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LOGARITHMIC AMPLIFIERS

Logarithmic amplifiers are specialized nonlinear signal-pro-
cessing elements used wherever a signal of large dynamic
range must be represented by an output of substantially
smaller range, and where equal ratios in the input domain
are usefully transformed to equal increments in the output
domain. In communications and instrumentation applica-
tions, the logarithmic transformation has the additional value
of providing a measure of the input expressed in decibel form.
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Nonlinear signal conversion invariably has consequences larly useful later, when we undertake a formal analysis of the
behavior of logamps based on piecewise linear techniques.that can be puzzling if the fundamental nature of the trans-

Over a range of several decades, each ratio (say, an octaveformation is not kept clearly in mind. This is especially true of
or decade) of change in VX causes a fixed unit of change in thelogarithmic conversion. For example, an attenuator inserted
output VW. The parameter defining this scaling attribute, VY,between the source VIN and a conventional linear amplifier
will here be called the logarithmic slope, usually expressed insimply changes the slope 
VOUT/
VIN at the output, which is
millivolts per decibel. However, dimensional consistency insimply the gain. But this modification would have no effect
equations requires that formally VY be identified as the slopeon the slope (defined in the same way) at the output of a loga-
voltage.rithmic amplifier. Similarly, a dc offset voltage at the output

At a certain value of input signal, the output or, more com-of a linear amplifier has no relevance to the processing of an
monly, the extrapolated output, will pass through zero, whichac signal, whereas an offset introduced at the output of a de-
is here called the intercept voltage, and assigned the variablemodulating logarithmic amplifier alters the apparent ac mag-
VZ. If the logamp were perfect, this intercept would actuallynitude of its input.
occur at the unique input VX � VZ. The need to use an extrap-These important distinctions might be clearer if a term
olated value arises because at low input levels, internal am-such as ‘‘decibel-to-linear converter’’ were used for such ele-
plifier noise or residual offset voltages at the input of a practi-ments, but the description ‘‘logarithmic amplifier’’ or simply
cal circuit will cause significant errors in VW, which will readlogamp, the term used throughout this article, has become so
higher than the correct value, and the output may never actu-widespread that convention demands the continued use of
ally pass through zero, as depicted in the figure. The interceptthis somewhat misleading name. It should be noted, however,
is an important scaling parameter, since only through know-

that the logarithmic function can be realized without the use ing both the slope VY and the intercept VZ can the input level
of amplification in the ordinary sense, though that operation be accurately determined. At high input levels the limited sig-
is often involved. nal-handling capability of the circuit cells, either at the input

There are several different types of logamps, having a sim- or at the output, will eventually impose some limit on the
ilar transfer characteristic between their input signal and the upper extent of the dynamic range.
output. Figure 1 shows an idealized input–output response of Note that the conversion characteristic does not need to be
a generalized logamp, which will later be formalized mathe- logarithmic to achieve useful compression. An amplifier hav-
matically. The input might be a signal burst in a cellular ing a square-root transfer characteristic would halve the deci-
phone; the instantaneous value of a unipolar baseband pulse bel-specified dynamic range; a cube-root response would
in an airborne, marine, or automotive radar system; the reduce it by a factor of three. Compandors performs such
slowly varying carrier envelope in a spectrum analyzer; the power-law operations on the envelope amplitude of an ac sig-
current output of a photodiode, or some other measured vari- nal. The logarithmic function is especially valuable because it
able in a high-dynamic-range analytical instrument; and so uniquely provides an output that changes by the same
on. The form of the input signal will be quite different in each amount over any given ratio of input amplitudes, rendering
case, and the time domain over which events occur ranges the output particularly easy to interpret. For example, the
from a few nanoseconds in a high-resolution radar system to output of a logamp with a slope of 1 V/decade changes by 1 V
many seconds in chemical analysis equipment. for any tenfold change in the magnitude of the input within

For the moment we do not need to be concerned with these its dynamic range. Since a factor-of-ten change in input level
corresponds to 20 dB, a logarithmic response is also useful indistinctions, and it is convenient for now to suppose that the
representing decibel levels; a slope of 1 V/decade correspondsinput is a dc voltage, VX. (Boldface symbols indicate input and
to 50 mV/dB.output signals. Scaling parameters and other incidental vari-

Specifying logarithmic circuit performance requires care inables will be in lightface). This simplification will be particu-
defining terms. The literature abounds with incomplete expla-
nations of critical fundamental issues. In calling them ampli-
fiers, their strongly nonlinear nature is in danger of being ob-
scured. In some cases (for example, progressive compression
logamps) they actually do provide the needed amplification,
and in these cases, the logarithmic output, invariably called
the received signal strength indication (RSSI) may be only an
incidental function of the part.

The focus of this article will be on practical circuits that
closely approximate the logarithmic function for a wide vari-
ety of signal types. We will exercise constant vigilance in mat-
ters of scaling, that is, in ensuring formal traceability of the
constants VY and VZ back to one or more reference voltages, to
ensure the highest possible accuracy in the transformation in
an actual implementation. This challenge in precision nonlin-
ear design has received inadequate attention in the literature.

CLASSIFICATION
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Logamps may be placed in three broad groups, according to
the technique used, with one subclassification:Figure 1. Response of an idealized logarithmic amplifier.
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• Direct translinear
• Exponential loop
• Progressive compression:

• Baseband
• Demodulating

Direct translinear logamps invoke the highly predictable
log-exponential properties of the bipolar transistor. (See
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TRANSLINEAR CIRCUITS.) Practical translinear logamps can be
Figure 3. A demodulating logamp based on an exponential VGA.designed to provide a dynamic range of well over 120 dB for

current-mode inputs (e.g., 1 nA to 1 mA). They are most use-
taneous input amplitude (called the knee voltage EK) fallingful where the signal is essentially static or only slowly vary-
to 1 above this input. We will refer to these as A/1 cells. Usinging. The design challenge here is to achieve excellent dc accu-
this technique, the logarithmic output is developed at the out-racy, usually with little emphasis on dynamic behavior.
put of the last cell in the chain. A/1-based logamps were onceFigure 2 shows a rudimentary translinear logamp having
widely used for baseband applications.a current input. It is clearly very incomplete, but it is immedi-

In a second type, the gain of the cell drops to zero aboveately apparent that this circuit bears no resemblance to any
the knee voltage; this will be called an A/0 or limiter cell. Thesort of familiar amplifier; in fact, it is a special kind of trans-
logarithmic output is now developed by summing the outputresistance element, that is, an element generating a voltage
of all the cells, either linearly, for baseband applications, oroutput in response to a current input. The practical translin-
via a half-wave or full-wave rectifier (called a detector), in de-ear logamps use operational amplifiers to force the collector-
modulating applications. The ease of implementing the A/0current input signal and further process the voltage-mode
limiter cell in monolithic form, its flexibility (a basic designoutput so as to eliminate temperature and device dependence.
can readily be adapted for use in either baseband or demodu-Exponential-loop logamps are essentially high-precision
lating operation), and its high degree of accuracy all make itautomatic gain control (AGC) systems. A crucial prerequisite
an excellent choice.for accurate implementation is the availability of a variable-

In both A/0 and A/1 types, the N-stage amplifier chain hasgain amplifier (VGA) having an exact exponential relationship
very high incremental gain AN for small signals (which is abetween the control variable (usually a voltage) and the gain.
fundamental requirement of any logamp), and this gain pro-In linear IF strips, the RSSI function is usually derived from
gressively declines as the input amplitude increases. The log-the AGC voltage. The Analog Devices X-AMP technique for
arithmic response over a given dynamic range can be approxi-precision low-noise VGA implementation (1) allows the real-
mated to arbitrary accuracy by choice of A and N, with someization of very accurate exponential-loop logamps; practical
obvious practical limitations (including noise and offset volt-examples will be presented.
ages at the low end, and cell overload at the high end). Be-Figure 3 shows the basic form. The technique is particu-
cause the gain is distributed over many stages, the signallarly attractive in ac applications, where the envelope ampli-
bandwidth can be very high.tude of the signal is changing relatively slowly, such as spec-

