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YSIS. There the problems implicit in the previous simple defi-
nitions, and their connections with the general theory of the
electromagnetic fields, are dealt with in greater depth.

Returning to the circuit model, if we represent the one-port
as a closed box with two terminals, as shown in Fig. 1a, weNETWORK EQUATIONS
can indicate the chosen reference directions with an arrow
placed on one of the two terminals for the current and withIn an electrical network or an electrical circuit, the operation
the signs � and � placed near the terminals for the voltage.of every single element is determined at each moment by the
Suppose that a current reference direction is chosen from theinteraction between the element itself and the rest of the net-
two available. Then the voltage reference direction can bework. In other words, we can say it results from the action
chosen with either the � sign or the � sign at the terminaldue to different requirements: (1) that the element behaves
where the current arrow enters the element. The formerin a manner compatible with its specific nature; and (2) that
choice is called the normal convention, which we will alwayssuch behavior is in turn compatible with the behavior of all
adopt here. In the general case, one thinks, for example, ofother elements present in the network. The constitutive rela-
the p–n junction diode; the four possible alternatives give risetions describe the operation of the single elements and Kirch-
to different expressions of the constitutive equations.hoff ’s laws regulate the interaction. The equations that derive

One-ports can be classified as dynamic and nondynamic.from them are the network equations and are the subject of
For nondynamic one-ports, which we will call resistive one-this article.
ports, the relations between the voltage and the current areWithin the limits of the circuit model approximation, the
of the ‘‘algebraic’’ type, that is, the value assumed by the volt-operating conditions of the single elements are identified by
age at any time depends only on the value of the current atthe voltages and currents at their terminals; these are the
that time and vice versa. Resistors, diodes, voltage and cur-unknowns of the circuit equations. They are linked by the
rent sources are examples of resistive one-ports. By contrast,constitutive relations, which are expressions of the nature of
the operations of dynamic one-ports are described by meansthe elements and, as a whole, describe their operations. The
of differential or integral-type equations. Thus the value ofconstitutive relations do not depend on the way in which the
the voltage or of the current at any time depends also on theirelements are connected to one another. For the sake of sim-
past histories. Capacitors and inductors are examples of dy-plicity, we will refer here to a network of one-ports only, that
namic one-ports. For now and for the sake of simplicity, weis, elements with two terminals. Its extension to the case
will refer only to resistive one-ports.where there are also n-terminal elements does not involve

The voltage and the current of a resistive one-port, there-any conceptual difficulty and will be considered later.
fore, identify its operating point. This expression derives fromVoltages and currents are algebraic variables, and so it is
the fact that, as the one-port constitutive relation is of annecessary to choose a reference direction in advance for every
algebraic type, f (v, i) � 0, and thus is graphically represent-single one-port. In this context the concepts of voltage and
able in the plane (v, i), a given voltage and a given currentcurrent are introduced axiomatically; thus, it may be difficult
identify a point on the characteristic curve f (v, i) � 0. If oneto understand fully the need for the choice of a reference di-
considers, for example, the linear resistor, the characteristicrection for them. However, if one remembers that the current
v � Ri is representable in the plane (v, i) by a straight lineis nothing but the intensity of the electric charge flow crossing
passing through the origin. The points on this straight linethe one-port, one readily understands why it is necessary to
represent the possible operating conditions that the one-portindicate the reference direction in advance in order to assess
in question can allow. What the effective operating point ofthe intensity of the flow charge indicated by the symbol i(t).
the one-port is at a given time is determined by the operatingSimilarly, for the voltage it is sufficient to recall that it is the
conditions of the remaining part of the network into which itwork done by the electric field to bring a unit charge from one
is inserted. The laws governing this interaction are the twoterminal to another. Therefore, it is necessary here to indicate
Kirchhoff laws, which we will briefly recall after the introduc-also the starting and ending terminals in advance to evaluate
tion of some simple definitions.the work indicated by the symbol v(t). These concepts, which

Let us call node the connecting point of at least two termi-are the basis of the circuit theory, would merit a more pro-
nals of distinct elements. Between two nodes effectively con-found discussion. However, due to space limitations we can-
nected to one-ports we will say that the network hasnot develop them in this article. We therefore refer the reader

to LINEAR NETWORK ELEMENTS and TIME-DOMAIN NETWORK ANAL- branches—one branch for each one-port. The set of branches

Figure 1. Graphic representation for (a)
two-terminal elements; (b) three-terminal
elements or three-poles; (c) four-terminal
elements operating as two-ports. The nor-
mal convention is used.
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and nodes of the network constitute the graph of the circuit. Naturally, it is not generally convenient to deal directly
Finally, we will call loop any closed path starting from any with the system of 2b equations in 2b unknowns. An immedi-
node, traversing different branches and nodes of the network ate reduction of the equation system can be obtained by elimi-
itself and ending at the same node, where precisely two nating the currents or the voltages from the Kirchhoff b equa-
branches are incident with each node. The graph of the net- tions, making use of the constitutive relations. In this way,
work and its topologic properties are considered in TIME-DO- one obtains a system of b equations in b unknowns—voltages
MAIN NETWORK ANALYSIS. With this premise one can state or currents.
Kirchhoff ’s two laws. A more significant reduction can be obtained by exploiting

the fact that the sets of Kirchhoff equations for voltages and
that for currents are independent of each other. Thus, it isKirchhoff ’s Current Law (node law). The algebraic sum of
possible to introduce new unknowns that by definition makeall the currents at any node is equal to zero.
it possible to satisfy one of the two sets of equations. This way

Kirchhoff ’s Voltage Law (loop law). The algebraic sum of
of dealing with the problem leads to the introduction of theall the voltages along any loop is equal to zero.
method of node potentials, where the n � 1 unknowns are the
node potentials, and to the method of loop currents, where the

In this context, and because of the way in which they have b � (n � 1) unknowns are, in fact, the loop currents (see TIME-
been introduced, Kirchhoff ’s laws appear as postulates or ex- DOMAIN NETWORK ANALYSIS, where these methods are dealt
perimental laws. In effect they can be derived, in a more gen- with in detail). Naturally, one can resort to the method of the
eral model of the electromagnetic field, from Maxwell’s equa- node potentials or loop currents even when the one-ports are
tions and are strictly exact in the stationary regime, that is, neither resistive nor linear, because they are based on a par-
when voltages and currents do not vary with time. However, ticular technique of reformulating the node and loop equa-
they are only approximate, but generally closely so, in a dy- tions, which, we recall, are not dependent on the nature of
namic regime (see LINEAR NETWORK ELEMENTS). the elements present in the network.

The equations obtained by applying Kirchhoff ’s laws do Where the one-ports of the network (even if they are still
not depend on the nature of the single elements, but only on linear) are not all resistive, the overall system of circuit equa-
the way in which they are connected. For greater clarity, let tions becomes of the algebraic-differential type. This is be-
us assume that the network consists of b branches and n cause the constitutive relations of the dynamic elements con-
nodes. Kirchhoff ’s current law allows us to write n equations tain differential equations. For such networks, circuit
for the currents, while Kirchhoff ’s voltage law allows us to equations alone are not sufficient to determine the solution of
write an imprecise number m of equations for the voltages, the circuit starting from a given time t0. This is due to the
where m is in fact the number of possible loops present in the fact that the behavior of a dynamic one-port for t � t0 depends
network. To analyze a circuit it is not necessary to consider also on the state of the one-port at t � t0: The state contains
all these equations. In reality, it is easy to show (see TIME- all the information of the one-port past history necessary to
DOMAIN NETWORK ANALYSIS) that only (n � 1) equations for the

determine its future behavior. For example, the state variablenodes and [b � (n � 1)] equations for the loops are in effect
of linear capacitors is the voltage, while that of linear induc-independent of each other. Every other additional equation
tors is the current. As a result the mathematical model of awould result in a linear combination of them and would not
circuit generally consists of the circuit equations and the ini-provide any additional information. Thus Kirchhoff ’s laws
tial state of all the dynamic elements. This aspect will beallow independent b equations to be written in the 2b un-
dealt with in detail later. However, even here, searching forknowns i1, i2, . . ., ib and v1, v2, . . ., vb. the unknown functions i1(t), i2(t), . . ., ib(t) and v1(t), v2(t),It is important to emphasize that Kirchhoff ’s equations are
. . ., vb(t) for t0 � t � �� does not present particular prob-linear, algebraic and homogeneous; hence the interaction that
lems for linear circuits, as it falls within the well consolidatedthey describe is linear and instantaneous, and time deriva-
field of solving a system of linear algebraic-differential equa-tives and integrals do not appear in them. Every dependence
tions.on the past history of the circuit, every nonlinearity, as every

