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NETWORK ANALYSIS, SINUSOIDAL STEADY STATE

In this article the most important aspects of electrical circuits
operating in a sinusoidal steady state, also known by prac-
titioners as alternating current circuits, will be explored. In
this section a brief historical introduction is followed by a
mathematical overview of sinusoids and phasors.

HISTORICAL NOTES

Today, alternating current (ac) circuits are the standard for
electric power production, transmission, distribution, and
consumption. The advantage of ac versus direct current (dc)
systems became evident toward the end of the nineteenth cen-
tury, when a number of theoretical and technical results were
converted to practical machines, making long-distance power
transmission feasible and economical. Most of these inven-
tions are still in use: alternators, transformers, and asynchro-
nous motors are the standard energy-to-energy conversion
mechanisms in the modern world. At the same time the first
experiments with electromagnetic waves (discovered by H.
Hertz in 1887) underlined the importance of the study of ac
systems and resonant circuits, and led the way to modern
communications and electronics.

Important historical milestones are the invention of the
transformer, asynchronous motor, and the (theoretical) defi-
nition of the rotating vector (alternatively called a phasor) for-
malism. The work of Faraday and Ruhmkorff provided the
basis for the invention of the transformer. The first practical
open-core ac transformer was introduced by Gaulard at the
1884 World’s Fair in Turin, Italy. Thanks to the theoretical
work of Ferraris, who defined the power factor for ac circuits,
and definitely proved the high performance of the trans-
former, ac systems could be used for long-distance power
transmission. The design of the first transformer was im-
proved in the following year by Deri, Blathy, and Zipernow-
sky, with a closed-core design. The 1885 Budapest fair was lit
by an array of 75 of these transformers. In the same years
Ferraris and Tesla independently investigated the application
of the rotating magnetic field to the design of ac asynchronous
motors, patented by Tesla in 1888. A complete ac system pow-
ered by a hydroelectric plant 176 km away was demonstrated
in 1891 in Frankfurt, Germany. The definitive victory for ac
systems occurred in 1892, with the decision to adopt the al-
ternators designed by Tesla and built by Westinghouse for
the Niagara Falls power plant.

Finding steady state solutions in ac systems was a difficult
task. J. C. Maxwell contributed by providing a general solu-
tion of his equations for an ac circuit. Even with Maxwell’s
simplifications, solving for a particular problem still involved
the use of differential methods, not yet well known to the
practical engineer. The solution to this problem came with T.
Blakesley in 1885. His rotating vector method was the start-
ing point for the subsequent theory developed by C. P.
Steinmetz, which was published in 1893 (1) and 1898 (2).

SINUSOIDS AND PHASORS

Sinusoids are periodic functions known from trigonometry:

u1(t) = u01 cos(ω1t + φ1) (1)
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Any sinusoid is characterized by a triplet of parameters: am-
plitude u01 and angular frequency �1, both positive by conven-
tion, and (initial) phase �1, defined less an integer multiple of
2�. The positiveness of u01 and �1 does not limit the generality
of the definition in Eq. (1). In fact, the change in sign of u01

corresponds to the addition of 	� to �1, while the change in
sign of �1 is equivalent to the change of sign of �1.

Two other parameters are commonly used as alternatives
to �1: frequency f 1 � �1/(2�) and period T1 � 1/f 1. Moreover,
the effective value ueff

1 of sinusoid u1(t)

ueff
1 = lim

(t2−t1 )→∞

s
1

t2 − t1

∫ t2

t1

[u01 cos(ω1t + φ1)]2 dt = u01√
2

(2)

may be used in place of u01. Since the integrand is periodic
with period T1/2, this result does not change if the integration
range (t2 � t1) is coincident with any integer multiple of
T1/2.

Recalling trigonometry and complex number mathematics,
the expression of u1(t) in Eq. (1) may assume the alternative
forms:

u01(t) =




u01 cos(φ1) cos(ω1t) − u01 sin(φ1) sin(ω1t)

�[u1 exp( jω1t)]

(1/2)u1 exp( jω1t) + (1/2)(u1)∗ exp(− jω1t)

(3)
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where j is the imaginary unit, the complex number u1 � Figure 1. Geometrical relations between phasors and corresponding
u01 exp( j�1) is the phasor of the sinusoid, u01, coincident with sinusoids in time domain.
the amplitude of the sinusoid, is its modulus, and �[ ] denotes
the real part of the complex quantity between [ ]. Analo-
gously, �[ ] denotes the imaginary part. The second expres-
sion in Eq. (3) allows one to interpret sinusoids from a geo- subclass and with phasor u1 � u2:
metrical point of view. A sinusoid with angular frequency �1

and phasor u1 may be regarded as the projection on the real
axis of a point moving along a circumference with angular

u1(t) + u2(t) = �[u1 exp( jω̂t)] + �[u2 exp( jω̂t)]

= �[(u1 + u2) exp( jω̂t)]
(5)

velocity �1 (see Fig. 1). The circumference is centered on the
origin of the complex plane: the modulus u01 of the phasor

Property. The set of the time derivatives of all sinusoids ofdetermines its radius, while the phase �1 determines the posi-
any �̂-subclass is equivalent to the subclass itself. More ex-tion of the point on the circumference in t � 0.
actly, the derivative of a sinusoid of an �̂-subclass and with
phasor u1 is again a sinusoid of the same subclass and with

Subclasses of Sinusoids With The Same Angular Frequency
phasor j�̂u1.

Consider the subset of sinusoids characterized by the same
Proof. Consider a generic sinusoid and its time derivative:angular frequency, hereinafter denoted by symbol �̂, which

will be called �̂-subclass. Each sinusoid of an �̂-subclass is
distinguishable from other sinusoids of the same subclass by
its specific phasor value. Some examples of sinusoids and cor-
responding phasors are shown in Table 1.

u1(t) = 1
2 [u1 exp( jω̂t) + u∗

1 exp(− jω̂t)] ⇒
du1(t)

dt
= 1

2 [ jω̂u1 exp( jω̂t) − jω̂u∗
1 exp(− jω̂t)]

(6)

Property. According to Eqs. (4) and (5) each �̂-subclass of Comparing the derivative with the sinusoid itself proves the
sinusoids or, equivalently, the corresponding set of phasors, property.
constitutes a two-dimensional linear space.