Commonplace bipolar technologies readily provide celltrum analysis. It has the further valuable property that the
bandwidths of over 500 MHz, and operation to well over 10calibration metric may now be peak, average, or rms, de-
GHz is possible using advanced heterojunction bipolar transis-pending on the choice of detector type: a representative
tor (HBT) technologies. The AD8313 logamp uses a 25 GHzsquare-law cell is shown.
process to achieve a 3.5 GHz cell bandwidth and provides ac-The principle is simple: the control loop through the inte-
curate operation at signal frequencies of 2.5 GHz. These tech-grator, which seeks to null the difference VDC � VR, adjusts
niques can also be realized using complementary metal-oxide-the gain control voltage, which is also the logarithmic output
semiconductor (CMOS) cells in a submicron process, althoughvoltage VW, so that the output of the detector cell, VDC, will be
scaling accuracy is somewhat harder to achieve in CMOS de-equal to the fixed reference voltage VR. To do that, the gain
signs.must have a specific value, depending on the input amplitude

Baseband logamps are also known as ‘‘video logamps,’’ al-VX; using an exponential-controlled VGA, this causes VW to
though they are rarely used in video (that is, display-related)assume a logarithmic relationship to VX.
applications. They respond to the instantaneous value of aProgressive compression is a key concept for high-speed en-
rapidly changing input signal. Many board-level and hybridvelope and pulse applications, and most logamps for wide-
baseband logamps accept inputs having only one polarity, andband IF and RF applications are based on this technique,
they are usually dc-coupled. They are used to compress pulsewhich utilizes a series-connected chain of amplifier cells, each
signals in which the baseline must be accurately preserved.having a simple nonlinear transfer characteristic. In one case,
When used after a microwave detector (typically a backwardthe incremental gain of these cells is A up to a certain instan-
diode), the combination is referred to as a detector video loga-
rithmic amplifier, or DVLA.

Figure 4 shows a typical application. The numbers are for
illustrative purpose only; in practice, the smallest input may
be only a few tens of microvolts, calling for unusually low in-
put-offset voltages, sometimes achieved by using an autonull-

IX VW

ing or dc restoration technique. The dynamic range of a video
logamp typically ranges between 40 dB and 80 dB. A DVLAFigure 2. A rudimentary translinear logamp.
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text; the input is an RF carrier, the output is a quasi-dc
voltage.

In all high-frequency logamps, the management of noise
poses a major challenge. Noise is particularly troublesome in
demodulating logamps, because once it has been converted to
a baseband signal, it is indistinguishable (at the output) from
a constant low-level input, thus limiting the attainable dy-
namic range. Bandpass filters are sometimes inserted be-
tween stages to lower the noise bandwidth. A bandpass re-
sponse may also be desirable as part of the overall system
function, for example, in the IF amplifier of a cordless or cel-
lular phone, or in a spectrum analyzer. However, the design
of bandpass logamps needs great care, since the scaling pa-
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rameters, which define the logarithmic response, are now in-
herently frequency-dependent.Figure 4. Context of a baseband logamp.

Demodulating logamps do not respond directly to input
power, even though their input is often specified in dBm.

will often incorporate some deliberate deviation from an exact Rather, it is the signal voltage that determines the output. A
logarithmic response, to first-order compensate the nonlinear- root mean square (rms) voltage of 223.6 mV represents a
ities of the preceding microwave detector diode at the extreme power of 1 mW in a 50 � load for a sinusoidal signal; this is
upper and lower ends of the signal range. written 0 dBm, meaning 0 dB relative to 1 mW. At this input

A baseband logamp that can accept inputs of either polar- level a logamp would respond with a certain output, say 1 V.
ity and generate an output whose sign follows that of the in- Now, if, in the design, we merely alter the impedance of the
put is sometimes called a ‘‘true logamp,’’ although this is a input to 100 � (without changing the voltage), the input
misnomer, since a true log response would require the output power halves, but the logamp response is unchanged. On the
to have a singularity of �� as the input passes through zero, other hand, logamps are sensitive to signal waveform: thus an
and anyway the log function has no simple meaning for nega- input of the same rms value but with a square or triangular
tive arguments. Instead, the output of a practical logamp of waveform would result in a different output magnitude from
this type passes through zero when the input does, just as for that generated by a sinusoidal excitation; specifically, the log-
any amplifier having a bipolar response. We will later show arithmic intercept is altered. The topic of waveform depen-
that the formal response function for this type of logamp is dence will be addressed at length.
the inverse hyperbolic sine (sinh�1), also called the ‘‘ac log’’
function.

SCALING OF LOGAMPSDemodulating logamps rectify the ac signals applied to
their input and those that appear at every cell along the am-

Generating the logarithm of a signal represents a significantplifier chain. Detection at each stage is followed by summa-
transformation. Close attention to the matter of scaling is es-tion and low-pass filtering to extract the running average.
sential. By regarding the logamp as a precision nonlinear ele-The logarithmic output is then a baseband signal, essentially
ment rather than a special kind of amplifier, the designer isa varying dc level, corresponding to the modulation, or enve-
forced to think carefully about the source of these scaling pa-lope, amplitude of the RF input, rather than its instantaneous
rameters. If they cannot be defined with adequate precision,value. This structure is called a successive-detection logamp
it is likely that the circuit will not be stable with respect to(SDLA). Practical demodulating logamps provide dynamic
variations in supply voltage and temperature.ranges of from 40 dB to over 120 dB. Signal frequencies can

Thus, logamp design should begin with a clear formulationextend from near-dc to several gigahertz. The low-frequency
of the basic function to be synthesized. For all voltage-input,capability is invariably determined by the use of a high-pass
voltage-output logarithmic converters, of whatever type, thissignal path, needed to suppress the accumulation of small off-
must have the formset voltages. This high-pass corner is typically between a few

tens of kilohertz and several megahertz and can be lowered VVV W = VY log(VVV X/VZ) (1)
to subaudio frequencies in some general-purpose SDLAs, such
as the AD8307. Figure 5 shows the general applications con- where VW is the output voltage, VX is the input voltage, VY is

the slope voltage, and VZ is the intercept voltage. From the
outset, we are careful to use variables of the correct dimen-
sions (all are voltages, in this case). Signals VX and VW are
uniformly shown in bold to differentiate them from constants
and internal voltages; they stand for the instantaneous values
of the input and output, at this juncture.

Normally, VY and VZ are fixed scaling voltages, but they
could be scaling control inputs. For example, it may be useful
to arrange for the slope to track a supply voltage when this
is also used as the scaling reference for an analog-to-digital
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converter (ADC), which subsequently processes the logamp’s
output. Equation (1) is completely general and dimensionallyFigure 5. Context of a successive-detection logamp.
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consistent; this is important in developing a theory of lo- technique, though internally the offsetting quantity is conve-
gamps, and in designing them, since it maintains a strong niently in current-mode form. The introduction of attenuation
focus on the detailed sources of the function’s scaling. The at the input of a logamp only changes the effective intercept,
practice of using factors of unclear dimension such as eOUT � and does not affect the logarithmic slope:
K1 log K2eIN is discouraged (2).