The whole system of circuit equations can be reduced to a‘‘source’’ term, can only derive from the constitutive relations
system of linear ordinary differential equations of the firstof the network elements. This is a point of extreme impor-
order, where the state variables of the circuit are the onlytance that is at the origin of many important properties of the
unknowns; these are the state equations of the circuit. Thecircuit equations.
possibility of effecting such a reduction has an important sig-If we now join the b equations that express the constitutive
nificance: The first-order time derivative of each state vari-relations and the independent b equations derived by
able and all the other circuit variables at any time t dependapplying Kirchhoff ’s laws, we obtain 2b equations in 2b un-
only on the values that all the state variables and the sourcesknowns. Naturally, such a system of equations will still be
of the circuit have at the same time t. By means of the statealgebraic and linear only if the equations introduced from the
equations it is possible to study many of the properties of lin-constitutive relations are such. If this is so, the solution of the
ear circuits without having necessarily to solve them.circuit equations does not present any particular problems,

The study of circuit equations is considerably complicatedprovided we ignore those deriving from the dimension of the
when the circuit contains nonlinear elements (for example,resulting system of linear algebraic equations and thus from
diodes, nonlinear inductor, nonlinear capacitors). This is be-the number of branches of the network. Ultimately, it is only
cause it is no longer possible to apply the superposition prop-necessary to invert the coefficient matrix of the equation sys-
erty, a property that is the basis of the whole analysis of lin-tem that, because of the way in which it has formed, is cer-

tainly not singular in significant cases. ear circuits (see NETWORK THEOREMS).
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In the case of nonlinear circuits with only resistive ele- and the resistance R is a constant. If the relation between the
voltage and the current is not linear, we say that the one-portments, the circuit equations are still algebraic, but a part of

them is nonlinear. The properties of these equations can be is nonlinear. Examples of nonlinear resistive one-ports are di-
odes and varistors. For example, the exponential model of thevery different from those of linear circuits. For example, it is

possible to have several solutions that are compatible with junction diodes is described by the equation i � Is[exp(v/
nVT) � 1] where I, VT and n are characteristic parameters andthe same sources. In general, the problem of their solution is

very complicated and there are still many unsolved questions. a varistor model is described by v � �i�, with � and � con-
stant. Also, ideal voltage and current sources are resistiveThe analysis is further complicated (and considerably so)

if the nonlinear circuit contains dynamic elements. Because one-ports, respectively, imposing the voltage and current.
Generally, it is not always possible to express the constitu-many results can be found in the literature on nonlinear ordi-

nary differential equations having the normal form dx/dt � tive relation of a nonlinear resistive one-port by combinations
of elementary functions. This difficulty can be overcome byH(x; t), where x is a vector whose components are the state

variables of the circuit and H is a single-valued vectorial func- observing that Eq. (1) can be represented graphically in the
(v, i) plane. The curve thus obtained is the characteristic curvetion, much attention has been given to determining when is

it possible to reduce the equations of nonlinear dynamic cir- of the one-port. The points on such a curve represent the pos-
sible operating conditions of the one-port. A graphic represen-cuits to a system of differential equations in normal form for

the state variables. tation allows the effective operating point to be easily deter-
mined for simple circuits of the type shown in Fig. 2(a).In general, for nonlinear circuits it is not always possible

to reduce the system of circuit equations to a system of state Figure 2(b) shows the characteristic curves of two one-ports.
In this case the only operating point compatible with the twoequations in normal form. It can happen that the first deriva-

tive of some state variables depends on the state variables of characteristics and Kirchhoff ’s laws (which in this simple
case are reduced to i1 � i2 and v1 � v2) is given by the intersec-the circuit through multivalued functions. As we will then

see, if this happens, it means that the circuit equations and tion of the two curves. It is to be noted that the normal con-
vention has not been adopted for the second one-port. Natu-the initial state alone are not sufficient by themselves to de-

termine the circuit evolution. That is, the circuit model under rally, there can be cases, which we will examine later, where
the characteristic curves do not meet—or meet at more thanconsideration is ‘‘incomplete’’; essential phenomena for an ad-

equate representation of the ‘‘physical’’ circuit are absent in one point. There are one-ports that have characteristic curves
that are variable in the time; they are called time-varyingthe circuit model because of the approximations introduced in

the modeling phase. one-ports. The function f s for these one-ports depends also on
time as a parameter. When the characteristic of the one-ports
does not vary in time, they are said to be time-invariant. The

CONSTITUTIVE AND KIRCHHOFF EQUATIONS resistor with a time-independent resistance and diodes are
examples of time-invariant one-ports, while the switches are

Every circuit element is described by a mathematical model examples of time-variant one-ports.
that approximates the behavior of a physical device. It may A voltage (current) value is called admissible voltage (cur-
happen that, depending on the application, the same physical rent) if there is at least one current (voltage) value such that
device can be represented by different models. Generally, Eq. (1) is satisfied. It can happen that not all the current and
complex circuit elements are obtained by interconnecting sev- voltage values are admissible for a static one-port. It is suffi-
eral basic elements. First, we will consider the general fea- cient to consider the characteristic of an ideal voltage or cur-
tures of constitutive relations of basic circuit elements to rent source, or of the ideal diode. This is possible since Eq. (1)
show how they affect the network equation structures. Later, is only the representation of a physical device in the context
we will deal with Kirchhoff ’s equations, which describe the of the circuit model that we are adopting. The presence of
interaction between single elements. elements with characteristics of this type can give rise to

The first basic classification divides one-ports, and, more problems of incongruency of the circuit model. For example,
generally, circuit elements with several terminals, into re- for the ideal diode, positive voltages and negative currents
sistive and dynamic. are inadmissible (appropriate references having been chosen).

Resistive One-Ports

A resistive one-port is a two-terminal circuit element de-
scribed by a constitutive relation of the type

fs(v, i) = 0 (1)

Equation (1) defines an instant type relation between the cur-
rent i and the voltage v, that is, the value of the voltage at
any time t depends only on the value that the current as-
sumes at that time and vice versa.

The linear resistor is a particular type of resistive one-port
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rent source will admit more than one solution; see Fig. 4. This
is a further example of an inadequate circuit model. In this
case to obtain a circuit that admits one and only one solution,
it is sufficient to add a capacitor with an arbitrary small ca-
pacitance in parallel to the tunnel diode.

Dynamic One-Ports

The voltage and the current in dynamic one-ports are related
through differential equations. Thus, the value of the voltage
or of the current also depends at every instant on their time
history. Basic dynamic one-ports are the capacitor and the in-
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Figure 3. Example of an unsolvable resistive circuit for E � 0 [i � The constitutive relation of the capacitor is
ı̂(v) is the characteristic of an ideal diode].

fc(v, q) = 0 (5)

where q is the capacitor charge related to the current of theConsequently, a circuit consisting of an ideal diode connected
capacitor by the differential equationto an ideal voltage source may not admit solution as in the

case shown in Fig. 3, where the two characteristic curves do
not intersect each other. That is, the circuit model in question
does not adequately describe the physical circuit it repre-

i = dq
dt

(6)

sents. To obtain a circuit model that admits one and only one
solution, it would be sufficient to add a resistor with an arbi- or the integral equation
trarily small resistance in series to the voltage source.