Proof. A sinusoid u1(t) of a �̂-subclass and phasor u1,
multiplied by any real number �, is again a sinusoid of the
same subclass with phasor �u1:

αu1(t) = α�[u1 exp( jω̂t)] = �[(αu1) exp( jω̂t)] (4)

while the sum of any pair of sinusoids u1(t) and u2(t) of an �̂-
subclass and with phasors u1 and u2 is a sinusoid of the same

Table 1. Some Examples of Sinusoids and Related Phasors

Sinusoid uk(t) Phasor ūk

15 cos(�̂t � �/4) 15 exp( j�/4)
10 cos(�̂t � �/2) 10 exp(�j�/2)

�3 sin(�̂t) 3 exp(�j�/2)
�8 cos(�̂t � �/6) 8 exp( j5�/6)
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Table 2. Terminology Used in Comparing Two Sinusoids and Their Phasors

�1 � �2 ū1 and ū2 are in phase �1 � �2 � 	� ū1 and ū2 are in opposition
�2 � � � �1 � �2 ū1 anticipates ū2 �2 � � 
 �1 
 �2 ū1 delays ū2

�1 � �2 � ��/2 ū1 anticipates in quadrate ū2 �1 � �2 � ��/2 ū1 delays in quadrate ū2

Analogously the integral of a sinusoid of a �̂-subclass is laws, when the incidence matrix A and a fundamental mesh
once more a sinusoid of the same subclass and with phasor matrix B are employed: vectors v(t) and i(t) group the sinusoi-
u1/( j�̂), if the arbitrary integration constant is zero. dal branch voltages and currents, and vectors ṽ(t) and ı̃(t)

A set of phasors of the same �̂-subclass may be represented group the sinusoidal node voltages and mesh currents, while
in the complex plane. This representation, called a phasor di- vectors v, i, ṽ, and ı̃ group the respective phasors.
agram, is convenient in qualitative and quantitative analysis.
An ad hoc terminology is commonly used when phasors (and/

Constitutive Relations In Phasor Domainor the corresponding sinusoids) are compared in the complex
plane; Table 2 reports such terminology for two sinusoids The constitutive relations, also known as branch or element
with phasors u1 � u01 exp( j�1) and u2 � u02 exp( j�2). Note relations, are introduced, in the phasor domain, by using the
that phases �1 and �2 must be defined so that ��1 � �2� � �, voltage and current reference directions (defined in LINEAR
by choosing suitably the arbitrary integer multiples of 2� of NETWORK ELEMENTS) for independent voltage and current
the two phases. sources: the corresponding source voltage or current phasor is

introduced, while the respective current or voltage remains
PHASOR DOMAIN ANALYSIS OF CIRCUITS IN SINUSOIDAL unconstrained in the phasor domain (see Table 4): source volt-
STEADY STATE ages and currents are characterized by the symbol ‘‘ ˆ ’’.

Linear resistive elements are defined, in the phasor do-
In this section the phasor domain method will be applied to main, by algebraic, constant coefficient relations identical to
analyze a circuit operating in a sinusoidal steady state. A lin- those used in the time domain (see Table 5). Table 6 shows
ear dynamic circuit operates in a sinusoidal steady state the constitutive relations of simple dynamical elements (see
(SSS), that is, all voltages and currents of the circuit vary LINEAR NETWORK ELEMENTS): they display the imaginary factor
versus time as sinusoids of the same �̂-subclass (4), if the j�, which replaces the time domain derivative d/dt, denoted
following conditions are met: hereinafter by ‘‘ ˙ ’’ (see Eq. 6).

1. The circuit is built using linear, resistive, and time in-
variant elements with any number of terminals, sinu- Sparse Tableau Analysis in Phasor Domain
soidal independent sources all with the same fixed an-

A circuit operating in SSS is now analyzed, by using the samegular frequency �̂, linear and time invariant capacitors,
methods presented for general analyses (see NETWORK EQUA-inductors, and coupled inductors.
TIONS). For the sake of brevity only the sparse tableau method2. The circuit is asymptotically stable, that is, all the natu-
will be discussed. To this end, consider Kirchhoff ’s laws andral complex frequencies sk � �k � j�k (k � 1, 2, . . ., n)
constitutive relations in phasor domain:of the circuit are in the left side of the complex plane

[i.e., �k 
 0, (k � 1, 2, . . ., n)] (4).
3. The circuit has been left running with no external inter-

vention (e.g., switch commutation) for a time interval
�t such that �t 
 1/��k�, (k � 1, 2, . . ., n).


 −AT Im,m 0m,m

0n−1,n−1 0n−1,m A
0m,n−1 Hv0 + jω̂Hv1 Hi0 + jω̂Hi1




ṽvv

vvv

iii


 =





 (7)

0m

0n−1

ûuu

Under the above circumstances the transient effects due to
where n and m are the number of nodes and branches in theinitial conditions vanish, because the circuit is asymptotically
graph; A is the (n � 1) � m incidence matrix; Hv0, Hv1, Hi0,stable, all voltages and currents are sinusoids versus time. In
and Hi1 are m � m block diagonal matrices grouping the pa-conclusion, by substituting sinusoids and their derivatives
rameters of constitutive relations, Im,m is the identity m � mwith the respective phasors, the time domain linear differen-
matrix, 0m, 0n�1 are vectors of null elements, and 0m,m, 0m,n�1,tial equations with forcing sinusoids of the same �̂-subclass

are transformed into complex-domain algebraic equations. 0n�1,m, 0n�1,n�1 are matrices of null elements; subscripts denote
dimensions. Vector û in the right-hand side groups the pha-

Topological Relations in Phasor Domain sors of source voltages and currents, while the unknowns of
the system are the phasors of node voltages, branch voltages,The time domain Kirchhoff ’s laws (see NETWORK EQUATIONS)
and currents. Note that the elements of matrices Hv0 � j�̂Hv1are translated in SSS into the phasor domain (4): they are
and Hi0 � j�̂Hi1 either are adimensional or have the physicalagain homogeneous linear algebraic relations with the same

real and constant coefficients. Table 3 shows phasor domain dimensions of voltage-to-current or current-to-voltage.