The choice of logarithmic base is arbitrary. To preserve
generality, it is not defined in Eq. (1). A change of base merely

VVV W = VY log(KVVV X/VZ)

= VY log(VVV X/VVV N), where VN = VZ/K
(3)

results in a change in VY. We will generally adopt base-10
logarithms, identified by the symbol lgt, in keeping with the These transformations will later prove useful when we need
decibel-oriented context. However, in order to evaluate cer- to compensate basic temperature effects in the gain cells typi-
tain integrals when discussing the effect of waveform on in- cally used in logamps.
tercept in demodulating logamps, we will occasionally switch A well-designed logamp has at least one high-accuracy dc
to ln, that is, natural (base-e) logarithms. reference source, from which both VY and VZ are derived. The

It is apparent from Eq. (1) that VW increases by an amount Analog Devices AD640 provides an early example of a mono-
VY for each unit increase in the quantity log(VX/VZ). When the lithic logamp designed with close attention to the matter of
logarithm is to base ten, that statement reads: for each de- calibration accuracy. It uses two laser-trimmed reference gen-
cade increase in VX. In that particular case VY has the mean- erators, of which one, a bandgap circuit, sets VY and the other,
ing of ‘‘volts per decade.’’ Figure 1 showed this function for a cell providing a bias voltage that is proportional to absolute
VY � 1 V and VZ � 1 �V. The logarithmic output VW would temperature (PTAT), accurately determines the cell gains,
ideally cross zero when VX � VZ. In other words, VZ represents which affect both VY and VZ. In a logamp, these voltage refer-
the intercept of the transfer function on the horizontal axis. ences play a role as important as those in an ADC or analog
This may not actually occur; VZ will often be the extrapolated multiplier. In the case of the AD606 and AD608, the reference
intercept, and for reasons of design its value may be so small is the supply voltage. This is a deliberate simplification: in
that the lower boundary on VW will be first limited by noise their intended application, the ADC that processes the loga-
or input offset voltage. rithmic (RSSI) output uses the same supply voltage for its

It is very easy to arrange for the intercept of a logamp to scaling reference.
have any desired value. This can be readily appreciated from The choice of voltage for inputs and outputs is mainly to
the following expansion: provide a suitable frame of reference for formal analysis. We

could have just as easily cast Eq. (1) in terms of a current-
input and voltage-output device:

VVV W = VY log(VVV XVN/VZVN)

= VY log(VVV X/VN) + VA
(2)

VVV W = VY log(IIIX/IIIZ) (1a)
where VN is the new value of the intercept achieved by adding
some constant VA to the output of the log converter, having where VY, IX, and IZ have equivalent specifications. This is the
the value function of the rudimentary translinear logamp of Fig. 2,

elaborated in the next section.VA = VY log(VN/VZ) (2a)
Alternatively, all signals may be in current form:

Clearly, VA, and therefore VN, can have whatever value we
IIIW = IY log(IIIX/IZ) (1b)wish, and this voltage need not be physically sensible; it could

be as low as, say, 1 nV. Usually, it will be a few microvolts.
This is less common, but certainly quite practical. Finally, theThe intercept may be repositioned by adding or subtracting a
function could be in the form of voltage input and currentvoltage to the output of a logamp, corresponding to VA (see
output:Fig. 6), often included as part of a temperature-compensation

IIIW = IY log(VVV X/VZ) (1c)

This is the form found internally in RF logamps that use
transconductance cells for demodulation; in these cases, the
intermediate output current IW is later converted back to a
voltage VW, using a transresistance cell.

Region Near Zero

As the input VX tends toward zero from positive values, the
output VW will ideally approach ��. Differentiating Eq. (1),
using base-e logarithms, and ignoring at this point any resul-
tant scale changes in VY, we can see that the incremental gain
of a logamp approaches �� as VX approaches zero:
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Figure 6. Repositioning the intercept.
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The elimination of VZ in the expression for incremental gain
is consistent with the fact, already pointed out, that we can
arbitrarily alter VZ after logarithmic conversion by the addi-
tion or subtraction of a dc term at the output.

Since the overall amplifier gain must ideally tend to infin-
ity for near-zero-amplitude inputs, it follows that the low-
level accuracy of a practical logamp will be limited at the out-
set by its maximum small-signal gain (determined by the gain
of the amplifier stages and the number of stages, for the pro-
gressive compression logamps described later), and ultimately
by the noise level of its first stage (in the case of demodulating
logamps) or by the input-referred dc offset (in the case of
baseband logamps).

f(u)

u

sinh–1 u

Imaginary

Real

log 2u

1 2 3 4 5

–5 –4 –3 –2 –1

The incremental gain—a familiar metric for linear ampli-
fiers, where it ought to be independent of the signal level— Figure 7. Log and sinh�1 functions for small arguments.
will be found to vary radically for a logamp, from a maximum
value of perhaps 100 dB to below 0 dB at high inputs: Eq. (4)
shows that it is unity when the input voltage VX is equal to near u � 0. The ‘‘ac log’’ function may thus be very closely
the scaling voltage VY. In fact, the incremental gain of a log- approximated by
amp is never of great importance in the design process, but
its tremendous variation demonstrates the inadvisability of VVV W = VY sinh−1

(VVV X/2VZ) (8)
lapsing into the use of small-signal analysis and simulation
studies when dealing with logamps. As a practical matter, the region of operation corresponding

So far, we have not mentioned the polarity of the signal to extremely small values of VX will invariably be dominated
VX. For a baseband converter VX might be a positive dc volt- by noise, which appears to occupy an inordinate amount of
age or pulse input, so Eq. (1) can be used without further the output range. The use of a nonlinear low-pass filter (LPF),
consideration. But what happens when VX becomes negative? whose corner frequency depends on the instantaneous output

of the logamp, is helpful. For outputs near zero, this filterThere is no simple meaning to the log function when its argu-
‘‘idles’’ with a low bandwidth of, say, 1 kHz; a rapid increasement is negative. Fortunately, we do not have to consider the
in the input to this adaptive filter immediately raises themathematical consequences of this, because practical base-
bandwidth, and the step response remains fast. A dead-zoneband logamps can be designed to handle inputs of either po-
response near zero can be used to obscure low-level noise. Inlarity, or, using appropriate techniques, inputs of both polari-
marine radar applications, this is called an anti-clutter filter.ties. If mathematical rigor is needed, we can adapt Eq. (1) to

handle this situation by assuming that the circuit is arranged
Effect of Waveform on Interceptin some way to respond only to the magnitude of VX and then

restore its sign at the output: We have seen that a demodulating logamp operates from an
ac input signal and internally has detector cells that convert
the alternating signals along the amplifier chain into quasi-VVV W = sgn(VVV X)VY ln(|VVV X|/VZ) (5)
dc signals, which become the logamp output after low-pass
filtering. Now, we need to consider not just the amplitude ofThe bisymmetric function described by this equation refers to
VX, but also its waveform, since this can have significant prac-what is sometimes called the ‘‘ac logarithm.’’ This function is
tical consequences. In the performance specifications for a RFstill not practical, however, because it requires that the out-
logamp, the signal is invariably assumed to be sinusoidal, andput undergo a transition from �� to �� as VX passes
the intercept, usually specified as a power in dBm, also as-through zero, whereas in practical amplifiers intended to han-
sumes this. For other waveforms, such as those arising for adle bipolar inputs VW will pass through zero when VX � 0,
complex modulation mode, as in code-division multiple-accessbecause of the finite gain of its component sections. The situa-
(CDMA) systems, the effective value of the intercept will betion described by Eq. (5) and its practical limitations can be
different.handled by replacing the logarithmic function by the inverse

If the input is an amplitude-symmetric square wave, thehyperbolic sine function:
rectification inherent in this type of logamp results in an in-
tercept that would be identical to that for a constant dc level,
assuming the logamp is dc-coupled and uses full-wave detec-
tors. For a sinusoidal input, where VX is specified as the am-

sinh−1 u = ln(u +
p

u2 + 1) for u > 1 (6)

∼ ln 2u for u � 1 (7)
plitude (not the rms value), it will be exactly double this dc
value. For an amplitude-symmetric triangle wave, the inter-Note that
cept will appear to be increased by a factor of e � 2.718. For a
noise input with some prescribed probability density function

sinh−1
(−u) = − sinh−1 u (PDF) it will have a value dependent on the PDF: when this

is Gaussian, the effective intercept is increased by a factor of
Figure 7 compares the ideal bisymmetric logarithmic func- 1.887. While it is unusual for the behavior of a logamp to be

quantified for waveforms other than sinusoidal, it is valuabletion in Eq. (5) with the inverse hyperbolic sine in the region
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to establish these foundations before proceeding with practi- Using a similar approach for the triangular-wave input, we
can writecal designs (3).