If for any admissible voltage value there exists one current
value that verifies Eq. (1), then this can be rewritten as q(t) =

∫ t

t0

i(τ ) dτ + q(t0), t ≥ t0 (7)

i = ı̂(v) (3) Equation (5) is an instantaneous relation between the charge
and the voltage of the capacitor, that is, the charge at any

where ı̂( � ) is a single-valued function defined for the admissi- time t depends only on the voltage value at the same time t
ble voltage values. These one-ports are called voltage con- and vice versa. By contrast, the relation between the voltage
trolled. If, however, for any admissible current value there is and the current, because of Eq. (6) or (7), is not instanta-
one voltage value that verifies Eq. (1), it can be rewritten as neous; the charge, and hence the voltage, at any time t � t0

depends on the charge value at t � t0 and on the entire time
history of the current on the interval [t0, t]. The value of thev = v̂(i) (4)
charge q(t0) summarizes the whole electric history of the ca-
pacitor for t � t0. Therefore, capacitors have memory. In gen-where v̂( � ) is a single-valued function defined for the admissi-
eral, Eq. (5) can be represented graphically in the (v, q) plane.ble current values. These one-ports are called current con-
This defines the characteristic curve of the capacitor; for thistrolled. Naturally, if the one-ports are time-varying, then the
reason Eq. (5) is called the characteristic equation of the ca-functions ı̂ and v̂ depend on the time.
pacitor.There are static one-ports that are voltage and current

For linear capacitors we obtaincontrolled at the same time; for example, linear resistors
(with R � 0 and R � �), junction diodes, zener diodes and

q = Cv (8)varistors. In these cases the characteristic curves are strictly
increasing, Eq. (1) can be rewritten indifferently as either Eq.
(3) or Eq. (4) and the function g is the inverse of the function
r and vice versa. One-ports that are only voltage or only cur-
rent controlled have characteristic curves that are not strictly
increasing. Therefore, it is clear that in the case where a one-
port is voltage controlled only, the function g is not wholly
invertible with respect to the voltage; in the case where a one-
port is current controlled only, the function r is not wholly
invertible with respect to the current.

The ideal current source, the open circuit and the tunnel
diode, are examples of voltage-controlled one-ports. The ideal
voltage source, the short-circuit and the thyristor with discon-
nected gate are examples of current-controlled one-ports. The
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ideal switch is current controlled when it is on and voltage
controlled when it is off. A circuit consisting of a voltage-con- Figure 4. Example of a resistive circuit with three solutions [i �

ı̂(v) is the characteristic of a tunnel diode].trolled one-port (such as the tunnel diode) connected to a cur-
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with C constant, and thus From Eq. (16), it is evident that i(t) depends on the time his-
tory of the voltage in the interval (t0, t) and on the current
value at t � t0. An inductor whose characteristic is nonlinear
is called nonlinear. For example, the behavior of an inductor

i = C
dv
dt

(9)

realized on a ferromagnetic core can be described by the non-
linear constitutive equation i � a� � b�3 if the hysteresisor, equivalently,
phenomena are negligible, and a Josephson junction can be
represented by the equation i � I0 sin(�/�0); a, b, I0 , and �0

are characteristic constants.v(t) = 1
C

∫ t

t0

i(τ ) dτ + v(t0) t ≥ t0 (10)

It is possible to extend all the concepts introduced for static
one-ports to the characteristic curves of capacitors and induc-

From Eq. (10), it is more evident that v(t) depends on the time tors (time-variant capacitors, time-variant inductors, voltage
history of the current in the time interval (t0, t) and on the and charge admissible values, charge and voltage-controlled
voltage value at t � t0. A capacitor having a constitutive rela- capacitors, current and flux admissible values, flux and cur-
tion that is nonlinear is called nonlinear. As an example of a rent-controlled inductor. For example, the varactor diode
nonlinear capacitor, we can consider the model of the varactor model given in the foregoing describes a voltage-controlled ca-
diode described by the equation q � �3/2 C0V0(1 � v/V0)2/3 for pacitor with v � V0 admissible voltages. For more details on
v � V, where C0 and V0 are two constants. linear and nonlinear one-ports we refer the reader to LINEAR

The other fundamental dynamic one-port, which, with re-
NETWORK ELEMENTS and to NONLINEAR NETWORK ELEMENTS.

spect to the capacitor has a dual operation, is the inductor,
defined by the constitutive relation

Circuit Elements With More Than Two Terminals

An element with M � 1 terminals is characterized by M � 1fi(i, φ) = 0 (11)
currents i1, i2, . . . and (M � 1)M/2 voltages v12, v13, . . .; the
current ik is associated with the kth terminal and the voltagewhere � is the inductor flux, connected to the voltage v by the
vkh is associated with the two terminals k and h. The referencedifferential equation
directions of the currents are those entering the element, and
for the voltages those going from the terminal k to the termi-
nal h. An example is shown in Fig. 1(b), where (M � 1) � 3,v = dφ

dt
(12)

and in Fig. 1(c), where (M � 1) � 4.
In agreement with Kirchhoff ’s law for currents, at anyor, equivalently, by the integral equation

time the following equation has to be verified:

φ(t) =
∫ t

t0

v(τ ) dτ + φ(t0) t ≥ t0 (13) M+1∑
h=1

ih = 0 (17)

Equation (9) is an instantaneous relation between the flux
Therefore, only M currents are independent. Similarly, inand current of the inductor, that is the inductor flux at any
agreement with Kirchhoff ’s law for voltages, it has to betime t depends only on the current at that time t and vice

versa, while the relation between the current and the voltage
is not of an instantaneous type: the flux, and hence the cur- vkh = vkp − vph (18)

rent, at any time t � t0 depends on the flux value at t � t0
and, thus, as for currents, only M voltages are independent.and on the entire time history of the voltage on the interval
To identify a set of independent currents and voltages one[t0, t]. For the inductor the value of the flux �(t0) summarizes
may choose a reference terminal, for example, the terminalthe whole electric history for t � t0. Therefore the inductors
labeled ‘‘M � 1,’’ and consider the currents of the first M ter-have memory like the capacitors. In general, Eq. (9) can be
minals i1, i2, . . ., iM and the voltages v1, v2, . . ., vM betweenrepresented graphically in the (i, �) plane and it defines the
the first M terminals and the reference terminal (in Fig. 1(b)characteristic curve of the inductor; it is called the character-
an element with three terminals is considered, M � 2; theistic equation of the inductor.
terminal labeled ‘‘3’’ is chosen as reference terminal). TheFor linear inductors we have
variables thus obtained are all independent of each other and
any other electrical variable of the element under consider-φ = Li (14)
ation can be expressed as a linear combination of them by
means of Eqs. (17) and (18). They are called descriptive vari-with L constant, and thus
ables of the element. In general, the constitutive relations
link the descriptive currents and the descriptive voltages of
the single elements of a circuit. This method is one amongv = L

di
dt

(15)
many other possible methods for identifying a set of indepen-
dent currents and voltages of a multi-terminal element (seeor, equivalently,
MULTIPOLE AND MULTIPORT ANALYSIS).

The one-port is an element with two terminals (M � 1 �
2) and is characterized by a single descriptive current and a
single descriptive voltage [Fig. 1(a)]. The three-pole is an ele-

i(t) = 1
L

∫ t

t0

v(τ ) dτ + i(t0) t ≥ t0 (16)
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ment with three terminals (M � 1 � 3) and is characterized extension to a circuit with more than two terminals is
straightforward if one is referring to the circuit graph. Suchby two descriptive currents and two descriptive voltages [Fig.

