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FILTER SYNTHESIS

AN OVERVIEW OF CLASSICAL FILTERS

Electrical filters are, as a rule, lossless two-ports embedded
in resistances R1 and R2, as shown in Fig. 1. A lossless two-
port may only contain inductors, capacitors, and ideal trans-
formers. The filters allow a band of the input frequencies to
pass with only a small attenuation while all remaining fre-
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Figure 1. Lossless two-port embedded in resistances R1 and R2.
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quencies are to a large extent suppressed. The transfer func-
tion

V2(p)

V0(p)
= F∗(p) (1)

also called the transfer voltage ratio or the insertion voltage
gain, is a function of the complex frequency p, where p � j�
stands for the natural and measurable angular frequencies �.
For brevity � will from now on be called simply the frequency.
From F*( j�) � A(�)ej�(�) are derived the magnitude A(�) �

|F *( j   )|2ω 

q–2

q–3

2

cω ω cω *
�F*( j�)� and the phase �(�) � arg F*( j�) with the group delay

Figure 2. Low-pass with cutoff frequency �c, 3 dB cutoff frequency�(�) � �d�(�)/d�. The attenuation function is a(�) � �20
�*c , and the equiripple between q�2 and q�2 � a2.log�F*( j�)� in dB (decibels) or, more seldom, ln�F( j�)� in Np

(nepers). The relation is 1 Np � 8.686 dB.
The synthesis of filters follows a well-established pattern. can also be expressed by the reflection coefficient introduced

First the properties of a transfer function F*(p) of a two-port by S. Darlington (3)
with given types of components have to be established. This
guarantees the existence of a solution with realizable positive
values of the components as long as the desired transfer func- S11( jω) = R1 − Z1( jω)

R1 + Z1( jω)
(3)

tion exhibits the before-mentioned properties. The most com-
mon types of components for classical filters are lossless in- as
ductors and capacitors, as well as ideal transformers for the
two-port and resistances R1 and R2 as internal resistance of
the source and as the terminating load. This case is treated

|F∗( jω)|2 = R2

4R1
(1 − |S11( jω)|2) (4)

in this article. Other types of components are switches such
where Z1( j�) represents the input impedance of the two-portas FETs, capacitors, and operational amplifiers in so-called
loaded by R2. S11 is an element of the scattering matrix. In-switched capacitor filters or delays, adders and multipliers in
stead of transfer functions the inverse of the transfer func-digital filters or resistors, capacitors and operational amplifi-
tion V0/V2 or V0/2V2 is also applied. These functions are alsoers in RC-active filters, or electro-mechanical transducers and
called the insertion voltage loss. In this articlea set of electrodes in surface acoustic wave (SAW) filters

which are treated in the last section.
The next step in filter synthesis is the approximation of V0(p)

V2(p)
= K∗(p) (5)

given specifications for a particular filter by functions meeting
the requirements of F*(p). The last step is the calculation of

will be used.the values of the components by mathematical means from
The insertion loss (4),the functions approximating the specifications. This step also

provides the topology of the two-port. For approximations it is
mathematically easier to handle the square of the magnitude 20 log

R2

R1 + R2

∣∣∣∣V0( jω)

V2( jω)

∣∣∣∣ = 10 log
P0

P2
(6)

�F*( j�)�2. For a lossless two-port in Fig. 1 F*(p) has the follow-
ing properties (1,2): is based on the ratio between the power P0 � �V0( j�)�2R2/

(R1 � R2)2 dissipated in R2 without the two-port inserted in
1. F*(p) is a rational function in p, real valued for real- between the source V0 with R1 and the load R2 and the power

valued p; as a consequence, the coefficients in F*(p) are P2 � �V2( j�)�2/R2 dissipated in R2 in the presence of the two-
real valued if the numerator and the denominator of port.
F*(p) do not contain a common complex factor. Figures 2 through 5 depict examples for �F*( j�)�2 of charac-

2. Stability requires the poles of F*(p) to lie in Re p � 0 teristic filters, such as a low-pass, a high-pass, a bandpass,
and the degree of the numerator not to exceed the de-
gree of the denominator. The denominator is hence a
Hurwitz polynomial.

3. The numerator is either an even or an odd polynomial
in p if common factors in the numerator and the denom-
inator are not cancelled.

4. The maximum power available at the output reveals the
upper bound (Feldtkeller condition).

|F∗( jω)| ≤ 1
2

√
R2

R1
= 1

q
(2)

|F *( j   )|2ω 

a

a
2

ω cω *
A given F*(p) meeting these requirements is always realiz-
able by a lossless two-port embedded in R1 and R2. �F*( j�)�2 Figure 3. High-pass filter.
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|F * ( j   )|2ω 

ω 

Figure 4. Bandpass filter.

and a bandstop. The beginning and the end of the passband
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ω 2are defined by a cutoff frequency �c or �*c . For the low-pass in
Fig. 2, �*c is chosen as the frequency, where �F*( j�)�2 has de- Figure 6. Example of a lowpass circuit.
creased to 1/2 of the value at � � 0 (3 dB frequency).

Another choice is a specific frequency �c. For example, in
Fig. 2 �F*( j�)�2 leaves the band of equiripple behavior, later and a linear phase ��t0 is called an ideal low-pass, which
also called Chebyshev behavior. works as a delay line with delay t0 for frequencies in the

A typical example for a low-pass circuit is shown in Fig. 6. passband.
The zeros of F*(p) that generate a zero output voltage are A filter cascaded by an amplitude equalizer exhibits an
visible in the circuit diagram. The series parallel resonator overall transfer function with an approximately constant
exhibits an infinite impedance at the resonant frequency �1, magnitude, whereas a phase equalizer in cascade provides a
preventing signals from reaching the output. The same is true linear phase of the overall two-port (4). The phase equalizer
for the shunt series resonator exhibiting a zero impedance at is an allpass.
the resonant frequency �2. Finally, a zero output is observed If all reactances in a two-port are discharged at time t � 0,
at � � � because the shunt capacitors have a zero impedance then F*(p) is the Laplace transform of the impulse response
and the series inductor exhibits an infinite impedance. Non- h(t) with
ideal resonators represent a resistor R at the resonant fre-
quency. The larger the quality factor Q of a resonator is, the
better the transmission zero is realized. For series resonators h(t) = 1

2π j

∫ σ + j∞

σ − j∞
F∗(p)eptdp

Q � Z/R, whereas for parallel resonators Q � R/Z with Z �
	L/C. L stands for the value of the inductor and C for the where F*(p) is an analytical function in Re p � 
0 � 
. The
value of the capacitor. �F*( j�)� � const. means a lack of ampli- step response is
tude distortion; together with an arbitrary phase �(�) it de-
fines an allpass, the transfer function of which is

a(t) =
∫ t

0−
h(τ )dτ

F∗(p) = k
r(−p)

r(p)
Some lowpasses with specific characteristics are discussed

together with amplitude and phase equalizers in the follow-
where r(p) is a Hurwitz polynomial in p and k a constant. ing subsections.
F*(p) with a linear phase �(�) � ��t0 reflecting in a constant Guidelines will be presented on how to determine from fil-
group delay t0 and with an arbitrary magnitude belongs to a ter tables the component values of a filter meeting given spec-
two-port without phase distortion. F*(p) with a constant non- ifications. This should enable a system engineer to achieve a
zero magnitude in ��� � [0, �C], zero magnitude otherwise, quick filter design by selecting the appropriate type of filter

and by then finding the component values in a table.

Butterworth Low-passes

A Butterworth lowpass (9) in Fig. 7 exhibits a maximum flat
magnitude �F*( j�)� at � � 0—that is, d� �F*( j�)�/d�� � 0 for
� � 1, 2, � � � n, where n is the degree of F*(p). The decay of
the magnitude is moderately steep in the transition region
and approaches n � 20 dB per frequency decade for large val-
ues of �. K*(p) � 1/F*(p) is a polynomial.

We investigate the step response a(t) for various low-
passes, including the Butterworth low-pass. To compare a(t)
for those lowpasses, we normalize all of them with the fre-

|F *( j   )|2ω 

ω 
quency �c, where �F*( j�c)� � 0.9 � F*(0) holds. For low-passes
with equiripple behavior, �c also stands for the end of theFigure 5. Bandstop filter.
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|F *( j   )|2ω 

ω cω *
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0

Figure 7. A Butterworth low-pass, maximally flat at � � 0.

Table 1(a). Overshoot and Rise Time of Butterworth Low-
passes with F *(p) of Degree n � 1 to 7.

Rise Time, 10 To 90%,
n Overshoot, In % In �

1 0 1.06
2 4.32 1.50
3 8.15 1.80
4 10.83 2.03
5 12.78 2.22
6 14.25 2.38
7 15.41 2.51

Normalizing frequency �c is given by �F *(i�c)� � 0.9 � F *(0) leading to the
normalized time � � �ct.

equiripple band. The normalized time is � � �ct. Figure 8 Table 1(b) contains values for overshoot and rise time of a(�)
shows a(�)/a(�) for a Butterworth low-pass with F*(p) of sev- for n � 1 to 7 (10). The rise time for n � 7 is according to
enth degree (10). There is an overshoot of 15.4% over the Table 1(e) t � 1.22��1

c , the smallest value of all low-passes
value a(�), the largest of the low-passes compared, but fol- listed in Table 1(e).
lowed by rapidly decreasing oscillations around the value
a(�). Values for the overshoot in % and for the rise time in � Chebyshev Low-passes
from 10 to 90% of a(�) are listed in Table 1(a) for Butterworth

Chebyshev low-passes (Fig. 2) possess a magnitude oscillatinglow-passes with F*(p) of degree 1 to 7. For a Butterworth low-
between two constant boundaries in the passband, wherepass with F*(p) of 7th degree the rise time is t � 2.51��1

c , the
each extremum touches the boundaries. This is called an2nd smallest rise time of all low-passes in Table 1(e).
equiripple, or a Chebyshev behavior in the passband. K*(p)
� 1/F*(p) is a polynomial. The larger the ripple a2 in Fig. 2Thomson Low-passes
the steeper is the decay of �F*( j�)�2 in the transition region

Thomson low-passes (11) are given by K*(p) � 1/F*(p) repre- from the passband into the stopband. From all polynomials
senting a modified Bessel polynomial. They are therefore of- this decay is steepest. However, independent of a2 the decay
ten also called Bessel low-passes. F*(p) exhibits a maximum at large �s is again n � 20 dB/decade. The step response
flat group delay t0 at � � 0. The decay of the magnitude is a(�)/a(�) for n � 7 in Fig. 8 (10) exhibits the third largest
moderately steep in the transition region and for a large � is overshoot over a(�); however, the oscillations around a(�) de-
again n � 20 dB/decade, where n is the degree of F*(p). The cay rather rapidly. According to Table 1(e) the value for the
step response a(�)/a(�) for the Thomson low-pass with n � 7 overshoot is 12.7%, whereas the rise time is t � 3.4��1

c , the
is plotted in Fig. 8 (10). It is a remarkably good approxima- 2nd largest value in Table 1(e). Overshoot and rise time of
tion of an undistorted delayed step. The overshoot is only a(�) for n � 1 to 7 are listed in Table 1(c) (10).
0.49% over a(�). Oscillations around a(�) are only marginal.