These issues only became of more than academic interest
with the advent of fully calibrated logamps. Prior to that time,
the intercept had to be adjusted by the user, and demodulat- VVV W = VY lgt

�
EEEA

VZ

4t
T

�
(13)

ing RF logamps were calibrated using sinusoidal inputs. Of
course, the waveform dependence of the intercept does not to describe the instantaneous output, where EA is now the
arise in the case of baseband (‘‘video’’) logamps, where there amplitude of a triwave of period T. The demodulated and fil-
is a direct mapping between the instantaneous value of the tered output is then
input and the output. It is entirely a consequence of the signal
rectification of the detectors and the averaging behavior of the
post-detection low-pass filter, neither of which is present in a
baseband logamp.

We begin with the sine case and use base-ten logarithms,
denoted by lgt. We can write Eq. (1) in the form

Ave(VVV W) = 4
T

∫ T/4

0
VY lgt

�
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4t
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�
dt

= 4VY

T
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4EEEA
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�
dt

= 4VY

T ln 10
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4EEEA

VZT

�
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(14)

VVV W = VY lgt
EEEA sin θ

VZ
(9)

The integral of ln t is simply t(ln t � 1), yieldingVW describes the instantaneous value of the output; however,
for a demodulating logamp, we will be concerned with the av-
erage value of VW, that is, the output of some postdemodula-
tion low-pass filter. In this equation, EA is the amplitude of
the sine input and � is its angle, more usually written as the
time-domain function �t. The mathematical inconvenience of

Ave(VVV W) = 4VY

T ln 10

�
T
4

ln
T
4

− T
4

+ T
4

ln
4EEEA

VZT

�

= VY

ln 10

�
ln

EEEA

VZ
− 1

� (15)

negative logarithmic arguments can be avoided by consider-
ing the behavior of Eq. (9) over the range for which sin � is In this case, the waveform signature is just 1; however, since
positive. In fact, we need only concern ourselves with the this may be written as ln e, the output becomes
principal range 0 � � � 	/2, since the average over a full
period will be simply four times the average over this range, Ave(VVV W) = VY lgt(EEEA/eVZ) (16)
assuming the use of full-wave rectification in the detectors.
The demodulated and filtered output is

Thus, a triangle-wave input will effectively cause the inter-
cept to shift to the right by a factor of e, or 8.69 dB. Intu-
itively, this is not unreasonable: for any given amplitude the
triwave spends less time at its higher values than a sinusoi-
dal waveform does, and consequently its average contribution
to the filtered output is reduced.

For a noise input having a Gaussian PDF with an rms
value of E�, the effective intercept is most easily calculated by

Ave(VVV W) = 2
π

∫ π/2

0
VY lgt

EEEA sin θ

VZ
dθ

= 2VY

π

∫ π/2

0

�
lgt sin θ + lgt

EEEA

VZ

�
dθ

= 2VY

π ln 10

∫ π/2

0

�
ln sin θ + ln

EEEA

VZ

�
dθ

(10)

first reducing the formulation to a generalized form. The aver-
age value � of some variable x having a unit standard devia-

The definite integral of ln sin � over the range of interest is tion, which has been subjected to a logarithmic transforma-
�(	/2) ln 2 and the complete integral yields tion, can be expressed as

µ =
∫ ∞

0 e−x2/2 ln x dx∫ ∞
0 e−x2/2 dx

(17)

Note that the variable x represents the instantaneous value
of the input noise voltage [so it is actually x(t), but the time

Ave(VVV W) = 2VY

π ln 10

�
−π

2
ln 2 + π

2
ln

EEEA

VZ

�

= VY

ln 10

�
ln

EEEA

VZ
− ln 2

� (11)

= VY lgt(EEEA/2VZ) (12)
argument is an unnecessary complication for this calculation].

Simply stated, the response to an input having a sinusoidal The numerator and denominator are both standard forms (4):
waveform and an amplitude EA will be the same as for a con-
stant dc input having a magnitude of EA/2. The logarithmic
transfer function is shifted to the right by 6.02 dB for the case

∫ ∞

0
e−αx2

ln x dx = (γ + ln 4α)
√

π

4α
of sine excitation, relative to the basic dc response.

The functional form of Eq. (11) deserves further attention. where � is Euler’s constant, and
Inside the parentheses we have the difference between a loga-
rithmic term with the normalized argument EA/VZ and a sec-
ond term, ln 2, which is a function of the waveform. This term
can be viewed as a waveform signature.

∫ ∞

0
e−αx2

dx =
√

π

4α
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Hence

µ = γ + ln 2
4

which evaluates to ln(1/1.887). In other words, the average
value of the logarithmic output in response to a Gaussian in-

VWVX

RX

IX IC

+
OA1

Q1

Inverted
sign

Positive
only

–

s

put of unit rms value is equivalent to a dc input of 1/1.887.
For a general input E�, Figure 8. Translinear logamp using an opamp to force IC.

Ave(VVV W) = VS lgt(EEEσ /1.887VZ) (18)

npn form is shown, requiring VX � 0, but it is obvious that
where VS is a scaling parameter. This corresponds to an inter- use of a pnp transistor would simply reverse the required po-
cept shift of 5.52 dB. It is interesting to note that this is only larity of input current and the resulting polarity of output
0.5 dB different from the rms calibration for a sine-wave in- voltage.
put and might easily be attributed to measurement error in The transistor can be replaced by a diode or diode-con-
the evaluation of the noise response of practical logamps. nected transistor, with certain advantages, one of which is

that a bipolar response can now be achieved by using two
parallel opposed diodes. Another benefit is that the loop gainTHE TRANSLINEAR LOGAMP
around the opamp becomes essentially independent of signal
current, simplifying high-frequency (HF) compensation andLogamps intended for use at dc or moderate frequencies tradi-
potentially raising the bandwidth. However, this techniquetionally invoke a translinear technique, though that term has
requires the opamp to have very low offset voltage VOS. Also,not generally been used in a logamp context. The word
since VBE bears a highly accurate, multidecade relationshiptranslinear (5,6) refers to the remarkably exact logarithmic
only to the collector current IC, logamps built using diode-con-relationship between the base–emitter voltage VBE and the
nected transistors, in which it is IE that is forced, will exhibitcollector current IC in a bipolar junction transistor (BJT), of
inherently lower accuracy.pervasive significance in the design of analog bipolar circuits.

