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Before proceeding, it should be noted that the circuits to
be considered in this article in fact form only a subset of the
universe of circuits—they are all linear, time-invariant, and
lumped. A linear circuit is one in which each element (except
the independent sources that drive the circuit) is described
by one or more linear equations involving its current(s) and
voltage(s). For example, the resistor defined by v � Ri is lin-
ear, but the diode defined by i � Is(ev/VT � 1) is nonlinear, and
any circuit containing the diode is therefore nonlinear. Non-
linear circuits can exhibit highly complex behavior and can-
not be handled by the techniques described in this article. A
time-invariant circuit is one in which the equations defining
the elements (except the independent sources) do not change
with time. A lumped circuit is one which is small enough that
all electromagnetic waves in the circuit propagate virtually
instantaneously through the circuit, and the behavior of the
circuit is unaffected by physical distances between elements.
Circuits that are not lumped are handled by a special branch
of circuit theory known as distributed circuit theory or trans-
mission line theory. We will assume throughout this article
that all circuits under consideration are linear, time-invari-
ant, and lumped.

The equations describing a circuit arise from two sources:
Kirchhoff ’s laws tell us how the elements in the circuit are
interconnected, and then each element in the circuit has an
individual equation (or equations) describing its behavior. If
all of the circuit elements are described by algebraic equa-
tions (i.e., ones in which no derivatives appear) involving
their currents and voltages, these equations can be combined
with Kirchhoff ’s equations to give a set of algebraic equations
that completely describe the circuit. These equations are lin-
ear equations in terms of the currents and/or voltages in the
circuit, and they can be solved by any of the techniques of
linear algebra. The power of linear algebra means that these
circuits, known as resistive circuits, are (relatively) easy to
analyze. The behavior of these circuits is quite simple: If a
linear resistive circuit is driven by a 1 V battery, then chang-
ing to a 2 V battery will cause all voltages and currents in
the circuit to double. There is no time delay in this response:
The doubling of voltages and currents occurs at the precise
instant when the 2 V battery is inserted into the circuit. If
the battery is replaced by a more complicated voltage source
which varies with time, each voltage and current in the cir-
cuit will also vary with time as a scaled replica of the new
voltage source.

Although easy to analyze, the limited behavior of a linear
resistive circuit means that such circuits are not very useful.
Instead of producing a scaled replica of the signal that drives
them, most circuits are required to convert a signal into aTRANSIENT ANALYSIS
more useful form. For example, a radio receiver can receive a
jumbled signal containing contributions from the myriad ofTransient circuit analysis is used to find the currents and

voltages in a circuit containing one or more capacitors and/or stations that inhabit the airwaves and tune into a single one;
the graphic equaliser on a stereo system can change theinductors. The word ‘‘transient’’ describes a quantity that is

fleeting rather than permanent, and it distinguishes this sound quality by boosting or diminishing certain frequencies;
and an ignition circuit in a car is driven by a battery, but itsbranch of circuit analysis from steady-state analysis, which is

concerned with the long-term or settled behavior of a circuit. output is a short sharp spark. These effects rely on the use of
capacitors and/or inductors. These circuit elements are de-Transient circuit analysis asks not just ‘‘Where will my circuit

end up?’’ but also ‘‘How will it get there?’’ The charging of a fined by equations involving not just their currents and volt-
ages, but the rate of change (or derivative) of these quantitiesbattery, the discharge of a flashbulb, and the oscillation of the

pointer in a voltmeter about its resting point are all examples with time. Specifically, the current through a capacitor is pro-
portional to the derivative of its voltage with respect to time,of transient behavior which can be analyzed using the tech-

niques of transient circuit analysis. and the voltage across an inductor is proportional to the de-
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rivative of its current with respect to time. Capacitors and voltages and currents would have been scaled versions of the
inductors are known as dynamic circuit elements, to convey source. In this circuit, however, the capacitor voltage takes on
the importance to them of time variation, or energy storage a form quite unlike that of the source: It varies exponentially
elements, since they are capable of storing energy for later with time, whereas the source is constant. The action of the
release. Dynamic elements can be placed deliberately in a cir- resistor and capacitor has processed the source signal, with
cuit, or they can be unwanted parasitic elements, modeling the capacitor voltage resisting the sudden change when the
for example the capacitance between wires in the circuit. If a source was inserted, but retaining the steady behavior of the
circuit contains even a single dynamic element, it is in gen- source. The resistor voltage, on the other hand, captures the
eral described no longer by a set of algebraic equations, but change in the source very well, but eventually dies away to
by one or more differential equations in which the variables include nothing of the steady behavior of the input. This be-
are not only the voltages and currents but also the derivatives havior is an example of the filtering behavior of this simple
of certain of these quantities with respect to time. A dynamic resistor–capacitor combination, which is useful in a variety of
circuit is one which contains at least one dynamic element. communications applications.
The goal of transient circuit analysis is to solve the differen- The exponential nature of the voltage observed in this sim-
tial equations that describe a dynamic circuit and thus to ple circuit is not unusual; in fact, as we shall see, exponential
come up with expressions predicting the way in which the functions appear in various guises in the solution to linear
voltages and currents in the circuit will vary with time. It differential equations. Possibly the most widely known exam-
is concerned in particular with the response of the circuit to ple of an exponential function appears in the analysis of ra-
changes, such as when a source is inserted, removed, or sud- dioactive decay, where the rate of decay of a substance is pro-
denly changed in some way, or a switch is closed and the portional to the amount of the substance present, and so the
make-up of the circuit is thereby changed. amount remaining decays exponentially to zero at a rate de-

Dynamic circuits can exhibit more interesting behavior pending on the half-life of the substance.
than resistive circuits, but they are also more difficult to ana- In general, a circuit which contains two dynamic elements
lyze. One of the simplest dynamic circuits contains a single gives rise to a second-order differential equation (containing
capacitor in series with a resistor and a constant voltage the second derivative of the variable with respect to time) and
source which is switched on at some specified time. This cir- is termed a second-order circuit. If all sources in the circuit
cuit is described by an equation involving the capacitor volt- are dc (constant) sources, this equation can be solved by appli-
age vC and its derivative with respect to time dvC/dt. The ab- cation of standard theory of linear differential equations, with
sence of any higher derivatives gives this equation the the aid of two initial conditions, one for each dynamic ele-
description ‘‘first-order.’’ A circuit containing just a single dy- ment. Instead of the single exponential transient of the first-
namic element is described by a first-order differential equa- order circuit, this circuit contains two exponential transients
tion and is called a first-order circuit. which are added to give the overall transient. The relation-

The solution of a first-order differential equation will con- ship (via complex numbers) between the exponential and si-
tain an unknown constant. To find this constant, it is neces-

nusoidal functions can give rise to a new type of behaviorsary to apply some additional information about the value of
arising from these transients. If the arguments of these expo-the solution at a specified time instant. Since in general we
nentials are complex, as may turn out to be the case, thenare concerned with finding the response of the circuit to
they can be added to give a transient which oscillates sinusoi-changes that occur at a certain time instant, we often know
dally. In most circuits the magnitude of this oscillation decaysthe state of the circuit just before the change occurs and can
exponentially with time. A common example of such a de-apply this information in order to find the unknown constant.
caying oscillation is produced when a tuning fork is struck orThe value of the capacitor voltage (or inductor current, if the
a child’s swing given a single push. If there are no losses incircuit contains an inductor rather than a capacitor) just be-
the circuit (not a practical requirement), the oscillation couldfore the change occurs is known as the initial condition.
persist indefinitely without decaying; and if the circuit is un-Solving the first-order circuit just described yields the re-
stable, it is possible that the oscillation can actually grow.sult that the capacitor voltage plotted as a function of time is

While it is possible to analyze simple first- and second-or-of exponential form, moving from its initial value toward the
der dynamic circuits by applying standard theory of differen-value of the constant voltage source and eventually settling
tial equations, such solution becomes rapidly more difficultthere. (Certain assumptions have been made here and are
when the order of the circuit increases or when the sourcesdiscussed in the next section.) This is intuitively plausible—
become more complicated. When faced with such a problem,once the voltage source has been inserted the resistor voltage
one might look enviously back at the much simpler process ofand capacitor voltage must sum to equal the voltage of the
solving a resistive circuit. In fact it is possible to apply tech-source. If the capacitor voltage does not initially equal that of
niques of resistive circuit analysis to dynamic circuits withthe source, the voltage difference must be developed across
the aid of a variety of transforms. A transform is a method ofthe resistor by a current flowing through it. This current
changing a problem into a different form, solving it in the newcharges the capacitor, bringing its voltage closer to that of the
form (where the solution is easier to obtain) and then chang-source, and the net effect is to cause the capacitor voltage to
ing the solution back to the original form. For example, a stu-approach that of the voltage source. This circuit is reminis-
dent unfamiliar with binary arithmetic, when asked to addcent of a simple battery charger, with the battery voltage in-
two binary numbers, might convert the numbers to decimalcreasing over time to equal that of a source.
form (presumably with the aid of a table), add the decimalAlready in this simple circuit we can see how dynamic cir-
numbers, and then convert back to binary. The transformscuits behave in ways that would be impossible for a resistive

circuit. If the circuit described above had been resistive, all to be applied in this context change a system of differential
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equations to a system of algebraic equations which are sig-
nificantly easier to solve.