Cauer Filters as Low-passes

Elliptic filters or Cauer filters (12) (Fig. 9) are low-passes ex-
hibiting an equiripple behavior both in the passband and in
the stopband. They arebased on elliptic integrals which is
why they are also called elliptic filters. K*(p) � 1/F*(p) is a
rational function in p. The step response of the Cauer low-
passes for n � 7 in Fig. 8 exhibits the second largest over-
shoot and only slowly decaying oscillations around a(�) (10).
Overshoot and rise time for n � 1 to 7 are listed in Table
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Figure 8. Step responses a(�)/a(�) of various filters with transfer
functions F*(p) of seventh degree. The common characteristics of the
filters are provided in the caption and footnote of Table 1(a).

Table 1(b). Overshoot and Rise Time of Thomson Low-passes
with F *(p) of Degree n � 1 to 7.

Rise Time, 10 To 90%,
n Overshoot, In % In �

1 0 1.06
2 0.43 1.21
3 0.75 1.25
4 0.84 1.25
5 0.77 1.24
6 0.64 1.23
7 0.49 1.22

Normalization as in Table 1(a).
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Table 1(c). Overshoot and Rise Time of Chebyshev Low-
passes with F *(p) of Degree n � 1 to 7.

Rise Time, 10 to 90%,
n Overshoot, in % in �

1 0 1.06
2 14.0 1.59
3 6.82 2.36
4 21.2 2.45
5 10.7 2.98
6 24.25 2.95
7 12.68 3.40

Normalization as in Table 1(a).

Table 1(d). Overshoot and Rise Time of Cauer Low-passes
with F *(p) of Degree n � 1 to 7.

Rise Time, 10 to 90%,
n Overshoot, in % in �

1 0 1.06
2 14.0 1.59
3 7.10 2.38
4 22.2 2.57
5 12.2 3.23
6 25.9 3.31
7 13.72 3.81

Normalization as in Table 1(a); in addition, minimum attenuation in stopband
60 dB.

1(d) (10). In addition to the properties of the normalization
mentioned previously for Butterworth low-passes, the mini- is the normalized frequency. Those four values in dB are A0mum stopband attenuation of the Cauer filters is chosen to the minimum attenuation in the passband, Amax the maximum
be 60 dB. attenuation in the passband, Amin the minimum attenuation

Table 1(e) shows a comparison of overshoot and rise time in the stopband, and the frequency �s defining the end of the
of the step response for four filter types with F*(p) of degree 7.

transition region with a(�s) � Amin. For R1 � R2 we obtainFurther filters such as bandpasses, high-passes, band-
A0 � 0 as a special case. This reduces the number of specifi-stops, or filters with several passbands are obtained by a fre-
cations to three.quency transformation applied to the low-pass, where the fre-

First the reflection coefficient � � 	1� 10�0.1Amax has to bequency characteristics are preserved.
calculated. A table with Amin � 10 log(��2 � 1) as ordinate and
�s as abcissa reveals the required degree n for a given �s, �,Design of Filters by Using Filter Tables
Amin, and filter type. Then one turns to tables for the chosen

There are three characteristic low-passes tabulated to choose type of low-pass, the degree n and the value � which provide
from for a given task. They are the Butterworth, the Chebys- the normalized values of the components.
hev, and the Cauer low-pass, the features of which have been The normalized values � and c of the reactances provided
discussed above. The Bessel low-pass is, as a rule, not con- by the tables are with a normalizing resistor R1tained in tables as it main deals with properties in the time
domain.

After the selection of the appropriate type of low-pass the
ωL
R1

= ω

ωc

ωcL
R1

= � × � (7b)
designer turns to the pertinent filter tables. As a rule only
solutions for the special case R1 � R2 are tabulated. If this is and
not acceptable because an additional amplifier may be re-
quired one has to go through the general design procedure as
described in the next paragraph. The general procedure is ωCR1 = ω

ωc
ωcCR1 = � × c (7c)

also mandatory if different types of specifications are given,
such as steps in the attenuation in the stopband or the sup- where
pression of specific pilot frequencies.

As shown in Fig. 12, the filter requirements are given by
four values for the attenuation a(�) � �20 log�F*( j�)� in dB, � = ωcL

R1
(8a)

where
and

� = ω

ωc
(7a)

c = ωcCR1 (8b)

� and c are values without dimension.
|F *( j   )|2ω 

cω ω sω 0

Figure 9. A Cauer low-pass (elliptic filter) with equiripple in pass-
band and stopband; �s is end of transition region.

Table 1(e). Comparison of Overshoot and Rise Time of the
Step Response for Four Low-passes with F *(p) of Degree 7.

Rise Time, 10 to 90%,
Low-Pass Type Overshoot, in % in �

Thomson 0.49 1.22
Butterworth 15.4 2.51
Chebyshev 12.7 3.40
Cauer 13.7 3.81

Normalization as in Table 1(a).
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The denormalized values are, for the inductors

L = R1

ωc
· l

and for the capacitors

C = 1
ωcR1

· c

This concludes the design with the help of a table.

Equalization of Amplitude and Phase

In systems the need can arise to change the amplitude, that
is the attenuation a(�), most often to render it constant in a
given range of frequencies. A simple solution is to replace the

1

1

–1

–1

y

x

(a)

resistance R2 at the output by a two-port with input resis-
tance R � R2, but a frequency-dependent inverse transfer
function K*B (p) and the associated attenuation a(�) � 10
log�K*B ( j�)�2. K*B (p) is multiplied with the inverse transfer
function of the given two-port, whereas a(�) is added to its
attenuation. Such an amplitude equalizer is shown in Fig. 38
with the design equation in the figure caption. If several of
those equalizers have to be cascaded it is easily done by re-
placing the loading resistance R � R2 of the first equalizer by
the next equalizer and so on. Table 5 shows a(�) for various
equalizer two-ports. The shapes of a(�) are chosen such that
they add to the attenuation to be equalized at the frequencies
where this is needed. The equalizers however also change the
phase of the entire two-port which is tolerable for all filters
where phase is not important, such as in audio systems.

The correction of the phase or the group delay of a given
two-port is done by cascading phase equalizers at the output

x

1

m = 4

–1

–1 1

m = 5

Tm (x)

(b)
of the given two-port. They are allpasses as depicted in Fig. Figure 10. (a) A Chebyshev polynomial y(x). (b) The Chebyshev poly-
40. The phase equalizers exhibit an input resistance R � R2 nomial of fourth and fifth degree m.
if terminated by R2 thus replacing the load R2 of the given
two-port. The design equations are given in the caption of Fig.
40. The equalizers further offer a unit magnitude that is an and hence
attenuation a(�) � 0 and a group delay as shown in Figs.
39(a) and 39(b). By cascading two-ports the transfer functions
are multiplied and hence the phases in the exponent of the

V0

V2
= K∗(p) = K(s)

exponential functions are added. This also applies to the
The synthesis follows the steps as listed and explained here:group delay. The attenuation of the given two-port remains

unchanged due to a(�) � 0 of the allpasses. Figs. 39(a) and
1. The given tolerance scheme for �K( j�)�2 � P(�) is ap-39(b) reveal how the allpasses must be chosen to add to the

proximated by a realizablegroup delay at those frequencies where an increase is needed.
Most often the group delay has to become constant by a
phase equalization. |K( j�)|2 ≥ q2 = 4

R1

R2
(9)

So far we have dealt with two-ports. There are also m-n-
ports with n input ports and m output ports. They can realize

with q in Eq. (2).filter banks.
2. From �K( j�)�2 the function K(s), the characteristic func-

tion f (s); and the elements of the chain matrix A(s) areTHE SYNTHESIS OF FILTERS
determined.