The opamp OA1 forces the collector current of the transis-In particular, it results in the transconductance being linear
tor Q1 to equal the input current IX while maintaining itsin IC. For the present purposes, this relationship can be writ-
collector–base voltage VCB very close to zero. The conditionten as
VCB � 0 is not essential: for most purposes little harm will
result if the collector junction is reverse biased (this effec-
tively increases IS), or even becomes slightly forward biased.

VBE = VT ln
�

IC

IS + 1

�
(19)

It can be shown that there is actually an advantage to using
a very specific value of the reverse collector bias (VCB � 50where IS is a basic scaling parameter for the BJT, called the
mV) in certain applications.saturation current, an extremely strong function of tempera-

The logarithmic output is taken from the emitter node; theture, and VT is the thermal voltage kT/q. Thus, there might
opamp allows this to be loaded while preserving accuracy. Inat first seem little prospect of taming this temperature vari-
most cases, IS will be very much less than IX and, replacingability. In fact, translinear logamps can be developed to a
IC by IX, we can simplify Eq. (20) tohigh degree of refinement. We will first convert Eq. (19) to

base-10 logarithms to bring it into line with the decibel-world
logamp perspective, slightly rearrange things, and again VVV W = −VY lgt(IIIX/IS) (22)

show the key signal variables in boldface:
Figure 9 shows an illustrative simulation result for this rudi-
mentary circuit using an idealized npn, having IS � 10�16 A
at T � 300 K, operating at temperatures of �50�C, �50�C,VVV BE = VY lgt

�
IIIC + IS

IS

�
(20)

and �150�C. (The sign of the output has been flipped to main-
tain a uniform presentation.) The temperature dependenceswhere
of the slope and intercept are apparent. The output converges
on the bandgap voltage EG0 � 1.2 V at very high currents.VY = VT ln 10 (21)

For high-temperature operation at very low currents, IS be-
comes comparable with the input current IX. The departureThe logarithmic slope VY is PTAT, and evaluates to 59.52 mV

per decade at T � 300 K. The logarithmic intercept is simply from logarithmic behavior in this region can be corrected by
using a particular values of VCB, which is useful in logampsthe saturation current IS, typically between 10�18 A and 10�15

A at this temperature. In Eq. (20) the signal input IC is aug- that must operate accurately down to low-picoampere inputs.
The details lie beyond this treatment but are included in themented by this tiny current; we later address the conse-

quences of this slight anomaly in the otherwise straightfor- practical design shown in Fig. 10, which also includes means
(CC and RE) to ensure HF stability of the first loop aroundward logamp form of the equation.

Figure 8 shows a scheme often used to force the collector OA1.
The basic scheme shown in Fig. 8 would exhibit large tem-current IC to equal IX, the signal current applied to the log-

amp. (Compare with Fig. 2). This is sometimes called a perature variations, due to the dependence of IS in the under-
lying BJT equations, which directly determines the log inter-‘‘transdiode connection’’ or ‘‘Paterson diode’’ (7). The usual
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Figure 9. Output of the basic translin-
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ear logamp.

cept. The practical design includes a means for canceling the T � 30�C), but for any finite ratio this resistor must have a
higher TC. Such resistors are readily available. Both the slopetemperature dependency of IS, using a second transistor Q2,

presumed here to be identical to Q1, and a second operational and the intercept are now substantially free of temperature
effects. Figure 11 shows a typical result and the improvementamplifier OA2. Now we have
that can be achieved at low input currents by applying a
small PTAT bias to the base of Q1.

While some wide-dynamic-range transducers (photodiodes
and photomultiplier tubes) do generate current-mode signals,

VVV W = −VT ln
IIIX

IS(T )
+ VT ln

IIIZ

IS(T )

= −VT ln(IIIX/IZ)

(23)

the input signal will often be in the form of a voltage, VX. It
is a simple matter to adapt the logamp shown in Fig. 10 toThus, the intercept has been altered from a very uncertain
voltage-mode signals, using a resistor between VX and thevalue (IS) to one of arbitrarily high accuracy (IZ) provided from
summing node. When the opamp uses a bipolar input stage,an external source.
and therefore exhibits considerable input bias current, the in-Equation (23) still has a temperature-dependent slope volt-
clusion of an equal resistor in series with the noninvertingage, VT � kT/q. Also, the fairly small and awkward scaling
input of the opamp will serve to cancel its effect.factor (�59.52 mV/decade at 300 K) will usually need to be

raised to a larger and more useful value. This is achieved in
Fig. 10 using a temperature-corrected feedback network. RPT EXPONENTIAL AGC LOGAMPS
is a resistor with a large positive temperature coefficient (TC),
while RF is a zero-TC component. If the ratio RF/RPT were very The logarithm function is the inverse of the exponential func-
high, RPT would need to be exactly PTAT (�3300 � 10�6/�C at tion. In classical analog computing tradition, function in-
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Figure 11. Performance of the practical translinear logamp.Figure 10. A practical design for a translinear logamp.
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verses are generated by enclosing the function in a feedback
path around an opamp, which forces the output of the func-
tion to be equal to some input, at which time, the output of
the opamp (that is, the input to the function block) is the de-
sired inverse. This is precisely what happens in the case of
the translinear logamp, where the forward direction through
the function block—in that case a transistor—is exponential.

However, there are severe bandwidth limitations in at-
tempting to cover a wide dynamic range in a single stage. A

VX

VW

VGA1 DetectorVGAN

Gain = [Ao exp(–VW/VY)]N

N stages

VR

1
sT

special type of VGA, having precisely exponential control of
Figure 13. Logamp based on cascaded exponential VGA cells.

gain, can be used in place of the transistor, as shown in Fig.
12. Here, the gain of the amplifier cell decreases with increas-
ing value of its control input, to which is applied the output

stages simply alters the intercept to V�Z � VR/AN
0 and the slopevoltage VW, with a scaling voltage of VY. The output is thus

to V�Y � VY/N.
A variety of demodulator styles is possible. The simplest isVA = VVV XA0 exp(−VVV W/VY) (24)

a half-wave detector, based on a single junction; this provides
an averaging response. It has a mean output that is 0.318EAThe second active block, essentially an error integrator,
for a sine-wave signal EA sin �t, is EA/2 for a square waveforces VW to the value that results in the VGA output being
signal of amplitude EA, is EA/4 for a triwave signal, and so on.maintained at the reference voltage VR applied to the in-
A full-wave rectifier would simply double these numbers. Al-verting input of the error amplifier. When that condition is
ternatively, we might use a peak detector, changing the dy-satisfied, we have
namics of the loop considerably.

With a two-quadrant square-law detector, that is, oneVVV XA0 exp(−VVV W/VY) = VR (25)
responding equally to signals of either polarity, followed by
filtering to extract the mean square, the resulting loopThus
implements a root-mean-square (rms) measurement system
without having to use a square-rooting circuit (Fig. 14). Here,VVV W = VY ln(VVV X/VZ) (26)
the loop integrator seeks to null its input by forcing the mean
squared value of the detector output to the fixed referencewhere
VR1. There is obviously no need to include the rooting function
before making this comparison; however, a more careful anal-VZ = VR/A0 (27)
ysis of the scaling issues will show that a square-law detector
has its own scaling voltage:The use of an exponential VGA response and an integrator

results in a simple single-pole low-pass response, for small
perturbations, independent of the magnitude of VX, over many VSQR = VOUT(t)2/VR2 (29)
decades. Thus, we have realized a baseband logamp having a
constant small-signal bandwidth. Good operation can be and the low-pass filtered output is thus
achieved even using a single VGA cell, which might use
translinear principles to realize the exponential gain law. In VVV W = Ave(VOUT(t)2/VR2 (30)
practice, however, several lower-gain VGA cells will often be
used to realize the main amplifier, which will also be ac-cou- where VR2 is the squaring cell’s scaling voltage. From Eq. (28),
pled in many applications. For N cells the gain is