The most important and most widely used of these trans-
forms in circuit analysis is the Laplace transform. A second
transform, the Fourier transform, is particularly useful in an-
alyzing circuits designed for applications in communication
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systems. These transforms convert a set of differential equa-
Figure 1. (a) The switch S moves from position 1 to position 2 attions involving the time variable into a set of algebraic equa-
time t � 0, so the voltage applied to the RC series combination is 0tions involving a new variable called the frequency (in the for t � 0 and E thereafter. The switch–voltage-source combination is

case of the Fourier transform) or the complex frequency (in represented in (b) by the single voltage source E � u(t).
the case of the Laplace transform). Application of these trans-
forms allows us to analyze a circuit by transforming it into an
equivalent form in the frequency domain, where its equations
are purely algebraic, analyzing the circuit in this frequency applied to the RC series combination is E � u(t), where u(t) is
domain using the techniques of linear algebra, and then the unit step function given by
applying the transform in reverse to convert the result of this
analysis into a function of time.

Once again, Laplace transform analysis shows up the
special role of the exponential function (and its complex

u(t) =
{

0 for t < 0
1 for t ≥ 0

(1)

cousin the sinusoid) in the behavior of circuits. Every dy-
The circuit of Fig. 1(a) can, therefore, also be drawn in thenamic circuit favors certain exponential (including sinusoidal)
form shown in Fig. 1(b).modes of behavior whose rate of decay (and frequency of oscil-

The analysis of this circuit for t 
 0 will require knowledgelation, if applicable) is governed by the so-called natural fre-
of the initial voltage across the capacitor just after the switchquencies of the circuit. These natural frequencies tell us
is thrown—that is, vC(0
), where 0
 � lim��0

��0 �. We generallywhether the currents and voltages in a circuit will, of their
know, or can find from analysis of a previous regime, vC(0�),own accord, tend to exhibit exponential or oscillatory decay,
the voltage at the instant just before the switch is thrownconstant behavior or steady oscillation, exponential or oscilla-
(0� � lim��0

��0 � �). If the capacitor current is finite, vC(0
) musttory growth, or some combination thereof. When an input sig-
equal vC(0�), and we can refer to both as vC(0). Similarly if thenal is applied to the circuit, the currents and voltages may
voltage across an inductor is finite its current waveform mustcontain components controlled by the natural frequencies as
be continuous. We will assume these continuity conditionswell as a component controlled by the input. In practical cir-
throughout this analysis. The alternative case, where the ca-cuits it is desirable that the output should depend on the in-
pacitor current or inductor voltage can be infinite, is not prac-put; and the prospect of an oscillation or exponential growing
tical but turns out to be mathematically interesting and use-in the circuit, swamping out the effect of the input and
ful in analysis. It can be handled by an extension of ourwreaking havoc with the circuit components, is clearly a de-
analysis in this section (see Ref. 1 for details), but we willsigner’s nightmare. This effect is similar to that demonstrated
postpone consideration of this possibility until the later sec-by sound systems when a microphone is placed in the path of
tion on the Laplace transform where it can be handled morea loudspeaker and an unwanted tone appears and swamps
conveniently.the desired signal. Fortunately, Laplace transform techniques

For t 
 0, Kirchhoff ’s voltage law gives the equationallow us to analyze a system to determine if this effect is pos-
sible. An asymptotically stable system is one in which all ex-
ponential transients die away, leaving only the effect of the vC(t) + i(t)R = E
input signal.

The effects of transients are seen in a huge range of elec- or, applying the constitutive relation i(t) � C dvC(t)/dt for the
tronic and electrical engineering applications, from the trans- capacitor,
mission of tiny pulses between parts of a communication sys-
tem to the behavior of an electrical network struck by
lightning. The techniques described in this article provide the

RC
dvC(t)

dt
+ vC(t) = E (2)

reader with the ability to understand and analyze transient
This is a first-order differential equation in the capacitor volt-behavior in a wide variety of circuits.
age vC, and so this circuit is referred to as a first-order circuit.
It can be solved by a number of methods to give an expression

TIME-DOMAIN ANALYSIS for vC as a function of time. One such method is to recast the
equation in the form

Natural Response and Step Response of a First-order Circuit

Consider the circuit shown in Fig. 1(a). Until the time t � 0,
the switch S is in position 1, and the resistor R and capacitor

d(vC(t) − E)

dt
= − 1

RC
(vC(t) − E)

C are connected in a loop. At time t � 0 the switch is moved
This equation is of the familiar formto position 2, connecting the dc voltage source E in series with

R and C. We assume that the switch closes instantaneously
and that it presents a short circuit between the terminals
which it connects. Mathematically, we say that the voltage

dx(t)
dt

= ax(t)
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which has the solution (see Ref. 2)

x(t) = x(0)eat

where x(0) is the value of x at time t � 0. This initial condition
CC

Resistive
one-port

Eth

Rth

must be known if the equation is to be solved for x(t). Thus
Eq. (2) has the solution Figure 3. A circuit consisting of a single capacitor in an otherwise

resistive circuit is simplified by replacing the resistive one-port seen
by the capacitor by its Thévenin equivalent.vC(t) − E = (vC(0) − E)e−t/RC (3a)

or

the steady-state value. For the first-order circuit analyzed invC(t) = vC(0)e−t/RC + E(1 − e−t/RC) (3b)
this section, the rise time can be found to be � ln 9 � 2.2�.

The value E to which the capacitor voltage converges isThe response of the series RC circuit with zero initial capaci-
termed the steady-state value of this voltage. It is the onlytor voltage to the application of a voltage source given by the
value of capacitor voltage at which the circuit can settle; inunit step function is known as the step response of the series
other words, it is only when vC � E that all currents andRC circuit. (Note that we will use the word ‘‘response’’ to sig-
voltages in the circuit cease to vary with time. Clearly, whennify any current or voltage in the circuit, or any set thereof,
a quantity ceases to vary with time, its derivative with re-including for example the set of all currents and voltages.
spect to time is zero, and so the steady-state of value of vC canThroughout this article the variable or variables which consti-
be found directly from the differential equation (2) by settingtute the response in any given instance will be clear from the
the term dvC/dt to zero (or, in circuit terms, replacing the ca-context in which the word is used.)
pacitor by an open circuit), yielding the equation vC � E, asIt is clear from Eq. (3a) that the difference between vC and
expected. The overall waveform vC(t) is the sum of this steady-E varies exponentially with time, and when the product RC
state component and a second component which dies awayis positive (a condition that will be assumed to hold unless
with time. This second component is known as the transientotherwise stated) this difference tends to zero as t tends to
component (or just the transient). The exponential form of theinfinity. vC is plotted as a function of time in Fig. 2, where, as
transient in this circuit is, as we will see later, particularlyexpected, vC is seen to converge exponentially to E. The rate
common in linear circuits and other linear systems.of this convergence is governed by the value of RC, which is