3. A(s) is realized by a lossless two-port by a pole removalTo obtain general results for low-passes independent of the
process.values of the cutoff frequencies �c, we introduce a normalized

frequency � � �/�c pertaining to the s-plane with the imagi-
Calculations For The Individual Stepsnary axis s � j�. This translates K*(p) in Eq. (5) in which

p � j� as follows: The approximation and calculation may be performed by a
general approach based on a least square procedure. How-
ever, as a rule, special functions with suitable properties are
chosen to solve the approximation problem. These functions

V0

V2
= K∗( jω) = K∗

(
j
ω

ωc
ωc

)
= K∗( j�ωc) = K( j�)
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where c is the integration constant. For c � 0 we obtain

Tm(x) = y = cos mϑ (11a)

and

ϑ = arccos x for |x| ≤ 1 (11b)

and

Tm(x) = y = cosh mϑ (12a)

and

ϑ = arcosh x for |x| ≥ 1 (12b)

The known trigonometric equality

Ω

|K( jΩ )|2

q 2+e2

q 2

T 2m (Ω ) T m (Ω )

1

1

–1
cos(m + 1)ϑ = cos mϑ cos ϑ − sin mϑ sinϑ = cos mϑ cos ϑ

− 1
2

(cos(m − 1)ϑ − cos(m + 1)ϑ )

Figure 11. The square of the magnitude �K( j�)�2 of a Chebyshev low-
yieldspass with �K( j�)�2 � e2T 2

m(�) � q2.

cos(m + 1)ϑ = 2 cos mϑ cos ϑ − cos(m − 1)ϑ
will be discussed. Finally, a general approximation procedure
based on a conformal mapping will be outlined. or the recursion for Tm�1(x):

The Chebyshev Approximation and the Calculation of K(s). The Tm+1(x) = 2Tm(x) × x − Tm−1(x) (13)
square �K( j�)�2 of the magnitude of the function K( j�) ac-
cording to the Chebyshev approximation is plotted in Fig. 11. The starting solutions for m � 0 and m � 1 are provided
In the passband �K( j�)�2 completely exhausts the tolerance by Eqs. (11a) and (11b) as T0(x) � 1 and T1(x) � x. Some poly-
stripe; that is, each extremum of �K( j�)�2 touches the limit of nomials Tm(x) for m � 2, 3, . . . 11 obtained from Eq. (13) are
the tolerance band from the inside. In the stopband �K( j�)�2 listed in Table 2 and plotted for m � 4 and m � 5 in Fig.
tends to infinity. As these filter characteristics are most 10(b). Even m provide even and odd m odd polynomials
widely used, more detailed information on the Chebyshev ap- Tm(x). The coefficient at the leading term xm is 2m�1.
proximation must be given. The differential equation for a We first construct the function V0/V2 � K(s) from a given
Chebyshev polynomial y(x) is �K( j�)�2. �K( j�)�2 � P(�) in Fig. 11 is expressed by

|K( j�)|2 = ε2T2
m(�) + q2 = P(�) (14)

m2(1 − y2) =
(

dy
dx

)2

(1 − x2) (10a)

For �  1 we obtain with the coefficient 2m�1 of the leading
termor

|K( j�)|2 ≈ ε222(m−1)�2m (15)
m2(y2 − 1) =

�dy
dx

�2

(x2 − 1) (10b)

and
where m is a constant. The differential equation equates the
zeros in Fig. 10(a) of y � 1 � and y � 1 � with the zeros of a(ω) = 10 log |K( j�)|2 ≈ 20[m log � + (m − 1) log 2 + log ε]

(16)y!2 and x � 1 � as well as x � 1 �. The statement

x = cos ϑ and y = cos η

provides the solution

y = cos(mϑ + c) with ϑ = arccos x for |x| ≤ 1

whereas the statement

x = cosh ϑ and y = cosh η

yields the solution

y = cosh(mϑ + c) with ϑ = arcosh x for |x| ≥ 1

Table 2. Chebyshev Polynomials of Degree 2 to 11.

T2(x) � 2x2 � 1
T3(x) � 4x3 � 3x
T4(x) � 8x4 � 8x2 � 1
T5(x) � 16x5 � 20x3 � 5x
T6(x) � 32x6 � 48x4 � 18x2 � 1
T7(x) � 64x7 � 112x5 � 56x3 � 7x
T8(x) � 128x8 � 256x6 � 160x4 � 32x2 � 1
T9(x) � 256x9 � 576x7 � 432x5 � 120x3 � 9x
T10(x) � 512x10 � 1280x8 � 1120x6 � 400x4 � 50x2 � 1
T11(x) � 1024x11 � 2816x9 � 2816x7 � 1232x5 � 220x3 � 11x
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for s � j� and extend s into the entire complex plane. On the
other hand, as K(s) is real for real s, we obtain

|K( j�)|2 = K( j�)K( j�) = K( j�)K(− j�) = K(s)K(−s) (21)

for s � j�, which is also extended into the s-plane. Equations
(20) and (21) hence provide

K(s)K(−s) = Q(s) (22a)

Obviously, Q(s) is even in s, and real for real s. Hence the
zeros occur at s � si and s � �si as well as at s � si and s �
�si, as plotted in Fig. 13. For q � 0, zeros on s � j� are
feasible and have an even multiplicity. The zeros in Re s � 0
and half the multiplicity of the zeros on s � j� are assigned

�
�

�
�

�
�
�

�

Ω

a(Ω) 

A max

A 0

A min

Ωs1�
�

�
�

�

�
�
�

�
�

to K(s), thus forming a stable or at least quasi-stable K(s) if
the zeros on s � j� are single. We perform these operationsFigure 12. The tolerance scheme in decibels for a Chebyshev

low-pass. on �K( j�)�2 in Eq. (14) starting from P(�) and Q(s) in Eqs. (20)
and (22b), which yields

This reveals that for a small ripple � � 1, log � � 0 decreases
the rise of the attenuation for large � and for a large ripple

Q(s) = q2 + ε2T2
m

� s
j

�
= 0 (22b)

� � 1, log � � 0 increases the rise of the attenuation for large
or�. The increase of a(�) for a decade 10 � is 
a(�) � 20 m;

that is, 20 dB per decade and per degree m of Tm(�). The
attenuation a(�) belonging to Fig. 11 is depicted in Fig. 12
with minimum (respectively maximum) attenuation A0 (re-

T2
m

(
s
j

)
= −

(q
ε

)2
(23)

spectively, Amax) in the passband and the minimum attenua-
As the zeros are complex, we formtion Amin in the stopband. The upper limit of the transition

region is �s. Chebyshev filters represent the rare case in
which all characteristic values q, �, and m in Eq. (14) can be
determined from the given values A0, Amax, and Amin at �s by

Tm

(
s
j

)
= cos mϑ = cos m(ϑ1 + jϑ2) and

s
j

= cos ϑ

(24)
the equations

from which follows

Tm

(
s
j

)
= cos mϑ1 cosh mϑ2 − j sin mϑ1 sinhmϑ2 = ± j

(q
ε

)
(25)

10 log q2 = A0

and hence

q2 = 10A0/10

(17)

The solutions are

cos mϑ1 cosh mϑ2 = 0

sin mϑ1 sinhmϑ2 = ∓q
ε

10 log(q2 + ε2) = Amax

and hence

ε2 = 10Amax/10 − 10A0/10

(18)

and

a(�s) = 10 log(q2 + ε2 cosh2 m × arcosh �s ) = Amin

and hence

m = 1
arcosh �s

arcosh

√
10Amin/10 − 10A0/10√
10Amax/10 − 10A0/10

(19)

In Eq. (19) the expression for Tm(�) for ��� � 1 was used.
The general synthesis procedure outlined next was estab-

lished by W. Bader (1,16a,16b). It is explained with Cheby-
shev low-passes as an example.

From the known �K( j�)�2 we have to calculate the rational
function K(s). We consider

j Im s

si

sk

– si

– sk Re s

Zeros assigned to K(s)

s̄i

– sī

Figure 13. Zeros of Q(s) � K(s)K(�s) in Eq. (22a).
|K( j�)|2 = P(�) = P

(
s
j

)
= Q(s) (20)
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Determination of the Chain Matrix A and of f (s). The chain
matrix of the lossless two-port in Fig. 1 is

A =
(

A11 A12

A21 A22

)
(29)

with

(
V1

I1

)
= A

(
V2

I2

)
(30)

Necessary and sufficient conditions for a realizable LC chain
matrix are as follows (17):

1. The four elements of A are rational in s and real for
real s. A11 and A22 are even, and A12, A21 are odd func-
tions of s.

2. det A � 1.

γ

Zeros assigned to K(s)

Zeros of f (s) f (–s)

ϑcosh 2

ϑsinh 2

β

3. At least three ratios of horizontally or vertically adjoin-
ing elements are LC driving point impedances. ForFigure 14. Zeros of K(s)K(�s) and f (s)f (�s) for Chebyshev filters
A12 � 0 or A21 � 0 or A12, A21 � 0, the elements A11 andwith m � 3.
A22 are constants reciprocal to each other.

K(s) can be expressed asor

ϑ1 = 2v + 1
m

π

2
ν = 0, 1, 2 . . . 2m − 1 (26a)

and

K(s) = V0

V2
=
(

A11 + A12

R2
+
(q

2

)2
(R2A21 + A22)

)

with q = 2

√
R1

R2
(31)

The term q is explained in Eq. (2). With an unknown ‘‘charac-ϑ2 = 1
m

arsinh
q
ε

(26b)
teristic’’ function f (s), we obtain

The location of the zeros is, with Eq. (24), s � j cos " � j
cos("1 � j"2) or A11 + A12

R2
= 1

2
(K(s) + f (s)) (32a)

s = sinϑ1 sinhϑ2 + j cos ϑ1 cosh ϑ2 = β + jγ (26c)
and

This finally provides �q
2

�2
(A22 + R2A21) = 1

2
(K(s) − f (s)) (32b)

β2

sinh2
ϑ2

+ γ 2

cosh2
ϑ2

= sin2
ϑ1 + cos2 ϑ1 = 1 (27)

According to condition 1, A11—respectively, (q/2)2A22—are the
even parts of 1/2 (K(s) � f (s))—respectively, 1/2 (K(s) �

The zeros obviously lie on an ellipse, as shown for m � 3 in f (s)). A12/R2—respectively, (q/2)2 R2A21—are the odd parts of
Fig. 14. Finally, 1/2 (K(s) � f (s))—respectively, 1/2 (K(s) � f (s)). This provides

K(s) = ±ε 2m−1
m∏

i=1

(s − si) (28a)

or

A11 = 1
4

(K(s) + f (s) + K(−s) + f (−s)) (33a)

A12

R2
= 1

4
(K(s) + f (s) − K(−s) − f (−s)) (33b)

(q
2

)2
A22 = 1

4
(K(s) − f (s) + K(−s) − f (−s)) (33c)(q

2

)2
R2A21 = 1

4
(K(s) − f (s) − K(−s) + f (−s)) (33d)

F(s) = ±1

ε 2m−1
m∏

i−1

(s − si )

(28b)

From det A � 1, we deriverepresents the solution for the desired K(s) and F(s) with the
m zeros of Eq. (22b) and the coefficient of the leading term
stemming from the Chebyshev polynomial in Eqs. (14) and
(15).