Table 3. Formulations of Kirchhoff ’s Laws in Phasor Domain

Time Domain Phasor Domain Time Domain Phasor Domain

KVL v(t) � ATṽ(t) ṽ � ATv̄̃ Bv(t) � 0 Bv̄ � 0
KCL Ai(t) � 0 Aı̄ � 0 i(t) � BTı̃(t) ı̄ � BTı̄̃
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Table 4. Constitutive Relations of Independent Sources in Phasor Domain

Voltage Source Current Source

Time Domain Phasor Domain Time Domain Phasor Domain

v(t) � �[v̄̂ exp( j�t � j�v)] v̄ � v̄̂ � v̂ exp( j�v) i(t) � �[ı̄̂ exp( j�t � j�i)] ı̄ � ı̄̂ � ı̂ exp( j�i)

Impedance and Admittance For instance, consider a dynamical one-port subnetwork
formed by connecting, in parallel, a resistor with value

The phasor domain representation of sinusoidal voltages and
500/3 � and a capacitance with value 20 �F operating in

currents suggests, for any one-port element, the introduction
SSS characterized by �̂ � 300 rad · s�1: admittance y and im-

of impedance and admittance, which have the same role as,
pedance z are obtained as:

respectively, resistance and conductance in dc circuits (see
LINEAR NETWORK ELEMENTS). For the fixed value �̂, impedance
z( j�̂) and admittance y( j�̂) are complex numbers defined by
the quotient of voltage-to-current and of current-to-voltage
phasors, respectively:

y =
� 1

500/3
+ j 300 × 20 × 10−6

�
S =

� 3
500

+ j
3

500

�
S ⇒

z = 1
y

=
�500

6
− j

500
6

�
�

Representations of Dynamical Two-Port Elementsz( jω̂) = r(ω̂) + jx(ω̂) = v

i
y( jω̂) = g(ω̂) + jb(ω̂) = i

v
(8)

in the Phasor Domain

In Eq. (8) both impedance and admittance have been decom- The six representations of two-ports (see LINEAR NETWORK ELE-

posed into real and imaginary parts: r(�̂) is called resistance, MENTS), if they exist, are valid also for two-ports in the phasor
x(�̂) is reactance, g(�̂) is conductance, and b(�̂) is susceptance, domain. Consider, as an example, the current and voltage-
as shown in Fig. 2. Impedance and admittance are not at all controlled representations:
phasors, since they do not represent sinusoids; they may be
considered as phasor-to-phasor operators. For this reason
their symbol is not barred.

Impedance and admittance of one-port subnetworks (i.e.,
built connecting simple one-port elements) may be calculated
using the same rules given for two-terminal resistors (see
TIME DOMAIN CIRCUIT ANALYSIS). For instance, the impedance

[
v1

v2

]
=

[
z11( jω̂) z12( jω̂)

z21( jω̂) z22( jω̂)

][
i1

i2

]

i1

i2


 =

[
y11( jω̂) y12( jω̂)

y21( jω̂) y22( jω̂)

][
v1

v2

] (10)

z( j�̂) and admittance y( j�̂) � 1/z( j�̂) of series and parallel
The four elements of both matrices are, in general, complexconnections of two one-port elements are:
because they depend on the imaginary number j�̂. The imped-
ance and admittance matrices Z( j�̂) and Y( j�̂) substitute the
real resistance and conductance matrices R and G proper of
dc circuits. The same considerations hold also for the other
four representations of two-ports.

Series: z( jω̂) = z1( jω̂) + z2( jω̂) y( jω̂) = y1( jω̂)y2( jω̂)

y1( jω̂ + y2( jω̂)

Parallel: y( jω̂) = y1( jω̂) + y2( jω̂) z( jω̂) = z1( jω̂)z2( jω̂)

z1( jω̂) + z2( jω̂)
(9) Generalization of dc Analysis Methods and Properties

to ac Circuits
where z1( j�̂) � 1/y1( j�̂) and z2( j�̂) � 1/y2( j�̂) are the imped-
ances of the connected one-ports (see LINEAR NETWORK ELE- All the following topics, introduced for linear resistive cir-

cuits, are easily generalized to the phasor domain [see LINEARMENTS).

Table 5. Constitutive Relations of Linear Resistive Elements in Phasor Domain

Element Time Domain Phasor Domain Element Time Domain Phasor Domain

Short circuit v(t) � 0 v̄ � 0 Open circuit i(t) � 0 ı̄ � 0

Resistor v(t) � ri(t) v̄ � rı̄ Nullor
v1(t) � 0 v̄1 � 0
i1(t) � 0 ı̄1 � 0

CCVS VCCSv1(t) � 0 v̄1 � 0 i1(t) � 0 ı̄1 � 0
v2(t) � rmi1(t) v̄2 � rmı̄1 i2(t) � gmv1(t) ı̄2 � gmv̄1

CCCS VCVS
v1(t) � 0 v̄1 � 0 i1(t) � 0 ı̄1 � 0
i2(t) � �i1(t) ı̄2 � �ı̄1 v2(t) � �v1(t) v̄2 � �v̄1

Ideal transformer Gyratorv1(t) � nv2(t) v̄1 � nv̄2 v1(t) � i2(t)/gm v̄1 � ı̄2/gm

i1(t) � i2(t)/n ı̄1 � ı̄2/n i1(t) � gmv2(t) ı1 � gmv̄2
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Table 6. Constitutive Relations of Dynamical Elements in Phasor Domain

Elements Time Domain Phasor Domain

Capacitor i(t) � Cv̇(t) ı̄ � j�̂Cv̄
Inductor v(t) � Li̇(t) v̄ � j�̂Lı̄

Coupled inductors
v1(t) � L1i̇1(t) � Mi̇2(t) v̄1 � j�̂L1ı̄1 � j�̂Mı̄2

v2(t) � Mi̇1(t) � L2i̇2(t) v̄2 � j�̂Mı̄1 � j�̂L2ı̄2

NETWORK ELEMENTS; NETWORK EQUATIONS; see also (3) or (4) for (Fig. 3):
classical methods]:

Reciprocal and nonreciprocal two-ports

p(t) = v0 cos(ω̂t + φv )i0 cos(ω̂t + φi )

= (v0i0/2) cos(φv − φi ) + (v0i0/2) cos(2ω̂t + φv + φi)
(11)

Thevenin and Norton models of one-port elements and re-
The constant term v0i0 cos(�v � �i)/2 has an absolute valuespective theorems
less than or equal to the amplitude v0i0/2 of the sinusoidal

Superposition theorem term. In particular, the constant term coincides with this am-
Nodal analysis and modified nodal analysis plitude in the case of resistors and is null in the case of capac-

itors and inductors, according to:Loop and cut set analysis
Current and voltage partition rules
First and second Millmann theorems
Y � � and � � Y transformations

Resistor: p(t) = [(ri2
0)/2][1 + cos(2ω̂t + 2φv)]

Capacitor: p(t) = [(ω̂Cv2
0)/2] cos(2ω̂t + 2φv + π/2)

Inductor: p(t) = [(ω̂Li2
0)/2] cos(2ω̂t + 2φv − π/2)

(12)

Recall that the sum of instantaneous powers absorbed by allPOWER IN SINUSOIDAL STEADY STATE
the K elements (including possible multiport elements) of a
circuit is zero.To evaluate the electrical power exchanged in linear dynamic

circuits operating in SSS, the sinusoidal behavior of any
branch voltage and current must be taken into account.