Note, however, that the procedure just outlined yields thetermed the time constant of the waveform and denoted by the
value of vC at which the circuit variables (currents and volt-symbol �. The smaller the time constant, the faster the rate
ages) can remain constant, but it does not guarantee that theof convergence. After one time constant has elapsed (i.e., at
circuit will actually converge to this state. For example, ift � �), vC(t) � E has decreased to e�1 � 36.8% of its value at
RC � 0, Eq. (3a) implies that vC will diverge exponentiallyt � 0, and at time t � 5� this difference has decreased to
away from E and the circuit has no steady-state response.e�5 � 0.7% of its initial value. Although vC does not reach E
(The only exception to this divergence is when vC(0) � E, inwithin any finite time (unless, of course, it started out at E),
which case it will theoretically remain fixed at E for all time.after five time constants have elapsed the difference between
The word ‘‘theoretically’’ is important: In practice, any noisevC and E has been reduced to less than 1% of its initial value.
in the circuit that causes vC to differ even infinitesimally fromThe time constant is a useful measure of the response speed
E will result in its diverging exponentially from E.) This dis-of a first-order circuit. For more general circuits, the rise time
tinction relates to the issue of the stability of equilibria ofis used as a measure of response time. This is defined as the
differential equations (2).time taken for the step response to rise from 10% to 90% of

Another useful view of the solution waveform (3b) for vC(t)
is that it is composed of two components: one caused by the
initial condition vC(0), and the other caused by the voltage
source E. If E � 0 the response (3) reduces to vC(t) �
vC(0)e�t/RC, which is termed the natural or unforced response
of the circuit. This is a viewpoint to which we will return
later.

Any circuit consisting of a single capacitor in an otherwise
resistive circuit containing only dc sources is generally ana-
lyzed by transforming it to single-loop form by means of a
Thévenin transformation (3), as shown in Fig. 3. The analysis
described above is then applicable, where E is the Thévenin
equivalent voltage source and R is the Thévenin equivalent
resistance. (The small number of circuits that do not have a
Thévenin equivalent can be handled separately.)

E

Time t

2 3 4 5τ τ τ τ τ

vC(t)

vC(0)

Before leaving the single-loop first-order circuit of Fig. 1
we note that the analysis of this section can be used to findFigure 2. The capacitor voltage in the circuit of Fig. 1 varies expo-
the response of a first-order circuit to a voltage source that isnentially from its starting value vC(0) to its steady-state value E, with

time constant � � RC. piecewise-constant—that is, constant over certain time inter-
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vals with discontinuous jumps between these constant levels.
One important such waveform is the pulse

GI · u(t)

iL

L
p(t) =




0
E
0

for t < 0
for 0 ≤ t < t0

for t ≥ t0

Figure 5. First-order circuit consisting of the parallel combination
of current source I � u(t), conductance G, and inductor L.The response of the first-order RC circuit to this source wave-

form is found by an extension of the analysis just performed.
For 0 � t � t0 the analysis proceeds as before and vC(t) is
given by Eq. (3c):

will inevitably ensue. Clearly the ‘‘smearing’’ of the pulse evi-
dent in Fig. 4 when the time constant is large limits the ratevC(t) = vC(0)e−t/RC + E(1 − et/RC) for 0 ≤ t < t0 (3c)

at which pulses can be transmitted if they are to be separated
For t 
 t0 the response is just the natural response found at the receiver.
previously, the only difference being that since this phase of The response of the series RC circuit to any piecewise-con-
the analysis commences at t � t0 instead of t � 0 the initial stant source waveform is found by an extension of the analy-
condition is vC(t0) instead of vC(0). Applying this initial condi- sis performed above. The circuit is analyzed using the stan-
tion in the usual way, we find that dard method over each of the time intervals in which the

source is constant, starting with the first time interval. The
initial condition for the nth time interval, commencing atvC(t) = vC(t0)e−(t−t0 )/RC for t ≥ t0 (4)

time t � tn, is found by evaluating the response from the pre-
vC(t0) is, by our assumption of bounded currents, equal to vious time interval at time t � t�

n .
vC(t�

0 ), the capacitor voltage just before the source waveform The second type of first-order circuit is one in which the
drops to zero. Since Eq. (3b) gives vC(t) for all times in the single energy storage element in the circuit is an inductor
range 0 � t � t0, it can be used to find that rather than a capacitor and, by application of a Norton trans-

formation (where possible), is of the form shown in Fig. 5,
vC(t−

0 ) = vC(0)e−t0/RC + E(1 − e−t0/RC) where the constant current source I is connected in parallel
with conductance G and inductor L for t 
 0. Kirchhoff ’s cur-

Substituting this value for vC(t0) in Eq. (4) completes the anal- rent law applied to this circuit gives the following differential
ysis of the response of the series RC circuit to the voltage equation in the inductor current iL for t 
 0:
pulse. This response is plotted in Fig. 4, for two different val-
ues of the time constant. The response of a circuit to a pulse is
particularly important in communication systems where such GL

diL(t)
dt

+ iL(t) = I
pulses are used to carry information and must be clearly iden-
tifiable at the receiver. An RC combination of the type studied

which can be solved as before to findhere often occurs in such transmission systems, formed by the
output resistance of the part of the system where the signal
originates and the input capacitance of the part of the system iL(t) − I = (iL(0) − I)e−t/GL

into which the signal is fed, and thus exponential distortion
or

iL(t) = iL(0)e−t/GL + I(1 − e−t/GL)

Thus the inductor current waveform for the circuit of Fig. 5
takes the same form as the capacitor voltage waveform for
the circuit of Fig. 1, with time constant GL and steady-state
value I. This is a consequence of the fact that the circuit of
Fig. 5 is the dual of that of Fig. 1. The response to a piecewise-
constant source waveform can be found by applying the
method previously described for the series RC circuit.

Natural Response of a Second-order Circuit

The circuit in Fig. 6 consists of a resistor and two energy stor-
age elements—a capacitor and an inductor. Kirchhoff ’s volt-

E

vC (t)

= t0/5

Time t

t0 2t0

τ

= t0/50τ

age law gives the equation
Figure 4. The response of a first-order RC circuit to a voltage pulse
of amplitude E and duration t0. The solid line shows the response if
� � t0/50, and the dashed line shows the response if � � t0/5. Note
the ‘‘smearing’’ of the pulse when � is large.

vC(t) + L
diL(t)

dt
+ RiL(t) = 0
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Since there are no sources in the circuit, this is the natural
or unforced response of the series RLC circuit. The constants
A1 and A2 will be determined by applying the initial condi-
tions vC(0) and iL(0) and solving the resulting simultaneous
equations:

iLR L

vCC

+

–

Figure 6. Second-order circuit consisting of resistor R, capacitor C,
and inductor L.

vC(0) = A1 + A2

iL(0) = C
dvC

dt

∣∣∣
t=0

= CA1s1 + CA2s2

We will now consider the nature of the natural or unforcedwhich on application of the relation iL(t) � C dvC(t)/dt becomes
voltage waveform represented by Eq. (6). We will use the fol-
lowing shorthand form for s1 and s2:

LC
d 2vC(t)

dt 2 + RC
dvC(t)

dt
+ vC(t) = 0 (5)

s1 = −α +
√

α2 − ω2
0 and s2 = −α −

√
α2 − ω2

0
This is a second-order differential equation, and so the circuit

whereis termed a second-order circuit. The exponential waveform

vC(t) = Aest
α = R

2L

is a solution to Eq. (5) provided that and

LCs2 + RCs + 1 = 0
ω0 = 1√

LCwhich yields

We will assume for now that � 
 0.
The first case to be considered is the case where �2

0 � �2
s = −R

2L
±
√

R2

4L2 − 1
LC and s1 and s2 are real and distinct. In this case the circuit is

said to be overdamped and the response vC(t) is the sum of
If these two values, s1 and s2, are distinct (i.e., s1 � s2), then two exponentials with time constants 1/�s1� and 1/�s2�. An ex-
the general solution of Eq. (5) is of the form ample of an overdamped response is plotted in Fig. 7(a).