A11

(q
2

)2
A22 − A12

R2

(q
2

)2
R2A21 =

(q
2

)2
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or, with Eqs. (33a) through (33d), Development of an LC Two-Port. Starting with a chain ma-
trix A with known elements Aik, the steps leading to an LC
two-port embedded in the resistances R1 and R2 in Fig. 1 willK(s)K(−s) − q2 = f (s) f (−s), with q = 2

√
R1/R2 (34)

be given and explained. The basic concept is the development
As K(s) and q2 are known, f (s) can be determined by the same of an LC reactance function into an LC circuit in such a way
consideration as applied for finding K(s). The product that the poles of K(s) are realized. The poles of K(s) in Eq.
f (s)f (�s) is even; its zeros are assigned in complex conjugate (31) are the zeros of the denominator and the n � m poles at
pairs, if complex, to f (s) and the location with the opposite s � � that occur if the degree n of the numerator exceeds the
sign to f (�s). The constraint of stability, mandatory for K(s), degree m of the denominator, manifested by n � m � 0. For
does not apply for f (s) as f (s) is no insertion voltage loss. an all-pole filter, K(s) is a polynomial where all poles lie at

For Chebyshev filters we obtain, from Eqs. (22a), (22b), s � �. The Chebyshev filter is an example of an all-pole filter
and (34), as well as the Butterworth filter or the Thomson filter, which

are treated later.
The development of A into an LC two-port starts with the

selection of an element AikL with the largest degree in s. If
f (s) f (−s) = ε2T2

m

(
s
j

)
= 0 (35)

there is more than one such element any one may be chosen,
The zeros can be derived from Eqs. (23), (26a), and (26b) for yielding different solutions with the same inverse transfer
q/� � 0, yielding function K(s). Then we form the ratio D � AikL/AikN or the in-

verse D � AikN/AikL, where AikN is the element horizontally or
vertically next to AikL. The ratios are LC two-terminal func-ϑ1 = 2ν + 1

m
π

2
(36a)

tions. There are four possibilities to form them depending on
the selection of the neighbor to AikL. Together with the fourand
possible chain matrices, we are at this point already faced
with at least 16 possible LC one-ports, with every one ensur-ϑ2 = 0 (36b)
ing an equivalent solution.

The ratios may represent either an input or an output driv-with the zeros in Eq. (26c) as
ing point impedance function with a short circuit or an open
circuit at the receiving end. The short circuit or the open cir-
cuit is later replaced either by the load R2 or the input volt-
age V0 with the resistance R1 depending on the physical

sk = j cos ϑ1 = j cos
2ν + 1

m
π

2
ν = 0,1 . . . 2m − 1 and hence k = 1, 2 . . . 2m (37a)

meaning of the two-terminal function.
The development of the LC driving point impedance func-These zeros on the imaginary axis are double as demon-

tion is based on a modified continued fraction expansionstrated in Fig. 14 for m � 3.
Finally, from Eq. (35) we obtain (16a,16b) with partial pole removals (18–20) only allowed at

poles of K(s) and preferably at those poles of K(s) at s � � or
s � 0. The process is explained by the pole-zero plot in Fig.
15. The headline shows the poles of K(s) to be realized. A full

f (s) = ±ε 2m−1
m∏

k=1

(s − sk )

circle � or cross mark � stands for the two zeros or the two
poles at s � �j� and for the associated degree 2 in s, whereaswhere sk are half the zeros in Eq. (35) and where a single zero
a half circle � or a half cross mark ∨ stands for the degree 1is taken from each location.
in s. We assume that Y in the second line is the admittanceNow the elements Aik of the chain matrix can be calculated
D we have chosen from the chain matrix. The partial fractionusing Eqs. (33a) through (33d). There are four possibilities to
to the pole at s � 0 is a0/s. We remove part of this pole bycalculate A depending on the selection of the signs for K(s)

and f (s). subtracting a1/s with a1 � a0. It can be shown (16a,16b) that

Figure 15. Pole-zero plot of D with admittances Y
and impedances Z during partial ∨ and full � removal

0 ∞

Remaining part of D

Partial removal of poles at s = 0

The inverse of line above

Y ≡ 0  as remaining part of D

Full removal of poles at s = 0

The inverse of line above

Remaining part of D

Full removal of poles at s = ± j Ω 0

Poles of K ( s)

Pole-zero plot of D

± j Ω 0

± j Ω 1
Y

Y

Z

Z

Y

Y of poles.
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R2

V2V1

L1 L2 L3

V *2

C2C1

1 : k 

Figure 18. An LC two-port if K(s) is a polynomial.

nents. To minimize the number of components, partial pole
removal preferably should take place at s � 0 or s � �, as it
is there associated with only one reactance.

Full pole removal at s = j Ω 0

Full pole
removal
at s = 0

Partial pole
removal
at s = 0

Ω0

2′ 1′

2 1

So far, the procedure for rational functions D has been de-
scribed. The function K(s) of Chebyshev filters in Eq. (28a) isFigure 16. LC two-port generated by the development in Fig. 15.
a polynomial where all poles lie at s � �. The development of
the LC two-port is a special case plotted in Figs. 17 and 18
(16c). We start with an impedance, the pole of which at s �by doing this all zeros beside the one at s � � move toward
� is fully removed, realizing a pole of K(s) at s � � by thethe pole partially removed. a1 is chosen such that the zero at
inductor L1 in Fig. 18. The full pole removal in the admittances � j�1 moves to s � j�0. a1/s is realized by the first inductor
of the next step provides the shunt capacitor C1 realizing an-in Fig. 16. A proof that there is always an 0 � a1 � a0 able to
other pole at s � �. The process continues in Figs. 17 and 18generate the desired zero is missing. Now the admittance Y
(16c) until all poles are realized by three inductors and twois inversed, and the pole of the impedance Z at s � j�0 is fully
capacitors. Since for the Chebyshev filter only full pole remov-removed (�) and realized by the series parallel resonator in
als were used, the circuit generated exhibits the minimumFig. 16. The two-port shall exhibit a transmission zero at s �
number of components.j�0 because the infinite impedance of the series parallel reso-

So far, from the given matrix A in Eq. (29), the matrix A*nator prevents energy from being delivered into the resistor
in Eq. (37b)R2, which hence exhibits a zero voltage at frequency �0. The

same is true for a shunt zero impedance. It is even true for a
series infinite impedance or a shunt zero impedance, which A∗ =

�
kA11 A∗

12

kA21 A∗
22

�
(37b)

are generated by a partial pole removal, because these imped-
ances block the energy transfer to the output resistance R2. is realized if we assume that the driving point function D was
This imposes the constraint that a partial pole removal is only selected as D � A11/A21. In D a common constant factor k may
allowed at poles of K(s). have been canceled. The physical meaning of A11 is A11 �The partial removal of a pole does not lower the degree V1/V2 for I2 � 0 and of A*11 � kA11 � V1/V*2 for I*2 � 0, where
of the driving point function. As a consequence, the two-port V*2 (respectively, I*2 ) are the output voltage (respectively, cur-
generated does not exhibit the minimum number of compo- rent) in Fig. 19 at the LC-two-port A* so far realized. The

terms are evaluated at an arbitrarily chosen frequency,
where s0 � 0 or s0 � � are especially easy to handle. The
result is k � A*11(s0)/A11(s0). The correction for k � 1 is achieved
by an ideal transformer in Fig. 19 with matrix T in cascade
with A* providing

A∗T =
�

kA11 A∗
12

kA21 A∗
22

��1
k

0

0 k

�
=
�

A11 kA∗
12

A21 kA∗
22

�
(37c)

We claim that with this last step the given matrix A is real-
ized. For proof we consider for the matrices A and A*T the
equations

det A = A11A22 − A12A21 = 1

R2

R1

V1 V2

A*

V0

I2

V *2

I *2 1 : k

0 ∞
Poles of K(s), multiplicity 5

Z

Z

Y

Y

Z

Z

Y

Y

Z

Z

L3

C2

L2

C1

L1

Figure 17. Always in full pole removal ∨ if K(s) is a polynomial in Figure 19. The intermediate steps A*, the ideal transformer, and
the embedding in R1 and R2 during the synthesis of two-ports.s; Y � admittances, Z � impedances.
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and

det A∗T = A11kA∗
22 − kA∗

12A21 = 1

The poles of K(s) are given by the denominators of the ele-
ments Aik according to Eq. (31). They are already realized by
the synthesis procedure and are equal in A and A*. Therefore,

Figure 20. Equivalent circuit of a quartz oscillator.we now concentrate on the numerators of Aik. We assume
that A11 has the highest degree in s. At the n zeros of A11 we
obtain A12 � �1/A21 and kA*12 � �1/A21. That means that the behavior in the passband [Fig. 22(b)], and a low-pass with
numerators of A12 and kA*12 of degree �n are identical at n Chebyshev behavior in the stopband [Fig. 22(c)] can be
points; hence they are identical for all s. The same applies to generated.
A22 and kA*22. Therefore, A*T � A, as desired.

Some remarks about the procedure for synthesizing an The Butterworth Approximation (9). Contrary to the Cheby-
LC two-port are necessary: shev approximation, the normalizing frequency usually

1. As mentioned previously, a proof has not yet been found
that partial pole removal with positive value of the com-
ponents is always feasible. However, so far there has
always been a realizable two-port among all the alter-
natives for equivalent solutions.

2. If in each element in A the common factors are can-
celed, then it can be proved that horizontally or verti-
cally adjoining elements exhibit no common zeros. How-
ever, for some developments it is necessary to represent
all elements with one single common denominator.
Then common zeros of adjoining elements may occur.
They are also zeros of K(s) and are realized by a partial
fraction expansion. The pertinent circuits are added in
series of an open circuit reactance function and in the

1

1

T 2m
c

ω(      )

cω
ω

1

ω

(a)

shunt of a short circuit reactance function D. This brief
remark may suffice.

