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TIME-DOMAIN NETWORK ANALYSIS

Time-domain analysis of nonlinear networks is a complicated
process composed of several steps. To avoid inaccuracies and
possible confusion, this article covers all such steps, starting
with a few definitions. Standard network elements are re-
viewed in the section entitled ‘‘Basic Concepts and Defini-
tions’’ in a form suitable for network formulations. The sec-
tion entitled ‘‘Kirchhoff ’s Laws’’ briefly summarizes
Kirchhoff ’s laws and introduces the concept of cuts, needed
later in state variables. The section entitled ‘‘Nodal and Loop
Equations’’ repeats nodal and loop equations, a concept
taught in every course of network analysis. The two methods
are suitable for hand solutions, but are not sufficiently gen-
eral for computer applications.
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Network equations are normally solved by triangular de- be described for the purposes of network analysis by a collec-
tion of these basic elements.composition, a method which may not be known to the reader.

Node is a point where two or more elements are electricallyA very brief summary is provided in the section entitled ‘‘So-
connected together. If the node can be accessed from the out-lutions of Network Equations,’’ along with the Newton–
side, then it is called the terminal.Raphson method, used for solution of nonlinear equations.

With these basic definitions we can turn our attention toThe section entitled ‘‘Graphs’’ covers basic concepts of graph
the concept of voltage and current.theory, to the extent needed later for the various methods of

Voltage is electrical force which is applied across somecollecting the network equations. One such method, state
element and which drives the flow of electrons through thevariables, is covered in the section entitled ‘‘State Variables.’’
element. The simplest source of voltage is a battery with itsIt is still used for theoretical studies but is not suitable for
� and 	 terminal. If any electrical element is connected tocomputer applications, and we explain the difficulties. A more
these two terminals, some amount of electrons will flowgeneral method, the tableau, is explained in the section enti-
through the element and this flow is called the current. Thetled ‘‘Tableau.’’ It keeps as many equations as possible, and it
definition of current direction was introduced long before thepays the price by leading to very large systems. The method
existence of electrons was discovered, and the accepted posi-is useful only if a complicated sparse matrix solver is avail-
tive direction of current in network analysis is opposite to theable. The best method to write network equations is the modi-
flow of electrons: from the more positive point (or from �) tofied nodal. It is covered in the section entitled ‘‘Modified
a less positive point (or to 	). For general voltages within theNodal Formulation,’’ to an extent sufficient for understand-
network we will use the letter V, and for currents flowing ining. References will help the reader in further studies.
the network we will use the letter I.Time-domain solutions are done by methods which replace

Ideal voltage source is a fundamental element in networkderivatives by special expressions. The subject is divided into
analysis, and its symbol is in Fig. 1. Positive direction of cur-two parts. The section entitled ‘‘Simple Integration Methods’’

explains three simpler methods, where various problems can
be easily explained. Although they are simple, they are exten-
sively used in commercial simulators and are quite practical.
More advanced integration formulas are covered in the sec-
tion entitled ‘‘Advanced Integration Methods,’’ where we con-
centrate on the modern backward differentiation formulas.

With these preliminary steps we are in the position to ex-
plain time-domain solutions. The subject is divided into two
parts. The section entitled ‘‘Linear Networks’’ deals with the
integration of linear algebraic differential equations and de-
rives simple formulas which are easy to use. The section enti-
tled ‘‘Nonlinear Networks’’ explains integration methods for
nonlinear networks. It points out that nonlinear capacitors
and inductors must be described by their charge and flux
equations, and it shows how to formulate the Newton–
Raphson iteration procedure.

Recent advances in semiconductor technology made it pos-
sible to use transistors as switches. They are reliable and fast
and opened completely new areas. The section entitled
‘‘Switched Networks’’ introduces the reader to the problem of
switched networks and offers a simple solution how to ana-
lyze switched networks in time domain.

The bibliography at the end of this article lists publications
for additional study.

BASIC CONCEPTS AND DEFINITIONS

Solutions of networks require unified notation for which we
need the necessary definitions. Most of them are known to the
reader, but some definitions and expressions may somewhat
differ. To start we define the concept of ground, node, and
electrical element.

Ground usually refers to our earth, but for network analy-
sis it is the chassis or the metal construction into which the
electric network is built.

Electrical element is any product functioning in the net-
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work. The simplest elements will be defined in this section.
The function of most electronic devices, like transistors, can Figure 1. Elements and their symbols.
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rent is always from the � to the 	 sign, and this applies to The capacitance is measured in farads. In Fig. 1, V0 is the
initial voltage on the capacitor.the voltage source as well. If in the application the current

actually flows the other way, it is assigned the minus sign. Inductor is the other element whose behavior depends on
the derivative with respect to time. It is usually denoted byThis unified way of defining currents is maintained through-

out. It is advantageous to distinguish the voltage supplied by the letter L, and its symbol is in Fig. 1. If a current flows
through the inductor, a flux 
 is formed and the voltagethe voltage source from the general voltages in the network,

and we will use the letter E. Considering nodal voltages with across the inductor is defined by
respect to ground, the voltage source properties are described
by Vi − Vj = d�(I)

dt
(5)

Vi − Vj = E (1)
In Fig. 1, I0 is the initial current flowing through the inductor.
If the inductor is linear, then its inductance is measured inAn ideal voltage source theoretically maintains its voltage
henry and Eq. (5) simplifies toacross its terminals no matter what other elements are con-

nected to it. This should be true even if it is a short circuit,
an impossible situation. All actual voltage sources have a re- Vi − Vj = L

dI(t)
dt

(6)
sistance in series, called the internal resistance. If E � 0, the
ideal voltage source behaves as a short circuit.

Dependent sources form another set of important elements.Ideal current source is another fundamental source. Its
Altogether we have four dependent sources:symbol is in Fig. 1. Similarly as in the case of the voltage

Voltage-controlled current source (VC) measures a voltagesource, this element theoretically maintains its current no
somewhere in the network and adjusts the current at somematter what is connected to it. This should theoretically be
other terminals. Its symbol is in Fig. 1, and in terms of nodalvalid even for an open circuit, another impossible case. Every
voltages its performance is expressed by the equationpractical current source will have an internal resistor in par-

allel to it. Similarly to the above, it is advantageous to distin-
guish in writing the current delivered by the current source I = g(Vi − Vj ) (7)

from the other currents in the network. We will use the letter
The constant g is called the transconductance, is measured inJ. If J � 0, then the element becomes an open circuit.
siemens, and the current flows from the terminal k to termi-Resistor is the most common element. It is usually denoted
nal m. Note that if the difference of the voltages is zero, theby the letter R, and its resistance is measured in ohms. In-
current will be zero and the source part will become an openverted value of the resistance is called the conductance. It is
circuit.usually denoted by the letter G � 1/R and is measured in

Current-controlled current source (CC) measures the cur-siemens. The symbol for the resistor is in Fig. 1. For the pur-
rent flowing through the short circuit between terminals i andposes of network analysis, it is convenient to consider nodal
j and delivers a current flowing from terminal k to terminalvoltages, measured with respect to ground. The current
m. Its performance is expressed bythrough the resistor is expressed in terms of nodal voltages

by the equation
I2 = αI1 (8)

I = G(Vi − Vj ) (2)
where � is a dimensionless constant.