The second case occurs when �2
0 � �2 and s1 and s2 are

complex conjugates of the form �� � j�d, where �d �vC(t) = A1es1 t + A2es2 t (6)

Time t

vC (t)

vC (t) vC (t)

vC (t)

0

(a)

Time t
0

(b)

Time t
0

(d)(c)

Time t
0

Figure 7. Examples of the natural response of the series RLC circuit: (a) overdamped, (b) under-
damped, (c) underdamped and lossless, and (d) critically damped.
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obtained when all independent voltage and current sources
are removed—that is, the natural or unforced response. A
particular solution is any solution to the differential equation.
This decomposition may seem to be of no particular benefit,

LR

+
–E · u(t) C

+
vC

–

iL

since it states that to solve the differential equation one must
obtain a solution to the differential equation. The benefit liesFigure 8. Second-order circuit consisting of resistor R, capacitor C,
in the ability to choose a particularly simple form for the par-inductor L, and voltage source E � u(t).
ticular solution, which can then be extended to yield the gen-
eral solution by the addition of the homogeneous solution. The
simplest particular solution is the constant solution which is

��2
0 � �2. In this case the circuit is said to be underdamped. obtained by setting all derivatives to zero.

Equation (6) remains valid, but can be expressed more clearly The particular solution to Eq. (7) obtained by setting all
in the form derivatives to zero is vC(t) � E. Adding this solution to the

homogeneous solution which has already been found in Eq.
(6) yields the general solution, which is of the formvC(t) = e−αt[(A1 + A2)cos ωdt + j(A1 − A2)sinωdt

]
A1 and A2 are complex conjugates, and so the coefficients
B1 � (A1 
 A2) and B2 � j(A1 � A2) are real and can once again
be found from the initial conditions. The underdamped re-
sponse takes the form of an oscillation of frequency �d

multiplied by an exponential envelope e��t. If � � 0, the ampli-
tude of the oscillation decreases exponentially with time, with
the rate of this decrease, known as damping, controlled by �.
If � � 0, the response is an oscillation of constant amplitude
and frequency �d � �0 � 1/�LC. This is the case of the well-

vC(t) = A1es1 t + A2es2 t + E if ω2
0 <α2

(overdamped) (8a)

vC(t) = e−αt[B1 cos ωdt + B2 sinωdt] + E ifω2
0 > α2

(underdamped) (8b)

vC(t) = (D1 + D2t)e−αt + E if ω2
0 = α2

(criticallydamped) (8c)
known LC oscillator, which arises when R � 0 and there is
no dissipation in the circuit. The underdamped response is The appropriate constants A1 and A2, B1 and B2, and D1 and
plotted in Figs. 7(b) and 7(c) for the two cases � � 0 and � � D2, are found by applying the initial conditions. If the initial
0. Note that the underdamped response is always character- conditions are zero, Eq. (8) represent the step response of the
ized by oscillation, sometimes termed ringing. series RLC circuit and is plotted in Fig. 9.

If �2
0 � �2, then s1 � s2 � �� � �R/2L. In this case the Depending on the system in which a circuit is to be used,

general solution of Eq. (5) is no longer given by Eq. (6) but different demands may be made of its step response. In some
instead by applications, for example, there may be a requirement that

the voltage reach its steady-state value as soon as possible,vC(t) = (D1 + D2t)e−αt

while in others it may be necessary that the voltage never
exceed its steady-state value by more than some specified per-

and is said to be critically damped (2). The constants D1 and centage, to avoid driving circuit elements into saturation. A
D2 are once again found by application of the initial condi- number of figures of merit have been defined to characterize
tions. An example of a critically damped response is plotted the step response of a circuit in order to test its suitability for
in Fig. 7(d). a given application (1). The rise time has already been de-

fined. The settling time is the time beyond which the step re-
Step Response of a Second-order Circuit sponse does not differ from its steady-state value by more

than 2%. The delay time is the time taken for the step re-The circuit in Fig. 8 is identical to that of Fig. 6 but for the
sponse to reach 50% of its steady-state value. The overshootaddition of the voltage source E at t � 0. Applying Kirchhoff ’s
is defined as the difference between the peak value and thevoltage law for t 
 0 gives the equation
steady-state value of the step response, expressed as a per-
centage of the steady-state value.vC(t) + L

diL(t)
dt

+ RiL(t) = E

LAPLACE TRANSFORM CIRCUIT ANALYSISwhich on application of the relation iL(t) � C dvC(t)/dt becomes

The analyses described previously have found the circuit vari-
ables as a function of time by directly solving the differentialLC

d 2vC(t)
dt 2 + RC

dvC(t)
dt

+ vC(t) = E (7)

equations that describe the circuit. While such a procedure is
reasonably straightforward for first- and second-order circuitsTo solve this equation, we apply the fact that the general so-

lution to a differential equation is the sum of two components, with simple source waveforms, it becomes significantly more
difficult as the order of the circuit increases and as the sourcewhich are known in mathematics as the homogeneous solution

and a particular solution (2). The homogeneous solution is the waveforms become more complex. It is desirable, therefore, to
have a more powerful method of finding a solution. In thesolution to the differential equation obtained when all input

terms (i.e., all terms not involving the variable or its deriva- special case where all sources in the circuit are sinusoidal of
the same frequency, the transformation of circuit variablestives) are set to zero. In circuit terms, this is just the response
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into phasor or complex number form (3–5) allows the circuit The Laplace transform is discussed in the article on LINEAR

SYSTEMS, and we will merely summarize its properties here.to be handled using purely algebraic equations instead of dif-
ferential equations. While extremely useful in certain circum- Given a function of time f (t), its Laplace transform is
stances, this is not a general circuit analysis method: It can
handle only sinusoidal sources, it is applicable only if the cir-
cuit is stable, it finds only the steady-state component of the

F(s) = L { f (t)} =
∫ ∞

0−
f (t)e−st dt (9)

waveform, and it does not allow consideration of initial capac-
itor voltages and inductor currents. where the variable s is complex and is termed the (complex)

frequency. Thus the Laplace transform converts a function
The Laplace Transform f (t) from the time domain into a function F(s) in the frequency

domain. There exist functions which do not have a LaplaceA more general transform than the phasor transform is the
transform, since the integral in Eq. (9) fails to converge, butLaplace transform, named after the French mathematician
all functions of interest in circuit theory have a Laplace trans-Pierre-Simon Laplace (1749–1827). (See Refs. 3–6.) This
form. Since the interval of integration is from 0� to �, thetransform method retains the fundamental advantage of the
transform defined by Eq. (9) is sometimes called the one-sidedphasor transform, which is the ability to transform a system
Laplace transform, to distinguish it from another version inof differential equations into a system of algebraic equations,
which the integration is from �� to �, but we will not needbut has the additional advantages of being able to (a) handle
to draw this distinction here and will refer to it simply as thea much broader class of source waveforms (including all that
Laplace transform. The lower limit of integration of 0� is cho-are of any practical interest), (b) accommodate initial condi-
sen in order to accommodate functions with infinite spikes attions, and (c) yield solutions that incorporate both transient
t � 0. Such functions will prove extremely useful in ourand steady-state components without requiring that the cir-
analysis.cuit be stable.

Some of the properties of the Laplace transform that make
it so useful in circuit analysis are the following (3,6), where
F(s) denotes the Laplace transform of f (t), F1(s) the Laplace
transform of f 1(t), and F2(s) the Laplace transform of f 2(t):

Uniqueness: f 1(t) � f 2(t) for all t 
 0 ⇔ F1(s) � F2(s) [More
precisely, if F1(s) � F2(s), then

∫ ∞

0−
| f1(t) − f2(t)| dt = 0,

but for our purposes it will suffice to assume that F1(s) �
F2(s) ⇒ f 1(t) � f 2(t) for all t 
 0.]

vC(t)

Time t
0

(a)

Linearity: L �k1f 1(t) 
 k2f 2(t)� � k1F1(s) 
 k2F2(s), where k1 and
k2 are scalars.

