similar to the Hopf bifur-
cation for equilibrium point, a fixed point becomes unstable
and there may appear an invariant closed curve of the Poin-
caré map. Here the invariant closed curve C is a closed curve

χA(µ) = µn−1 + b1µ
n−2 + · · · + bn−1, bk = 1 +

k∑
i=1

ai (196)

in Rn such that T(C) � C, which corresponds to doubly peri-
odic oscillation in the original periodic nonautonomous sys- The bifurcation condition is then given by using a new charac-
tem. This bifurcation indeed occurs if a pair of the character- teristic equation:
istic multipliers � and � pass transversally through the unit
circle except for the points (1, 0) and (�1, 0). The types of the χA(µ) = µn−1 + b1µ

n−2 + · · · + bn−1 = 0 (197)
bifurcation are

For the three-dimensional system the condition is given by

χA(e jθ ) = e j2θ + b1e jθ + b2

= e j2θ + (a1 + 1)e jθ + (a2 + a1 + 1) = 0
(198)

kD ⇔ k+2D + ICC

kD ⇔ k−2D + ICC

kI ⇔ k+2D + ICC

kI ⇔ k−2D + ICC

(187)

or, equivalently,

where ICC indicates an invariant closed curve of the Poincaré a2 + a1 = 0, −3 < a1 < 1 (199)
map T. The condition for this type of bifurcation is given by

Numerical Method of Computation

The numerical determination of the codimension one bifurca-
tion value � � �0 and the location of the nonhyperbolic fixed

χ(e jθ ) = det(e jθ In − DT(x0))

= e jnθ + a1e j(n−1)θ + · · · + an−1e jθ + an = 0
(188)



NONLINEAR DYNAMIC PHENOMENA IN CIRCUITS 553

point is accomplished by solving the fixed point equation and where
the bifurcation condition, simultaneously. The unknown vari-
ables are the location of the fixed point and one of the compo-
nents of �. The computation is achieved by Newton’s method,
and the Jacobian matrix is evaluated by the solutions of the
variational equations with respect to the initial conditions

a1 = 3γ r2 − 2

a2 = σ 2 + 1 − 3γ r2 + 27
16

γ 2r4 = σ 2 +
(

1 − 3
4

γ r2
)(

1 − 9
4

γ r2
)

(208)as well as the system parameters (see Theorem 2 and Re-
mark 3).

Hence we can determine the type of equilibrium point by the
sign of the coefficients in Eq. (208) as in Example 5(1). FigureHarmonic Synchronization of Forced Rayleigh Equation
29 shows the characteristic surface of Eq. (205) in the (�, B,

Let us consider the harmonic synchronization or entrainment r) space. Topological type of the equilibrium point is indicated
of Rayleigh’s equation with a sinusoidal external force: on the surface. Projecting the surface into the (�, B) plane we

have the bifurcation diagram for the equilibria. The projected
plane is also shown in Fig. 30(a), where the type of equilib-
rium point is indicated in each region. Roughly speaking, har-

ẋ = y

ẏ = −x + ε(1 − γ y2)y + εB cos νt
(200)

monic synchronization occurs in the region in which a stable
0O equilibrium point exists. The curves t1, t2,, and t3 indicateAssume that the periodic solution of Eq. (200) as
the tangent bifurcation curves joined at cusp points c1 and
c2. The curves h1 and h2 illustrate the Hopf bifurcation, which
join the tangent bifurcation curves at points P and Q [see Fig.

x(t) = u(t) cos νt + v(t) sin νt

y(t) = −u(t) sin νt + v(t) cos νt
(201)

30(b)]. If we decrease B transversally across the curves h1

and h2, we see a supercritical Hopf bifurcation. Hence belowBy using the averaging method we have an autonomous equa-
the curves h1 and h2 we have a stable limit cycle. This statetion:
corresponds to an asynchronous state—that is, a beat oscilla-
tion or quasiperiodic oscillation.