Voltage-controlled voltage source (VV) measures a voltageIn our considerations we will always assume that the resistor
between terminals i and j and forms a voltage source betweendoes not change with time. It may change with the current
terminals k and m. In terms of nodal voltages, its perfor-flowing through it or with the voltage across it, and in such a
mance is expressed bycase the resistor is nonlinear. If the value of R is independent

of all external influences, then the resistor is linear. In prac-
tice, some nonlinearity is always present, but very often we Vk − Vm = µ(Vi − Vj ) (9)

take advantage of the linearity assumption because it greatly
where �, the amplification factor, is a dimensionless constant.simplifies all mathematical steps.

Current-controlled voltage source (CV) measures a currentCapacitor is one of two fundamental elements whose be-
between i and j and delivers voltage between terminals k andhavior depends on the derivative with respect to time. It is
m. In terms of nodal voltages, its performance is expresed byusually denoted by the letter C. We will skip many details
the equationand only state here that it can hold a charge, usually denoted

by the letter Q. The current flowing through the capacitor is
defined by Vk − Vm = rI (10)

where r is the transresistance measured in ohms. In the
above explanations we assumed that the conversion coeffi-

I = dQ(V )

dt
(3)

cients g, r, �, and � are constants. They may depend on volt-
If the capacitor is linear, the expression simplifies to age or current and in such case they will be nonlinear func-

tions of the controlling variable.
Many more elements can be defined, but the above are fun-

damental and all other elements can somehow be referred to
I = C

dVi(t) − dVj(t)

dt
(4)
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these ones. It is convenient, however, to introduce two more works is always done by repeated solutions of linearized ap-
proximations. It is thus advantageous to study first linearideal elements.

Operational amplifier (OP) is a voltage-controlled voltage networks, which we will do here.
Linear networks can be looked upon from many points ofsource with an infinitely large gain �. Its symbol is given in

Fig. 1. Often the terminal m is internally grounded and then view. We can seek time-domain solutions, like in nonlinear
networks. In addition, we can apply frequency-domain analy-the symbol has only the terminal k, with the line starting

from the tip of the triangle. Using Eq. (9), first divide the sis and find absolute value and phase for a sinusoidal input
signal in steady state. To give the reader an easy reference toequation by � and then let � � �. This results in Vi 	 Vj �

0, or Vi � Vj. In other words, when analyzing a network with subjects in other chapters, we will introduce a special symbol
for the derivative:an ideal operational amplifier, then instead of performing

similar operations as just described, we simply let both input
terminals have the same voltage with respect to ground.

Transformer in its technically realizable form is an ele-
s → d

dt
(12)

ment made of two (or more) closely placed inductors, some-
If the network is linear, then s is also the Laplace transformtimes constructed on a ferromagnetic core. If only two linear
operator, used in frequency domain analysis. In time domaininductors are present, then the transformer is described by
it is the symbol for the derivative. Consider a linear capacitortwo equations
for which I � sC(Vi 	 Vj). In frequency domain the operator s
will be attached to the constant C. In time domain it will be
attached to the voltages, to indicate their derivatives. With
these introductory explanations we can now turn to the meth-
ods for setting up network equations.

Vi − Vj = L1
dI1

dt
+ M

dI2

dt

Vk − Vm = M
dI1

dt
+ L2

dI2

dt

(11)

where L1 and L2 are the primary and secondary inductors and
NODAL AND LOOP EQUATIONSM is the mutual inductance. For additional information the

reader is referred to any introductory book on network the-
Nodal and loop equations are the simplest methods to writeory—for instance, Ref. 1.
network equations. They are the subject of every fundamental
course on network analysis. The methods are not general and

KIRCHHOFF’S LAWS are suitable only for hand calculations and small networks.
We will start with the more important nodal formulation

For a systematic writing of equations we need Kirchhoff ’s which is based on KCL.
laws and some additional rules. Consider the network in Fig. 2. The bottom line represents

The first rule states that a current is positive when it flows ground. The voltages V1 and V2 are nodal voltages, measured
away from a node. This is in addition to the previous rule that with respect to ground. The network has all elements which
positive current flows from � to 	. Thus if we consider the can be used in nodal analysis without some additional steps.
independent voltage source from Fig. 1, in the equations the They are the current source, capacitor, conductance, and the
current at the � sign will be taken as positive, while the cur- voltage-controlled current source, VC. Note that in nodal for-
rent flowing into the 	 node will be taken as negative. mulation it is advantageous to work with conductances and

Kirchhoff discovered two fundamental laws: one for cur- not with resistances.
rents, KCL, and one for voltages, KVL. When writing the sum of currents for any node, we do not

KCL states that the sum of currents flowing away from know anything about the voltages and we are free to think
any node is equal to zero. This means that some currents will that this particular node is the most positive one. This means
flow from the node (and have positive signs), while others will that all currents through passive elements must flow away
flow to the node (and have negative signs). from the node under consideration. Using the rules about the

KVL states that the sum of voltages around any closed loop signs of currents we write for node 1
is equal to zero.

KCL has yet another definition which we will need later. G1V1 + sC(V1 − V2) − J = 0
Assume that we pull two sections of a network apart and con-
sider only the wires which connect them. If we take the cur- and for node 2
rents flowing in the connecting wires from left to right as posi-
tive and the others as negative, then this form of KCL states −sC(V1 − V2) + G2V2 − g(V1 − V2) = 0
that the sum of currents in these wires will be zero. Rather
unfortunately, those who introduced this theory gave it the
name cut. The cut is of course only in our mind, nothing is
changed in the network.

We will explain these laws in more detail in the following
sections, but some additional notation has to be understood.
In the section entitled ‘‘Basic Concepts and Definitions’’ we
stated that if the capacitor is linear, then its current is the
derivative of the voltage across it with respect to time,

J

V1 V2

G2G1

C

g(V1 – V2)

multiplied by the constant C. The dual was stated for a linear
inductor. As will be explained later, analysis of nonlinear net- Figure 2. Network for nodal analysis.
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In mathematics we normally place known values on the right
and collect terms multiplied by the same variable. This leads
to

JE     JR

J     EG

G     1/R

R

E

+

–
(G1 + sC)V1 − sCV2 = J

(−sC − g)V1 + (G2 + sC + g)V2 = 0
Figure 4. Thevenin–Norton theorem.