1(b)]. The four-pole is an element with four terminals, and so a circuit graph can be formed by associating N nodes and
(N � 1) branches with elements with N terminals, for ason. Examples of three-poles are transistors and three-phase

voltage sources, while among four-poles there are voltage- many descriptive variables as there are (a reference node hav-
ing previously been chosen for each element), and to eachand current-controlled sources, ideal transformers, opera-

tional amplifiers, gyrators, and mutual inductances. M-port 2M nodes and M branches, for as many ports as ex-
tant. Then, let us consider a circuit with b branches n nodesTypological analysis undertaken for the constitutive rela-

tions of one-ports can be extended to constitutive relations of and let vk, ik, k � 1, . . ., b be the unknowns of the circuit. As
we have mentioned earlier, only (n � 1) equations at theelements with M � 1 terminals without any problem of prin-

ciple. Consider, for example, a resistive three-pole and let i1, nodes and (b � n � 1) equations at the loops are linearly
independent. To simplify the discussion we are implicitly as-i2 and v1, v2 be, respectively, the descriptive currents and volt-

ages [Fig. 1(b)]. The constitutive relation is of the type suming that the circuit graph is connected. Where this is not
so, what has been said holds true for every single connected
part of the whole graph.

To determine (n � 1) linear-independent equations at the

f1(v1, v2, i1, i2) = 0

f2(v1, v2, i1, i2) = 0
(19)

nodes one need only consider any (n � 1) nodes of the circuit,
where f 1 and f 2 are two functions, generally nonlinear. For but determining (b � n � 1) linear-independent equations at
resistive linear three-poles the relations between the descrip- the loops is not as easy as it is for the nodes. In general, (b �
tive variables are linear. In general, as Eq. (19) may not be n � 1) linearly independent equations at the loops can be de-
described by means of a finite combination of elementary termined by applying Kirchhoff ’s law for voltages at a set of
functions, it might be useful to represent them graphically, fundamental loops of the circuit.
considering some of the descriptive variables as parameters. The concept of the fundamental loop, which we will recall
An appropriate choice of reference terminals can simplify the briefly here, is linked to the tree and the co-tree of a circuit.
representation of the characteristic curves considerably. As We recall that a tree is a subset of branches that pass through
with the one-port, the possibility of making Eq. (19) explicit all the nodes of the circuit without forming loops. Even if a
with reference to two descriptive variables depends on the circuit has different trees, each tree consists always of (n �
control variables of the element. 1) branches; the remaining (b � n � 1) branches of the graph

For dynamic n-terminal elements, however, only the rela- constitute the co-tree. Therefore, each branch of the co-tree
tions between fluxes and currents or charges and voltages are belongs to a loop consisting of itself and branches of the corre-
of instantaneous kind. For example, the generic descriptive sponding tree. Such a loop is called a fundamental loop. Thus
voltage vk of a multi-terminal element of inductive type (e.g., for every choice of the tree there exist (b � n � 1) fundamen-
coupled inductors), is equal to the time derivative of the flux tal loops. It is evident that equations obtained by applying
�k. Besides, �k is related to all the descriptive currents of the Kirchhoff ’s loop law to (b � n � 1) fundamental loops are
element through an algebraic relation. linearly independent because each of them exclusively con-

The operation of an element with more than two terminals tains the voltage of the corresponding co-tree branch.
may be conditioned by the topology of the circuit into which Thus Kirchhoff ’s laws allow independent b equations to be
it is inserted. The simplest and at the same time the most written in 2b unknown voltages and currents. These equa-
significant example is that in which an element with 2M ter- tions can be written in compact form using the vector nota-
minals is connected to M distinct circuits, each of which is tion. To this end we define the column vectors
representable as a one-port [in Fig. 1(c) an example with
M � 2 is considered]. In this case the current that enters a
given terminal is equal to the current that exits from another
terminal. Each terminal couple having this property is called

iii = [i1, . . ., ib]T

vvv = [v1, . . ., vb]T
(20)

a port of the element, and the element in this operating state
is called an M-port. Each port of an M-port is characterized representing, respectively, the circuit currents and voltages.
by the current circulating in one of the two terminals and by Then the linearly independent Kirchhoff b equations can be
the voltage between the two terminals (for every port we can rewritten using two matrices A and B whose elements are 0,
adopt the normal convention). It is clear that in this operating �1, or �1
condition the constitutive relations must be taken as those
that relate the currents and voltages of the single ports of the AiAiAi = 000 (21)
element. We should remember that there are also elements
with 2M terminals that can operate only as M-ports. The BvBvBv = 000 (22)
ideal transformer and the ideal operational amplifier are two
examples of elements with four terminals that can operate The (n � 1) 	 b matrix A is a reduced incidence matrix of the
only as two ports. For more details on linear and nonlinear circuit and the (b � n � 1) 	 b matrix B is a fundamental
multi-terminal elements we refer the reader to LINEAR NET- loop matrix (for more details see TIME-DOMAIN NETWORK ANALY-
WORK ELEMENTS and to NONLINEAR NETWORK ELEMENTS. SIS). The system of Eqs. (21) and (22) is a maximal indepen-

dent set of Kirchhoff equations. The (n � 1) independent
Kirchhoff ’s Equations equations for the currents can also be obtained with a funda-

mental cut set of the circuit; in this case A is a fundamentalIn the beginning of this article Kirchhoff ’s laws were recalled
in reference to a circuit consisting of only one-ports. Their cut set matrix.
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THE SYSTEM OF CIRCUIT EQUATIONS the circuit equations and it is compatible with the initial con-
ditions for the state variables.

As we have seen, the ‘‘dynamics’’ of a circuit is described by a
maximal set of Kirchhoff independent equations and by the Resistive Circuits
constitutive relations of the single circuit elements, which by

Even if circuits without inductors and capacitors are a partic-their very nature are independent of each other. The Kirch-
ular case, their study is of fundamental importance in circuithoff equations are linear, algebraic and homogeneous and
theory. In fact, as we will see, in the study of dynamic circuitsthus the interaction they describe is always instantaneous
one often resorts to auxiliary circuits consisting of resistiveand linear. By contrast, the constitutive relations of the cir-
elements related to the dynamic circuits being studied. Whencuit elements can radically modify the nature of the overall
an electric network is without dynamic elements, that is,system of equations by transforming it into algebraic-differen-
nc � ni � 0, the circuit is said to be resistive and the circuittial and nonlinear. From this viewpoint the most interesting
equations are algebraic and generally nonlinear. Even if theclassifications are resistive elements and dynamic elements,
sources present are time variant, the solution at each instantlinear elements, and nonlinear elements.
has no memory of its operating point at preceding instants.Let us, for the moment, consider a circuit consisting of lin-
For these circuits the time appears as a parameter in theear and time-invariant capacitors and inductors and resistive
equations. Therefore the relations between the overall circuitone-ports that can, instead, be nonlinear and time variant.
variables and the voltages and currents imposed by the inde-Later, we will refer to a circuit consisting of nc capacitors and
pendent sources are instant type relations. If the nonlineari-ni inductors, as well as ns resistive one-ports. The number of
ties of the one-ports present allow it, the values of the 2bcircuit branches will then be b � nc � ni � ns. For the sake of
unknowns can be determined univocally by solving the rela-simplicity, we will number the circuit branches in the follow-
tive system of algebraic equations instant by instant. In theing order: the capacitor branches are numbered from 1 to nc;
case of linear one-ports—apart from pathological cases, whichthose corresponding to the inductors from nc � 1 to nc � ni;
we will refer to shortly—this is always possible. In the pres-and, finally, those corresponding to the resistive one-ports
ence of nonlinearities, the circuit may have no solutions, onefrom nc � ni � 1 to nc � ni � ns � b. For this type of circuit
solution or several solutions.the system of circuit equations is made up of the b Kirchhoff