Parametric Excitation. 1. Mathieu’s equation. Consider the
second-order linear system, called Mathieu’s equation,

u̇ = ε

2

[(
1 − 3

4
γ r2

)
u − σv

]
= f (u,v)

v̇ = ε

2

[
σu +

(
1 − 3

4
γ r2

)
v + B

]
= g(u,v)

(202)

ẍ + (a + b cos 2t)x = 0 (209)where

or, equivalently,
r2 = u2 + v2, σ = 2(ν − 1)

ε
(203)

ẋ = A(t)x (210)
Hence the equilibrium point is given by(

1 − 3
4

γ r2
)

u − σv = 0

σu +
(

1 − 3
4

γ r2
)

v = −B
(204)

That is, the amplitude satisfies the relation[(
1 − 3

4
γ r2

)2

+ σ 2

]
r2 = B2 (205)

At the equilibrium point the Jacobian matrix becomes


∂ f
∂u

∂ f
∂v

∂g
∂u

∂g
∂v


 = ε

2




1 − 3
4

γ (3u2 + v2) −3
2

γ uv − σ

−3
2

γ uv + σ 1 − 3
4

γ (u2 + 3v2)



(206)

Thus the characteristic equation is given by
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Figure 29. Characteristic surface of Eq. (205) and projected bifurca-
tion diagram.

χ(µ) =

∣∣∣∣∣∣∣∣
∂ f
∂u

− µ
∂ f
∂v

∂g
∂u

∂g
∂v

− µ

∣∣∣∣∣∣∣∣ = µ2 + a1µ + a2 = 0 (207)
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Figure 30. (a) Bifurcation diagram of equilibria of
Eq. (202) and (b) its partially enlarged diagram.
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where 2�) log �2
2, and �(t) and �(t) are periodic functions with

period 2�.
(c) If �m� � 2, then the origin is a nonhyperbolic fixed

point—that is, a center-type fixed point. The general
x =

[
x
y

]
, A(t) =

[
0 1

−(a + b cos 2t) 0

]
(211)

solution is then a doubly periodic function. In the last
case the characteristic multipliers lie on the unit circleThe origin is a stationary solution. Hence we will discuss its
in the complex plane:stability. Let the principal fundamental matrix solution be

�(t) =
[

ϕ1(t) ϕ2(t)

ψ1(t) ψ2(t)

]
(212) µ1 = µ2 = exp( jθ ), j = √−1, θ = tan−1

{√
4 − m2

m

}
(218)

As the period of the coefficient is �, the Poincaré map T is Note that Eq. (210) is a lossless system so that the
defined by Poincaré map of Eq. (213) is the area-preserving map

on R2. The stability chart is a diagram of the (a, b)
T = �(π) : R2 → R2; x0 
→ x1 = �(π)x0 (213) parameter plane, which shows contour curves of m and

where we find the origin being a directly hyperbolic, an
The characteristic equation is then given by inversely hyperbolic, or a nonhyperbolic type. By nu-

merical integration we can easily obtain the value of
Eq. (215). Figure 31 shows the contour curves for dif-χ(µ) = det[µI2 − �(π)] = µ2 − mµ + 1 = 0 (214)

ferent values of m. The shaded regions indicate the re-
where we put gions where the origin becomes the 1D or 1I type of in-

stability. These regions approach the a axis near the
point a � k2, k � 1, 2, . . ..m = ϕ1(π ) + ψ2(π ) = µ1 + µ2 (215)

and use the relation 2. Damped Mathieu’s equation with a cubic nonlinear restor-
ing force. Consider the damped nonlinear system

χ(0) = µ1µ2 = det�(π) = det�(0)e
∫ π
0 traceA(τ ) dτ = 1 (216)

ẍ + kẋ + (a + b cos 2t)x + x3 = 0 (219)
Hence we have the following results:

or, equivalently,
(a) If m � 2, then 0 � �1 � 1 � �2 and the origin is a

directly unstable: 0D. From the Floquet theorem we
have the general solution of the form