VOUT = VINAN
0 exp(−NVVV W/VY) (31)

A = [A0 exp(−VVV W/VY]N = AN
0 exp(−NVVV W/VY) (28)

and the loop forces VW to equal VR, so we have
To cover an 80 dB range of inputs, we might use four cells,
each of which provides a gain variation of one decade. A final
detector cell must be added, to convert the ac output to a

Ave([VINAN
0 exp(−NVVV W/VY)]2)

VR2
= VR1 (32)

quasi-dc value, as shown in Fig. 13. Assuming for now that
the detector cell has an effective gain of unity, the use of N

VX

VR

VA = AVX

VW

VGA

Gain = A = A0 exp(–VW/VY)

1
sT

VX

VW

VGA1
Square-
law cell

VGAN
VOUT VSQR

N stages

VR1

VR2

1
sT

Gain = [Ao exp(–VW/VY)]N

Figure 14. Exponential AGC logamp providing rms metric.Figure 12. A logamp based on a VGA with exponential gain control.
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IF 1 IF 2 IF 3BPF
Mixer
L.O.

RF input
–95 dBm

to –15 dBm

IF output
0 dBm

Log output
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20 mV/dB

×

×

AGC
det.

Gain C1
CAGCGain

TC Comp.

Gain scaling
reference

Exponential
gain control

Gref

IFOP

Figure 15. Exponential AGC logamp using AD607.

After some further manipulation, noting that the rms value Figure 16 shows an AGC-style logamp based on a special
amplifier topology called an X-AMP, in this case, the AD600.of the input signal can be equated to VIN through V2

rms �
Ave(V2

IN), we find As the name suggests, these provide an exponential gain con-
trol function that is very exactly ‘‘linear in dB’’ but does not
depend on the translinear properties of the BJT to generate
the exponential function (1). The signal input is applied toexp

�
−NVVV W

VY

�
=

√
VR1VR2

Vrms AN
0

(33)

a passive resistive attenuator of N sections each having an
attenuation factor A. Thus, the overall attenuation is AN. In
the AD600, A � 0.5 (that is, an R–2R ladder is used) and

VVV W = VY

N
ln

Vrms

VZ
(34)

N � 7, so the total attenuation is 42.14 dB. By means that
where the effective intercept voltage is now we need not discuss here, the voltage along the continuous

‘‘top surface’’ of the ladder network can be sensed and ampli-
fied, and the position of the ‘‘slider’’ can be linearly controlled
by a gain control voltage VG.

VZ =
√

VR1VR2

AN
0

(35)

It will be apparent that the logarithmic law in this case is
built into the attenuator. The advantage of the X-AMP topol-The possibility of measuring true rms is of great value in
ogy is that a fixed-gain feedback amplifier of constant band-power measurements over the entire frequency span from
width, optimized for ultralow noise, can be used. This is di-subaudio to microwave. This is a unique capability of this
rectly connected to the signal at maximum gain, while at hightype of logamp, which thus combines the rms feature with
gains the signal is attenuated in the passive network, main-the multidecade range of the logarithmic function. As noted
taining full bandwidth and linearity. Each section of theearlier, the effect of waveform on logamp behavior can be
AD600 provides a nominal 40 dB gain range (42 dB max), toquite complex, and the progressive-compression logamps to be
achieve a �80 dB logarithmic range. The gain-control inter-described next do not respond to the rms input (the true mea-
face is differential and at high impedance (50 M�). The basicsure of signal power) but in waveform-dependent ways to
gain scaling is 37.5 mV/dB for each section, but this is alteredthe input.
in the Fig. 16 example to provide an overall logarithmic scal-Note one further important advantage of this method. The
ing factor of 100 mV/dB.squaring circuit is forced to operate at constant output (VR1).

Further advances in logarithmic amplifiers based on theTherefore, it does not need to cope with a large dynamic
use of exponential AGC loops are expected. In particular, therange, and can be very simple, provided that it exhibits an
use of new monolithic variable-gain amplifier cell topologiesaccurate square-law response on peaks of signals of high crest
combined with wideband square-law detectors has beenfactor. Note that the amplifiers cells must also have sufficient
shown to provide 60 dB of true-power measurement range atdynamic headroom for high-crest-factor operation. A mono-
frequencies up to 2.5 GHz, placing this technique on an equallithic realization of an exponential AGC logamp using a
footing with the more usual progressive-compression logampsmean-responding detector is to be found in the Analog Devices
for microwave applications.AD607, a single-chip receiver capable of operation from in-

puts over at least an 80 dB dynamic range, from �95 dBm to
�15 dBm (5.6 �V to 56 mV amplitude for sine inputs), at

PROGRESSIVE-COMPRESSION LOGAMPSfrequencies up to 500 MHz via its mixer (Fig. 15). The mixer
and three IF stages are each variable-gain elements, each

It was shown in Eq. (4) that a logamp must have high gainwith a gain range of 25 dB, for a total of 100 dB, providing a
for small signals. Translinear logamps are of little utility ingenerous 10 dB of overrange at both the top and the bottom
high-frequency applications, mainly because all the gain isof the signal range. The gain is controlled by the voltage,
provided by a single opamp having a very limited gain–which is accurately scaled to 20 mV/dB, and, due to the use

of special circuit techniques, is temperature-stable (8). bandwidth product. Exponential AGC logamps are valuable
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in high-frequency applications, where the high gain is pro-
vided by several variable-gain stages operating in cascade.
But these provide a relatively low loop bandwidth, since sig-
nal averaging is needed after the single detector stage. They
are therefore useful in determining the envelope level of a sig-
nal whose power is varying at a moderate rate (from hertz
to megahertz).

Baseband and demodulating logamps based on progressive
techniques achieve their high internal gain over a large num-
ber of cascaded cells and do not involve any kind of feedback
(2). Very high gain–bandwidth products (of over 20,000 GHz
in practical monolithic products) can thus be achieved. They

EK

EK Vin

AEK

0
0

Vout

A /1

Slope = A

Slope = 1

do not depend on the nonlinearity of a semiconductor device
Figure 17. The dc transfer function of an A/1 amplifier cell.to achieve the desired logarithmic conversion. Rather, they

approximate a logarithmic law, in a deliberate and formally
correct fashion, through a type of piecewise linear approxima-

andtion, over a wide dynamic range limited mainly by fundamen-
tal noise considerations. Demodulating types provide a loga-
rithmic output that is a measure of signal strength (the RSSI
function), and these may also provide a hard-limited output

VOUT = AEK + (VIN − EK)

= (A − 1)EK + VIN for VIN > EK
(37)

for use in applications where the signal modulation is encoded
in FM or PM form. Baseband types provide an output that We can immediately reach some conclusions about the be-
bears a point-by-point mapping between input and output. havior of a logamp built from a series-connected set of N such

The internal structure of the two types is similar, and cell amplifier sections. First, because the amplifier behavior just
design techniques can often be shared. We will begin with a defined is piecewise linear, it follows that the overall function,
development of the underlying theory for a baseband logamp while more complicated, can never be anything but a
based on a particular type of amplifier cell, then move to cell piecewise linear approximation. It is also clear that when
design that is easier to implement in monolithic form, and more stages, of lower gain, are used to cover a given dynamic
finally show how the demodulation function is introduced. range, the closer this approximation can be. That is, we can
The mathematical theory of progressive-compression logamps expect the approximation error to be some increasing function
is poorly developed in the literature, particularly with regard of A.
to the essential matter of scaling, that is, the comprehensive Second, we can be quite certain that the logarithmic slope
consideration of the fundamentals on which the accuracy of VY and the intercept voltage VZ in the target function are both
this nonlinear function depends. In developing a theory from directly proportional to the knee voltage EK, that is, we can
first principles, we will be paying close attention to this topic. expect them to have the general form