Differentiation: L

{
d
dt

f (t)
}

= sF(s) − f (0−)

Integration: L

{∫ t

0−
f (τ ) dτ

}
= 1

s
F(s)

Time shift: L �f (t � �)u(t � �)� � e�s� F(s), where � � 0 and
u(t) is the unit step function given by Eq. (1).
Frequency shift: L �e��t f (t)� � F(s 
 �)

vC(t)

Time t
0

(b)

The first three of these properties are particularly impor-
tant. The uniqueness property guarantees that if a system of
differential equations is solved by transforming to the fre-
quency domain, solving in the frequency domain and trans-
forming back to the time domain, the solution obtained will
be the same as would have been obtained if the solution had
been carried out entirely in the time domain. The linearity
property guarantees that a system of linear equations in the
time domain will remain linear in the frequency domain,
allowing powerful linear analysis techniques to be applied in
both domains. The differentiation property allows differentia-

vC(t)

Time t
0

(c)
tion in the time domain to be replaced by multiplication in
the frequency domain, together with the addition of an termFigure 9. Examples of the step response of the series RLC circuit:

(a) overdamped, (b) underdamped, and (c) critically damped. related to the initial condition. It is this property that allows
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degree of n̂(s) is less than that of d̂(s). The inverse Laplace
transform of r(s) can be found from Table 1, leaving only the
component n̂(s)/d̂(s) to be handled by the partial fraction
expansion. Thus, without loss of generality, we can assume
that the degree of the numerator of F(s) is less than that of
the denominator. The first step in the partial fraction expan-
sion is the factorization of the denominator polynomial:

F(s) = n(s)
d(s)

= n(s)
(s − p1)α1 (s − p2)α2 . . . (s − pm)αm

The quantities pi, the zeros of the denominator d(s) of F(s),
are known as the poles of F(s), and the multiplicity of the

Table 1. Laplace Transforms of Some Important Functions

f (t) F (s) � L ( f (t))

�(t) 1

u(t) 1
s

t n
n!

1
s n
1 , n � 1, 2, . . .

e�at 1
s 
 a

sin �t �
s2 
 �2

cos �t s
s2 
 �2

pole pi is the number of times �i it appears as a zero of d(s).
A pole of multiplicity one is called a simple pole. If all poles
are simple then

a system of differential equations in the time domain to be
replaced by a system of algebraic equations in the frequency
domain, which can be solved by a variety of powerful and ele-
gant techniques. The Laplace transforms of some important
functions are given in Table 1, in which �(t) is the delta func-

F(s) = n(s)
(s − p1)(s − p2) . . . (s − pm)

= k1

s − p1
+ k2

s − p2
+ . . . + km

s − pm
tion defined by

where ki � [(s � pi)F(s)]s�pi
.

Ki is termed the residue of F(s) at the pole pi. If F(s) has a
pole of multiplicity �j at pj, the partial fraction expansion

δ(t) = 0 for t �= 0∫ ∞

−∞
δ(t) = 1

(10)

takes the form

There are three steps to be taken in solving a set of differen-
tial equations using Laplace transform analysis: (1) The sys-
tem of differential equations in the time domain is trans-
formed to a set of algebraic equations in the frequency
domain; (2) this set of algebraic equations is solved in the

F(s) = n(s)

(s − pj )
α j d̃(s)

= kj1

s − pj
+ kj2

(s − pj)
2 + · · · +

kjαj

(s − pj)
αj

+ ñ(s)

d̃(s)
frequency domain, using standard linear techniques; and (3)
the solution is transformed from the frequency domain back

whereto the time domain. Step 1 involves application of the defini-
tion of the Laplace transform (9) together with certain of its
properties (notably the differentiation property). Step 2 in-
volves standard techniques from linear algebra. Step 3 in-

kji =
{

1
(αj − i)!

dαj−i

dsαj−i

[
(s − pj)

αj F(s)
]}

s=pj
volves the application of the inverse Laplace transform, which
converts a function F(s) in the frequency domain to a function

Since the numerator and denominator of F(s) are real polyno-of time f (t) � L �1(F(s)) in such a way that L ( f(t)) � F(s). Note
mials in s, poles appear in complex conjugate pairs, as dothat the function f (t) is unique only for t 
 0, since two func-
their residues. This allows the combination of any complextions of time which differ for t � 0 but are identical for t 
 0
term in the expansion with its conjugate to give a real term.will have the same Laplace transform.

The inverse Laplace transform of each of the terms in the
partial fraction expansion is known:The Inverse Laplace Transform

There is a closed-form equation for the inverse Laplace trans-
form (see Ref. 6 for details), but it is rather difficult to apply
(involving contour integration) and is rarely used in circuit

L −1

{ kjαj

(s − pj)
αj

}
= kjαj

tαj−1

(αj − 1)!
epjt

analysis applications (although it is sometimes used for nu-
merical inversion of the Laplace transform). Instead, the in- In this way it is possible to find the inverse Laplace transform

of any function consisting of the ratio of two polynomials in sverse Laplace transform of a function is generally found by
writing the function as the sum of simpler functions, each of by decomposing the function via the partial fraction expan-

sion and taking the inverse Laplace transform of each of thewhose inverse Laplace transform is known. A technique that
is particularly useful here is the partial fraction expansion constituent functions. This method relies fundamentally on

the uniqueness and linearity properties of the Laplace trans-(2,6). This is a technique which allows the decomposition of a
function F(s) which is the ratio of two real polynomials in s form. Clearly the method applies only to a restricted range of

functions, those which can be expressed as the ratio of twointo the sum of simpler terms. It is assumed that the degree
of the numerator of F(s) is less than that of the denominator; polynomials in s. As will be seen, however, functions of this

type are particularly important in circuit analysis, and so thisif this is not the case, then F(s) can be expressed in the form
F(s) � r(s) 
 n̂(s)/d̂(s), where r(s) is a polynomial in s and the is not a significant limitation.
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Figure 10. Transformation of a capacitor
with initial voltage vC(0�) into the frequency
domain.

C

+

+
–

vC(t)
vC(s) vC(s)

iC(t)

iC(s) iC(s)+

–

+

–

1/sC

1/sC

or
–

vC(0–)/s

CvC(0–)

Laplace Transform Circuit Analysis In a similar manner, the inductor defined in the time do-
main by the relation

The first step in the Laplace transform analysis of a circuit is
the transformation of the circuit from the time domain to the
frequency domain. All branch voltages v(t) and currents i(t) vL(t) = L

diL(t)
dtwhich appear as variables in the differential equations de-

scribing the circuit will appear in the transformed equations
is defined in the frequency domain by the relationas variables V(s) � L �v(t)� and I(s) � L �i(t)�. Independent

voltage and current sources are transformed from known
functions of time vs(t) and is(t) to known functions of fre- VL(s) = sLIL(s) − LiL(0−)

quency Vs(s) � L �vs(t)� and Is(s) � L �is(t)�. A resistor is de-
scribed in the time domain by the linear equation v(t) � Thus, as shown in Fig. 11, the inductor appears in the trans-
Ri(t) and so is defined in the transformed circuit by the rela- formed circuit as the series combination of an impedance sL
tion V(s) � RI(s). Similarly, the linear equations describing and voltage source LiL(0�) or the parallel combination of the
all resistive two-ports (including ideal transformers, gyrators, same impedance and current source iL(0�)/s. Note that once
and controlled sources), and indeed resistive n-ports, are un- again this circuit transformation could have been obtained
changed in the transformation from time domain to frequency from Fig. 10 by application of the principle of duality. Coupled
domain. The capacitor is defined in the time domain by the inductors can be transformed in a similar manner.
equation When all of the elements in the circuit have been trans-

formed into the frequency domain, the first step of the analy-
sis process is complete. The second step is to analyze the cir-iC(t) = C

dvC(t)
dt cuit in the frequency domain, employing any of a wide variety

of techniques such as loop current analysis, node voltage
Applying the differentiation property of the Laplace trans- analysis, modified nodal analysis, or sparse tableau analysis.
form yields the frequency-domain equation for the capacitor: The analysis of a circuit in the frequency domain is described

in the article on FREQUENCY-DOMAIN CIRCUIT ANALYSIS and alsoIC(s) = sCVC(s) − CvC(0−)
in most circuit theory textbooks, such as Refs. 3–5. The third
step is then to transform the results of the analysis back to

Thus the capacitor C with initial voltage vC(0�) appears in the the time domain via the inverse Laplace transform.
transformed circuit as the parallel combination of the inde-
pendent current source CvC(0�) and the linear element de-

Example 1 The circuit of Fig. 1 can be transformed into thefined by the relation V(s) � (1/sC)I(s). This second element
Laplace transform domain, yielding the circuit of Fig. 12.can be thought of as a generalized resistance (known as an
Analysis in the frequency domain, followed by partial fractionimpedance) 1/sC and throughout the analysis in the fre-
expansion, yields the following result:quency domain can be handled as if it were a resistance. Fig-

ure 10 shows the transformation of a capacitor from the time
domain into the parallel combination of an impedance and an
independent current source in the frequency domain or, by
Thévenin’s theorem, into the series combination of an imped-
ance and an independent voltage source.