Equations describing linear networks can be always put into
matrix form:

right and collecting terms we obtain[
(G1 + sC) −sC
(−sC − g) (G2 + sC + g)

][
V1

V2

]
=

[
J
0

]
(R1 + R2)I1 − R2I2 = E

(−R2 + r)I1 + (R2 + sL − r)I2 = 0

If we assign unit value to each element except g � 2, the
In matrix form this ismatrix reduces to [

(R1 + R2) −R2

(−R2 + r) (R2 + sL − r)

][
I1

I2

]
=

[
E
0

][
1 + s −s

−2 − s 3 + s

][
V1

V2

]
=

[
J
0

]

Selecting r � 2 and assigning unit values to all other ele-It is solved by any available method. If we were interested in
ments reduces the equation tothe output, the result would be V2 � J(2 � s)/(3 � 2s). For

frequency-domain analysis we substitute s � j� and let J �
1. Repeating for a number of frequencies will provide fre-
quency-domain response of the network. In time domain the

[
2 −1
1 −1 + s

][
I1

I2

]
=

[
E
0

]

operator s will be replaced by a numerical expression repre-
senting the derivative. Suppose now that we would like to analyze the first network

Loop equations are based on KVL. It is a method which by the loop method and the second by the nodal method. It is
can be used only for planar networks: We must be able to not possible directly and we must apply some transformations
draw the network on a paper without any element crossing before we can proceed.
another element. The concept of ground is not needed in this The Thevenin–Norton transformation states that a voltage
formulation. The network in Fig. 3 contains all elements source with a resistor in series can be transformed into a cur-
which can be used in this formulation without additional rent source with the same resistor in parallel. As far as the
steps. In the figure we indicated fictitious loop currents, circu- other parts of the network are concerned, there will be no
lating in each loop. Note that through the resistor R2 flow two difference. The transformation is schematically shown in Fig.
currents in opposite directions. When writing the sum of volt- 4. The sources are coupled by a law which looks like Ohm’s
ages around the loop, we consider its circulating current as law, but applies to the sources:
positive. This leads to the equation

E = RJ or J = GE (13)
R1I1 + R2(I1 − I2) − E = 0

As indicated in Fig. 4, we can go with the transformation in
either direction.where our assigned current flows through the source from 	

As an example, we will transform the current sources into � and thus its contribution must be taken negatively. For
Fig. 2 into voltage sources. The transformed network is inthe second loop we will consider I2 as positive and we write
Fig. 5. To proceed, we must express the dependent source inthe sum of voltages
terms of the unknown current, V1 	 V2 � I/sC. Afterwards
we must find the voltage V2 as a sum of the voltages deliveredR2(I2 − I1) + sLI2 + r(I1 − I2) = 0
by the dependent source plus the voltage across the resistor
R2. The result is, of course, the same as before, but we had toThe current through CV flows from � to 	 and thus the volt-

age it contributes is taken as positive. Transferring E to the go through a number of additional steps. Similar problems

L

I1 I2
R2
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E r(I1 – I2)

+

–

+

–

V1 V2

R1 R2

E     JR1 gR2(V1 – V2)

+

–

+

–

C

I

Figure 3. Network for loop analysis. Figure 5. The network in Fig. 2, transformed for loop analysis.
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would be with the transformation of network in Fig. 3 for plex, but sparse matrix solutions are done with a cost approx-
imately proportional to n and not n3. In fact, the discovery ofanalysis by the nodal method. It can be seen that the trans-

formations make the whole process fairly complicated and un- sparse matrix processing made it possible to write practical
programs for the analysis of quite large networks.suitable for computerized programming. Other methods had

to be invented: the state variables, the tableau, and the modi- All network solutions eventually reduce to the solution of
a system of linear equations. In frequency domain, s is substi-fied nodal formulations. To proceed with their explanations

we will need some fundamental concepts of the graph theory, tuted by j� and programming is in complex. In time domain,
the derivatives are replaced by an approximation whichbut before that we discuss methods for the solution of systems

of equations. Details of the various transformations can be changes the system of algebraic and differential equations
into a system of algebraic equations only.found in Ref. 1.

Nonlinear networks are solved by a method leading to a
repeated solution of linear approximations. The method is

SOLUTIONS OF NETWORK EQUATIONS known as the ‘‘Newton–Raphson iteration,’’ and we will ex-
plain it with a set of two equations in two unknowns:

Only the smallest networks can be solved by hand; all practi-
cal networks must be solved by computer, and this leads us
to the methods used in such solutions.

f1(x1, x2) = 0

f2(x1, x2) = 0
(18)

Equations describing linear networks are expressed in the
form of a matrix equation

Expand each equation into a Taylor series about the point
x1 � �x1 and x2 � �x2. The expansion isTX = W (14)

Here T is the system matrix, X are the system variables, in
most cases voltages and/or currents, and W denotes the
sources. Our examples in Figs. 2 and 3 were brought to this
final matrix form.

f1(x1, x2) + ∂ f1

∂x1
�x1 + ∂ f1

∂x2
�x2 + higher terms = 0

f2(x1, x2) + ∂ f2

∂x1
�x1 + ∂ f2

∂x2
�x2 + higher terms = 0

(19)

Networks with up to 1000 nodes are almost always solved
by a process called ‘‘LU’’ or ‘‘triangular’’ decomposition. Many If we neglect the higher terms, we can rewrite these equa-
books describe this process, and the reader is referred to other tions as
sources—for instance, Refs. 2–5. However, because we will be
referring to it in the following, at least some general concepts
will be given.

Suppose that we manage to decompose the matrix T into
the product of two matrices, T � LU where the matrix L is

∂ f1

∂x1
�x1 + ∂ f1

∂x2
�x2 = − f1(x1, x3)

∂ f2

∂x1
�x1 + ∂ f2

∂x2
�x2 = − f2(x1, x2)

(20)

lower triangular, with all the entries above the main diagonal
being zero. The U matrix has all entries below the main diag-

This is a set of linear equations which can be written in ma-onal zero and, in addition, all entries on the main diagonal
trix form:are units. The system in Eq. (15) is rewritten as

LUX = W (15)

Suppose that we now introduce a new definition,




∂ f1

∂x1

∂ f1

∂x2

∂ f2

∂x1

∂ f2

∂x2




[
�x1

�x2

]
=

[
− f1(x1, x2)

− f2(x1, x2)

]
(21)

UX = Z (16)

The matrix on the left is called the Jacobian; we will denote
This cannot be solved yet, but inserting into Eq. (15) we can it by the letter M, the vector of unknowns by �X, and the
write right-hand side by f ,

LZ = W (17) M�XXX = −f

Because the matrix is triangular, a simple process, called for-
Since we neglected higher terms, this is not a final solution.ward substitution, can be used to find Z. Once this is known,
We denote the kth step with the superscript k and rewrite thewe go back to Eq. (16) and find X by a similarly simple pro-
process as two equations:cess, called back substitution. The important point of this pro-

cess is that the decomposition into the LU matrices costs
n3/3 multiplication/division operations, while the forward-
back substitution costs only n2 operations, n being the size of

Mk�XXX k = −f k

Xk+1 = Xk + �XXX k
(22)

the matrix. If the right-hand side changes, only new forward
and back substitution is needed, and the LU decomposed ma- In the first one we apply LU decomposition to the matrix and

find �X. The second equation finds new X, closer to the cor-trix is re-used.
Almost all larger networks have system matrices with rect solution. With it we go back to the first equation, and so

on. If the process converges, the �xi will eventually becomemany zeros, and a special processing, called sparse matrix de-
composition, can be used. Computer codes may be fairly com- very small and we stop the iteration.
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GRAPHS

Network formulations suitable for computer applications re-
quire at least a few graph concepts, and we devote this section
to the subject (2).