A baseband logamp operates on the instantaneous value of
its input voltage, VX, to generate VY = yEK and VZ = zEK

VVV W = VY log(VVV X/VZ) (1)
where y is some function of A alone and z is a function of A
and N alone. We can predict this simple proportionality withwhere VW is the output voltage, VX is the input voltage, VY is
total assurance, because if some polynomial in EK werethe slope voltage, and VZ is the intercept voltage. We start
needed, there would need to be other parameters with thefrom these formal foundations, because we wish to develop a
dimension of voltage within the system, in order to restoresound theory of progressive-compression logamps, on which
dimensional consistency.the design of robust, manufacturable products can be based,

Our immediate challenge is to find the functional form ofrather than simply discuss logamp behavior in general terms.
y and z for the cascade of N dual-gain amplifier sectionsOur objective will be to find the scaling parameters VY and
shown in Fig. 18. This will provide a firm foundation for un-VZ for specific circuits, of increasing complexity, starting with
derstanding all classes of logamps using progressive compres-a baseband logamp built from a chain of simple amplifier
sion techniques. The overall input is labeled VX and the out-cells, each with very simple scaling attributes.
put VW in observance of the nomenclature already used. ForConsider first an amplifier stage having the dc transfer
very small inputs, the overall gain is simply AN. At some criti-function shown in Fig. 17. For the time being, we will be con-
cal value VX � VX1 the input to the last (that is, Nth) stagecerned only with its response to positive inputs, but the the-

ory is completely applicable to bipolar inputs. Furthermore,
throughout the development of the theory, we will not be con-
cerned with the frequency-dependent aspects of the amplifier.

The gain for small inputs is A, a well-defined quantity
moderately greater than one (typically between 2 and 5), and
remains so up to an input (knee) voltage of EK, at which point
the gain abruptly drops to unity. We will call this a dual-gain EK

A /1

EK

A /1

EK

A /1

EK

VWVX
A /1

Stage 1 Stage 2 Stage N–1 Stage N

amplifier, or A/1 amplifier. Thus
Figure 18. A baseband logamp comprising a cascade of A/1 ampli-
fier cells.VOUT = AVIN for VIN ≤ EK (36)
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reaches its knee voltage EK. Since the gain of the preceding AEK, so the output of the next stage, which is also the final
output, isN � 1 stages is AN�1, this must occur at a voltage

VVV X1 = EK/AN−1 (38) VVV W = (A − 1)EK + AEK

= (2A − 1)EK
(42)

This is called the lin–log transition, because for smaller in-
puts the cascade is simply a linear amplifier, while for larger So the output increased from AEK to (2A � 1)EK, an amount
values of VX it enters a region of pseudologarithmic behavior. (A � 1)EK, for a ratio change of A in VW. Continuing this line
Above this point, the overall incremental gain falls to AN�1. As of reasoning, we can demonstrate that at the next transition
the input is raised further, a second critical point is reached, VW � (3A � 2)EK, and so on: the change in VW is always by the
at which the input to the (N � 1)th section reaches its knee. fixed amount (A � 1)EK as VX increases by each factor of A.
Then Now, a factor of A can be stated as some fractional part of a

decade, which is just lgt A, where lgt denotes a logarithm to
base 10. For example, a ratio of 4 is slightly over six-tenthsVVV X2 = EK/AN−2 (39)
of a decade, since lgt 4 � 0.602. We can therefore state that
the slope of the output function, corresponding to a linewhich is simply A times larger than the first critical voltage.
drawn through all the transition points, isWe can call this the first midlog transition. Above this point,

the incremental gain falls by a further factor of A, to AN�2,
and so on. It will be apparent that the cascade is character-
ized by a total of N transitions, the last occurring at VXN �

VY = absolute voltage change in VVV W

ratio change in VVV X
= (A − 1)EK

lgt A
(43)

EK. Figure 19 shows the voltages in an illustrative four-stage
system at its four transition points, which occur at input volt- As expected, VY is proportional to EK, while the slope is unaf-
ages separated by a constant ratio, equal to the gain A of each fected by the number of stages, N. Since we are here using
amplifier section. This already looks promising, since if VX is base-10 logarithms, VY can be read as volts per decade. The
represented on a logarithmic axis, these transitions occur at slope can be approximated by VY � [2.4 � 0.85(A � 1)]EK to
equally spaced increments on that axis, corresponding to a within �2.5% between A � 1.2 and 5.5. To determine the in-
ratio of A, while the output changes by equal increments of tercept, we insert one point into the target equation and use
(A � 1)EK over this ratio. the resulting value of the slope. We can conveniently choose

The next step is to find the corresponding values of VW for the lin–log transition, at which point VX � EK/AN�1 and VW �
all intervals above the lin–log transition and up to VX � EK. AEK. Thus
From Eq. (37),

VVV W = (A − 1)EK + VNi (40) AEK = (A − 1)E
lgt A

lgt
EK

VZAN−1
(44)

where VNi is the input to the Nth stage. But at the lin–log which solves to
transition, VNi � EK, and therefore VW � AEK. Further, be-
cause the first N � 1 stages of the cascade are still in a linear
mode up to the second transition, VN in this interval is just VZ = EK

AN+1/(A−1)
(45)

VXAN�1. Thus,

Suppose A � 4, N � 8, and Ek � 50 mV. The choice of aVVV W = (A − 1)EK +VVV XAN−1 (41)
gain of 4 for each section is consistent with high accuracy and
wide bandwidth in a simple amplifier cell; using eight stages,

We could use this starting point to find an expression for the dynamic range will be slightly over 48, which corresponds
VW for all values of VX. However, we do not need to delineate to 96 dB; the choice EK � 50 mV will become apparent later,
all possible values of VW to determine the effective slope and when it will be shown to arise from 2kT/q (� 51.7 mV at T �
intercept of the overall piecewise linear function. At the first 300 K). With these figures, the slope evaluates to 0.25 V/
midlog transition, the output of the (N � 1)th stage is simply decade and the intercept is positioned at about 0.5 �V; the

response is shown in Fig. 20. In a practical amplifier handling
several decades and operating within the constraints of a 2.7
V supply, a somewhat higher value of EK could be used; val-
ues between 15 mV/dB and 30 mV/dB are common. As noted,
the slope and intercept can be readily altered by peripheral
modifications.

The output is seen to deviate from the ideal line, with a
periodic ripple at intervals of A along the horizontal axis. An
analysis of the ripple amplitude, expressed in decibel form,
shows that it is dependent only on A:

EK/A3

EK/A2

EK/A
EK

EK/A2

EK/A
EK

AEK

EK/A
EK

AEK

(2A–1)EK

EK

AEK

(2A–1)EK

(3A–2)EK

AEK

(2A–1)EK

(3A–2)EK

(4A–3)EK

A /1 A /1 A /1 A /1

Stage 1 Stage 2 Stage N–1 Stage N

Figure 19. Voltages along four cells at the transition points.
errorpk dB = 10

(A + 1 − 2
√

A) lgt A
A − 1

(46)
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output for a 10 V input is thus 2 lgt(10/10�4) � 10 V. Figure
22 shows a typical result.