3. The alternative solutions can differ in the number of
inductors and capacitors. Hence a search for a circuit
with the minimum number of inductors is worthwhile
because capacitors are, as a rule, less costly.

4. Developments with capacitors connected to a common
terminal, such as ground, are advantageous since para-
sitic capacitances can be included in these capacitors.

5. Tuning of the transmission zeros can be carried out by
adjusting one element, preferably the capacitor, in the
series or parallel resonators.

6. The procedure can be used to generate specific one-ports

1

1

T 2m
cω

ω(      )

cω
ω

(b)

such as the equivalent circuit for a quartz oscillator in
Fig. 20.

The general procedure for the synthesis of an LC filter em-
bedded in R1 and R2 from a given �K( j�)�2 was presented with
Chebyshev filters as an example. The procedure shall be ap-
plied to all further filters discussed in this article.

Further Filters Derived from Chebyshev Polynomials. In the
previous section a low-pass was derived from the squared
Chebyshev polynomials T 2

m(�), � � �/�c. Further filters are
generated from 1/T 2

m(�), T 2
m(1/�), and 1/T 2

m(1/�). These func-
tions are depicted in Figs. 21(a) through 21(c). In the Figs.

1

1

T 2m
c

ω(      )

cω
ω

1
ω

(c)22(a) through 22(c) the pertaining filters and their K(s) are
shown. It can be seen that a highpass with Chebyshev behav- Figure 21. (a) The polynomial T�2

m (�/�c). (b) The polynomial
T 2

m(�c/�). (c) The polynomial T�2
m (�c/�).ior in the stopband [Fig. 22(a)], a highpass with Chebyshev
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chosen for the Butterworth filters is �*c , the 3 dB frequency,
yielding � � �/�*c . We again work with the function K( j�)
instead of F( j�) � K( j�)�1.

The function

|K( j�)|2 = A0(1 + �2n) = P(�) ≥ q2 = 4R1/R2 (38)

exhibits d� P(�)/d�� � 0 for � � 0 and � � 1, 2, . . . 2n � 1
and is hence maximally flat at � � 0.

The inequality in Eq. (38) is met for A0 � q2. �K( j�)� and
�F( j�)� � �K( j�)��1 are plotted in Fig. 23. The 3 dB cutoff fre-
quency is reached at � � 1. For large �  1, we obtain

1

A0

1

2 A0

A0

1
2 A0

K( jΩ)

Ω

F( jΩ)

Figure 23. The magnitude �F( j�)� of the transfer function and the
magnitude �K( j�)� of the inverse transfer function for Butterworth
filters.

�K( j�)� 
 	A0�
n and the attenuation a(�) � 20 log �K( j�)� 


20n log � � 20 log 	A0, from which an increase in attenua-
tion 
a for one frequency decade of 
a � n �20 dB/decade can
be seen.

According to Eq. (38), we obtain

Q(s) = P
(

s
j

)
= A0(1 + (−1)ns2n) = K(s)K(−s) (39)

The zeros of Q(s) are given by s2n � (�1)n�1 � ej�(n�1�2k) for k �
1

cω
ω

q 2 +e 2

q 2 

(         )K j
c

ω
ω

 2

(a)

0, 1, 2, . . ., 2n � 1. This yields the zeros

sk = e j π
2n (n−1+2k) (40)

Obviously, the zeros lie on the unit circle of the complex s-
plane. If they are complex, they have to be complex conjugate,
as Q(s) possesses only real coefficients. For n � 4 the zeros
are plotted in Fig. 24. The zeros in Re s � 0 are assigned to
K(s), yielding a stable two-port. For n � 4 we obtain

K(s) = ±√A0

(
s − e j 5π/8) (s − e− j 5π/8) (s − e j 7π/8) (s − e− j 7π/8)

or1
cω

ω

q 2 +e 2

q 2 

(         )K j
c

ω
ω

 2

(b) K(s) = ±√A0(s4 + 2.613s3 + 3.414s2 + 2.613s + 1)

1
cω

ω

q 2 +e 2

q 2 

(         )K j
c

ω
ω

 2

(c)

Figure 22. (a) The highpass with �K( j(�/�c))�2 � q2 � �2 T�2
m (�/�c)

and Chebyshev behavior in the stopband. (b) The highpass with

Zeros to K(s)

Zeros to e j α

Re s

j Im s

π7
8

π5
8

π9
8

π11
8

π13
8

π15
8

π3
8

π
8

1

2

3

4

0

7

6

5

k α

�K( j(�/�c))�2 � q2 � �2 T 2
m (�c/�) and Chebyshev behavior in the pass-

band. (c) The lowpass with �K( j(�/�c))�2 � q2 � �2 T�2
m (�c/�) and Cheb- Figure 24. The zeros of Q(s) � K(s)K(�s) in Eq. (39) of Butterworth

filters for n � 4.yshev behavior in the stopband.
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l2, and c in Fig. 25, where the denormalized values L1, L2, and
C are also listed.

The Thomson or Bessel Approximation (11). A filter with a
linear phase �(�) � �t0 provides an ideal delay by t0 and ex-
hibits the function

Table 3. Polynomials K(s) for Butterworth Filters.

n K(s)/	A0

1 s � 1
2 s2 � 	2s� 1
3 s3 � 2s2 � 2s � 1
4 s4 � 2.613s3 � 3.414s2 � 2.613s � 1

K
(

j
ω

ω0

)
= ae

j ω
ω0

ω0 t0

Table 3 lists K(s)/	A0 for Butterworth filters with degree n �
1 through n � 4. With �0t0 � 1 and � � �/�0 we obtain for s � j� extended

The characteristic polynomial is determined due to Eq. (34) into the s-plane
by

K(s) = aes (44)
K(s)K(−s) − q2 = f (s) f (−s) (41)

This normalization with �0 is different from the one used pre-
viously for the comparison of a(t). It is commonly used andor
emphasizes the delay t0 � 1/�0 as the most important prop-
erty of Bessel filters.A0(1 + (−1)ns2n) − q2 = f (s) f (−s) (42)

The group delay d�/d� � t0 is a constant. We have to ap-
proximate the filter with constant group delay by a realizableThe zeros are given by
function K(s). A Taylor series for es is no more Hurwitz from
the fifth-order term on. A realizable solution is provided by
setting K(s) � aes � a(cosh s � sinh s), wheres2n = (−1)n−1

(
1 − q2

A0

)

or cosh s = 1 + s2

2!
+ s4

4!
+ . . . (45a)

is an even function andsr =
(

1 − q2

A0

)1/2n

e j π
2n (n−1+2k) (43)

sinh s = s + s3

3!
+ s5

5!
+ . . . (45b)

where k � 0, 1, . . . 2n � 1 and hence r � 1, 2, . . . 2n.
The 2n zeros lie on a circle in the s-plane with radius

is an odd function in s.
A theorem states that if the ratio of the even part of a

polynomial over the odd part is an LC driving point function
and if the even and odd parts are coprime, then the sum of

r0 =
(

1 − q2

A0

)1/2n

the even and odd parts is Hurwitz. To check the property of
and are complex conjugate or real. Any complex conjugate an LC driving point impedance function, we develop the con-
pair and any real zero can be assigned to f (s), while the nega- tinued fraction based on Eqs. (45a) and (45b).
tive locations of these zeros belong to f (�s). This yields

f (s) = ±√A0

n∏
r=1

(s − sr)

With K(s) and f (s) now known, the elements of the chain
matrix are calculated by Eqs. (33a) through (33d), followed by

cosh s
sinh s

= 1
s

+ 1
3
s

+ 1

5
s

+ 1

7
s

+ . . .
1

2N − 1
s

+ . . .

= m(s)
n(s)

(46)

the development of the matrix into a two-port with the proce-
dure outlined previously. As an example, the solution for the

Since all terms in the infinite continued fraction expansionchain matrix A and for the pertaining two-port is now listed
are positive, h(s) � m(s) � n(s) calculated from Eq. (46) trun-for n � 3, A0 � 1, and R1 � R2:

A11 = 2s2 + 1; A12 = R2(2s3 + 2s);

A21 = 2s
R2

; A22 = 2s2 + 1

As all elements are polynomials in s, the pertaining two-port
in Fig. 25 was found by full pole removals and therefore ex-
hibits the minimum number of components.

R2

R2c, C

V0
V2

l1 =  l2 = 1

l1, L1 l2, L2

L1 = L2 = R2/ Cω

C = 2/ R2cω
c = 2

*

The solution, based on the normalized frequency � �
�/�*c , provides the normalized values for the components l1, Figure 25. The Butterworth filter for n � 3, A0 � 1, and R1 � R2.
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Cauer Filters (4,12,21). These filters exhibit Chebyshev be-
havior in the passband and in the stopband, as depicted in
Fig. 26. They are based on elliptic functions as derived by
Cauer and are therefore also called elliptic filters. The theory
of elliptic filters is very involved. A simpler approach based
on the results is given here.

The filter function in Fig. 26 is represented by

|K( j�)|2 = q2 + ε2F2
n (�) (49)

Table 4. A List of Modified Bessel Polynomials B�(s) and
Their Factored Form for � up to 5.