VC(s) = vC(0−)

s + 1
RC

+
E

1
RC

s
(
s + 1

RC

) = vC(0−)

s + 1
RC

+ E
s

− E

s + 1
RC

Figure 11. Transformation of an inductor with
initial current iL(0�) into the frequency domain.

+
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+

–

IL(s)+

–

sL

orL

+

–

iL(t)

IL(t)

vL(t) VL(s)

LiL(0–)

iL(0–)/s
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the circuit has a unique solution, that solution is given by

X(s) = M−1(s)U(s) = 1
det(M(s))

Adj(M(s)).U(s)

where the existence of a unique solution guarantees that the
determinant det(M(s)) is not identically zero (2). We assume,

+
–

R

1/sC

E/s

+

–

+
–

+
– vC(0–)/s

VC(s)

unless otherwise stated, that all zeros p1, p2, . . . , pm of
det(M(s)) are simple. Each component Xi(s) of the vector X(s)Figure 12. Laplace transform of the circuit of Fig. 1.
is the ratio of two polynomials in s, and so the partial fraction
expansion can be applied to yield the expression

The inverse Laplace transform is then applied to find
Xi(s) = k1

s − p1
+ k2

s − p2
+ · · · + km

s − pm
vC(t) = vC(0−)e−t/RC + E(1 − e−t/RC) for t ≥ 0

The time-domain response xi(t) is, therefore,
which agrees with the time-domain analysis performed
earlier. xi(t) = k1ep1 t + k2ep2 t + · · · + kmepmt

for t 
 0. [If some of the zeros of det(M(s)) have multiplicity
NATURAL RESPONSE AND ZERO-STATE RESPONSE

greater than one, the time response will contain terms of the
form t�epit.]

When converted into the frequency domain, a circuit contains
Clearly the zeros pi of det(M(s)) play a crucial role in de-

independent sources of two types. The first are the trans-
termining the natural response of the circuit. These quanti-

formed versions of the independent sources from the time do-
ties are known as the natural frequencies of the circuit. The

main. These sources drive the circuit in the time domain and
number of natural frequencies in a circuit is less than or

are often termed the inputs to the circuit, borrowing a view-
equal to the number of energy storage elements in the circuit.

point from system theory. The second group of independent
The contribution of each natural frequency to the natural re-

sources in the frequency-domain circuit are those that are in-
sponse depends on its location in the complex plane. A natu-

troduced during the transformation of energy storage ele-
ral frequency at zero contributes a constant term to the natu-

ments and account for the initial conditions in the circuit—
ral response. A real and positive natural frequency pithat is, the capacitor voltages and inductor currents at time
contributes a term kiepit that grows exponentially with time. A

t � 0�. We will call these sources the initial condition
real and negative natural frequency pi contributes a term

generators, to distinguish them from those sources that repre-
kiepit that decays exponentially with time. Complex natural

sent the independent sources from the time domain. By su-
frequencies occur in conjugate pairs, and their contributions

perposition, the response of the circuit to these sources (by
add to make a real contribution to the response waveform. If

which we mean any current or voltage in the circuit, or any
the natural frequencies in question lie on the imaginary axis

collection thereof) is the sum of two components: one due to
at �j�, their composite contribution to the time response is

the independent sources acting alone, with the initial condi-
of the form kiej�t 
 kie�j�t � 2�ki� cos(�t 
 �ki), an oscillation

tion generators removed, and the other due to the initial con-
of constant amplitude. If the complex natural frequencies lie

dition generators acting alone, with the independent sources
in the right half-plane at � � j�, their composite contribution

removed. Since these two components of the response arise
is of the form kie(�
j�)t 
 kie(��j�)t � 2�ki�e�t cos(�t 
 �ki), an

from different mechanisms, it is often useful to treat them
oscillation whose amplitude grows exponentially with time.

separately. The component of the response due to the inde-
Finally, if the complex natural frequencies lie in the left half-

pendent sources, with the initial conditions set to zero, is
plane at � � j�, their composite contribution is of the form

called the zero-state response, and the component due to the
kie(�
j�)t 
 kie(��j�)t � 2�ki�e�t cos(�t 
 �ki), an oscillation whose

initial conditions, with the independent sources set to zero, is
amplitude decays exponentially with time. (If some of the nat-

the natural or unforced response (also called the zero-input re-
ural frequencies have multiplicity greater than one, their con-

sponse).
tribution to the time response will be more complicated, with
polynomials times exponentials in place of exponentials, but

Natural Response and Natural Frequencies can be handled by an extension of the above analysis.)
The above discussion leads to the important conclusionWe will consider first the natural response of a circuit. Appli-

that if all natural frequencies of a circuit lie in the open leftcation of any of the standard frequency-domain analysis tech-
half-plane (i.e., if their real parts are less than 0), then forniques will yield a matrix equation of the form
any set of initial conditions the natural or zero-input response
of the circuit decays to zero as t � �. This decay may beM(s)X(s) = U(s)
oscillatory, depending on the presence of complex natural fre-
quencies. A circuit is said to be asymptotically stable or expo-where M(s) is a matrix each element of which is a polynomial

in s; X(s) is a vector containing some subset of the unknown nentially stable if all of its natural frequencies lie in the open
left half-plane. If any natural frequency lies in the open rightbranch voltages, branch currents, node voltages, and loop cur-

rents; and U(s) is a vector, each nonzero element of which is half-plane, then the initial conditions can cause certain cur-
rents and voltages to grow exponentially with time, which isa linear combination of the initial condition generators (3). If
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clearly undesirable. Obviously in a real circuit this growth sider the response to a single input, since superposition can
then be applied to calculate the response due to multiple in-cannot continue indefinitely as the circuit elements will even-

tually cease to function, possibly in dramatic fashion. Also ob- puts. Application of any of the standard frequency-domain
analysis techniques to a single-input zero-state circuit willvious is the fact that this behavior cannot occur in a circuit

made up entirely of passive elements, since the exponential yield a matrix equation of the form
growth requires that energy be supplied to the circuit by an

M(s)X(s) = U(s)active element such as a controlled source or negative resis-
tance.

where M(s) is a matrix, each element of which is a polynomialWhile the natural frequencies determine the possible natu-
in s; X(s) is a vector containing some subset of the unknownral modes of behavior of a circuit, the actual response that
branch voltages, branch currents, node voltages, and loop cur-will be observed in a circuit with zero input depends on the
rents; and U(s) is a vector, each nonzero element of which isvalues of the initial conditions. Certain sets of initial condi-
a term involving the independent source, say Vs(s) (althoughtions will excite one mode only, which means that all circuit
the theory applies equally to the case where the input is avariables will exhibit the same exponential or oscillatory be-
current source). It follows from linear algebra (2,3) thathavior, but for most sets the response will be the combination

of various modes. Also, all modes will not necessarily be ob-
served in any given circuit variable—it may be that certain Xi(s) = n(s)

det(M(s))
Vs(s) = H(s)Vs(s) (11)

variables are not susceptible to the influence of one or more
natural frequencies. where n(s) is a polynomial in s and det(M(s)) is not identically

zero, by our standing assumption of unique solvability. Thus
Example 2 To find the natural frequencies of the circuit of the zero-state response to a source vs(t) is obtained by multi-
Fig. 13, the voltage source can be set to zero and the resulting plying its Laplace transform vs(s) by the appropriate function
circuit can be analyzed in the frequency domain by any of the H(s) � n(s)/det(M(s)) and taking the inverse Laplace trans-
usual methods. In this case, node voltage analysis is possible, form to return to the time domain. This function is known as
yielding the matrix equation a transfer function or network function. Note that the poles of

a transfer function are zeros of det(M(s)) and are therefore
natural frequencies of the circuit. However, not all natural
frequencies need show up as poles of a given transfer func-
tion, due to cancellations with numerator terms.