Graph theory attempts to extract basic properties of a net-
work without giving any details about the network elements.
An element is replaced by a line in which the assumed direc-
tion of the current is indicted by an arrow. For passive ele-
ments we are free to select this direction. Sources have their
current directions given by the previous rules, and the arrow
must agree with them: For the voltage source the arrow will

3

4 2

5
6

1

C3

C1

C2

go from � to 	, for the current source it will be the direction Figure 7. Graph with a tree.
indicated at the current source symbol.

Consider the graph in Fig. 6 representing some network
with six elements, replaced by directed graphs. Nodes are in- To work with another formulation method, the state vari-
dicated by numbers in circles. For nodes 1, 2, and 3 we write ables, we need additional graph concepts of the tree and co-
three KCL equations: tree. Consider Fig. 7, where we have used the same graph but

where we selected a tree, indicated by bold lines. A tree is
such a selection of lines of the graph which connects all nodes
but which does not close a loop. Directions of the arrows are
again arbitrary, except for lines representing sources. The

−I1 + I4 + I6 = 0

−I2 − I4 + I5 = 0

−I3 − I5 − I6 = 0
thin lines represent the co-tree. The figure also shows three
cuts, Ci. Each cut goes through only one line of the tree andThey can be written in matrix form:
as many lines of the co-tree as necessary to separate the net-
work into two parts. If we sum the currents in these ‘‘cuts’’
but taking the direction of the tree line as positive, we end up
with the following set of equations, written in the sequence of
the cuts Ci:




−1 0 0 1 0 1
0 −1 0 −1 1 0
0 0 −1 0 −1 −1







I1

I2

I3

I4

I5

I6




=




0
0
0




I1 − I5 + I6 = 0

I2 − I4 − I5 + I6 = 0

I3 − I4 − I5 = 0

or
In matrix form

AI = 0 (23)

The matrix A is called the incidence matrix. It also couples
nodal voltages, Vn, to the voltages across the elements, Vb, by
the equation

Vb = ATVn (24)




1 0 0 0 −1 1
0 1 0 −1 −1 1
0 0 1 −1 −1 0







I1

I2

I3

I4

I5

I6




=




0
0
0




where the superscript T denotes the transpose of A. Equa-
or brieflytions (23) and (24) will be needed to explain the tableau for-

mulation. QI = 0

In selecting the tree we used the following sequence of rules:

1. Assign orientations to all lines.
2. Select a tree.
3. Assign consecutive integers starting from 1 to the lines

of the tree and continue numbering the lines of the co-
tree.

If we follow these three steps, it will always be true that the
matrix Q will have in the left partition a unit matrix, followed
by a partition describing directions of the co-tree:

2

1

6

4 5

1 3
2

3

Q = [1 | Qc]Figure 6. Graph for incidence matrix.
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Similarly as in the case of the incidence matrix, tree (sub-
script t) and co-tree (subscript c) voltages and currents can be
related by means of the Qc matrix:

It = −QcIc (25)

Vc = QT
c Vt (26)

Complete derivations of these equations can be found in Ref.
2. We will need Eqs. (25) and (26) when we speak about the
state variable formulation.

STATE VARIABLES

Historically, ‘‘state variables’’ were the first method used to
write equations for larger networks. The idea was to reduce
the system to a set of first-order differential equations. Over
the years, many attempts were made to write a general analy-
sis program based on state variables, but none of them suc-
ceeded. As a result, this method can be used for relatively
small networks, mostly for manual solution. It is useful for

G4 C3

L7

C2E1
C6 G5

+

–

3

7

4

2

5
61

21
3

theoretical studies, and it is still applied in some disciplines.
A system of first-order differential equations can be writ- Figure 8. Example for state variables.

ten in matrix form as

X′ = AX + BW (27)
The last four columns create the matrix Qc. In the next step
we take Eqs. (25) and (26) and put them into one matrix equa-On the left is the derivative of the X vector, composed of volt-
tion:ages and currents, and W describes the sources. This equation

is usually accompanied by another matrix equation for the
outputs:

[
0 −Qc

QT
c 0

][
Vt

Ic

]
=

[
It

Vc

]
Y = CX + DW (28)

Writing the matrix and inserting into the column vectors ex-In our explanations we will use only Eq. (27). The graph the-
pressions describing properties of the elements we obtain oneory and the Q matrix which were explained in the previous
matrix equation:section related tree and co-tree voltages and currents by

means of Eqs. (25) and (26). Importance of the equations lies
in the fact that independent variables are tree voltages and
co-tree currents. Because in (27) we need the derivatives, con-
sider the expression I � C[dV(t)/dt]. It indicates that we
should retain capacitor voltages as independent variables,
which is helped by taking capacitors into the tree. Dually,
derivatives of currents appear in V � L[dI(t)/dt]. The deriva-
tives should be retained, which is helped by placing inductors




0 0 0 −1 0 0 0
0 0 0 1 −1 −1 0
0 0 0 0 1 1 −1
1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 0 0 0 0







E1

V2

V3
G4V4

G5V5

sC6V6

I7




=




I1

sC2V2

sC3V3
V4

V5

V6

sL7I7




into the co-tree. In practical networks we often experience sit-
uations where capacitors form a loop and thus not all can be As an intermediate step we must eliminate all variables ex-
taken into the tree. A dual situation may also happen with cept V2, V3, and I7, namely, the tree voltages and co-tree cur-
the inductors. rents. After a number of steps which we omit, we get the pre-

Independent voltage sources also require special attention: liminary result
Their voltages are known and thus cannot be considered as
dependent variables. This means that the voltage sources
graph lines must be taken into the tree. Dually, current
sources must be taken into the co-tree.

We will demonstrate some of the problems on the small
network and its graph in Fig. 8. Only two capacitors can be
taken into the tree, and the inductor is in the co-tree. Using
the graph we set up the Q matrix as explained in the previous


C2 + C6 −C6 0

−C6 C3 + C6 0
0 0 L7







dV2/dt
dV3/dt
dI7/dt




=

−G4 − G5 G5 0

G5 −G5 −1
0 1 0







V2

V3

I7


 +




G4E
0
0




section:

This is still not the state variable form, because there is a
matrix on the left. Our matrix happens to be nonsingular and
could be inverted to get the form Eq. (27). In many situations
the matrix on the left turns out to be singular and additional

Q =




1 0 0 1 0 0 0
0 1 0 −1 1 1 0
0 0 1 0 −1 −1 1



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eliminations are necessary. Our example did not have any de-
pendent sources. If present, they contribute with algebraic
equations which must also be eliminated. As can be seen,
state variable formulation creates so many problems that it
was effectively abandoned in computer applications. Its use-
fulness seems to be in theoretical studies of relatively small
problems. We do not recommend its use, but we felt that some
explanations are necessary. Details on state variables can be
found in many books—for instance, in Refs. 6 and 7.