ẋ = y

ẏ = −kẋ − (a + b cos 2t)x − x3 (220)

x(t) = c1eν1tφ(t) + c2eν2tψ(t) (217)
The variational equation for the origin becomes

where c1 and c2 are arbitrary constants, �1 � (1/�) log
ξ̈ + kξ̇ + (a + b cos 2t)ξ = 0 (221)�1, �2 � (1/�) log �2, and �(t) and �(t) are periodic func-

tions with period �.
The characteristic equations has the form(b) If m � �2, then �1 � �1 � �2 � 0 and the origin is an

inversely unstable: 1I. The general solution has the
same form as Eq. (217), but �1 � (1/2�) log �2

1, �2 � (1/ χ(µ) = det[µI2 − �(π)] = µ2 − mµ + a2 = 0 (222)
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Figure 31. Stability chart or contour m chart of
Eq. (209). The origin becomes unstable of the type
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where of Fig. 33(a). This is the typical parametric excitation phe-
nomenon, also called the parametric resonance. Stable 2-peri-
odic points 0D2

1 and 0D2
2 � T(0D2

1) have the period 2� which isa2 = χ(0) = det�(π) = det�(0)e−kπ < 1 (223)
the double period of the injected pumping signal. Traversing
the curve P2 from the region B to C, we observe that two di-Hence the origin is a completely stable, a directly unstable,
rectly unstable 2-periodic points branch off from the originor an inversely unstable fixed point of the time � Poincaré
and the origin itself becomes a completely stable fixed point.map. Parametric excitation occurs in the parameter regions
Hence in the region C we have the phase portrait shown inin which the origin becomes an inversely unstable or a di-
Fig. 33(b). On the tangent bifurcation curve T, 2-periodicrectly unstable fixed point. Figure 32 shows the bifurcation
points 0D2

1 and 1D2
1, (and also 0D2

2 and 1D2
2) coalesce and disap-diagram near the first unstable region just above a � 1. The

pear in the region A below the curve T.white region and the shaded region indicate that the origin
becomes a completely stable and an inversely unstable fixed
point, respectively. On the curves P1 and P2 we have a period- References in This Section
doubling bifurcation of the origin. That is, two 2-periodic

Many books are available on bifurcation theory. We refer topoints branch off from the origin. Changing parameters from
only a few of them: Refs. 7–9, 25, and 26. For the higher-the area A to B, we see that two completely stable 2-periodic
order bifurcations—that is, codimension two bifurcations—points branch off; see the phase portrait of the Poincaré map
see Refs. 9, 26, and 27. Various numerical methods are stated
in Refs. 21 and 26–28. Harmonic synchronization is analyzed
in Refs. 3, 6, and 9. Mathieu’s equation and more generally
the linear periodic differential equations are well surveyed in
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Figure 32. Bifurcation diagram of Eq. (219) with k � 0.1. Curves
P1 and P2 indicate the period-doubling bifurcation of the origin, and Figure 33. Phase portrait of the time � Poincaré map of Eq. (219).

(a) k � 0.1, a � b � 1.0; (b) k � 0.1, a � b � 0.54.T denotes the tangent bifurcation of 2-periodic points.
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Ref. 29. Parametric excitation is found in Refs. 5, 8, 30, and
31.

HOMOCLINIC STRUCTURE OF
NONLINEAR CIRCUIT DYNAMICS

Thus far in the previous sections we have discussed local (a) (b) (c)
properties of circuit dynamics. Global properties, such as the

Figure 35. Bifurcation of a separatrix loop. A stable limit cyclegeometrical behavior of invariant manifolds of a saddle-type
shown in (a) disappears after this bifurcation shown in (c).equilibrium point or a fixed point, the abrupt disappearance

of attractors, and the appearance of chaotic states, really re-
flect nonlinearity of dynamical systems. These properties re-

Example 10. Duffing–Rayleigh equation. Consider a forcedlate a wide range movement of state in state-space and long-
oscillator described byterm behavior of a trajectory. In this section we extract two

topics on the global structure of phase portraits. First we il-
lustrate the separatrix loop in two-dimensional autonomous
systems. Second we discuss the homoclinic points and related

ẋ = y

ẏ = −x + ε{(1 − γ y2)y − cx3 + B cos νt} (224)

chaotic states in Duffing’s equation. These simple examples
illustrate the complexity of the global behavior of nonlinear Comparing with Eq. (200), Eq. (224) has a cubic nonlinear
systems. restoring term and is called the Duffing–Rayleigh equation.