The pathological situations in which a resistive network,Eqs. (21) and (22), nc first-order differential equations of the
even linear, may not admit solutions, are those where theretype of Eq. (9), ni first-order differential equations of the type
is incongruency or dependence between the constitutive rela-of Eq. (15), and ns algebraic equations of the type of Eq. (1).
tions of some circuit elements and the Kirchhoff equationsThe presence of linear and time-invariant dynamic one-
regulating the interaction. In general, bearing in mind whatports in the network introduces first-order differential equa-
has been said in the introduction to this article about the in-tions, and, therefore, it is necessary to know the initial values
teraction between each single element and the rest of the net-of the variables that appear in them under the derivative op-
work, we may say that cases of incompatibility betweenerations. In fact, from the integral form Eq. (10) of the capaci-
Kirchhoff ’s equations and the constitutive relations may oc-tor constitutive relation, it is clearly seen that, in order to
cur when there are elements for which there are inadmissibleknow the voltage value at any given time t, it is not enough
voltages and/or currents. The case of two ideal sources of volt-to know the current in the interval (t0, t); one also needs to
age e1(t) and e2(t) connected in parallel is emblematic. It isknow the voltage or the charge at t � t0. The initial condition
evident that no solution is possible when there is incongru-v(t0) summarizes the effects of the entire past history of the
ency [i.e., e1(t) � e2(t)], while the number of solutions is infi-capacitor (from t � �� to t � t0) on the present value of v(t)
nite, at least so far as the currents of the sources are con-for t � t0. From the physical viewpoint this is due to the fact
cerned, when there is dependence [i.e., e1(t) � e2(t)]. Naturally,that capacitor voltage determines the energy value EC stored
the incongruency or the dependence is entirely in the modelin the one-port at every instant throughout the relation (see
used to represent the real circuit; a more realistic model thatNETWORK THEOREMS).
includes the ‘‘internal’’ resistance of the sources would resolve
every problem of incongruency or dependence. In general, the
existence and the uniqueness of the solution of a linear re-Ec(t) = 1

2
Cv2(t) = 1

2C
q2(t) (23)

sistive one-port network are guaranteed if there are no loops
consisting of voltage sources only, no cut-sets consisting ofSimilarly, for the inductor, it is necessary to know the current
current sources only, and the resistances of the circuit resis-value or the flux at the initial instant. We will call the capaci-
tors are strictly positive. If controlled sources, ideal trans-tor voltages and the inductor currents state variables of the
formers, gyrators, nullators, and norators are also present incircuit under examination insofar as they describe the initial
the circuit, further pathological situations of a different na-state. Naturally, the same role can be played by the capacitor
ture may be present. There can also be cases where solutionscharge and the inductor flux, respectively.
do not exist because of the presence of nonlinear elements. AIn the final analysis the state of the circuit at the generic
typical case is that of an ideal current or voltage source thatinstant t1 summarizes the whole electric history of the circuit.
feeds an ideal diode, as we have seen in the foregoing. In thisNo matter how the circuit has been brought to its state at the
case the incongruency disappears if more realistic models ofinstant t1, its subsequent behavior will depend only on the
source or diode are also adopted. Hereafter we will assumestate value at t � t1 and on the independent sources (see TIME-

that such situations are absent. Finally, it should be said thatDOMAIN NETWORK ANALYSIS). The set of functions �vk(t), ik(t);
even where the system of circuit equations admits more thank � 1, . . ., b� defined in the interval t0 
 t � �, is called the

circuit solution in the interval t0 
 t � � if it is a solution of one solution, such behavior can be attributed to a weakness
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of the model. In reality, it is not possible to determine which expressing the 2b � (nc � ni) nonstate variables of the circuit
as function of the nc � ni state variables. Then the expressionsof the solutions is the one for the real circuit if other factors,
of the capacitor currents ic and the inductor voltages vi soable to provide a single solution, are not forthcoming. For
obtained are substituted in Eqs. (24).nonlinear resistive networks the existence and uniqueness of

To clarify the matter it is useful to refer to a concrete ex-the solution are certainly guaranteed if, besides the topologi-
ample of the type shown in Fig. 5. All the voltages and cur-cal hypotheses on sources made for the linear case, all the
rents have been ordered in accordance with the conventioncurrent and voltage values are admissible for the nonlinear
we have previously adopted. The equations that describe theresistors, and their characteristic curves are strictly increas-
dynamics of the circuit areing. If the first hypothesis is not satisfied, there can be no

solution; if the second one is not satisfied, the solution may
not be unique. However, the question of existence and unique-
ness of the solution for nonlinear resistive circuit requires fur-
ther discussion which we cannot undertake here. See Ref. 1




C
dv1

dt
= i1

L
di2

dt
= v2

(26)

where the problem is considered in detail.
To solve nonlinear resistive circuit equations it is generally

necessary to resort to approximate methods. Only for linear
circuits is it possible to determine the solution by analytical
methods, as, for example, Gauss’s method. However, many
properties of the solution of nonlinear resistive circuits may
be determined without necessarily having to resolve the cir-
cuit equations.




0 = i1 + i2 − i3

0 = i3 + i4

0 = v1 − v2

0 = v2 + v3 − v4

0 = v3 − R3i3

0 = v4 − e(t)

(27)

The system of circuit Eqs. (26) and (27) consists of 8 equationsDynamic Circuits and Global State Equations
in 8 unknowns; Eq. (26) expresses, respectively, the constitu-

Returning to circuits with dynamic one-ports, we observe tive relations of the capacitor and the inductor. The first four
that, in general, the system of 2b circuit equations of the net- equations of Eq. (27) constitute the maximal set of linearly
work is of the algebraic-differential type independent Kirchhoff equations and the remaining two

equations are the constitutive relations of the resistive one-
ports present in the circuit—the resistor and the voltage
source.

To reduce the differential algebraic Eqs. (26) and (27) into
canonical form, one need only determine the expression of the




C
dvvvc

dt
= iiic

L
diiii

dt
= vvvi

(24)

capacitor current i1 and the inductor voltage v2, from Eq. (27),000 = FFF(vvv, iii; t) (25)
as function of the sole state variables v1, i2 and the voltage
source e(t). To this end it is sufficient to consider the voltagewhere vc � (v1, . . ., vnc

)T, ii � (inc�1, . . ., inc�ni
)T are the vectors

v1 and the current i2 as assigned, and interpret Eq. (27) as athat represent, respectively, the capacitor voltages and the
system of 6 equations in the 6 unknowns i1, v2, i3, v3, i4, v4.inductor currents, that is, the state variables of the circuit, The solution of this system is

C � diag(C1, . . ., Cnc
), L � diag(Lnc�1, . . ., Lnc�ni

) are two
diagonal matrices, respectively, representative of the capaci-
tances and inductances of the circuit, ic � (i1, . . ., inc

)T, vi �
(vnc�1, . . ., vnc�ni

)T are the vectors that represent, respectively,

i1(t) = e(t) − v1(t)
R

− i2(t)

v2(t) = v1(t)
(28)

the capacitor currents and the inductor voltages, and v, i are
andrepresentative of all the network voltages and currents. The

system of algebraic equations (25) consists of the b Kirchhoff
equations (21) and (22) and b � (nc � ni) characteristic equa-
tions of the resistive one-ports, that is, b � (nc � ni) equations
of the type of Eq. (1).