TABLEAU

11 0

–11 00 0

0

0 00

–11 1

01
0

1

sC3

G4

–R2

–1

1

–1

0

–1

1

Vn1

Vn2

I3

I4

I1

I2

0

0

J1

0

V3

V4

V1

V2

1

–1

1

0

–1

0

This method is more modern than state variables (8), but it
Figure 10. Tableau matrix equation for example in Fig. 9.still has problems. In some way it does exactly the opposite

to the state variables: Instead of eliminating as many equa-
tions as possible, the tableau retains all of them. This would

We will use one example to indicate how the system matrixnot be a good idea, except for the fact that the equations are
is set up. Consider the network in Fig. 9 with its graph. Thevery sparse and sparse matrix methods can be used. Recall
incidence matrix isthat the price of sparse matrices processing is approximately

proportional to n instead of n3, as is the case for full matrices.
However, the sparse matrix solver turns out to be very com-
plex. Unless the reader has access to a solver for tableau, we

A =
[
−1 1 1 0

0 0 −1 1

]

suggest not to use this method, but we explain at least its
principles. The network has four branch voltages, Vb, four branch cur-

In the section on graphs we introduced the concept of the rents, Ib, and two nodal voltages, Vn. The elements are de-
incidence matrix A, with Eqs. (23) and (24). To complete net- scribed by the equations I1 � J1, V2 � R2I2, V3 � sC3V3, and
work description, we need a general expression suitable for V4 � G4V4. The system will have the size 10. Filling the en-
any element. It turns out that this is possible by writing tries we obtain the tableau matrix shown in Fig. 10. The ma-

trix has 100 entries, but only 21 are nonzero and only three
would be real numbers. Had we used nodal formulation, theYbVb + ZbIb = Wb (29)

network would be described by two equations only. This
To show that this is true, for instance, for the voltage source clearly shows that the tableau is useful only on computers
defined by Vb � E, select Yb � 1, Zb � 0, and Wb � E. Four and only if an appropriate sparse matrix solver is available.
terminal networks, like the dependent sources, are repre-
sented by two equations and their graphs must have two

MODIFIED NODAL FORMULATIONgraph lines: one for the input and one for the output. The
reader should test validity of these statements for all net-

Modified nodal formulation (9) is the method used in practi-works in Fig. 1. Details can be found in Ref. 2.
cally all modern simulators. It is based on nodal formulationEquations (23), (24), and (29) can be collected into one ma-
to which additional equations are added as needed. Recalltrix equation:
from the section entitled ‘‘Solutions of Network Equations’’
that only four elements can be used in nodal formulation di-
rectly: current source, capacitor, conductor, and voltage-con-
trolled current source (VC). Also recall that Thevenin–Norton
transformations can help, but the steps become very difficult




1 0 −AT

Yb Zb 0
0 A 0







Vb

Ib

Vn


 =




0
Wb

0


 (30)

for programming.
To clarify the ideas consider the network in Fig. 11 butThis is the tableau formulation. Note how simple it is to write

it once we have set up the incidence matrix. think of the inductor as replaced by the current which flows

G

J

L

C

V1 V2
IL

Figure 11. First example for modified nodal formulation.

G4R2

C3

J1

3

1 2 4

1 2 1 2

Figure 9. Example for tableau.
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The two networks introduced the principles we use: First we
replace all elements which cannot be taken into nodal formu-
lation by their currents and write KCL. Then we append
equations describing properties of the elements. Let us return
to the voltage source. In a general case Vi 	 Vj � E and this
must be added to the previous set of equations. In addition,
the current flowing through the voltage source must also be
added at node i and subtracted at node j. This is symbolically
summarized in the stamp shown in Fig. 13. On the left the
rows are marked by i and j. They correspond to the nodes

+

–

+

–

C

G

E

V1

V2

V3

IOP
IE

where the currents are added or subtracted. Above the stamp
Figure 12. Second example for modified nodal formulation. the letters i and j are subscripts of the nodal voltages which

multiply the columns. The units appearing in the stamp are
thus multiplied by either a voltage or a current, also indicated

through it. Using KCL for node 1 we write above the stamp. Following similar considerations we can de-
rive stamps for all the elements introduced in the sectionGV1 + IL − J = 0
entitled ‘‘Basic Concepts and Definitions.’’ They are collected
in Fig. 13.Since the current IL flows away from node 1, it is taken posi-

The starting matrix is always the nodal matrix; its size istive. At node 2 it must be taken negative and KCL for this
n, the number of ungrounded nodes. Afterwards additionalnode leads to
row(s) and column(s) are added one by one, as we keep adding
the various elements. This was actually done when we consid-−IL + sCV2 = 0
ered the network in Fig. 12. First we added the row and col-

So far we have two equations and three unknowns. The set umn for the voltage source, and afterwards we added to this
must be completed with an equation describing properties of already increased matrix the row and column for the opera-
the inductor: tional amplifier.

A reader wishing to learn more about this formulation isV1 − V2 − sLIL = 0
referred to Refs. 1 and 2.

The three equations can be put into a matrix form:
SIMPLE INTEGRATION METHODS

Methods for integration of differential equations were devel-
oped much earlier than programs for simulation, and first at-




G 0 1
0 sC −1
1 −1 −sL







V1

V2

IL


 =




J
0
0


 (31)

tempts of computerized network simulations were directed to
the use of known integration procedures. State variables wereThis is the modified nodal formulation. Since multiplication
developed because integration of first-order differential equa-by s represents the derivative with respect to time, our steps
tions was available in the Runge–Kutta routines. When prob-resulted in a system with one algebraic and two differential
lems were encountered, new methods for integration were de-equations.
veloped.Consider next the network in Fig. 12. It has one voltage

The majority of integration methods are polynomial ap-source and one operational amplifier, elements which cannot
proximations of various orders. In this section we will con-be taken into nodal formulation. Similarly as above we first
sider three simplest formulas for numerical integration: thereplace them with their currents, as shown, and apply KCL
forward Euler, the backward Euler, and the trapezoidal (2).to the three ungrounded nodes:
They are practical methods, used in commercial simulation
packages.

Consider a given differential equation
G(V1 − V2) + IE = 0

−GV1 + (G + sC)V2 − sCV3 = 0

−sCV2 + sCV3 + IOP = 0 x′ = f (x, t) (33)

To this set we append equations describing properties of the where x� replaces dx/dt for simplicity. Let the initial value
two elements. For the voltage source V1 � E. For the opera- x0 be known at t � 0. The derivative x�0 can be evaluated by
tional amplifier we know that the two input terminals are at inserting into Eq. (33). The simplest formula to predict the
the same potential. Since one of them is grounded, the second value x1 at t � h can be derived by inspecting Fig. 14:
will be at zero potential and 	V2 � 0. Adding these equations
to the above set we get in matrix form x1 = x0 + hx′

0 (34)

All terms on the right are available: The formula is explicit
and belongs to the class of predictors. Its name is forward
Euler. Another formula, the backward Euler, makes the esti-
mate differently:

x1 = x0 + hx′
1 (35)




G −G 0 1 0

−G G + sC −sC 0 0

0 −sC sC 0 1

1 0 0 0 0

0 −1 0 0 0







V1

V2

V3

II

IOP




=




0

0

0

E

0




(32)
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Figure 13. Stamps for the networks in
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Fig. 1.