Assuming the harmonic oscillation as Eq. (201) and using the
averaging method we have the autonomous system:Separatrix Loop

Two-dimensional autonomous systems in the plane have been
studied for many years and exhibit many interesting proper-
ties. To see the global structure of a phase portrait, it is im-
portant to know the behavior of stable and unstable orbits
of saddle points. In fact in planar systems, the candidates of

u̇ = ε

2

[(
1 − 3

4
γ r2

)
u −

(
σ − 3

4
cr2

)
v
]

v̇ = ε

2

[(
σ − 3

4
cr2

)
u +

(
1 − 3

4
γ r2

)
v + B

] (225)

invariant steady states are known as equilibria, periodic or-
where we put the amplitude and the detuning asbits, or a set of saddles and trajectories connecting them if

they exist. The latter are called saddle connections or hetero-
clinic orbits if they connect distinct saddles, and they are r2 = u2 + v2, σ = 2(ν − 1)

ε
(226)

called separatrix loop or homoclinic orbit if they connect a
saddle to itself (see Fig. 34). It is known that these connec-

Then the equilibrium point satisfies the relationtions are violated under small variation of parameters �. That
is, they are structually unstable and if such a connection ex-
ists at � � �0, then a global bifurcation may occur by changing
parameter �. An example of such a bifurcation is the disap-

[(
1 − 3

4
γ r2

)2

+
(

σ − 3
4

cr2
)2
]

r2 = B2 (227)

pearance of a limit cycle associated with a separatrix loop,
which is shown in Fig. 35. A limit cycle approaches the stable Figure 36 shows the bifurcation diagram of the equilibria
and unstable orbit of a saddle in Fig. 35(a), and at � � �0 the given by Eq. (227). The diagram is similar to that of Fig. 30.
cycle coalesces into and forms the separatrix loop in Fig. But tangent bifurcation curves are right side up so that we
35(b). Afterward the bifurcation the cycle disappears com-
pletely as in Fig. 35(c). Thus in the process of this bifurcation
the phase portrait changes globally and the oscillatory state
corresponding to the stable limit cycle abruptly disappears at
� � �0.
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Figure 36. Bifurcation diagram of equilibria of Eq. (227). The curvesFigure 34. Schematic diagram of a saddle to saddle orbit. (a) A sad-
dle connection orbit, or heteroclinic orbit; (b) a separatrix loop, or t, h, and SL denote the tangent bifurcation, the Hopf bifurcation, and

the bifurcation of separatrix loop, respectively.homoclinic orbit.
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can more clearly discuss the region near the intersection
point P of the tangent bifurcation curve t2 and the Hopf bifur-
cation curve h1. Actually from the point P to the point R on
the curve t1 there exists a bifurcation curve SL on which we
have a separatrix loop. Figure 37 is a schematic diagram of
the phase portraits in each region. The point P is a degener-

ω ω
ω

ωω
ω

α

α
α

α

α α

x

x

(a) (b)

QP P

ate bifurcation point (i.e., t2 and h1 meet at this point) and is
called the Bogdanov–Takens bifurcation point. The appear- Figure 38. Invariant curves of saddle-type fixed points and doubly

asymptotic points. (a) Transversal homoclinic point, (b) transversalance of separatrix loop on SL suggests that in the original
heteroclinic point.system, Eq. (224), there exist homoclinic points of the time

2�/� Poincaré map. This phenomenon will be discussed in the
next section.