Once again we see that the natural frequencies play a cru-




1
R1

+ sC1 0

−gm
1

R2
+ sC2



(

V1(s)
V2(s)

)
=
(

C1v1(0−)

C2v2(0−)

)

cial role in determining the response of the circuit—even, as
The natural frequencies are the values of s for which the de- in this case, when the initial conditions are zero. From Eq.
terminant of the matrix in this equation is zero, and therefore (11) the poles of Xi(s) will be some subset (determined by nu-
they equal �1/R1C1 and �1/R2C2. Solving explicitly for V1(s) merator cancellations) of the poles of Vs(s) and the natural
and V2(s) we find that frequencies. xi(t) will in general, therefore, contain terms re-

lated to the input together with exponential, constant, or os-
cillatory terms governed once again by the natural frequen-
cies. If the circuit is asymptotically stable, the contributions
governed by the natural frequencies will die away, leaving
only the component governed by the input.

V1(s)= (v1(0
−)

s+ 1
R1C1

and V2(s)=
gm

C2
v1(0−)+

(
s+ 1

R1C1

)
v2(0−)(

s+ 1
R1C1

)(
s+ 1

R2C2

) .

The simplest application of Eq. (11) occurs when Vs(s) �
1—that is, when the independent source vs(t) is the deltaThus the voltage v1 (natural or zero-input component) exhib-
function or impulse function defined by Eq. (10). Althoughits only the behavior controlled by the natural frequency at
this function is physically unrealizable, it proves extremely�1/R1C1. and is unaffected by the natural frequency at
useful in circuit and system analysis. When Vs(t) � �(t),�1/R2C2.
xi(s) � H(s) � L ��(y)� � H(s), and so the zero-state response is
xi(t) � h(t) � L �1�H(s)�. The zero-state response to an impulseThe Zero-State Response and Transfer Functions
function is known as the impulse response, and so we have

The zero-state response of a circuit is its response to one or found that the Laplace transform of the impulse response
more independent sources (inputs) with all initial capacitor equals the transfer function. The expression
voltages and inductor currents set to zero. It suffices to con-

xi(s) = H(s) · L {vs(t)}

gives the frequency-domain response of the system with
transfer function H(s) to an input vs(t) and can be expressed
in the time domain as

xi(t) = h(t)∗vs(t) =
∫ t+

0−
h(t − τ )vs(τ ) dτ

+
–

+

–

+

–

vS v1

R2
v2R1

C1

C2
gmv1

where h(t) � L �1�H(s)� is the impulse response and * is called
the convolution operator (3,6).Figure 13. Circuit to be analyzed in Examples 2 and 3.
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If the input is the unit step function u(t), which has La- analysis for circuits such as filters that are more usually han-
dled using Fourier analysis.place transform 1/s, then xi(s) � H(s) � L �u(t)� � H(s)/s and so

the step response is xi(t) � L �1�H(s)/s�. It is easy to see that The Fourier transform is closely related to the Fourier se-
ries (4–6), in which a periodic function with period T is de-the impulse response is the derivative of the step response.
composed into the weighted sum of sinusoids whose angular
frequencies are integer multiples of 2�/T. By superposition,Example 3 The transfer function V2(s)/Vs(s) of the circuit of
the response of a circuit to a periodic function could be ob-Fig. 13 is
tained by decomposing the function into the sum of sinusoids,
finding the response to each of these sinusoids via phasor
analysis, and summing these responses to find the overall re-
sponse. The main disadvantage to this Fourier series method
of analysis is that many source waveforms of interest are not
periodic; and since the method is based on phasor analysis, it
finds only the steady-state component of the response. The
fundamental idea underlying this method, however, namely
the idea of a sum of input sinusoids being processed (i.e., al-

H(s) =
gm

C2
s(

s + 1
R1C1

)(
s + 1

R2C2

)

=
gm

C2

R2C2 − R1C1


 R2C2(

s + 1
R1C1

) − R1C1(
s + 1

R2C2

)



tered in magnitude and phase) in different ways by a circuit
and then added to form the response, is a very useful one andand so the impulse response is
underlies the more general Fourier transform analysis.

The Fourier transform is a generalization of the Fourier
series to accommodate nonperiodic functions. A nonperiodic
function can be viewed as the limit of a periodic function as
the period T tends to infinity. The Fourier series of this peri-

h(t) = gmR2

R2C2 − R1C1
e−t/R1C1

− gmR1C1/C2

R2C2 − R1C1
e−t/R2C2 for t ≥ 0

odic function consists of weighted sinusoids spaced in fre-
quency at integer multiples of 2�/T. As T tends to infinity,

The step response is
the separation of these sinusoidal frequency components
tends to zero, and in the limit we have the nonperiodic func-
tion represented by a continuum or spectrum of sinusoidal
components. This spectrum of sinusoidal components consti-
tutes the Fourier transform of the function. The Fourier
transform of a signal f (t) is found, as in the above discussion,
by taking the limit of the expression for the Fourier series of
a periodic function as the period tends to infinity, which turns

L −1




gm

C2(
s + 1

R1C1

)(
s + 1

R2C2

)



= gmR1C1R2

R2C2 − R1C1
[−e−t/R1C1 + e−t/R2C2] for t ≥ 0

out to be

Note the exponential modes corresponding to the natural fre-
quencies in both the step response and the impulse response. F( jω) = F { f (t)} =

∫ ∞

−∞
f (t)e− jωt dt (12)

Note also that the impulse response is the derivative of the
step response.

and exists if the integral in Eq. (12) converges. Once again we
say that the Fourier transform converts a function from the
time domain into the frequency domain, with F( j�) indicatingFOURIER TRANSFORM CIRCUIT ANALYSIS
the frequency content of the signal at frequency �. If f (t) � 0
for t � 0 and the above integral converges, the Fourier trans-The power of the Laplace transform in finding the transient

and steady-state response of a circuit, the variety of source form of f is just the Laplace transform with j� substituted
for s. Given F( j�), the function f (t) such that F( j�) � F �f (t)�waveforms which it can handle, and its ability to accommo-

date initial conditions make it the method of choice in tran- is found by application of the inverse Fourier transform
sient circuit analysis. Despite these advantages, another
transform, closely related to the Laplace transform, is pre-
ferred in certain situations. This is the Fourier transform (4–

f (t) = F −1{F( jω)} = 1
2π

∫ ∞

−∞
F( jω)e jωt dω

6), named after the French mathematician Jean Baptiste Jo-
seph Fourier (1768–1830). The close relationship between the One important feature of the Fourier transform is the differ-

entiation property, which states that differentiation in theFourier transform of a signal and the frequency content of
that signal make it particularly useful in applications such as time domain is equivalent to multiplication by j� in the fre-

quency domain. Thus the Fourier transform can, like the La-communications and signal processing where this frequency
content is of paramount importance. However, the Fourier place transform, be used to transform a system of differential

equations in the time domain to a system of algebraic equa-transform is defined for a smaller class of source waveforms
than the Laplace transform, and it cannot handle initial con- tions in the frequency domain.

In Fourier transform analysis a circuit is transformed intoditions. The latter condition in particular makes it poorly
suited to transient circuit analysis and so we will merely give the frequency domain by replacing all independent sources

by their Fourier transforms, replacing each inductor L by ana brief discussion of its properties here, with the intention of
(1) explaining why it is unsuited to transient circuit analysis impedance j�L (and replacing any time-domain coupling M

between inductors by the frequency-domain coupling j�M), re-and (2) providing a link to other forms of transient circuit
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tude responses of the normalized Butterworth filters of orders
2, 3, 4, and 5. The amplitude response of each of these Butter-
worth filters is 0.7071 or �3 dB at � � 1 rad/s, which is to
say that their 3 dB bandwidth is 1 rad/s.