K∑
k=1

pk(t) = 0 (13)

Instantaneous Power in One-Port Elements
Note that in Eq. (13), pk(t) is negative for independent sources

Let v(t) � v0 cos(�̂t � �v) and i(t) � i0 cos(�̂t � �i) be the delivering power.
voltage and current of a one-port element or any port of a
multiport element operating in SSS; the instantaneous power Active Power and Power Factor
p(t) � v(t)i(t) absorbed by this element is composed of a con-

Instantaneous power p(t) is somewhat inconvenient and doesstant term plus a sinusoidal term with angular frequency 2�̂
not have much practical use. Other definitions dealing with
power are often preferred.

Definition. In generic dynamic situations, active power P is
defined as the average of instantaneous power p(t) over a time

z(  )ω

r(  )

(a)

ω

jx(  )ω

 [z]

[z]

 [ y]

 [ y]g(  )ω

(b)

jb(  )ω

ℑ

ℑ

ℜ

ℜ

p(t)

i(t) v(t)

t

Figure 2. Real and imaginary parts of (a) impedance and (b) admit-
tance. Figure 3. Instantaneous power of a generic one-port element.
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interval long enough: Introducing the impedance z or the admittance y of the
one-port, and their real and imaginary parts in Eq. (8), two
different and popular expressions of complex power are ob-
tained:

P = 1
t2 − t1

∫ t2

t1

p(t)dt for (t2 − t1) → ∞ (14)

In SSS active power P assumes a compact and popular form
since it coincides with the constant term appearing in Eq.

P = 1
2 zii ∗ = P + j�[P] = (1/2)ri2

0 + j(1/2)xi2
0

P = 1
2 y∗vv ∗ = P + j�[P] = (1/2)gv2

0 − j(1/2)bv2
0

(19)

(11):

The introduction of the complex power is justified by the fol-
lowing theorem:P = 1

t2 − t1

∫ t2

t1

p(t)dt = (v0i0/2) cos(φv − φi ) (15)

Complex Power Theorem. The sum of complex powers overwith (t2 � t1) 
 T̂/2 or (t2 � t1) � �T̂/2 (where � is an arbitrary
all K elements of a circuit is null:integer) because p(t) is periodic with period T̂/2.

Active Power Theorem. Recalling the power theorem in
Eq. (13), and averaging both sides of the equation that fixes

K∑
k=1

Pk = 0 (20)

at zero the sum of instantaneous powers, one obtains that the
sum of active powers over all the K elements of a circuit is Proof. With reference to Table 3, Kirchhoff ’s laws may be
zero: written as: Ai � 0 or, equivalently, Ai* � 0 and v � ATṽ.

Computing the scalar product of v and i*, one obtains:
K∑

k=1

Pk = 0 (16) K∑
k=1

Pk = 1
2vvvT

0iii ∗
0 = 1

2 [ATṽvv0]Tiii ∗
0 = 1

2 ṽvv
T
0 [Aiii∗

0] = 0 (21)

Definition. For a given one-port element, the factor
cos(�) � cos(�v � �i), appearing in Eq. (15), is called power From the above proof, since the sum of active powers over all
factor, where � � �v � �i coincides with the phase of the elements of a circuit coincides with the real part of the sum
impedance of the one-port defined in Eq. (8). By using the of complex powers, it is again proved that the sum of active
definition in Eq. (2) and Eq. (15), active power P exchanged powers equals zero [see Eq. (16)].
through a port is equal to the popular formula:

Definition. The modulus of complex power is called apparent
P = veffieff cos(φ) (17) power and is symbolized as A:

Other equivalent expressions for active power are often used:
A = |P| =

p
P2 + Q2 = (v0i0/2) (22)the first is equal to one-half the voltage amplitude v times the

component ic � i0 cos(�) of current i in phase with
In general, the sum of all apparent powers extended to allv, while the second is equal to one-half the current amplitude
elements of a circuit is not null.i times the component vc � v0 cos(�) of voltage v in phase

with i: P � v0ic/2 and P � vci0/2.
Reactive PowerIn practice, active power is a measure of the absorbed or

delivered electrical energy in a unit time interval (see POWER The focus will now be on the imaginary part of complex
MEASUREMENT). power �[P] in Eqs. (18) and (19).

Complex Power Definition. The imaginary part of complex power �[P], de-
noted by QA definition, whose significance will be clarified later, is now

introduced, relating to a quantity that depends upon the
product of the voltage phasor with the conjugate of that of the Q = �[P] = (v0i0/2) sin(φv − φi ) (23)
current. A priori this product does not have a physical mean-
ing, since it is an unspecified operation in phasor theory [see is called reactive power.
Eqs. (4–6)].

By observing the factor sin(�v � �i) in Eq. (23), reactive power
Definition. The complex power P in one-port elements is de- Q appears to be positive, if the voltage anticipates the current
fined as one-half the product of the voltage phasor v and the (resistive-inductive one-port), and negative otherwise (obvi-
conjugate of the current phasor i*: ously Q � 0 if voltage and current are in phase). The resulting

sign of Q is only a convention, universally accepted, due to
the introduction of the conjugate of the current phasor in Eq.
(18). If complex power were defined as (1/2)v*i, its imaginary

P = (1/2)vi ∗ = �[P] + j�[P]

= (v0i0/2) cos(φv − φi ) + j(v0i0/2) sin(φv − φi)
(18)

part would change sign. Reactive power Q in a capacitor or in
an inductor has a strong relation with the maximum value ofNote that the real part of complex power �[P] coincides with

the active power in Eq. (15), while the imaginary part �[P] the instantaneous energy w(t) stored in the element during
one whole period.will be discussed later on.
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Property. Reactive power Q and the maximum wM of w(t) are Both active power P and reactive power Q in the four con-
trolled sources and in the nullor may have any value in (��,related by:
��) (see LINEAR NETWORK ELEMENTS and Table 5). Indeed,
these five two-port elements are characterized by having the
voltage and/or current of the output port unconstrained.

In an ideal transformer P and Q are both zero indepen-
dently of the rest of the circuit. In fact, the instantaneous
power is null and the ideal transformer is reciprocal.