The system of 2b Eqs. (24) and (25) can be reduced to the
canonical form wherein only the state variables appear as un-

i3(t) = −i4(t)

v3(t) = e(t) − v1(t)

i4(t) = v1(t) − e(t)
R

v4(t) = e(t)

(29)

knowns. That this is possible is evident from the following
considerations. If we assign the state variables at a given
time, that is, nc � ni circuit variables, the overall system of
Eqs. (24) and (25) can be interpreted as a system of 2b equa-
tions, which still has 2b unknowns, where now the derivatives
of the state variables have assumed the role of unknowns in-
stead of the state variables themselves. Such a system can be
resolved to furnish the values of the derivatives of the state
variables at that given time. In other words, it is possible to
express the state variable derivatives as function of the state

i3

i4 i2
i1

v3

e(t) v4 C 

R 

L v1

+
+

+

–
–

–

+

–

v2

+

–

variables themselves, and this constitutes the canonical form
to which we referred. Operatively, this result can be obtained Figure 5. Simple dynamic circuit used to illustrate the determina-

tion of the state equations in normal form.as follows: the system of algebraic Eqs. (25) is resolved by
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The result obtained is very significant; the ‘‘nonstate’’ vari-
ables can be expressed at each instant as function of the sole
state variables and the voltage source. The result further jus-
tifies the name of state variables given to v1 and i2; their
knowledge at a given time in fact implies the knowledge of all
the other circuit variables at the same time and thus univo-
cally determines the ‘‘state’’ of the circuit. Substituting Eq.
(28) in the differential Eqs. (26), the equations for the state
variables are obtained

v = v (i)

i

v

Figure 6. Characteristic curve of a current-controlled one-port.
dv1

dt
= − v1

RC
− i2

C
+ e(t)

RC
di2

dt
= v1

L

(30)

for every value of i3 (see Fig. 6). In this case the capacitor
current i1 can be expressed as a function of the state variables
only in the implicit form through the nonlinear equationThis is a system of two first-order ordinary differential equa-

tions in normal form, that is, in general, of the type
v̂[i1(t) + i2(t)] + v1(t) − e(t) = 0 (33)

Thus the state equations aredx1

dt
= H1(x1, . . ., xN ; t)

. . . . . . . . . . . . . . . . . . . .

dxN

dt
= HN (x1, . . ., xN ; t)

(31) v̂
[
C

dv1

dt
+ i2(t)

]
= −v1(t) + e(t)

di2

dt
= v2

L

(34)

As the function v̂(i3) is not globally invertible, the first equa-where xk is the generic state variable, the value of which is
tion of the system in Eq. (34) cannot be rewritten in normalknown at instant t � t0, and H1, . . ., HN are single-valued
form. This is a direct consequence of the fact that in this cir-functions defined for every x1, . . ., xN, where N � nc � ni. cuit even though all the nonstate circuit variables are linkedThe differential equations that regulate the dynamics of the
to the state by means of the instantaneous relations imposedcircuit state variables, written in the normal form of Eq. (31),
by the algebraic part of the circuit equations, the state doesare called global state equations of the circuit. Global state
not determine them univocally. From Eq. (34) it is evidentEqs. (30) are linear and with constant coefficients because the
that the capacitor current can be expressed in general ascircuit under examination consists of linear and time invari-
function of the state variable and the voltage source only

ant one-ports.
through multivalued functions. In this case, starting from the

Naturally, the presence of a nonlinear one-port of particu- assigned initial conditions, the solution of the state equations
lar nature can hinder the reduction of the circuit equation to cannot be unique because the time derivative of the capacitor
a system of normal form state equations. Let us again con- voltage is a multivalued function of the state variables and
sider the circuit in Fig. 5 where, however, we have substi- the voltage source. From the physical point of view this is
tuted the linear resistor with a nonlinear one. If the nonlinear another very interesting example of an incomplete model. The
resistor is both voltage and current controlled (for example, a incongruency can be resolved by adding an inductor with an
junction diode) or only voltage controlled [for example, a tun- arbitrary small inductance in series with the nonlinear resis-
nel diode; see Fig. 4(b)], its constitutive relation is of type tor. In this way the current i3 also becomes a state variable.
i3 � ı̂(v3), where the function ı̂(v3) is a single-valued function. It is clear, then, that to reduce the circuit equations to a
Here, too, it is possible to express the circuit variables as system of global state equations, one needs to be able to ex-
functions of the state variables by means of a univocal rela- press the nonstate circuit variables, and in particular the ca-
tion of instantaneous type, resolving the algebraic part of the pacitor currents and the inductor voltages, as functions of the
circuit in respect to the nonstate variables. In this case the state and source variables by means of single-valued func-
global state equations are nonlinear and are tions. This is the same as resolving a resistive circuit obtained

from the actual circuit by substituting each capacitor with a
voltage source whose voltage is equal to that of the capacitor
and each inductor with a current source whose current is
equal to that of the inductor. We call this circuit associated
resistive circuit; interested readers may refer to Ref. 1. Thus

dv1

dt
= ı̂[e(t) − v1(t)]

C
− i2

C
di2

dt
= v2

L

(32)

it is evident that the necessary and sufficient condition to ex-
press the nonstate circuit variables of a dynamic circuit as

If, instead, the nonlinear resistor is controllable only in the functions of the state variables by means of single-valued
current (for example, a thyristor with disconnected gate) the functions is that the associated resistive circuit admits one
constitutive relation is of the type v3 � v̂(i3), where the func- and only one solution for every admissible state value. In this

way the possibility of reducing the circuit equations to a sys-tion v̂(i3) is not globally invertible, that is, it is not invertible
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tem of global state equations is brought back to the study of ables are annulled, which is called free evolution, and one that
is annulled if the sources are all turned off, which is calledthe existence and uniqueness of the solution for a resistive

circuit. forced evolution. Each of these can be represented through
the nc � ni natural modes of the circuits e�it, where �i i � 1,If the dynamic circuit is linear the associated resistive cir-

cuit also is linear. In this case, in agreement with what has . . ., nc � ni are the natural, generally complex, frequencies
of the circuit (we have implicitly assumed that the naturalbeen said about linear resistive circuits, it is possible to re-

duce the circuit equations to a system of global state equa- frequencies are all distinct); the natural circuit frequencies
are the eigenvalues of the dynamic matrix A. For ‘‘dissipative’’tions if: (1) the dynamic circuit does not have loops consisting

of only capacitors and independent voltage sources and cut- circuits the free evolution tends to zero when t � �, while
the forced one will depend on the waveforms of the indepen-sets consisting of only inductors and independent current

sources; and (2) all the circuit resistances are strictly positive. dent sources of the network. For example, when all the circuit
sources are constant, the forced evolution term for every vari-Naturally the presence of controlled sources (or elements that

can be returned to the controlled sources) of norators or nulla- able tends towards a constant function for t � �. Where all
the sources are sinusoidal and isofrequential, the forced evo-tors in the associated resistive circuit implies that the very

difficulties that we mentioned previously regarding the exis- lution term of each variable tends towards a sinusoidal wave-
form with the same frequency as the sources for t � �. Bytence and the uniqueness of solutions are reflected in the pos-

sibility of writing the state equations in normal form. Even if contrast, for time-variant and/or nonlinear circuits the solu-
tion cannot be determined in closed form. In these cases onethe nonlinear case does not lend itself to a systematic general

treatment, the preceding criterion continues to be valid if the has to use approximate solution methods, such as perturba-
tive techniques (see NETWORK ANALYSIS USING LINEARIZATION)characteristics of the nonlinear resistors are defined for all

voltage and current values and are strictly increasing. By con- and more generally numerical methods (see CIRCUIT ANALYSIS

COMPUTING and PERIODIC NONLINEAR CIRCUITS). The generaltrast, if the dynamic circuit also contains resistors with non-
monotone characteristics, nonlinear multi-terminal elements properties of the solutions of circuit state equations, even

nonlinear, can be determined without having to resolve them.as transistors, and operational amplifiers, then the associated
resistive circuit can have more than one solution, as we have In the last thirty years many analysis techniques have been

developed for predicting the qualitative behavior of the solu-demonstrated in the example; thus, a global state equation
system may not exist. tions of state equations of a circuit merely starting from their

structures and properties (see NONLINEAR DYNAMIC PHENOMENAReference 2 proposes algorithms for the formulation of cir-
cuit state equations relevant to linear circuits that can easily IN CIRCUITS, QUALITATIVE ANALYSIS OF DYNAMIC CIRCUITS, and

Refs. 1–3).be implemented by a computer, based on the solution of the
associated resistive circuits. Again Ref. 2 indicates a criterion
that allows the verification of the existence or nonexistence of Dc Operating Points
global state equations dx/dt � H(x; t) for a nonlinear dynamic