B0(s) � 1
B1(s) � s �1
B2(s) � s2 � 3s � 3
B3(s) � s3 � 6s2 � 15s � 15 � (s � 2.322)(s2 � 3.678s � 6.460)
B4(s) � s4 � 10s3 � 45s2 � 105s � 105 � (s2 � 5.792s � 9.140) �

(s2 � 4.208s � 11.488)
B5(s) � s5 � 15s4 � 105s3 � 420s2 � 945s � 945

� (s � 3.647)(s2 � 6.704s � 14.272)(s2 � 4.679s � 18.156)

with

cated at (2N � 1)/s is Hurwitz. For 2N � 1 � 7, we obtain
from Eq. (46)

Fn(�) =




k
n/2∏
ν=1

�2 − �2
ν

�2 − (�s/�ν )2 n even

k�

(n−1)/2∏
ν=1

�2 − �2
ν

�2 − (�s/�ν )2
n odd

(50)

(51)m(s)
n(s)

= s4 + 45s2 + 105
10s3 + 105s

and K(s) = aC[m(s) + n(s)]

= aC(s4 + 10s3 + 45s2 + 105s + 105)

The equiripple behavior of F 2
n(�) in � � [0, 1] in Fig. 27 is

The factor C is needed to render K(0) � a, as required by Eq. guaranteed by the choice of �� according to
(44). In the example C � 1/105, m(s) � n(s) can be expressed
by modified Bessel polynomials:

Bν (s) = sνB∗
ν

(
1
s

)
= m(s) + n(s) (47a)

with

�ν =




sn


E

(
1
�s

)
(2ν − 1)

n


 n even, ν = 1,2, . . .

n
2

sn


E

(
1
�s

)
2ν

n


 n odd, ν = 1, 2, . . .

n − 1
2

(52a)

(52b)

whereB∗
ν

�1
s

�
=

ν∑
k=0

(ν + k)!
(ν − k)! k! (2s)k

(47b)

A recursion formula is given by

Bν (s) = (2ν − 1)Bν−1(s) + s2

E
(

1
�s

)
=
∫ π/2

0

dφ(
1 − 1

�2
s

sin2
φ

)1/2 (53a)

B��2(s). With Eqs. (47a) and (47b),we finally obtain is the complete elliptic integral of the first kind and the Ja-
cobi-elliptic function sn(u) � sin � is calculated from the

K(s) = a Bν (0)−1Bν (s) (48) inverse �(u) of the incomplete elliptic integral of the first
kind:

Table 4 lists the Bessel polynomials up to � � 5 (4).
The constant a is chosen such that the constraint for

�K( j�)� is met. The characteristic function is determined by
K(s)K(�s) � q2 � f (s)f (�s). The LC two-port is then calculated
by the procedure given previously, applied for polynomials.

u =
∫ ϕ

0

dφ�
1 − 1

�2
s

sin2
φ

�1/2 (53b)

Figure 26. The characteristic �K( j�)�2 of a
Cauer filter for n odd in Eq. (49).

|K( jΩ )|2

q 2 +  2

Ω1Ω3 Ωs Ωs /Ω3 Ωs /Ω2 Ωs /Ω1Ω2Ω1

q 2 +  2  B

q 2
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Figure 27. F 2
n(�) for a Cauer filter in Fig. 26 and

in Eqs. (50) and (51).

F 2 (Ω )

Ω1Ω3 Ωs Ωs /Ω3 Ωs /Ω2 Ωs /Ω1Ω2Ω1

1

B

n

followed by forming sin � � sn(u). �s is chosen as �s � 1; Eqs. conformal mapping. This includes also the case of Chebyshev
behavior in the passband and the stopband as a special case.(52a) and (52b) yield 0 � �� � 1, � � 1, 2, . . . n/2, or (n �

1)/2. Obviously, the zeros of F 2
n(�) lie in ��� � 1 and the poles The procedure is based on the fact that the Hurwitz poly-

nomialin ��� � �s. k in Eqs. (50) and (51) is chosen such that F 2
n(�)

in Fig. 27 oscillates between 0 and 1 in � � [0, 1].
Finally, the minimum value B of F 2

n(�) in the stopband in h(s) = m(s) + n(s) (56)
Fig. 27 is given by

where m(s) is even and n(s) is odd, provides the reactance
function m(s)/n(s). It can be further shown that the driving
point impedance function

B =




k
n/2∏
ν=1

�2
s − �2

ν

�2
s − (�s/�ν )2 n even

k�s

(n−1)/2∏
ν=1

�2
s − �2

ν

�2
s − (�s/�ν )2

n odd

(54a)

(54b) w(s) = m/n

1 + m
n

= m(s)
m(s) + n(s)

(57)

if the degree n of Fn(�) is chosen as has the property

|w( j�)|2 = m2( j�)

m2( j�) − n2( j�)
∈ [0,1] (58)n ≥ E(1/�s)E(

√
1 − 1/B)

E(
√

1/B)E(
√

1 − (1/�s)2)
(55)

for � � [��, �]. This shall provide the Chebyshev behavior.If the minimum value for n is not an integer, then the next
We investigatelarger integer has to be chosen. In this case the realized B in

Eqs. (54a) and (54b) is larger than the desired B in Eq. (55).
From Eq. (49) and Fig. 27, we derive f (z2) = m2(z)

m2(z) − n2(z)
with z = u + jv (59)

|K( j1)|2 = q2 + ε2

and the transformation

and
z2 = 1 + 1

s2
(60)

|K( j�s )
2 = q2 + ε2B

providing
For the filter design the desired R1 and R2 yield

q = 2

√
R1

R2
,

the desired ripple in the passband provides �, and the mini-
mum q2 � �2B of �K( j�)�2 in the stop-band yields B in Eqs.
(54a) and (54b).

f (z2) = f
(

1 + 1
s2

)
= g(s2)

=
m2

(√
1 + 1

s2

)

m2

(√
1 + 1

s2

)
− n2

(√
1 + 1

s2

) (61)

The properties of the transformation in Eq. (60) are inves-Approximation of �K( j�)�2 by Conformal Mapping (4). Low-
passes with Chebyshev behavior in the passband and arbi- tigated in Figs. 28(a) through 28(e), where the passband s �

j� with ��� � 1, denoted by dashed lines, and the stopbandtrary characteristics in the stopband can be designed by a
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Figure 28. The steps in the conformal
mapping z � �	1� 1/s2 for s � j�.

s

j

– j

Re s

(a)

jΩ

–1

(b)

w1 =  s2

w1 w2

(c)

w2 = =w1

1
s2
1

–1

(d)

w3 =  w2+ 1

 = 1 +  = z2

1

s2
1

w3

(e) 

1

z

z = + 1 +
s 2
1

Passband

Stopband

jv

u

with ��� � 1, denoted by solid lines, are step by step mapped With these results
into the z-plane. The steps from the s-plane to the z-plane in
Fig. 28 are w1 � s2, w2 � 1/w1, w3 � w2 � 1, z � �	w3. The
result is the following mapping: g(−�2) = m2(

√
1 + 1/s2)

m2(
√

1 + 1/s2) − n2(
√

1 + 1/s2)
for s = j�

� ∈ [−1, 1] into v ∈ [−∞, ∞] (62a) assumes the shape in Fig. 29. The function g(��2) oscillates
between 0 and 1 in the passband as long as m(s) is even and
n(s) is odd and h(s) � m(s) � n(s) is Hurwitz. The selectionand
of m(s) and n(s) is the freedom for the design of filters.

For the filter we obtain, as in all previous cases,
|�| ≥ 1 into u ∈ [0, 1] (62b)

|K( j�)|2 = q2 + ε2g(−�2) (64)

The complex conjugate pair of poles � in ��� � 1 results
in a double pole in u � [0, 1]. The consequences of this map-
ping for f (z2) � g(s2) in Eqs. (59) and (61) are as follows: for
z � jv, v � [��, �], and the pertaining � � [�1, 1]:

f (−v2) = g(−�2) = m2( jv)

m2( jv) − n2( jv)
∈ [0, 1] (63a)

for z � u, u � [0, 1], and the pertaining ��� � 1 with the
constraint �m(u)� � �n(u)� and hence

0 ≤ n2(u)

m2(u)
≤ 1

g(– Ω2)

Ω1

Passband

Stopband        

1

Figure 29. The function g(��2) of Eq. (63a) in the passband and
the stopband.

f (u2) = g(−�2) = m2(u)

m2(u) − n2(u)
= 1

1 − n2(u)

m2(u)

≥ 1 (63b)
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with

ε2g(s2) = ε2 m2(
√

1 + 1/s2)

m2(
√

1 + 1/s2) − n2(
√

1 + 1/s2)
(65)

or

ε2g(s2) = ε2

2

[
1 + 1

2
m + n
m − n

+ 1
2

m − n
m + n

]
(66)

γ

 + 1

iγ

iγ

iγiγ

  = 0

20 log coth
| |

2
–

γThe dominant term in the stop-band, especially around the
poles, is Figure 30. The templates 20 log coth��i � ��/2 for the approximation

of the given characteristics in the stopband.

|K( j�)|2 ≈ ε2

4
m(z) + n(z)

m(z) − n(z)
(67)

For zi � 1 we obtainwith z � [0, 1] and ��� � 1 in the stopband. The term with
the denominator m(z) � n(z) � h(z) in Eq. (66) exhibits no
poles in the stopband as h(z) is Hurwitz. Hence the term with
the denominator m(z) � n(z) provides the poles. Now we de-

r∞ = 10 log
(

z + 1
−z + 1

)ϕ

= 10ϕ log coth
|γ |
2

(72)

termine m and n from the requirements in the stopband. With
the pole locations zi � [0, 1] in Eq. (67), which are found later, The terms ri and r� can be considered a template in Fig. 30
we obtain that can be shifted to all pole locations � � �i and � � 0.

Any given tolerance scheme in the stopband can be met by
a sum of the templates in Eqs. (71) and (72). The number of
those templates is minimized by shifting them to appropriate

m(z) − n(z) = (−z + 1)ϕ
r∏

i=1

(−z + zi)
2 (68)

locations �i. This numerical search procedure is performed ei-
and by exchanging z with �z ther by a computer program or by trials consisting of shifting

and adding templates. The result consists of pole locations zi,
their number r, and the multiplicity � of the poles at z � 1.

As all considerations for the conformal mapping have now
m(z) + n(z) = (z + 1)ϕ

r∏
i=1

(z + zi)
2 (69)

been discussed, we are ready to list the sequence of the syn-
thesis steps:The term z � zi in Eq. (68) represents the double pole in z �

[0, 1], while z � 1 stands for the pole of multiplicity � at � �
�. The even part in Eq. (69) provides m(z), whereas the odd 1. The given R1, R2 and the ripple in the passband yield q
part yields n(z). Hence and �.