In a communication system designed to transmit pulses,
the step response of a filter is crucial. Too slow a rise time
leads to neighboring pulses in a pulse train being smeared
over one another, rendering them indistinguishable at the
output. Too high an overshoot can drive circuit elements into
saturation. The step response of a filter can be found by Fou-
rier transform methods, by taking the inverse Fourier trans-
form of the function H( j�)F �u(t)�, but there is in general no

n =  2

|H( j  )|

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Frequency,    (rad/s)

n =  3
n =  4
n =  5

Ideal

ω

ω
reason to prefer the Fourier transform over the Laplace trans-Figure 14. Amplitude response of the ideal low-pass filter with cutoff
form in this situation, and it is usual to take instead the in-frequency at 1 rad/s, together with the amplitude responses of the
verse Laplace transform of the function H(s)L �u(t)�. For ex-normalized Butterworth filters of order n � 2, 3, 4, and 5. Note that
ample, the normalized third-order Butterworth low-pass filterthe approximation more closely matches the ideal as the order of the
has transfer function H(s) � 1/(s3 
 2s2 
 2s 
 1) and so itsfilter increases.
step response is L �1�1/s(s3 
 2s2 
 2s 
 1)�, which can be
found by the partial fraction decomposition to be 1 � e�t �
(2/�3)e�t/2 sin(�3/2)t for t � 0. Figure 15 plots the step re-placing each capacitor C by an impedance 1/j�C, and leaving

resistive components unchanged. Note the lack of any initial sponse of the normalized Butterworth filters of orders 2, 3, 4,
and 5, as obtained by application of the Laplace transform. Itcondition generators; this is a consequence of the fact that

the lower limit of integration in the definition of the Fourier can be seen that as the order increases (and the amplitude
response more closely approximates the ideal) the overshoot,transform is �� rather than 0�. Analysis in the frequency

domain proceeds as described in the article on FREQUENCY- settling time, and delay time of the filters all increase, but
the rise time is approximately constant.DOMAIN CIRCUIT ANALYSIS or in Refs. 4 and 5, using the stan-

dard tools, and the frequency-domain response is converted The procedure outlined above can be used to find the exact
step response of a filter, allowing a designer to compare theback to the time domain by application of the inverse Fourier

transform. Once again there is a transfer function—in this suitability of various filters in pulse transmission applica-
tions. Designers should also have an intuitive understandingcase a function of frequency H( j�)—relating input and output

in the frequency domain. Note that the response obtained of the relationship between amplitude response and transient
response of a filter. A low-pass filter allows low frequencies tothrough Fourier transform analysis is the zero-state response

only, since the method contains no provision for handling ini- pass to the output, but blocks high frequencies. Thus when
the input is a step function, the output will preserve thetial conditions.

Given a circuit with input sin(�0t) and transfer function steady-state constant behavior of the input, but will act to
block the high frequencies involved in the transition from 0H( j�) [which in general is complex and, for the circuits in

which we are interested, has the property that H(�j�) is the to 1. This can be seen in Fig. 15, where the high-order filters
that are most effective at blocking high frequencies are leastcomplex conjugate of H( j�)], the output is obtained by taking

the inverse Fourier transform of H( j�) � F �sin(�0t)�, which effective in capturing the discontinuity in the input. We now
recognize the RC circuit of Fig. 1, with the output voltageturns out to be �H( j�0)�sin(�0t 
 �H( j�0)). In other words, the

sinusoidal input appears at the output as a sinusoid of the taken across the capacitor, as a low-pass filter. If the output
voltage were taken across the resistor, we would have a high-same frequency, with amplitude multiplied by the magnitude

of the transfer function at that frequency and phase incre- pass filter, whose step response captures the initial disconti-
nuity in the step, but then falls away to zero due to its inabil-mented by the phase of the transfer function at that fre-

quency. If the input to the circuit is more general, it can be ity to pass dc. Readers interested in a more detailed discus-
viewed as the finite or infinite sum of sinusoids, which will be
altered in magnitude and phase by the action of the circuit
and then recombined to form the output of the circuit. The
magnitude and phase of the transfer function will generally
vary with frequency, and when plotted versus frequency they
are called the amplitude (or magnitude) response and phase
response plots.

Frequency-selective circuits which pass certain ranges of
frequencies from input to output while blocking other ranges
are known as filters (7). For example, an ideal low-pass filter
would pass to the output all frequency components of its input
up to a certain cutoff frequency and would pass no higher-
frequency components. This ideal low-pass filter cannot be re-
alized and is therefore approximated by a variety of functions
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such as the Butterworth and Chebyshev approximations. Fig-
ure 14 plots the amplitude response of the ideal low-pass fil- Figure 15. Step response of the normalized Butterworth filters or

orders n � 2, 3, 4, and 5.ter with cutoff frequency at 1 rad/s, together with the ampli-
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sion of the relationship between frequency response and electronic and electrical engineers. As has been seen through-
out this article, the behavior of the linear circuits to whichtransient response of filters are referred to Refs. 1 and 7.
this analysis is applied is actually rather limited. This is not
to say that these circuits are not useful—quite the reverse.
The power of transient circuit analysis (and other forms ofHAZARDS FOR THE UNWARY
linear circuit analysis), coupled with the tremendous variety
of uses to which linear circuits can be applied, may tend toComputer Simulation of Transient Circuit Performance
give the impression that all circuits behave in a reasonably

Circuit simulation programs such as SPICE (8) are now ubiq- simple fashion and that it is only by adding a complex signal
uitous, and it is important that users understand the opera- (such as noise) that complex behavior can be observed in a
tion of these programs so that their results can be interpre- circuit. This is not the case. The transient and steady-state
ted. Our focus here is on the methods by which circuit behavior of nonlinear circuits can be extraordinarily complex,
simulators approach transient circuit behavior. In order to ob- even in the absence of an input signal. An appreciation of the
tain an approximate solution to a differential equation, a cir- complexity of nonlinear systems, together with an improved
cuit simulator approximates all derivatives in the equation ability to analyze and understand it, has been developed by
by discrete-time approximations. Transient circuit simulation mathematicians, engineers, and scientists from various disci-
proceeds in three steps: (1) The time interval of interest, con- plines since the 1960s, with terms such as ‘‘chaos’’ entering
sisting of a continuum of time values, is broken up into a set the lexicon and popular culture. In circuit theory this work
of small individual time steps: (2) the differential equation is was pioneered by Chua and his co-workers, and readers inter-
approximated by an algebraic equation over each time step, ested in venturing from the comparatively tame world of lin-
converting it into a form which the computer can readily ear circuit analysis into the fascinating world of nonlinear cir-
solve; and finally (3) the solutions over each of these time cuits are referred to the seminal paper (9) and to the article
steps are pieced together to form an approximation to the so- NONLINEAR DYNAMIC PHENOMENA IN CIRCUITS.
lution of the differential equation over the entire time inter-
val. The key issue here is the nature of the simplifying ap-
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mations often appear plausible, displaying behavior of the
types seen throughout this article. For example, poor use of a
simulator can cause the natural response of a stable first-
order circuit appear to exhibit damped oscillation, sustained TRANSIENT INTERMODULATION MEASURE-
oscillation, or even growing oscillation. Alternatively, numeri- MENT. See INTERMODULATION MEASUREMENT.
cal integration can add artificial damping to a response, pro- TRANSIENTS OF ELECTRICAL MACHINES. See
ducing for example a damped oscillatory response in a lossless ELECTRIC MACHINE ANALYSIS AND SIMULATION.
LC oscillator. Designers who make use of circuit simulators TRANSIENTS, OVERVOLTAGE. See OVERVOLTAGE PRO-
in their study of transient responses should be aware of these

TECTION.
hazards, and they are referred to Ref. 8 for further details. TRANSIENT STABILITY. See POWER SYSTEM TRANSIENTS.

TRANSISTOR, BIPOLAR PERMEABLE. See BIPOLAR
Nonlinear Circuits PERMEABLE TRANSISTOR.

TRANSISTOR RELIABILITY. See POWER DEVICE RELIA-The theory and techniques of transient linear circuit analysis
are powerful and elegant and form part of the tool kit of all BILITY.
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TRANSISTORS, BIPOLAR. See BIPOLAR TRANSISTORS.
TRANSISTORS, CHARGE INJECTION. See CHARGE IN-

JECTION DEVICES.
TRANSISTORS, POWER. See POWER DEVICES.
TRANSISTORS, STATIC INDUCTION. See STATIC IN-

DUCTION TRANSISTORS.
TRANSISTORS, THIN FILM. See THIN FILM DEVICES;

THIN FILM TRANSISTORS.