Let us now consider time-invariant dynamic circuits with onlycircuit and proposes an algorithm for the numerical evalua-
stationary sources. These circuits are called autonomous cir-tion of the vector-valued function H.
cuits. An autonomous circuit generally admits stationary so-Once the global state equations are obtained it is necessary
lutions. These solutions are called dc operating points of thefirst to ascertain the existence and uniqueness of the solution
circuit. The fundamental characteristic of these solutions isfor fixed initial conditions. The problems connected with the
that the current in the capacitors and the voltage across theexistence and uniqueness of the solution of the global state
inductors are zero at each instant. The dc operating points ofequations are also dealt with in detail in NONLINEAR DYNAMIC
an autonomous circuit can be determined in various ways. It

PHENOMENA IN CIRCUITS. Here, we limit ourselves to recalling
is possible to determine the stationary solutions of the statethat in the case of linear state equations the solution exists
equations first, and then determine the remaining variablesand is unique regardless of the initial conditions for the state.
through their instantaneous relations with the state vari-The existence and uniqueness of the solution in the nonlinear
ables. The stationary solutions of the state equations are ob-case are ensured if the characteristics of the nonlinear one-
tained by making all the system derivatives in Eqs. (31) zero,ports are regular and every resistive element absorbs electri-
and thus they are the solutions of the algebraic equation sys-cal power as soon as the current or the voltage exceeds a cer-
temtain value; interested readers may refer to Refs. 1–3.

The solution of the state equations can be determined ana-
lytically only in the case of linear and time-invariant circuits.
In this case the circuit state equations are of the type

HHH1(x1, . . ., xN ) = 0

. . . . . . . . . . . . . . . . .

HHHN (x1, . . ., xN ) = 0

(36)

dxxx
dt

= Axxx + ddd(t) (35)

The dc operating points of an autonomous circuit are also the
solutions of the resistive circuit, obtained by substituting anwhere A is the so-called dynamic matrix and d(t) is a known

term dependent on the sources. The properties and the solu- open circuit for each capacitor and a short-circuit for each in-
ductor that can be considered as current and voltage sourcestion techniques of linear time-invariant dynamic circuits are

also illustrated in TRANSIENT ANALYSIS. Here, we will limit our- turned off, respectively.
In general, except for the cases of model incongruency,selves to recalling that two different terms can be distin-

guished for each circuit variable because of the linearity; one which we have already discussed for resistive circuits, an au-
tonomous circuit will admit one or more dc operating points.that goes to zero if all the initial conditions for the state vari-
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If the resistors of the autonomous circuit have strictly in- It is evident that the trajectory of the operating point in
the configuration space is univocally determined if, for everycreasing characteristics and topological hypotheses on sources

are verified, then there is only one dc operating point. By con- value of the state circuit variables vc and ii, there is one and
only one operating point P compatible with it. In other words,trast, there can be more than one dc operating point if the

circuit also contains resistors that are only voltage or current the projection of the circuit configuration space � onto the
state space of the circuit determines a one-to-one correspon-controlled. The possibility of having more than one dc op-

erating point in a dynamic circuit does not mean, in fact, that dence. This means that the resistive circuit associated with
the dynamic circuit admits one and only one solution, andthe circuit model is ill-posed. Which of the dc operating points

is effectively reached depends on the stability of the corre- thus it is possible to express the nonstate variables as func-
tions of state variables by means of a single-valued function.sponding stationary solution of the state equations and on the

initial value of the state (see QUALITATIVE ANALYSIS OF DY- If the projection of the circuit configuration space onto the
state space does not determine a one-to-one correspondence,NAMIC CIRCUITS).

The determination of dc operating points assumes particu- there may be more than one trajectory of the circuit operating
point compatible with the initial conditions for the state; thuslar significance when besides stationary sources the network

also contains variable sources with small amplitudes. In such the circuit model is ill-posed. As an example let us consider
the circuit illustrated in Fig. 7. For the sake of simplicity, thiscases nonlinear characteristic curves of the network can be

approximated with straight lines passing through the dc op- consists of a sole dynamic element. The resistor N is described
by the constitutive relation f (v4, i4) � 0. The circuit equationserating points of the elements and tangent to the characteris-

tic curves. In this way it is possible to determine the circuit are then
solution by superimposing the solution of two distinct prob-
lems, the first nonlinear but static, and the second, dynamic
but linear.

L
di1

dt
= v1 (37)

GEOMETRIC DESCRIPTION OF THE EVOLUTION
OF A DYNAMIC CIRCUITS

The structure of circuit Eqs. (24) and (25) clearly shows
that dynamic and resistive one-ports play two different
roles in the mechanism determining the circuit time evolu-
tion. In particular, the constitutive relations of resistive




0 = i1 − i3

0 = i2 + i3

0 = i1 − i4

0 = v1 − v2 + v3 + v4

0 = v2 − E
0 = v3 − R3i3

0 = f (v4, i4)

(38)

one-ports play a role similar to that played by the Kirchhoff
An operating point P � (v1, v2, v3, v4, i1, i2, i3, i4) of this circuitequations. In analogy with mechanics, algebraic Eqs. (25)
is a point of the eight-dimensional space R8, compatible withcan be considered as holonomic constraints, generally time
the holonomic constraints determined by the algebraic equa-variant, on the voltages and currents of the circuit, while
tions (38). The set of Eqs. (38) consists of 7 independent anddifferential Eqs. (24) recall the motion equations (see Refs.
compatible equations, and thus has infinite solutions. The so-1 and 4). To understand this parallel better we will use a
lutions of these equations form a surface of dimension N �geometric approach. The voltages and currents of the circuit
8 � 7 � 1, that is, a curve of the space R8. This is the configu-elements identify a point of coordinates (v1, . . ., vb,
ration space of the circuit under examination.i1, . . ., ib) in a space of 2b dimensions. Because the volt-

The only way to visualize this configuration space is toages and currents must be compatible with the holonomic
project it onto two-dimensional planes. The projection of �constraints given by Eqs. (25), consisting of the Kirchhoff
onto planes with two currents or two voltages as coordinatesequations and the constitutive relations of the resistive ele-
is a straight line, as is evident from the first 4 equations ofments, the point (v1, . . ., vb, i1, . . ., ib) is forced to move
system [Eq. (38)]. If the projection is made, for example, ontoon a surface of the space R2b. Let us call a point P �
the plane with coordinates (i1, i3), the straight line is the bi-(v1, . . ., vb, i1, . . ., ib), compatible with the holonomic
sector of the first and third quadrants, while if the projectionconstraints (25), the circuit operating point, and in analogy
is made onto the plane (v1, v3), the straight line does not gen-with mechanics, let us call the set of all circuit operating
erally pass through the origin. If � is projected onto thepoints the configuration space of the circuit, which we will

indicate with �. Normally, if there is no dependence or
contradiction between the Kirchhoff equations and the con-
stitutive relations of the resistive one-ports, the dimension
of the configuration space is N � nc � ni. In such cases
the circuit solution is represented by the motion of the
operating point P(t) on the surface �; the motion laws are
given by the system of differential Eqs. (24) which describe
the operation of the dynamic one-ports. Returning to the
analogy of mechanics once again and to understand these
definitions better, one may imagine a body sliding along an
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inclined plane under the action of gravity. In this case the
configuration space is a plane of the three-dimensional Figure 7. Circuit used to highlight the problems arising in the writ-

ing of the state equations due to nonlinear elements.space.
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Figure 8. Projections of the configuration
space � of the circuit shown in Fig. 7 onto
the (v1,i1) plane for different types of resis-
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tor N.

planes (v2, i2), (v3, i3) and (v4, i4), we obtain the characteristic erating point. Therefore, once assigned, the initial state univ-
ocally determines the motion of the circuit operating point.curves of the circuit resistive one-ports. In particular, the pro-

jection onto the plane (v2, i2) is a straight line, which moves For the case described by a curve 
 of the type illustrated in
Fig. 8(b), three dc operating points are possible, Q1, Q2 andparallel to the i2 axis. The projection of � onto the plane (v1,

i1), which we will denote with 
, is the most interesting one, Q3. One can easily see that the point Q2 is unstable, whereas
Q1 and Q3 are stable. The operating point reaches equilibriumsince it involves all the constitutive relations of the resistive

elements. Combining the equations of system [Eq. (38)] we points Q1 or Q3 according to its initial position as indicated by
the arrows in the figure.obtain the equation for the curve 