2. Determine poles zi.
a. If only discrete pilot frequenciesf (z2) = g(s2) = m2(z)

m2(z) − n2(z)
(70)

and �K( j�)�2 in Eq. (67) valid in the stopband are known. The
attenuation pertaining to Eqs. (67) through (69) is

zi =
√

1 − 1
�2

i

have to be suppressed, then these zi provide Eq. (68).
b. If a tolerance scheme in the stopband has to be met,

templates provide the pole locations zi together with
r and � in Eq. (68).

3. Form

a(�) = 10 log |K( j�)|2

= 20 log ε − 10 log 4 +
r∑

i=1

10 log
(

z + zi

−z + zi

)2

+ ϕ10 log
(z + 1)

(−z + 1)

The substitution

γ = ln z and γi = ln zi

yields

m(z) − n(z) = (−z + 1)ϕ
r∏

i=1

(−z + zi)
2

m(z) + n(z) = (z + 1)ϕ
r∏

i=1

(z + zi)
2

and

f (z2) = g(s2) = m2(
√

1 + 1/s2)

m2(
√

1 + 1/s2) − n2(
√

1 + 1/s2)

ri = 10 log
(

z + zi

−z + zi

)2

= 10 log
(

eγi + eγ

eγi − eγ

)2

= 10 log
(

eγi−γ + 1
eγi−γ − 1

)2

= 20 log coth
∣∣∣∣γi − γ

2

∣∣∣∣
(71)
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4. Form

|K( j�)|2 = q2 + ε2g(−�2) = P(�) = P
(

s
j

)
= Q(s)

and

K(s)K(−s) = Q(s)

The zeros and poles of Q(s) provide a stable K(s).
5.

f (s) f (−s) = Q(s) − q2 = ε2 m2(
√

1 + 1/s2)

m2(
√

1 + 1/s2) − n2(
√

1 + 1/s2)

The zeros and poles of Q(s) � q2 determine f (s).
6. With K(s) and f (s), calculate the elements Aik of the

chain matrix and synthesize the LC two-ports embed-

0λ 2λ

1

–1

Ω

1λ λ

ded in R1 and R2.

Figure 31. The low-pass bandpass transformation.
Transformation of Low-passes Into Other Filters (19). The syn-

thesis procedures presented were all geared to low-passes.
The standard approach to generate other filter types is a

band, as outlined by the transformation of sixth degree:transformation of the low-pass with frequency variable s and
s � j� into a new filter with frequency w and w � j	. The
general transformation is s = aw + b

w
+ cw

w2 + λ2
c

+ dw
w2 + λ2

d

(79)

s = f (w) (73)
with a, b, c, d, 	2

c, 	2
d, � 0.

where f (w) is a reactance function. This will also allow trans- The mapping of s � j� into w � j	 is shown in Fig. 33,
formation of the reactances Ls and Cs into realizable reactan- where three passbands are generated. The number of re-
ces in the w-domain. actances has increased by a factor of 6 due to f (w) of sixth

Low-pass Bandpass Transformation. The transformation degree.
The Low-pass Bandstop Transformation. For the transforma-

tions = a
w

+ bw (74)

with a, b � 0 maps s � j� into w � j	 according to s = 1
a
w

+ bw
with a, b > 0 (80)

� = −a
λ

+ bλ (75)
the function � � f (	) is shown in Fig. 34 with a stopband for
	 � [	1, 	2] with 	1, 	2 and 	0, as in Eqs. (76) through (78).as depicted in Fig. 31. The passband of the low-pass with
The doubling of the reactances is demonstrated in Fig. 35.� � [�1, 1] is translated into the passband with 	 � [	1, 	2]

The Low-pass High-pass Transformation. The transformationof the bandpass, as indicated by bold lines in Fig. 31. The
cutoff frequencies are

s = a
w

(81)

λ1 = − 1
2b

+
√

1
4b2

+ a
b

(76)

λ2 = 1
2b

+
√

1
4b2

+ a
b

(77)

The center frequency as an image of � � 0 is

λ0 =
√

a
b

(78)

with 	2
0 � 	1	2 representing the geometrical mean of 	1 and

	2. The reactances Ls and Cs translate into the series and
parallel resonators in Fig. 32. Due to f (w) in Eq. (73) of second

w
a

w
Ca

w
La

s   =

s   =

  + bw

w
a   + bw

Cbw

LbwLs

Cs

degree, a doubling of the reactances is observed. A transfor-
mation f (w) of higher degree provides more than one pass- Figure 32. Transformation of reactances for bandpasses.
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Figure 33. Transformation of a low-pass

12λ

–1

1

Ω

11λ

22λ

21λ

32λ

31λ

λ

cλ dλ

into a bandpass with multiple passbands.

a � 0 yields voltage loss function K(s) at least in a limited frequency
range. An often encountered solution to this problem is cas-
cading the unequalized two-port with the bridged-T network� = −a

λ
(82)

in Fig. 38. If the impedances Z1 and Z2 are chosen according
towhich is drawn in Fig. 36.

The cutoff frequency of the highpass is
Z1Z2 = R2 (84)

λ1 = a (83)

and if the network is terminated by the resistor R, then the
According to Fig. 37, inductors and capacitors are inter- input impedance is also R. This implies that the bridged T
changed. terminated by R can replace the load R2 � R of the original

two-port without interaction. The inverse transfer function ofAmplitude and Phase Equalizers. Amplitude equalizers gen-
the bridged T loaded by R iserate two-ports with a constant magnitude of the insertion

K∗
B(p) = 1 + Z1(p)

R
(85)

For

Z1/R = 1
G + jY (ω)

we obtain

|K∗
B( jω)|2 = (1 + G)2 + Y 2(ω)

G2 + Y 2(ω)

w
a

w
a

a
Cwbw

C

bw
L

a
Lws   =

  + bwLs

Cs

1

s   =
  + bw
1

–1

1

Ω

λ
0λ1λ 2λ

Figure 34. Low-pass bandstop transformation with 	0 � 	a/b. Figure 35. Transformation of reactances for bandstops.
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Z1

Z2

R R

Figure 38. Bridged-T network with Z1Z2 � R2 for amplitude equal-
ization.

with the phase �(�) and the group delay �(�) as

ψ1(ω) = arg K1( jω) = 2 arctan
ω

ω0

–1

–

1

Ω

λ
1λ

1λ

and
Figure 36. Low-pass high-pass transformation.

ψ2(ω) = arg K2( jω) = 2 arccot
b
2

(
ω0

ω
− ω

ω0

)

and

a(ω) = 10 log
(1 + G)2 + Y 2(ω)

G2 + Y 2(ω)
(86)

τ1(ω) = d arg K1( jω)

dω
=

2
ω0

1 +
(

ω

ω0

)2 (89)

The term a(�) is the attenuation added to the attenuation of
the original two-port in order to equalize the magnitude.

Table 5 lists a(�) for various impedances Z1 and Z2 �

τ2(ω) = d arg K2( jω)

dω
= b

ω0

1 +
(ω0

ω

)2

1 +
(

b2

4

)(
ω

ω0
− ω0

ω

)2 (90)

R2/Z1 (4).
Phase equalizers have the task to provide a linear phase The group delays �1(�) and �2(�) are depicted in Figs. 39(a)

or a constant delay for the equalized two-port. They are com- and 39(b). For �2(�) the maximum is approaching � � �0 de-
monly allpasses. The inverse transfer function of a first-order pending on increasing values of b. These bell-like curves are
and of a second-order allpass are added to the nonconstant group delay of the given two-port

and thus straighten it out. Several different frequencies �0

may be needed for this end. The network in Fig. 40 represents
a second-order allpass if it is terminated by R and if the ele-

K∗
1 (p) = p + ω0

−p + ω0
(87)

ment values are as listed in the figure caption. With the ele-
ment values given in the figure caption, it exhibits constantand
input and output impedances and can therefore be cascaded
without interaction with the unequalized two-port.

SURFACE ACOUSTIC WAVE FILTERS
K∗

2 (p) =
p2 + 2ω0

b
p + ω2

0

p2 − 2ω0

b
p + ω2

0

(88)

Filters for high frequencies in the megahertz or gigahertz
range are difficult to realize as the calculation of a three-di-
mensional electromagnetic field is required. To achieve this,
one has to resort to numerical methods, which, as a rule, are
inaccurate and hence necessitate complicated tuning of the
filters. Filters based on surface acoustic waves (SAW) are
somewhat easier to design and build. They are economically
one of the most important extensions of classical filters and
have reached operating frequencies of more than 10 GHz.

The surface of a piezoelectric substrate such as monocrys-
talline barium-titanate or -tantalate carries input and output

w
a

a
Cw

w
La

s   =

w
as   =

Ls

Cs
transducers as shown in Fig. 41. They translate the electrical
field E stemming from the input voltage V1 through the piezo-Figure 37. Transformation of reactances for high-passes.
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Table 5. A List of Impedances Z1 and Z2 and the Pertinent a(�) for
Amplitude Equilization.

a (  )

0

ω

ω

a (  )

0 0

ω

ωω

a (  )

0 0

ω

ωω

Shape of         in Eq. (86)a (  )ω

a (  )

0

Z1 Z2

ω

ω

electric effect into a mechanical wave that travels with speed as depicted in Fig. 43. This shape is approximated also by
Dirac impulses, as drawn in the last plot in Fig. 43. This so-v mainly in the surface of the substrate to the output trans-

ducer. Waves traveling backward or through the bulk of the called �-approximation renders the calculation of the transfer
function F(p) rather easy. Each location of a �-impulse is thesubstrate disappear in an absorbing layer in Figs. 41 and 42.