1D, we have two invariant curves:

Homoclinic Point

Now we consider the phase portrait of the Poincaré map. We
focus our attention to the behavior of invariant manifolds

α(P) = Wu(P) =
{
u ∈ R2 | lim

k→−∞
Tk(u) = P

}
ω(P) = Ws(P) =

{
u ∈ R2 | lim

k→∞
Tk(u) = P

} (230)

stated in Remark 5(1) [see Eq. (124)] and its related property.
For simplicity consider a two-dimensional periodic nonauton- We simply call �(P) and �(P) � and � branches, respectively.
omous system defined by Eq. (107): We are interested in the behavior of these curves in the phase

plane of T. Let P and Q be directly unstable fixed points of T.
ẋ = f(t, x, λ), x ∈ R2, λ ∈ Rm (228) A point x � R2 is called a doubly asymptotic point if it has

the asymptotic property such that
where x � (x, y) � R2 is a state vector and � � Rm is a system
parameter. We assume that f is periodic in t with period 2�: α(x) = P, ω(x) = Q (231)
f (t, x, �) � f (t � 2�, x, �) for all t � R. Let x(t) be a solution

Clearly if x � R2 is a doubly asymptotic point, then everyx(t) � �(t, x0, �) with x(0) � �(0, x0, �) � x0. Recall that we
point in the orbitdefine the time 2� mapping as the Poincaré map:

Orb(x) = {xk ∈ R2 | xk = Tk(x), k = · · · ,−1, 0, 1, · · · } (232)T : R2 → R2; x0 = (x0, y0) 
→ x1 = (x1, y1)

= T(x0) = ϕ(2π,x0, λ)
(229)

becomes a doubly asymptotic point. If P � Q, then the doubly
asymptotic point is called a homoclinic point [see Fig. 38(a)].

If a solution x(t) � �(t, x0, �) is periodic with period 2�, then Otherwise (i.e., P � Q), the doubly asymptotic point is called
the initial state x0 is a fixed point of the map T. Recall also a heteroclinic point [see Fig. 38(b)]. Hence a homoclinic point
that a saddle-type fixed point—that is, a directly unstable or approaches the saddle point P by the forward and backward
an inversely unstable fixed point—has a stable manifold and iterations of T. A remarkable property found by Poincaré and
an unstable manifold defined by Eq. (124). In two-dimen- developed by Birkhoff and Smale is that near a homoclinic
sional case, these manifolds are curves in the phase portrait point there exist infinitely many periodic points and a nonpe-
of T. For example, if the point P is a directly unstable type riodic invariant set of T. Actually S. Smale defined the horse-

shoe map which exists in the neighborhood of a transversal
homoclinic point as illustrated in Fig. 39. Note that a trans-

H1D

a b

cd
ω

α

d′
c′

b′ a′

Figure 39. Schematic diagram of a horseshoe map on the small rect-

SL

R

P

t2
t1

h1

angle abcd near homoclinic points. The region comes back to the
curved rectangle a
b
c
d
 after some finite iteration of the PoincaréFigure 37. Schematic diagram of the phase portraits in each region

or on the curve of the diagram of Fig. 36. map T.
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versal homoclinic point is an intersection point of �(1D) and
�(1D) transversally—that is, not tangentially. As shown in
Fig. 39, if we choose a small rectangular region abcd along
the �(1D), the image of Tk, k � 1, 2, . . ., first approaches the
saddle point and then leaves along the �(1D) and for some k
it returns to near the original rectangular region as a curved
rectangle a
b
c
d
 by stretching one direction and contracting
the other direction. We see that the horseshoe like returned
rectangle a
b
c
d
 intersects the original rectangle abcd at two
parts. The map on the rectangle abcd is called a horseshoe
map and will be discussed in next paragraph.