Compute the reactive power absorbed by a gyrator (see Ta-

Capacitor:




Q = − 1
2 bv2

0 = − 1
2 ω̂Cv2

0

wM = max
〈t〉

[w(t)] = 1
2Cv2

0
⇒ Q = −ω̂wM

Inductor:




Q = 1
2 xi2

0 = 1
2 ω̂Li2

0

wM = max
〈t〉

[w(t)] = 1
2 Li2

0
⇒ Q = ω̂wM

(24)

ble 5). In general, it may have any value, even if the instanta-
neous power absorbed is always zero, since the gyrator isThe above physical interpretation of reactive power does not
antireciprocal. This apparent paradox may be verified byat all hold for other elements. Reactive power in a resistor is
applying Eq. (27) to the impedance matrix of a gyrator.always zero, because sin(�v � �i) � 0, while in an indepen-

dent voltage or current source Q may be different from zero,
even if these elements are resistive. This result is explained P = 1

2 {(rm − rm)�[i ∗
1i2]} = 0 Q = −rm�[i ∗

1i2] (28)

by considering that in independent sources the current or the
where rm is the gyration transresistance. The result in Eq.voltage is unconstrained.
(28) shows why the first port of a gyrator with the second port
closed on a capacitor (which absorbs negative reactive power)Reactive Power Theorem. The sum of reactive powers over
is equivalent to an inductor (which absorbs positive reactiveall K elements of a SSS circuit is zero.
power).

NETWORK FUNCTIONS

K∑
k=1

Qk = 0 (25)

Proof. The sum of all reactive powers coincides with the The previous sections considered circuits operating in SSS
imaginary part of the sum of all complex powers. The latter with a fixed angular frequency �̂. Now consider the properties
is zero because of Eq. (20). of these circuits by considering the angular frequency � as an

arbitrary variable of the problem. Toward this aim it is neces-
Active, Reactive, and Complex Power in Two-Ports sary to introduce the network functions of a circuit in SSS (4).

Consider now the complex power absorbed by a two-port in
Definition of Network Functionsthe case that representation matrix Z exists. The complex

power P absorbed by a two-port element has the complex qua- Set at zero the value of any sinusoidal source voltage and
dratic form: current in the circuit except the source voltage or current,

generically denoted by û(t), which is considered to be an input
variable of the circuit. Any sinusoidal branch voltage or cur-
rent, generically denoted by y(t), may be chosen as output
variable.

P = 1
2

[
i ∗

1

i ∗
2

]T [
v1

v2

]
= 1

2

[
i ∗

1

i ∗
2

]T [
z11 z12

z21 z22

][
i1

i2

]

= 1
2 [i ∗

1i1z11 + i ∗
1i2z12 + i ∗

2i1z21 + i ∗
2i2z22]

(26)

Definition. A network function is the quotient of the output
where ‘‘T’’ denotes transposition. phasor y of y(t) by the input phasor û of û(t).

Equating the real and imaginary parts of the two sides of
Circuit linearity causes the above quotient to depend only onEq. (26), the active and reactive power are obtained.
the angular frequency � of the source, and not on its phasor
û; so j� is the argument of the network function since it ap-
pears in the constitutive relations of any dynamical element.
Obviously since, in general, a circuit may have more indepen-
dent sources (inputs) and many branch voltages or currents
that may be considered as output, several different network

P = 1
2 {r11i2

01 + r22i2
02 + (r12 + r21)�[i ∗

1i2] + (x21 − x12)�[i ∗
1i2]︸ ︷︷ ︸}

Q = 1
2 {x11i2

01 + x22i2
02 + (r12 − r21)�[i ∗

1i2]︸ ︷︷ ︸+(x21 + x12)�[i ∗
1i2]}

(27)
functions may be defined in any dynamic circuit. In a general

Similar formulas hold for the other representations of two- situation, it is possible to define network functions as the quo-
ports. tient of the generalized phasors y and û of the complex expo-

The form of the underbraced terms (r12 � r21)�[i*1 i2] and nential functions y(t) � �[y exp(st)] and û(t) � �[û exp(st)],
(x21 � x12)�[i*1 i2] in Eq. (27) denotes the following properties. characterized by complex frequency s � � � j�. Equivalently,

network functions may be defined as the quotient of the La-
Property. A two-port with a pure imaginary impedance and/ place transforms of the same quantities (see FREQUENCY-

or admittance matrix does not absorb or deliver active power DOMAIN CIRCUIT ANALYSIS). In these cases the network function
if and only if it is reciprocal (i.e., x12 � x21). is a complex valued function F(s) of the complex variable s:

F(s) results to be the quotient of two polynomials with real
coefficients. This property can be shown by considering theProperty. A two-port with a pure real impedance and/or ad-

mittance matrix does not absorb or deliver reactive power if solution of the linear system in Eq. (7) obtained using the
Kramer rule: the denominator of F(s) coincides with the deter-and only if it is reciprocal (i.e., r12 � r21).
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minant of the matrix of the system, while the numerator coin- Impedance and admittance functions are jointly called immit-
tance functions, from the contraction of the terms impedancecides with the determinant of a suitable submatrix, less possi-

ble common factors that cancel out. The roots of the and admittance. The last four network functions in the above
list are called transfer functions, because the input and out-numerator polynomial are the zeroes of the network function,

while the roots of the denominator are the poles. Zeroes and put are related to two different branches of the circuit.
poles may be real or complex conjugate pairs: their values

Magnitude and Phase of Network Functionscharacterize, less a constant factor, the network function and,
in particular, its behavior along the imaginary axis (see the In SSS, network functions are, in general, complex valued
section titled Logarithmic Scales and Bode Plots and the sub- functions of the imaginary variable j�, that is, any network
section titled Factorization of Network Functions, later in this function may be written as F( j�). Using complex number
article). If F(s) is evaluated along the imaginary axis, that is, mathematics, it is possible to derive from network function
for s � j�, the network function F( j�) defined in SSS is ob- F( j�), two real-valued functions: magnitude �F( j�)� and
tained. phase �F(�) � �F( j�). It is possible to better examine these

real-valued functions by splitting the numerator N(s) and the
Classes of Network Functions denominator D(s) of F(s) into even and odd parts:

In any network function in SSS the output phasor y may be
N(s) = N2(s2) + sN1(s2) D(s) = D2(s2) + sD1(s2) (29)any branch current or voltage, and the input phasor û may

be any source voltage or current. Any network function may
where N2(s2) and D2(s2) contain the even terms of polynomialsthen be seen either as the admittance or impedance of a com-
N(s) and D(s), while sN1(s2) and sD1(s2) contain the odd terms.posite one-port element, or as an off-diagonal element of the
By substituting s � j�, one can decompose both numeratorimpedance, admittance, or hybrid matrix [see Eq. (10)] of a
and denominator into real and imaginary parts:two-port subnetwork extracted from the circuit (see LINEAR

NETWORK ELEMENTS). One may then define the following
classes of network functions: F( jω) = N( jω)

D( jω)
= N2(−ω2) + jωN1(−ω2)

D2(−ω2) + jωD1(−ω2)
(30)

• Impedance Function. The quotient of the voltage phasor The magnitude �F( j�)� is an even function of �:
v of a current source by the current phasor ı̂ of the source
itself (see Fig. 4a)

• Admittance Function. The quotient of the current pha- |F( jω)| =
�

[N2(−ω2)]2 + [ωN1(−ω2)]2

[D2(−ω2)]2 + [ωD1(−ω2)]2 (31)

sor i of a voltage source by the voltage phasor v̂ of the
source itself (see Fig. 4b) It is often preferable to use the squared magnitude �F( j�)�2

because it is rational in �2. For this reason it is used to solve• Transimpedance Function. The quotient of any voltage
approximation problems in filter design (see FILTER APPROXI-phasor by any source current phasor
MATION METHODS; ANALOG FILTERS).• Transadmittance Function. The quotient of any current

The phase function �F(�) may be computed using the nu-phasor by any source voltage phasor
merator and denominator of the network function:

• Voltage Gain Function. The quotient of any voltage pha-
sor by any source voltage phasor βF (ω) = �F ( jω) = �N( jω) −�D( jω) (32)

• Current Gain Function. The quotient of any current pha-
sor by any source current phasor defined less an arbitrary integer multiple of 2�. The phase

function is odd symmetric, �F( j�) � ��F(�j�), with respect
to �, because the substitution j� � �j� causes the change of
sign of the imaginary parts of N( j�) and D( j�). In general,
the phase function �F(�) is continuous in �, except in corre-
spondence of pure imaginary conjugates zeroes or poles,
where phase has a 	k� discontinuity, where k is the multi-
plicity of the zeroes or poles, including possible poles or zeroes
in the origin.

Phase of the Immittance of One-Port Elements

The phase of an immittance function is important in classify-
ing one-port elements; to this end the terminology reported in
Table 7 and illustrated in Fig. 5 is used.

Properties. It may be easily seen that any one-port subnet-
work containing only resistors and inductors is resistive-in-
ductive for any value of �, because this subnetwork absorbs

+

–

Remaining
subnetwork

(a)

^i

Remaining
subnetwork

(b)

v̂

v

i

+
–

nonnegative reactive power for any �. Analogously, any one-
port will be resistive-capacitive if it is built using only capaci-Figure 4. Definition of immitance functions: (a) impedance and (b)

admittance. tors and resistors. Subnetworks containing resistors, capaci-
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Table 7. Phases of Immittances and Related Classification

One-Port Element Class Phase Comment

Inductive �z( j�) � ��y( j�) � �/2 v̄ anticipates in quadrate ı̄
Resistive-inductive v̄ anticipates ı̄0 
 �z( j�) � ��y( j�) 
 �/2
Resistive v̄ and ı̄ are in phase�z( j�) � ��y( j�) � 0
Resistive-capacitive ı̄ anticipates v̄0 � �z( j�) � ��y( j�) � ��/2
Capacitive ı̄ anticipates in quadrate v̄�z( j�) � ��y( j�) � ��/2

tors, and inductors will be, in general, resistive-capacitive in the modulus of the �th pair of complex conjugate zeroes and
poles. Parameters qz� and qp� of the �th pair of complex conju-some frequency intervals and resistive-inductive in others.

The series and parallel resonators are of this type (see the gate zeroes and poles are strictly related to the phase � of
complex conjugate poles or zeroes: q � 1/[2 sin(� � �/2)],section titled Resonance, later in this article).
where � is the phase of the complex zero or pole with positive
imaginary part. This formula shows that the q parameterFactorization of Network Functions
has, for complex conjugate pairs of poles or zeroes, an abso-

Since any network function is rational, it may be factorized lute value greater than 0.5.
in order to evidence poles and zeroes.

Definition. When the degree of numerator and the degree of
denominator are not equal, the network function has a zero
or pole at infinity. Introducing the integer parameter �� as
the difference in degree,

µ∞ = −µ0 + Kpr + 2Kpc − Kzr − 2Kzc (34)

it may be easily seen that

F( jω) = h × ( jω)µ0

×

Real zeroes︷ ︸︸ ︷
Kzr∏
ν=1

[1 + jω/σzν ]

Complex conjugate zeroes︷ ︸︸ ︷
kzc∏
ν=1

[1 + jω/(qzνωzν ) + ( jω/ωzν )2]

Kpr∏
ν=1

[1 + jω/σpν]

︸ ︷︷ ︸
Real poles

kpc∏
ν=1

[1 + jω/(qpνωpν ) + ( jω/ωpν )
2]

︸ ︷︷ ︸
Complex conjugate poles

(33)

Where h is the real constant factor and ��0� is the number of

µ∞ > 0: F( jω) → 0 of order µ∞ if ω → ∞
µ∞ < 0: F( jω) → ∞ of order |µ∞ if ω → ∞
µ∞ = 0: no zeroes or poles of F( jω) at infinityzeroes in the origin if �0 � 0 or the number of poles in the

origin if �0 
 0. Kzr and Kpr are the number of real zeroes and
poles, excluding those in the origin, while Kzc and Kpc are the

LOGARITHMIC SCALES AND BODE PLOTSnumber of complex conjugate zero and pole pairs. Parameters
��z� and ��p� are the �th real zero and pole, �z� and �p� are

Often the magnitude and phase of a network function are
most easily analyzed if logarithmic scales and logarithmic
quantities are adopted. In particular, plots are usually more
readable, the numbers involved in practical calculations are
more manageable, and the magnitude function may be easily
decomposed in simple addends.