Because the right side contains the unknown derivative at The iterations have converged and the process can be re-
t � h, this formula is implicit and belongs to the class of cor- peated for another step to find x2, and so on. Both Euler for-
rectors. It would seem that Eq. (34) is better, because it is mulas match the first derivative and we say that their order
simpler. Actually, Eq. (35) is much better, but Eq. (34) has its of integration is one.
use as well. It can be applied at the beginning of every step If we take the sum of Eq. (33) and Eq. (34), we get another
to predict the new point x1. The information is then used in corrector, called trapezoidal:
Eq. (33) to find an approximation to x�1, which in turn can be
inserted into Eq. (35). Repeating several times between Eq.
(33) and Eq. (35) we eventually come to a situation when x1, x1 = x0 + h

2
(x′

1 + x′
0) (36)

substituted into Eq. (33), provides x�1 which we already had.

Its order of integration is two.
Properties of integration methods are generally studied on

the simplest differential equation (2,10)

x′ = λx (37)

Its exact solution is

x(t) = x0eλt (38)

x1 –  x0

x0

t1 – t0      h 

x(t1)
x(t)x1

t1t0

x0

´

The constant � can be real or complex. Using simple steps (2),
it is possible to derive for the three formulas important stabil-Figure 14. Approximations for forward Euler formula.
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we still need to pull the desired poles close to the origin, but
the large �i will not bother us. Their responses will not be
traced, but we in fact do not want them, because their rapid
changes do not contribute to the useful function of the net-
work. The BDF formulas behave (roughly speaking) similarly
to the backward Euler method (2).

Assume that we have the solution xn at the instant tn, as
well as a number of previous solutions xn	i at instants tn	i, as
sketched in Fig. 16 with three previous solutions. A new step
h reaches the instant tn�1 where we wish to find the solution.
For our explanation we will assume equal integration steps,
with BDF formulas collected in Table 1. They are actually
polynomials passing through known points and extrapolated
to the next time instant. The formulas are used as follows. At���

���
��
��

3
2

1–1

1

�
�
�

the beginning n � 0, we know the initial value x0 and we
Figure 15. Stability properties of integration formulas. (1) Forward select h. The zero-order predictor from Table 1 estimates the
Euler, stable inside; (2) backward Euler, stable outside; (3) trapezoi- value of xn�1 � x1. With this and the previous point we can
dal, stable in the left half-plane. use the corrector of order 1. It is, in fact, the already known

backward Euler formula.
We have now two possibilities. Either we use always only

ity properties, summarized in Fig. 15. Areas indicated by
two last points and in a sequence of steps apply the first-order

hatching indicate unstable regions of each formula. Let �
predictor or corrector. The other possibility is to take more of

have negative real part, which means that x(t) in Eq. (38) will
the already known solutions and use a predictor corrector

tend to zero for large t, irrespective of what is its imaginary
pair of higher order.

part.
Equal steps are not very practical, although in some cases

The left unit circle refers to the forward Euler formula. If
they are used. If we permit a change of the step in every new

the product �h can be plotted inside this circle, then applica-
evaluation, then the BDF formulas change, as summarized in

tion of the formula will give results which will tend to zero
Table 2. The values zk in Table 2 are expressed by

for a large number of steps, similarly as the exact solution.
However, if the point falls outside the unit circle, the results
by the formula will incorrectly grow with the number of steps. zk = tn+1 − tn+1−k

h
(39)

The consequence is that for large absolute value of � we must
choose a small step size h to get the point into the unit circle. If we use higher-order formulas, zk must be saved simultane-
Stability, however, does not yet mean accuracy. For that the ously with the previous solutions.
product �h must fall close to the origin of axes in the figure. The step size influences accuracy and for correct integra-

The outside of the right unit circle corresponds to the back- tion we must estimate the error. This is where the importance
ward Euler formula and its stable region. It shows that for of the predictor–corrector pair of the same order comes into
the negative real part of � the solution will be always in the the picture. It was shown in Refs. 12 and 13 that the error is
stable region, no matter how large a step we take. Again, for expressed by
accuracy the point should be close to the origin.

The vertical axis is the border between stable and unstable
regions of the trapezoidal formula. If the real part of � is neg-
ative, both exact solution and results by the formula will tend

E =
h(xpred

n+1
− xcor

n+1)

a0(tn+1 − tn+1−k)
= hD

a0T
(40)

to zero for large t. The opposite will be true for the positive
real part, which is again correct. This is called ‘‘absolute’’ sta-
bility. There exists a proof by Dahlquist that no higher-order
formula can be absolutely stable.

ADVANCED INTEGRATION METHODS

Integration methods can be self-starting or can use a number
of previous solutions. Self-starting are, for instance, the
Runge–Kutta formulas. If previous solutions are used, the
formulas are generally known as multistep. Many such meth-
ods are available, but the only ones used these days are the
backward differentiation formulas (BDF) (2,10,11).

If the network is linear and has parasitic elements, then
its responses will be a weighted sum of functions Eq. (38) with
very different �i. Such systems are called stiff. Should we inte-
grate such a system with the forward Euler method, every �

D

T

hz3

hz2

h

tn – 1 tn + 1tn – 2 tn

Predictor

Corrector

multiplied by h must be pulled into the unit circle to preserve
stability of integration. If we use the backward Euler method, Figure 16. Estimating error from predictor and corrector results.
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Table 1. BDF Formulas, Equal Steps

Order Predictors Correctors

0 xn�1 � xn x�n�1 � 0

x�n�1 �
1
h

(xn�1 	 xn)1 xn�1 � 2xn 	 xn	1

2 xn�1 � 3xn 	 3xn	1 � xn	2 x�n�1 �
1
h �3

2
xn�1 	 2xn �

1
2

xn	1�
3 xn�1 � 4xn 	 6xn	1 � 4xn	2 	 xn	3 x�n�1 �

1
h �11

6
xn�1 	 3xn �

3
2

xn	1 	
1
3

xn	2�

where k is the number of points taken into consideration, and is the frequency of interest. The program for LU decomposi-
tion must be in complex arithmetic, and the resulting solutionD and T are shown in Fig. 16. The coefficient a0 is the coeffi-

cient multiplying xn�1 in the corrector formula. If the error is variables are complex as well. Absolute value or phase can be
obtained from such complex values. Repeating for a numberlarge, we reduce the step size. There exist advanced methods

on how to adjust the step, all beyond the scope of this contri- of frequencies, we get the frequency-domain response.
Time-domain solutions are more complicated, but still sim-bution, but in many cases the step is simply halved and the

process tried again. One can similarly increase the step if the ple enough when considering backward Euler or trapezoidal
formulas. Recall that multiplication by s represents the deriv-error turns out to be smaller than permitted.