Example 11. Consider Duffing’s equation

ẋ = y

ẏ = −0.02y − x3 + 0.3 cos t − 0.08
(233)

H0

H–1

H–2

H2 H11D
A B

D C

ω

α

By numerical analysis we find the phase portrait shown in Figure 41. Schematic diagram of a horseshoe map on the rectangle
Fig. 40, where the point 1D is a directly unstable fixed point ABCD. Invariant curves represent � and � branches of a fixed point

1D, and a homoclinic point H0 and its images are indicated.with the location (x, y) � (�1.0278, 0.08358) and the multipli-
ers (�1, �2) � (0.1862, 4.7362). The � and � branches intersect
each other as shown in Fig. 40 and create homoclinic points.
A curved rectangular region ABCD is mapped into the shaded indicated as
region A
B
C
D
 by the map T. Hence T defined by Eq. (233)
on ABCD is a horseshoe map. Note that the result is only
numerically verified. Theoretically, it is very difficult to deter-

H−2 = T−2(H0), H−1 = T−1(H0), H0, H1 = T(H0),

H2 = T2(H0)
mine the behavior of these invariant curves.

Figure 42(a)–(c) shows the images T(R), T 2(R), and T 3(R), re-
spectively. We see that the number of intersections,Horseshoe Map

A horseshoe map on a rectangular region contains a complex #{R ∩ Tk(R)} = 2k (k = 1, 2, . . .) (234)
invariant set. This is a typical chaotic state. Hence we sum-
marize briefly some of the properties of the map. Let a map increases as 2k while forming the vertically very narrow rect-
T have a directly unstable fixed point 1D and let its � and � angles. And the positively invariant set becomes
branches intersect each other, forming homoclinic points as
schematically illustrated in Fig. 41. Then the map from the
rectangular region R � ABCD into the plane becomes a horse- R∞ = R

∞⋂
k=1

Tk(R) ≈ CantorSet × I (235)

shoe map. In the figure, images of the homoclinic point H0 are

Topologically, the set R� has a one-to-one correspondence to
the Cantor set in the horizontal direction and has an interval
I in vertical direction. The same is true for the inverse itera-
tion:

R−∞ = R
∞⋂

k=1

T−k(R) ≈ I × CantorSet (236)
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Figure 42. Schematic diagram of the images of the rectangle
ABCD in Fig. 41 under the iteration of the Poincaré map T.Figure 40. Phase portrait of the Poincaré map defined by Eq. (233).
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Hence the invariant set in the rectangle R has the structure

R∞
−∞ = R

∞⋂
k=1

Tk(R)

∞⋂
k=1

T−k(R) ≈ CantorSet × CantorSet

(237)

By making the correspondence between the symbolic dynam-
ics and T on R�

��, we know the following properties:

1. R�
�� has countably many periodic points of T with an

arbitrarily high period, and these periodic points are all
of the saddle type.

2. R�
�� has uncountably many nonperiodic point of T.

3. R�
�� has dense orbits.

Moreover, each point in R�
�� has sensitive dependence on ini-

tial conditions. That is, for any point x in R�
��, no matter how

we choose a small neighborhood of x, there is at least one
point in the neighborhood such that after a finite number of
iterations of T, x and the point have separated by some fixed
distance. We say that T is chaotic on R�

�� or that the invariant
set R�

�� is chaotic. Note that this chaotic invariant set R�
�� is

unstable because of the above properties 1 and 3. To observe
R�

�� as an attractor, there exists another mechanism to encap-
sulate this invariant set in some bounded region of the phase
plane. Mathematically, this problem is not yet solved com-
pletely. In circuit dynamics, however, this mechanism may be
achieved by the dissipative property of the circuit.

D
D

x x

x

y y

y y

2S

(a) (b)

(c) (d)

1S

2S
1S

1S1S
2S2SD D

Figure 43. Phase portrait of the Poincaré map defined by Eq. (238).
Example 12. Consider the phase portrait of Duffing’s equa- Homoclinic points appear when k becomes small. (a) k � 0.1, (b) k �
tion: 0.05, (c) k � 0.005, (d) k � 0.