Logarithmic Scale for Angular Frequency

In the practical analysis of network functions it is often neces-
sary to evaluate the magnitude or phase of the function in
many different values of �, differing by several orders of mag-
nitude. In this case, if a linear scale for � is used to represent
magnitude and phase of a function, the resulting plot may be
quite unreadable—too compressed for small values of �, and
too expanded for high values. To avoid the problems men-
tioned above, a logarithmic transform of the � axis is adopted:
the angular frequency � is normalized with respect to �0 �
2�f 0 and the base 10 logarithm is introduced:

ω → log(ω/ω0) = log( f/ f0) (35)

With the above scale a decade is a unit length interval of the

Inductive

Resistive-inductive

Resistive-capacitive

Resistive

Capacitive

 [z] 

 [z] ℜ

ℑ

logarithmic quantity just defined, that is, an interval where
�, and analogously f , vary by a factor of 10.Figure 5. Impedances in complex plane.
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Logarithmic Scale for Magnitude Functions use a logarithmic scale, as for magnitude, to expand the
phase as a sum of terms. If the numerator and denominator

The magnitude �F( j�)� or the squared magnitude of a network polynomials of a network function F( j�) are decomposed into
function may have values differing by several orders of mag- the first- and second-degree factors, the following property is
nitude, even for small variations of �. If a linear scale was obtained:
used, the magnitude plots of some network functions would
be poorly readable. To overcome this problem a logarithmic Property. The phase �F( j�) of a network function is equal
transform is used: the magnitude of the network function to the sum (for the numerator factors) and the difference (for
�F( j�)� is substituted by the attenuation �F(�). When (trans)- the denominator factors) of the phases of the single first- and
impedance or (trans)admittance functions are considered, second-degree factors:
they must be normalized with respect to a conventional resis-
tance. The base unit is called ‘‘decibel’’ (dB):

αF (ω) = 20 log(1/|F( jω)|) = −20 log(|F( jω)|) (36)

Depending on the application, it is possible to use, instead of
the attenuation �F(�) in dB, the gain defined as the negative
of the attenuation.

βF (ω) =�F( jω) = µ0π/2 +
Kzr∑
ν=1

�(1 + jω/σzν ) +

+
Kzc∑
ν=1

�

[
1 + j

ω/(qzνωzν )

1 − (ω/ωzν )2

]
−

Kpr∑
ν=1

�(1 + jω/σpν ) +

−
Kpc∑
ν=1

�

[
1 + j

ω/(qpνωpν )

1 − j(ω/ωpν )2

]
(38)

Definitions. The diagram obtained by representing the at-
tenuation �F(�) (or the gain in dB) on the y-axis and If in Eq. (33) h is negative, a constant contribute of 	� must
log(�/�0) on the x-axis is called the magnitude Bode plot. The be added to phase in Eq. (38).
phase Bode plot �F(�) is obtained by representing the phase
on the y-axis with the usual linear scale and log(�/�0) on the RESONANCE
x-axis.

Resonance is a very important phenomenon in many fields
Decomposition of Attenuation (Gain) and Phase Functions of physics. Resonant circuits have played a relevant role in

communication systems since their origin. They are of seriesFrom complex number mathematics it is known that the mod-
and parallel type and may be divided into ideal and nonidealulus of the product or quotient of two complex numbers is
types (4).equal to the product or quotient of their moduli. For this rea-

son the factorization of a network function, shown in Eq. (33),
Ideal Resonatorsis appropriate also for the corresponding magnitude �F( j�)�.

If the attenuation or gain of �F( j�)� is considered and loga- Ideal resonators are composed by the series or parallel con-
rithmic scales are introduced, the factorization of the magni- nection of a capacitor and an inductor. Their immitance func-
tude of a network function is transformed into a sum or differ- tions are:
ence of terms. Each term is the attenuation or gain of a factor
of the numerator or denominator polynomials of the network
function in Eq. (33), and carries information regarding a sin-
gle real zero or pole, or a complex conjugate pair of zeroes or
poles, respectively. Thus it is possible to obtain the Bode plot
of the attenuation or gain as the addition of the simple plots
relating to each single term. For the attenuation:

Ideal series resonator

z( jω) = 0 + jx(ω) = j
[
ωL − 1

ωC

]
Ideal parallel resonator

y( jω) = 0 + jb(ω) = j
[
ωC − 1

ωL

] (39)

Both reactance x(�) and susceptance b(�) are monotone in-
creasing with respect to � in (��, �). When � � �0 �
1/�LC, called resonance angular frequency, both x(�) and
b(�) are null because the reactance and susceptance of capaci-
tor and inductor cancel out. In other words, at resonance the
series resonator is equivalent to a short circuit and the paral-
lel resonator to an open circuit. Analogously, frequency f 0 �
�0/(2�) is called resonance frequency.

For � 
 �0 and � � �0 the resonators are equivalent to a
single element:

αF (ω) = − 10 log[|F( jω)|2] = −10 log(h2) − µ010 log(ω2) +

− 10
Kzr∑
ν=1

log[1 + (ω/σzν )2] +

− 10
Kzc∑
ν=1

log[(1 − (ω/ωzν )
2)2 + (ω/(qzνwzν ))

2] +

+ 10
Kpr∑
ν=1

log[1 + (ω/σpν )
2] +

+ 10
Kpc∑
ν=1

log[(1 − (ω/ωpν )
2)2 + (ω/(qpνωpν ))

2]

(37)

The plots of a single first- or second-degree factor, both of the
numerator and denominator of the network function, are
called elementary Bode plots.

The phase of the product or quotient of two complex num-

z( jω) = jx(ω) � − j
1

ωC
for � ω0

z( jω) = jx(ω) � jωL for 
 ω0

y( jω) = jb(ω) � − j
1

ωL
for ω � ω0

y( jω) = jb(ω) � jωC for 
 ω0

(40)

bers is equal, respectively, to the sum or difference of the
phase of the single factors. In this case it is not necessary to The previous results can be revisited in time domain.
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In the ideal series resonator, the voltage over the capaci- In lossy resonators the resonance angular frequency �0 �
tor vc(t) and the voltage over the inductor vl(t) coincide in- 1/�LC is again introduced as in the ideal case, although the
stant-by-instant less the sign: vc(t) � �vl(t), while the corre- physical meaning is somewhat different: �0 is the angular
sponding currents ic(t) and il(t) are coincident. frequency at which the admittance or impedance are pure

In the ideal parallel resonator, the current through the ca- real and coincide with that due to the embedded resistor:
pacitor ic(t) and the current through the inductor il(t) coincide y( j�0) � 1/r for the series resonator and z( j�0) � r for the
instant-by-instant less the sign: ic(t) � �il(t), while the corre- parallel one. For � distant from �0 the approximated formulas
sponding voltages vc(t) and vl(t) are coincident. in Eq. (40) also hold for lossy resonators. So, the effect of the

So, voltage over a series resonator and current in a parallel added resistor is relevant only when � is close to �0.
resonator are zero, and instantaneous power p(t) exchanged Rewrite y( j�) and z( j�) in Eq. (41) by introducing the nor-
with the rest of the circuit is zero. Consequently, the sum of malized angular frequency � � �/�0 and by normalizing them
the energies stored in the capacitor and in the inductor is with respect to resistance r; one obtains the normalized im-
constant. Therefore, the exchange of instantaneous power mittances Fs( j�) and Fp( j�):
takes place only between the inductor and the capacitor in-
side the ideal resonator.