Finally, let us consider the case where the resistor is only
voltage controlled, i4 � ı̂(v4) [for example, a tunnel diode; inf (−v1 + E − R3i1, i1) = 0 (39)
Fig. 4(b) the characteristic of a tunnel diode is represented],

Let us consider first the case where resistor N is linear, that where ı̂(v4) is a single-valued function but not globally inverti-
is, f (v4, i4) � v4 � R4i4 � 0. In this case Eq. (39) becomes ble. The equation of curve 
 is given by

v1 + i1(R3 + R4) − E = 0 (40) i1 − ı̂(−v1 − R3i1 + E) = 0 (42)

and thus 
 is a straight line with a slope constant in time and a possible curve is illustrated in Fig. 8(c). In this case, as
[Fig. 8(a) reports the case wherein E � 0]. The projection of the function ı̂(v4) is not globally invertible, the projection of
the operating point P onto the plane (v1, i1), marked Q in Fig. curve 
 onto the i1 axis does not determine a one-to-one corre-
8(a), moves along the straight line 
 with the law of motion spondence, that is, more than one circuit operating point can
specified by the differential Eq. (37). In this case at every correspond to the same state value [see Fig. 8(c)]. Hence, the
value of the state variable i1 corresponds a single point Q and motion of the operating point in the configuration space,
thus a single operating point P and vice versa. Therefore, once starting from an assigned initial condition, might be undeter-
the initial state i1(t0) is assigned, the initial point Q(t0) is univ- mined. This is another example of an ill-posed dynamic circuit
ocally determined, and thus the initial operating point P(t0) of model. To obtain a well-posed model it is sufficient to add an
the circuit. The projection of point Q(t0) onto the v1 axis gives arbitrary small capacitance in parallel to the voltage-con-
the inductor voltage at that time, which, by means of Eq. (37), trolled resistor. In this way the voltage across the nonlinear
determines the increase per unit of time of the current i1, and resistor also ‘‘becomes’’ a state variable.
thus the elementary displacement of the point Q, and hence For the dynamic circuit reported in Fig. 5, which we exam-
of the circuit operating point P. Proceeding, then, the trajec- ined in the previous section, the configuration space 
 deter-
tory of the operating point for t � t0 can be determined. In mined by Eqs. (27), has dimensions N � 8 � 6 � 2 and it is
the case we are examining, the circuit has a single dc op- the hyperplane defined by Eqs. (28). The motion of the circuit
erating point. This is represented by the intersection of the operating point on 
 is described by the differential Eqs. (26).
configuration space with the hyperplane v1 � 0. The projec-
tion of the dc operating point onto the plane (v1, i1) is repre-

FINAL CONSIDERATIONSsented by Q(t�). The operating point, irrespective of its initial
position, tends asymptotically towards the dc operating point

So far, we have considered dynamic circuits consisting of lin-for t � ��.
ear and time-invariant capacitors and inductors and gener-If the resistor is nonlinear and both voltage and current
ally time-variant and nonlinear resistive one-ports. The anal-controlled (for example, a junction diode) or only current con-
ysis made can readily be extended to time-variant linear and/trolled (for example, a thyristor with disconnected gate; see
or nonlinear dynamic one-ports. In such cases, generally, oneFig. 6), its constitutive relation is of the type v4 � v̂(i4), where
has to consider the capacitor charges and the inductor fluxesv̂(i4) is a single-valued function. Then Eq. (39) becomes
as circuit state variables and thus the unknowns of the prob-
lem become (nc � ni) � 2b; nc charges, which we denote withv1 + R3i1 + v̂(i1) − E = 0 (41)
the vector q � (q1, . . ., qnc

)T, ni fluxes, which we denote with
the vector � � (�nc�1, . . ., �nc�ni

)T, and b � (nc � ni � ns)and a possible curve 
 is shown in Fig. 8(b). In this case too,
the projection of curve 
 onto the i1 axis determines a one-to- currents and voltages. The circuit always consists of nc capaci-

tors, ni inductors, and ns resistive one-ports. The circuit equa-one correspondence between the circuit state and the op-
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tions also become (nc � ni) � 2b; the b linearly independent characteristic equations of resistive and dynamic elements
with several terminals (i.e., controlled sources, gyrators, idealKirchhoff Eqs. (21) and (22); the nc characteristic capacitor

equations type [Eq. (5)], which express the voltages of the sin- transformers, operational amplifiers, mutual inductances,
and transistors), and the associated resistive circuit will con-gle capacitors as functions of the respective charges; the ni

characteristic inductor equations type [Eq. (11)], which ex- tains static n-poles and multiports as well as simple one-
ports. The more general approach to the problem of the exis-press the single inductor currents as functions of the respec-

tive fluxes; the ns characteristic resistive one-ports type [Eqs. tence of a system of normal form differential equations for
circuit state variables is therefore that of bringing the prob-(1) and (9)], the nc first-order differential equations type [Eq.

(6)], which link the single capacitor currents to the respective lem back to the study of the existence and uniqueness of the
solution of the resistive circuit associated with the dynamiccharges; and the ni first-order differential equations type [Eq.

(12)] which link the single inductor voltages to the respective circuit under examination. In this way it is possible to use
everything that is known regarding nonlinear resistive cir-fluxes. Therefore, the system of circuit equations in these

cases is of the following type: cuits (see, e.g., Ref. 1 and CIRCUIT STABILITY OF DC OPERATING

POINTS). There are many reports in the literature that deal
with the problem of constructing global state equations for
certain classes of circuits without explicitly referring to the
associated resistive circuits. The results of these works are
summarized clearly and fully in Willson’s review (3) of 1973.

dqqq
dt

= iiic

dφφφ

dt
= vvvi

(43)

However, it should be mentioned here that to solve a cir-000 = FFF(qqq,φφφ,vvv, iii; t) (44)
cuit it is not necessary to determine the state equations in
normal form previously, but it is possible to resolve the alge-

Now algebraic equation system Eq. (44), besides the b Kirch- braic-differential equations of the circuit directly by using, for
hoff equations and the ns characteristic resistive one-port example, difference methods (see, for example, Ref. 2). None-
equations, also includes the (nc � ni) characteristic equations theless the problem of the existence of normal form state
of circuit dynamic one-ports. In this case too the circuit equa- equations remains a fundamental question. If the circuit does
tion system can be reduced to the canonic form wherein only not admit a system of global state equations the circuit model
the circuit state variables q and � appear as unknowns. By would be incomplete and thus could have more than one solu-
means of algebraic equations (44) it is possible to express the tion. In such cases numerical methods would still produce a
capacitor currents ic and the inductor voltages vi as functions set of numbers, which, of course, would be meaningless.
of the sole state variables and sources As we tried to show, and as is also described in more

detail in other articles (see, for example, CHAOTIC CIRCUIT

BEHAVIOR and TRANSMISSION USING CHAOTIC SYSTEMS), the cir-
cuit equations regulate the dynamics of a very rich and

iiic = HHHc(qqq, φ, iii,vvv; t)

vvvi = HHHi(qqq, φ, iii,vvv; t)
(45)

complex model, which is common to other different dynamic
In fact if one considers the charge q and the fluxes � as as- systems. This richness and complexity can be verified ex-
signed, it is possible to interpret system [Eq. (44)] as a system perimentally in a very simple way because electric circuits
of 2b equations in the 2b unknowns i and v. If the solution of are generally very easy to build. For these reasons the
this system exists and is unique, then Hc and Hi are single- research in this field has developed remarkably in recent
valued functions defined for every value of the state variables years, not only for the intrinsic practical interest but also
q and � . When this is so, the system of state equations at a speculative level.
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