Example 13. Consider again Duffing’s equation
ẋ = y

ẏ = −ky − x3 + 0.3 cos t
(238)

Varying the damping coefficient k, we observe numerically

ẋ = y

ẏ = −0.1y − x3 + B cos t + B0
(240)

the � and � branches as shown in Fig. 43. At k � 0.1, we
Figure 44 shows the bifurcation diagram of a fixed point cor-have only three fixed points: a nonresonant stable fixed point
responding to a nonresonant oscillation. P and T denote the1S, a resonant stable fixed point 2S, and a directly unstable
period doubling and tangent bifurcation curves, respectively,fixed point D [see Fig. 43(a)]. There is no homoclinic point at
on which these bifurcations appear. The superscript k indi-this parameter. At k � 0.05, there appear homoclinic points,
cates the k-periodic point, and the subscript shows the num-see Fig. 43(b). By decreasing k, the intersection property be-
ber for distinct curves. On the curve labeled P2k

1 the bifurca-comes complex as illustrated in Figs. 43(c) and 43(d).
tion process of Eq. (239) occurs. These curves accumulate on
just the inner region of the curve P8

1 so that in the shaded
Cascade of Period Doubling Bifurcations region we see a chaotic state. Phase portraits of the period-

doubling cascade are shown in Fig. 45. Stable 2-periodicOne of the most popular bifurcation processes from a single
points exist in Fig. 45(a), which bifurcate into 4-periodicfixed point attractor to chaotic state is a cascade of period-
points in Fig. 45(b). Chaotic states separated into four groupsdoubling bifurcations. Recall that the period-doubling bifurca-
appear in Fig. 45(c). They gather as two parts in Fig. 45(d)tion has the following bifurcational relation:
and finally coalesce into one big attractor in Fig. 45(e). The
attractor grows until it touches the � branch of the directly
unstable fixed point D. After intersecting, the chaotic state0D2k ⇒ 1I2k + 2 ×0 D2k+1

, k = 0, 1, 2, . . . (239)
loses its attractivity and the attractor disappears, although
an unstable chaotic state exists.In many systems with weak dissipation, this bifurcation oc-

curs successively until k tends to infinity under the finite
Lyapunov Exponent to Measure a Chaotic Statechange of parameters. The universality of this cascade of bi-

furcations is studied by Feigenbaum. We illustrate this cas- To determine whether an attractor is chaotic or not, we have
a conventional method of evaluating the mean value of thecade by the following example.
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Figure 44. Bifurcation diagram of Eq. (240). Period-doubling cascade
appears on a fixed point corresponding to a nonresonant periodic so-
lution.

expansive rate of the orbit of the Poincaré map T. The mean
value is known as the Lyapunov exponent. Consider an orbit
starting from an initial point x0 � R2:

Orb(x0) = {xk ∈ R2 | xk = Tk(x0), k = 0, 1, 2 . . .} (241)

For any vector v � R2 with �v� � 1, the Lyapunov exponent
of x0 with respect to v is defined by

v(v,x0) = lim
k→∞

1
2πk

log ‖DTk(x0)v‖ (242)

It is known that for almost all v � R2 with �v� � 1, (a) v(v,
x0) � 0 if x0 � R2 is a stable fixed point or a stable periodic
point, (b) v(v, x0) � 0 if x0 � R2 belongs to a stable invariant
closed curve corresponding to a stable quasi-periodic solution,
and (c) v(v, x0) � 0 if x0 � R2 belongs to a chaotic attractor.
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Moreover, v(v, x0) does not depend on x0 and v in the above
Figure 45. Phase portraits of the Poincaré map defined by Eq. (240)cases. Hence we denote simply v and call it the maximum
with B0 � �0.075: (a) B � 0.15, (b) B � 0.185, (c) B � 0.195, (d) B �Lyapunov exponent. Note that Eq. (242) can be easily calcu-
0.197, (e) B � 0.199, (f) B � 0.217.lated by using the chain rule of the derivative DTk(x0) and the

solutions of the variational equation with respect to the ini-
tial condition.

Example 14. As a numerical example, consider Duffing’s
equation in Example 13. Figure 46 shows the Lyapunov expo-
nent. By changing parameter B we see that v reaches zero at
every period-doubling bifurcation curve and becomes a posi-
tive value at chaotic states. The discontinuous jump from the
positive value to the negative value at the point marked E
means the disappearance of the chaotic attractor stated in
Example 13.
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B0 � �0.075.and 41.
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