Most commercial packages use only the Euler formulas ative and write
and the trapezoidal rule, and some also use the second-order
BDF formula. Higher-order integration turns out to be effi- GXn+1 + CX′

n+1 = Wn+1 (41)
cient only if nonlinearities have several continuous deriva-

We added the subscript n � 1 to indicate integration steps.tives. Since most transistor models have only the first deriva-
In Eq. (41), G are all entries of the matrix not multiplied bytive continuous, there would be no advantage in switching to
s, and C are all entries multiplied by s. The backward Eulerorders higher than two (14).
formula can be similarly expressed by

LINEAR NETWORKS
X′

n+1 = 1
h

(Xn+1 − Xn) (42)

Linear networks offer a large number of possibilities how to
study them. They can be analyzed in frequency domain and Inserting into Eq. (41) provides (2)
time domain, network functions can be derived, and poles and
zeros can be calculated.

Since our modified nodal formulation was explained on lin-

(
G + 1

h
C

)
Xn+1 = 1

h
CXn + Wn+1 (43)

ear networks, it is worth mentioning how simple frequency
domain analysis is. In frequency domain we calculate how a On the left is the same matrix as we had before, with s re-

placed by 1/h. On the right, the C matrix is multiplied by thesinusoidal input signal would be transferred through the net-
work after all transients have died out. Suppose that we have previous result, Xn, and added to the vector of the sources,

evaluated at the next time instant. Now suppose that we keepthe equations in matrix form, similarly as in the section enti-
tled ‘‘Nodal Formulation.’’ Once we have the equations in ma- the step size fixed during the whole integration. In such a

case the matrix on the left does not change and all we needtrix form, all we do is insert a unit value for the source E or
J and substitute in the matrix s by j�, where � � 2�f and f is one LU decomposition for the entire time-domain calcula-

Table 2. BDF Formulas, Variable Steps

Order Predictors Correctors

0 xn�1 � xn x�n�1 � 0

1 a1 � z2/(z2 	 1) a0 � 1
a2 � 1/(1 	 z2) a1 � 	1

x�n�1 �
1
h

(a0xn�1 � a1xn)xn�1 � a1xn � a2xn	1

2 D � (z3 	 z2)(1 � z2z3 	 z2 	 z3) D � z2(z2 	 1)
a1 � z2z3(z3 	 z2)/D a0 � (z2

2 	 1)/D
a2 � z3(1 	 z3)/D a1 � 	z2

2/D
a3 � z2(z2 	 1)/D a2 � 1/D

x�n�1 �
1
h

(a0xn�1 � a1xn � a2xn	1)xn�1 � a1xn � a2xn	1 � a3xn	2
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tion. In each step we prepare a new right-hand side and find The dots indicate possible presence of other elements. To pre-
Xn�1 by forward and back substitution. For the example in pare the Jacobian, we differentiate with respect to Vi and Vj.
Fig. 11 this system would be Using the chain rule we obtain

∂F
∂Vi

= ∂F
∂Vb

∂Vb

∂Vi
= + ∂F

∂Vb

∂F
∂Vj

= ∂F
∂Vb

∂Vb

∂Vj
= − ∂F

∂Vb

Contribution to the Jacobian will be in columns and rows i




G 0 1
0 C/h −1
1 −1 −L/h







V1,n+1

V2,n+1

IL,n+1




=




0 0 0
0 C/h 0
0 0 −L/h







V1,n

V2,n

IL,n


 +




Jn+1

0
0




and j:
Using the same steps as above, we can derive an expression
for the trapezoidal formula (2):

(
G + 2

h
C

)
Xn+1 = −

(
G − 2

h
C

)
Xn + Wn+1 + Wn (44)

Jacobian :

[
. . . + ∂F/∂Vb . . . − ∂F/∂Vb

. . . − ∂F/∂Vb . . . + ∂F/∂Vb

]

Right-hand side :

[
. . . + F(Vb)

. . . − F(Vb)

]

NONLINEAR NETWORKS
For additional understanding consider Fig. 17 with two linear
and one nonlinear conductor. Using nodal formulation weNonlinearities introduce major difficulties. The concepts of
take the sums of currents at each node:frequency-domain response, amplitude, phase, poles, or zeros

do not exist. What remains is (1) a dc solution when no signal
is applied and (2) a time-domain solution. Both are obtained
by iterations.

f1 = G1V1 + Ib − J = 0

f2 = −Ib + G2V2 = 0
Dc solutions find the operating point, which are nodal volt-

ages and currents in the absence of a signal. It is a situation
The expressions are already in the form needed for iteration,to which the network stabilizes after the power is turned on
with zero on the right, see Eq. (18). The Newton–Raphsonand no signal is applied. The operating point is found by first
equation will have the formshort-circuiting all inductors and open-circuiting (removing)

all capacitors and then solving the resulting algebraic system.
This is not without problems. In transistor networks we may
have nodes connected to the rest of the network through ca-
pacitors only. Removal of capacitors will result in a node with-
out connection to the other parts of the network, and in such
a case the solution routines fail. Some kind of preprocessing

[
G1 + ∂F/∂Vb −∂F/∂Vb

−∂F/∂Vb G2 + ∂F/∂Vb

][
�V1

�V2

]

= −
[

G1V1 + F(Vb) − J
−F(Vb) + G2V2

]
may be needed to remove such nodes from the equations.
Once this has been done, we have an algebraic system of

The minus sign in front of the right-hand side comes from Eq.equations which can be solved by Newton–Raphson iteration
(22). Had we used a linear conductance G3 instead of the non-(see the section entitled ‘‘Solutions of Network Equations’’).
linearity, it would appear in the same positions as the deriva-In linear networks we were able to write first the modified
tives. We are coming to a very important conclusion: The de-nodal equations and then put them into matrix form. This is
rivative appears in the Jacobian in the same position as ifnot possible when nonlinear elements are present. Consider a
the element was linear. All the stamps we derived for linearnonlinear element connected between points i and j. Its cur-
elements are also valid for the Jacobian.rent, which we denote as Ib, flows from i to j and is the func-

Returning to Fig. 17, let Ib � V3
b, J � 1, and G1 � G2 � 1.tion of the voltage across it, Vb:

Then 
Ib/
Vb � 3V 2
b with Vb � V1 	 V2. The Newton–Raphson

Ib = F(Vb)

In terms of modified nodal formulation the branch voltage is
expressed by

Vb = Vi − Vj

In nodal equations the current will be added at node i and
subtracted at j,

J

G1 G2

V2V1

Ib       F(Vb)

Figure 17. Resistive network with one nonlinear element.

Equation for node i : . . . + F(Vi − Vj )

Equation for node j : . . . − F(Vi − Vj )
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C1

R
C2

dc

+

–C     1

G     1

V1,0     2V

Q     0.1V1
3

V2V1

Figure 19. Network with Dirac impulse of current.
Figure 18. Network with nonlinear capacitor.