Lossy Resonators

Since the model of an ideal resonator is equivalent, at the

Fs( j�ω0) = ry( j�ω0) = 1
1 + jQs(� − 1/�)

Fp( j�ω0) = z( j�ω0)/r = 1
1 + jQp(� − 1/�)

(42)

resonance frequency, to an ideal short circuit or open circuit,
a more realistic model might be needed in many situations.

Factors Qs and Qp in Eq. (42) are defined as Qs � r0/r andFor instance, if a sinusoidal voltage source, with angular fre-
quency �0, is connected to an ideal series resonator with reso- Qp � r/r0 with r0 � �L/C. For the series resonators Qs is also
nance frequency equal to �0, the model of the circuit is incon- equal to the absolute value of the quotient of inductor or ca-
sistent in SSS. This model becomes consistent if the resonator pacitor impedance, at �0, by the resistance of the resistor:
is assumed to be nonideal, that is, with a very small, but non- Qs � (�0L)/r � 1/(�0Cr). For the parallel resonator Qp is also
zero impedance at � � �0. equal to the absolute value of the quotient of the capacitor or

The nonideal model of a series/parallel resonator may be inductor admittance, at �0, by the conductance of the resistor:
characterized by a series/parallel resistor added to the corre- Qp � �0Cr � r/(�0L).
sponding ideal model (Fig. 6) and it is called a lossy series/ The energy exchange of a lossy resonator with the re-
parallel resonator. In the series case a very small resistance maining part of the circuit is not zero as in the ideal case.
r value is chosen, while in the parallel case a small conduc- However, if the Q factor is high, the energy dissipated inside
tance 1/r is chosen, and so a large resistance value is used. the resonator during each whole period 2�/�0 is a small frac-
For any � the nonideal model is not equivalent to a short or tion of the total energy stored in the capacitor and inductor.
open circuit. The admittance of lossy series resonator and the
impedance of lossy parallel resonator may be easily analyzed:

Normalized Immittance of Lossy Resonators

The expressions in Eq. (42) of the normalized admittance
Fs( j�) and the normalized impedance Fp( j�) are equivalent.
Then, for both resonators, the unique normalized immittance

y( jω) = 1
r + jωL + 1/( jωC)

z( jω) = 1
1/r + jωC + 1/( jωL)

(41)

function F( j�) is introduced:

F( j�) = 1
1 + jQ(� − 1/�)

(43)

where Q may be either Qs or Qp.
The maximum value of the magnitude �F( j�)� of F( j�) in

Eq. (43) occurs for � � 1, where the imaginary part jQ(� �

1/�) is zero. So, the magnitude function is bell-shaped.

Property. By substituting � � 1/� in Eq. (43), note that any
pair of values F( j�) and F( j/�) satisfies the relation

F( j�) = F(− j/�) = [F( j/�)]∗ ∀� (44)

So, in complex plane each pair of points F( j�) and F( j/�) is
symmetric with respect to the real axis, since they have the

C

C r

L

r

L

(a)

(b)
same real part, but opposite imaginary part. This property is,
in general, regarded as geometric symmetry.Figure 6. Lossy (a) series and (b) parallel resonators.
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The Nyquist plot of F( j�) (see NYQUIST CRITERION, DIA-

GRAMS, AND STABILITY) is a complete circle (Fig. 7) with the
segment 0 } 1 on the real axis as a diameter; for � increasing
from 0 to �� point F( j�) describes the circle clockwise, start-
ing and ending in the origin.

Magnitude and Phase Functions of Lossy Resonators

Consider the magnitude �F( j�)� and phase �F( j�) of lossy
resonators. The geometric symmetry of F( j�) implies that
�F( j�)� is geometrically even symmetric, while �F( j�) is geo-
metrically odd symmetric, with respect to resonance frequency
� � 1. For increasing values of Q factor this geometric even
or odd symmetry tends, respectively, to arithmetic even or
odd symmetry for values of � close to resonance. If the Bode
plots are drawn by adopting a logarithmic scale for � on the
abscissa, the previous geometric symmetries become arithme-
tic symmetries.

Consider now the normalized frequencies �1 and �2

marked in Fig. 7. The geometric symmetry states that
�1�2 � 1. By means of a simple inspection of Nyquist plot,
both �1 and �2 satisfy the relations �[F( j�)] � 	�[F( j�)]
and �F( j�)� � 1/�2, that is,

�1 − 1/�1 = −1/Q �2 − 1/�2 = 1/Q (45)

By subtracting the first equation from the second one, one ob-
tains:

Property. The normalized frequencies �1 and �2 � 1/�1 sat-
isfy the following relations:
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�2 + 1/�1 − 1/�2 − �1 = 2/Q ⇒ �2 − �1 = 1/Q (46)
Figure 8. Plots of magnitude and phase of normalized immittance of
lossy resonators.

The difference �2 � �1 � (�2 � �1)/�0 is the so-called rela-
tive bandwidth of lossy resonators and so Eq. (46) shows that
factor Q is a measure of the selectivity of the immittance mag- lossy resonators is bell-shaped and it is called band-pass
nitude of lossy resonators. Higher Q factors correspond to a (Fig. 8).
narrower relative band �2 � �1, and to resonators closer to
the ideal case. The magnitude of the immittance function of Property. The phase Bode plot of F( j�) in Fig. 8 depends on

Q factor of resonator:

�F( j�) = −arctan[Q(� − 1/�)] ⇒[
d�F( j�)

d�

]
�=1

= −2Q ⇒ Q = −1
2

[
d�F( j�)

d�

]
�=1

(47)

The phase decreases from �/2 to ��/2, it is null in � � 1, and
it has a derivative in � � 1 with absolute value � � for
Q � �. A higher selectivity of magnitude function corre-
sponds to a phase function with higher slope. Note that the Q
factor coincides with the parameter q introduced in the sec-
ond-order terms derived from the factorization of network
functions in Eq. (33).
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