The inverse piezo effect changes the mechanical wave in the origin of a mechanical �-impulse traveling with the speed v to
the output transducer. Figure 44 shows the distances fromoutput transducer back to a charge separation, resulting in

the output voltage V2. the pair of fingers � in the input transducer to the pair of
fingers � in the output transducer; in Fig. 44 x0 is the distanceIn its simplest form, the fingers and the gaps of the trans-

ducers exhibit all the same width as depicted at the top of between the last fingers of the input transducer and the first
fingers of the output transducer. A most important parameterFig. 43. In a more complicated but also more versatile case,

they are all unequal, as shown also in Fig. 43. The latter lay- is the overlap h� (respectively, g�) of a pair of fingers in the
transducers. They determine the width of the wave leavingout provides more degrees of freedom for the filter design. The

electrical field in the gaps as response to Dirac impulses at the input and being received by the output. Due to diffraction,
the width expands while the wave travels through the sub-the input reaches infinite values in the borders of the fingers,
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generating the voltage

eµν (t) = k(δ(t − tL1
) + δ(t − tL2

)) (94a)

with

k = k0

pµ + qµ

(−1)ν (−1)µ min(hµ, gν ) (94b)

The factor k describes the strength (area) of the impulse,
which is inversely proportional to the width of the gap 1/
(p� � q�) of finger pair �, proportional to the min(h�,g�) be-
cause the minimum of either the width h� of the transmitted
wave or the width g� of the overlap of the receiving finger pair
determines the received wave, and, finally, proportional to the
alternating sign of E in the gaps represented by (�1)� (�1)�;
k0 is a factor of proportionality representing the transducer
constant. As a synthesis with min(h�,g�) is hard to achieve,

30 0.5 1 1.5 2 2.5

0 1(  ) ω ω τ 

0/ω ω 

2

1.4

1.8

1.6

1.2

0.8

1

0.6

0.4

0.2

0

(a)

we put

min(hν, gµ) = hµ (95)

meaning g� � h� for all � and �; thus the output transducer
receives the full energy transmitted by the input transducer.

The full impulse response h(t) of the SAW filter is given by
adding over all N transmitting finger pairs and over all M
receiving pairs, which provides, with Eqs. (91) through (95),

h(t) =
N−1∑
µ=0

M−1∑
ν=0

k0(−1)ν+µhµ

2c + bµ − dµ

(
δ

(
t − x0 + (ν + µ)r + c − dµ

v

)

+ δ

(
t − x0 + (ν + µ)r − c − bµ

v

))
(96)

A Laplace transform of Eq. (96) yields the transfer function20 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
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Figure 39. (a) The group delay of a first-order allpass in Eq. (87). (b)
The group delay of a second-order allpass in Eq. (88).

strate. This effect is limited by the dummy electrodes in Fig.

F∗( jω) = k0e jω x0/v
N−1∑
µ=0

M−1∑
ν=0

(−1)ν+µ hµ

2c + bµ − dµ

e− jω(ν+µ)r/v

[
e− jω c/ve jω dµ/v + e jω c/ve jω bµ/v

]
(97)

41. They form a surface with equal potential from where the
wave again starts with a given width.

The two �-impulses in the edges of the finger pair � in the
input transducer in Fig. 44 reach the center of the gap of the
finger pair � in the output transducer after the delays

tL1
= x0 + (ν + µ)r + qµ

v
(91)

and

tL2
= x0 + (ν + µ)r − pµ

v
(92)

C1 C2

L1

L2

C2

with Figure 40. Bridged-T network realizing a second-order allpass with
constant input and output impedances R for the element values

pµ = c + bµ (93a)

and L1 = 2
R2C1C2
2C1 + C2

L2 = 1
2

R2C1

qµ = c − dµ (93b) and for a termination by R.
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Figure 41. Top view on surface acousticV1
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H
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wave filter (SAW filter).

This general result is, for practical applications, usually sim- on the left has to be approximated by the right-hand term.
This term is the same as the transfer function of digital filtersplified by setting b� � 0 and d� � 0 for all �, which means

that all fingers have the same width r/2, which is also the with finite impulse response (FIR filters). Therefore, the syn-
thesis procedures known from FIR filters can be appliedwidth of all gaps. This reduces F*( j�) in Eq. (97) to
(21,22). Even though SAW filters are continuous time sys-
tems, the approximation by �-impulses renders them similar
to time discrete systems, where r/v in Eq. (99b) plays the role
of the sampling time.

We cannot expect the approximation to provide h�� with al-
ternating signs. Hence the layout of the fingers must be modi-

F∗( jω) = k0

c
cos

cω
v

e− j
ω x0

v

N−1∑
µ=0

(−1)µhµe− jω µr/v

M−1∑
ν=0

(−1)νe− jω νr/v

(98)

fied according to Fig. 45, where the alternation of signs is in-
terrupted.

The pitch r in Fig. 46 is chosen such that the output signalIn Eq. (98) the term e�j�x0/v stands for the delay x0/v of the
is maximum at the center frequency of the passband. This iswave between the two transducers; the sum over � is the es-
achieved by a constructive interference of the wave travelingsentially unwanted contribution of the output transducer,
the distance 2r in time 2r/v and the sin wave with frequencywhereas the cos term stems from the two �-impulses per fin-
�0 imposed by the voltage V1 exhibiting the period 2�/�0. Thisger pair. The desired frequency characteristic has to be real-
yieldsized with the individual overlaps h� of the input transducer.

We set
2r
v

= 2π

ω0(−1)µhµ = h′
µ (99a)

orand

z = e jω r/v (99b) r = vπ

ω0
= v

2 f0
(101)

and obtain from Eq. (98)

F∗( jω)

k0

c
cos

cω

v
e− jω x0/v

M−1∑
ν=0

(−1)νe− jω νr/v

=
N−1∑
µ=0

h′
µz−µ (100)

F*( j�) is the desired transfer function to be synthesized; the
Absorber

v v

denominator on the left-hand side of Eq. 100 is the unavoid-
able contribution of the transducers. The ratio of both terms Figure 42. Cross section of SAW filter.
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Figure 43. Top view of fingers and electrical
field in the gaps.
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Due to the approximations made, the design of SAW filters 8 dB, stemming mainly from the loss in the substrate mate-
rial. The loss can be decreased to around 5 dB by employingas a rule requires a corrective redesign based on the mea-

sured deviations from the desired characteristics. Further a second output transducer in Fig. 47, which catches the so
far unused backward-traveling wave. However, the placementdamaging parasitic effects are the triple transit signals,

which are reflected by the fingers at the output transducer of the two output transducers both in the distance x0 has to
be accurate in order to maintain the same phase of the wavesand then again reflected back to the output by the input

transducer. added in the output transducers.
Economically important applications of the SAW technol-

ogy are filters for the intermediate frequency in TV sets and
filters for mobile communications. AREAS FOR FUTURE STUDY

The bandpass for TV sets possesses a center frequency of
38 MHz; the SAW substrate exhibits v � 1000 m/s. This Classical filter synthesis is a well-established area for which

the first contributions were published more than 70 yearsyields, according to Eq. (101), a width of the fingers that
equals the gaps of r/2 � 13 �m. A shortcoming of SAW filters ago. Most of the important problems were indeed solved in

the meantime. Some remaining unresolved problems will beis the relatively large insertion loss in the passband of around
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Figure 44. Top view of input and output transducer with unequal widths and gaps of fingers.

outlined in this section. There has been increased focus on for further investigations would be the fact that nega-
tive impedances are also tolerable for partial pole re-those problems in recent years because the classical filters

serve as models for filter implementations in new technolo- moval, as they can represent the negative component,
an inductor or a capacitor, in the equivalent circuit forgies, such as digital filters, RC-active filters, and switched-

capacitor filters. a transformer with tight couplings.
The following problems need to be resolved: 2. Guidelines on how to find lossless two-ports with a min-

imum number of the more expensive inductors would be
1. A proof that the synthesis of lossless two-ports with of economic interest. The guidelines could make use of

partial and full pole removal is always possible with re- the large number of equivalent solutions.
alizable reactances is still missing. It is a difficult task, 3. A procedure is needed to control the various possibilit-
as many unsuccessful attempts may testify. However, a ies for synthesizing a lossless two-port such that the
proof would certainly offer a deeper insight into one of component values lie in a desired range. This could help
the most important synthesis procedures. A helpful hint

Ex
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Ex
Ex

No alternation of sign

Ex = 0

Ex = 0+ +

_ _ _

+

V1

r

2r

Ex Ex

+ +

– –

Ex

Figure 46. Construction of superposition of traveling wave and waveFigure 45. Top view of layout of fingers without alternating signs of
electrical field. fed in by V1.
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Figure 47. SAW filter with two parallel
connected output transducers in two iden-
tical distances x0 from the input trans-
ducer.

V1
V2

x0 x0

Output
transducer

Output
transducer

Input
transducer

in using the components of an advantageous price- and 7. There is a need for synthesis of SAW filters based on a
more accurate but still easy-to-handle simulation of theperformance category and in implementing parasitic
device, which should eliminate the need for a correctivecomponents of a given value.
redesign.For filters in new miniaturized technologies, the

solution to the problem could provide component val- 8. A straightforward synthesis of SAW filters with the
ues that are feasible in the new technology, such as large number of geometrical parameters in Eq. (69) will
multipliers with values in the raster 2�, � integer, in save fingers and hence chip area. The synthesis should
digital signal processing or capacitors in the pF range also compensate for parasitic effects, such as the triple
for CMOS technology while still maintaining a closed- transit signal.
loop gain around 1 of the operational amplifiers. The 9. Materials science ought to synthesize piezoelectric sub-
same goal may be reached by a linear transformation strates with a diminished attenuation of the SAW in
into an equivalent two-port either for the time contin- order to decrease the insertion loss of filters.
uous classical filters (12,23) or for digital filters (24).
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Nachrichtentechnische Zeitschrift, 549–555, November 1964.

Reading List

L. O. Chua, C. A. Desoer, and E. S. Kuh, Linear and Non-Linear
Circuits, New York: McGraw-Hill, 1997.

ERNST LUEDER

University of Stuttgart

FILTERS, TIME-VARYING. See TIME-VARYING FILTERS.