SWITCHED NETWORKS
equation will be

In modern electronics, semiconductor devices can be used as
reliable switches of voltage or current. This had led to the
development of many methods where switched networks are
used. In communications switched capacitor networks have
been used successfully over the past two decades. In power
engineering, classical power supplies were replaced by

[
1 + 3(V1 − V2)2 −3(V1 − V2)2

−3(V1 − V2)2 1 + 3(V1 − V2)2

][
�V1

�V2

]

= −
[

V1 + (V1 − V2)3 − J
V2 − (V1 − V2)3

]
switched networks.

Simulation of networks with switches presents new chal-
For iteration we must select some initial estimates on the lenges, not known before. Switching may be performed by a
voltages—for instance, V1 � 1 and V2 � 0.5. clock with switching instants known precisely in advance. In

Nonlinear memory elements must be defined by the flux, power engineering, diodes or transistors may be used as

(Ib), for the inductor and by the charge, Q(Vb), for the capaci- switches. Their switching instants depend on the system volt-
tor. Simulation uses their derivatives with respect to time: ages or currents and change with time.

Detailed analysis of switching networks by classical simu-
lators is difficult. Not only does the topology change, but the
instants of switching change as well and have to be found
with sufficient precision.

IC = ∂Q(Vb)

∂t

VL = ∂�(Ib)

∂t

(45)

Modeling of switches can take various forms. Exact semi-
conductor models can be used, but then simulations areand these derivatives are replaced by their approximations:
lengthy. The other possibility is to replace switches by openfor equal steps those from Table 1, for variable steps those
and short circuits, but this also presents problems. In thisfrom Table 2. Consider the network in Fig. 18 with a non-
section we will explain what must be done if ideal switcheslinear capacitor defined by Q � 0.1V 3

1 and an initial voltage
are used.V1,0 � 2V. Writing nodal equations for both nodes

Consider the network in Fig. 19, with the switch connected
to the source. The capacitor C1 is charged to the voltage of the
voltage source, say V1. The other node has a voltage V2 � V1.
If we transfer the switch to the right, then we have a situa-
tion that at the same node is voltage V1 from the left capacitor

f1 = ∂Q
∂t

+ G(V1 − V2) = 0

f2 = −G(V1 − V2) + C
∂V2

∂t
= 0

and V2 from the right capacitor—a situation of inconsistent
initial conditions. The voltages are equalized instantaneouslySuppose we use the backward Euler formula. This changes
by a Dirac impulse of current. A Dirac impulse is a strangethe equations to
impulse having zero duration and infinite amplitude, but fi-
nite area. Another case of inconsistent initial conditions is in
Fig. 20. Let the switch be on the left side for some time. Since
we have a dc source, a linearly growing current will flow up-
wards through the inductor. If we suddenly transfer the

f1 = 0.1V3
1 − 0.1V3

1,0

h
+ G(V1 − V2) = 0

f2 = −G(V1 − V2) + C
V2 − V2,0

h
= 0

(46)

switch to the right, we will have a single loop with some cur-
rent in the left inductor and zero current in the right induc-

The Jacobian is prepared by differentiating with respect to
V1 and V2. This will lead to the following Newton–Raphson
equation:

[
G + 0.3V 2

1/h −G
−G G + C/h

][
�V1

�V2

]
=

[
− f1

− f2

]

where on the right we insert Eq. (46). Had we used higher-
order integration, then in the Jacobian the terms divided by

dc

+

–

L2

L1

R

h would be multiplied by the corrector coefficient a0 (see Table
2). Additional details can be found in Refs. 2, 15, and 16. Figure 20. Network with Dirac impulse of voltage.
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tor. The currents are instantaneously equalized by a Dirac
impulse of voltage.

In network simulations the question is: What will be the
voltages (in Fig. 19) or the currents (in Fig. 20) immediately
after switching? The solution of the problem turns out to be
very simple (17). All we have to do is use backward Euler

Linear

IL

VL VN

IN

+

–

+

–

integration formula, make a one-step h forward, and get the
Figure 21. Linear network with one nonlinear resistor.solution. Next use it as initial conditions for a step back, with

negative h, to the instant of switching. The solution will pro-
vide the correct initial conditions after switching. Afterwards, Methods based on frequency domain solutions completely
integration is done as described in the previous section. avoid calculation of the transients; they are usually referred

to as harmonic balance methods. We will explain the principle
with the help of Fig. 21, composed of some linear network and

PERIODIC STEADY STATE one nonlinear resistor. Normally the linear and nonlinear
part would be connected. In the figure we separated them and

If a network is turned on from a quiescent state, there is al- applied two sources VN � VL. We also indicated the currents
ways a certain period of time when transients take place. The IN and IL. If these two equal voltage sources are such that the
same is true if we suddenly apply a signal. If the signal is a two currents IL � IN, then we have a situation in which a
simple sine wave and the network is linear, the transients direct connection of the nonlinearity to the linear network
will eventually die out and the output will be the same sine will not result in any change.
wave, amplified or attenuated and with a different phase The trick of separating the two parts by the voltage
shift. In linear networks, this type of steady state is easily sources has the advantage that we can apply harmonic fre-
calculated using frequency domain methods. quencies f , 2f , . . . nf to the linear network one by one (su-

If the network has nonlinearities and the signal is still a perposition principle applies) and get the currents by fre-
simple sine wave, the output will be composed of some tran- quency domain methods. This will provide a vector of currents
sients, of the signal and its harmonics. In steady state the
signal will be distorted. Because of the nonlinearity, classical IIIL = [IL,1, IL,2, . . . IL,n]T

frequency domain methods cannot be applied.
Networks with periodic steady state are quite common and Next, we apply the same voltages to the nonlinear part, but

designers need to know the behavior in steady state. Com- first convert them to time domain by using Fast Fourier
puter solution seems to be easy: use a periodic input signal Transform (FFT). This will give us the possibility to calculate
and integrate for a sufficiently long time until all the tran- the current through the nonlinearity as a time-domain func-
sients have died out. Unfortunately, this may be a very ex- tion. Using the inverse FFT we decompose this current into
pensive proposition, and it is thus no surprise that attempts frequency-domain components:
have been made to somehow speed up the process to reach
the steady state by other means. IIIN = [IN,1, IN,2, . . . IN,n]T

Two fundamental types of methods are available: one is
based on integration, the other on the use of frequency do- We can now create an error vector
main methods. We will explain the principles of both methods
without going into any details. References will direct the EEE = IIIL − IIIN
reader to additional information.

To start integration, we need an initial vector of voltages and using some iterative process try to reduce this vector to
and currents, x(0). If nothing more is known, we can start a zero vector. Additional details can be found in Ref. 22.
with a zero vector. Let us integrate over the period T of the Many modifications of the above methods have been pub-
periodic input signal and get the solution x(T). At this point lished. For further study we recommend Ref. 23. It is a book
we can form an error vector devoted to the steady-state problem and has numerous addi-

tional references on this subject. In addition, Refs. 24 and 25
may be of interest; they are books dealing with the generalE(x)E(x)E(x) = xxx(T ) − xxx(0)

problem of circuit simulation.
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