Use of Limiting Cells

A simpler cell topology, more suited to monolithic integration,
can achieve the same function at very high frequencies (over
3 GHz in a practical embodiment such as the AD8313), and
with better accuracy than A/1 cells. In this nonlinear ampli-
fier cell, the incremental gain is A for small signals, but drops
to zero for inputs above the knee voltage EK. This will be
called an amplifier–limiter stage, and is denoted by the sym-
bol A/0. Figure 23 shows the transfer function of this cell,
now for bipolar inputs. The basic equations are

VOUT = −AEK for VIN < −EK (47a)

VOUT = AVIN for − EK ≤ VIN ≤ EK (47b)

VOUT = AEK for VIN > EK (47c)

Figure 24 shows the structure of a baseband logamp made
up of N such A/0 stages. It will be immediately apparent that
we can no longer use just the output of the final stage, since
as soon as this stage goes into limiting, when VX � EK/AN�1,
the output will simply limit at AEK and will not respond to
further increases in VX. To generate the logarithmic response,

1100 m100 n 10 m1 m100
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µµµ 101
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the outputs of all stages must be summed. The milestones
Figure 20. Output of an eight-stage system using EK � 51.7 mV, along the log-input axis are at exactly the same values of VXA � 4. as for the A/1 case; so the challenge is to find the correspond-

ing values of the output VW for all values of input VX up to,
and slightly beyond, EK.

For A � 4, this evaluates to 2.01 dB; some other values are For small inputs, below the lin–log transition, and for
0.52 dB for A � 2, 1 dB for A � 2.65, 1.40 dB for A � �10 equal weighting of the individual cell outputs,
(10 dB gain), and 2.67 dB for A � 5. However, using practical
amplifier cells, which usually have an incremental gain that
is a continuously varying function of input voltage, the ripple

VVV W = ANVVV X + AN−1VVV X + · · · +VVV X

= (AN + AN−1 + · · · + 1)VVV X

(48)
is much lower in amplitude and roughly sinusoidal, rather
than a series of parabolic sections as in the idealized case.

At the lin–log transition,Numerous circuit arrangements are possible to implement
a dual-gain stage at low frequencies. An easily realized practi-
cal form, providing operation from dc to a few tens of kilo-
hertz, using off-the-shelf components, is shown in Fig. 21. The
gain A of each opamp section switches from �3.2 (�10 dB) to

VVV W = (AN + AN−1 + · · · + 1)EK/AN−1

=
�

A + 1 + · · · + 1
AN−1

�
EK

(49)

unity at an effective EK of 0.436 V, determined by the two-
terminal bandgap reference and resistor ratios. The last three

At the first midlog transition,cells are slightly modified to improve the low-end accuracy.
The �1 dB dynamic range is 95 dB (220 �V to 12 V), the
intercept is at 100 �V, and the slope is 100 mV/dB (2 V/de-
cade), making decibel reading on a DVM straightforward. The

VVV W =
�

A + A + 1 + · · · + 1
AN−2

�
EK (50)

Figure 21. A practical low-frequency logamp using
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Figure 24. A baseband logamp using A/0 stages.

For typical values of A and N, this is very close to AEK/lgt A.
At the second midlog transition,

VVV W =
�

A + A + A + 1 + · · · + 1
AN−3

�
EK (52)

Thus, over the second interval the slope is

VY2 = (A − 1/AN−3)EK

lgt A
(53)

Again, for typical values of A and N, this remains close to
AEK/lgt A. For example, if A � 4 and N � 8, the exact value
of VY2 is 6.642EK, while the approximate value is 6.644EK. It
is therefore reasonable to use the expression

VY = AEK

lgt A
(54)
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Figure 22. Measured output and absolute error (dB). for the slope of this logamp over the entire lower portion of
its dynamic range. It can be shown that there is a slight re-
duction in the slope over the last few transition intervals.

Between these two inputs, the output has changed by This artifact can be corrected, and the top-end logarithmic
conformance in a high-accuracy design can be improved, by
simply using a higher summation weighting on the output
from the first stage, as will be shown.

�VVV W =
�

A − 1
AN−2

�
EK

To determine the intercept, we follow the procedure used
while the input increased by a factor A, or lgt A decades. earlier: insert one input–output point into the target equation
Thus, the slope for this first interval, measured on the transi- and use the known value of the slope. The solution is almost
tion coordinates, is identical to that derived for the system using A/1 cells, given

in Eq. (45). The ripple calculation also follows the same ap-
proach as used above and yields essentially identical results.

The top end of the dynamic range gradually deviates from
VY1 = (A − 1/AN−2)EK

lgt A
(51)

the slope established at lower levels when the A/0 system is
used. This can be corrected by a technique first used in the
AD606. The analysis lies beyond the scope of this review; the
result is that the weighting of just the voltage at the input
must be altered by the factor (A � 1)/A; when this is done,
the slope for all intervals is now exactly as given in Eq. (54).
It is of interest to note that the slope has a minimum sensitiv-
ity to the actual value of the basic gain when this is set to
A � e (whatever the base of the logarithm). Thus, the logamp
scaling can be rendered less dependent on lot-to-lot variations
in gain (for example, due to ac beta variations) by using a
gain close to this optimum. Note also that the slope function
for the A/1-style logamp, namely VY � (A � 1)EK/lgt A, does
not behave so helpfully: it merely increases with A, and can

EK

EK Vin

AEK

0
0

Vout

A /0

Slope = A

Slope = 0

be approximated by VY � [2.4 � 0.85(A � 1)]EK to within
�2.5% between A � 1.2 and 5.5.Figure 23. The dc transfer function of an A/0 cell.
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the change in VW between any adjacent pair of transitions is
exactly VD. Thus

VY = VS

Igt A
(56)

that is, the voltage AEK has been replaced by a stable, inde-
pendently controllable parameter. The intercept, however, re-
mains proportional to EK, which will be PTAT when in a typi-
cal monolithic implementation. This will be addressed later.

A /0 A /0 A /0
VLIM

gm gm

IW

VX
A /0

Stage 1 Stage 2 Stage N–1 Stage N

Stage 1Stage 0 Stage 2 Stage N–1 Stage N

gm gm gm

Fully differential topologies are generally used in mono-
lithic logamps, since they have a high degree of immunity toFigure 25. An A/0 baseband logamp using gm cells for summation.
noise on supply lines and can provide good dc balance. All
signals, including the summation signals from the G/0 stages,
have completely defined current circulation paths, keeping

Signal Summation
unwanted signals away from common and supply lines. At the
very high gains and bandwidths typical of multistage log-Figure 24 was unclear about the way in which the signals

along the amplifier chain are summed. In a monolithic circuit, amps, only a very small amount of feedback from a down-
stream stage to the input may cause oscillation. For example,this will be effected in the current domain, using a transcon-

ductance (gm) stage at each cell output. This approach is ap- an 80 dB amplifier chain having an overall bandwidth of 2
GHz has a gain–bandwidth product of 20,000 GHz.pealing for three reasons. First, current-mode signals can be

summed by simply connecting the outputs of all stages to-
gether: the conversion back to voltage form can then be ac-

WIDEBAND MONOLITHIC LOGAMPS
complished using either a simple resistive load or a transre-
sistance stage. Second, they provide unilateral transmission

Monolithic logamps of the progressive compression type, uti-
to the output nodes, minimizing the likelihood of unwanted

lizing bipolar technologies, have been developed to a high
reverse coupling to sensitive nodes early in the signal path.

level of refinement during the past decade. A ‘‘workhorse’’
Finally, they provide the means to decouple the slope cali-

gain cell, providing both the A/0 and G/0 functions, based on
bration from the parameters that control the behavior of the

the bipolar differential pair, allows the easy implementation
main amplifier. This last benefit is central to the scaling of

of both baseband and demodulating logamps, which can oper-
monolithic logamps using differential bipolar pairs as the

ate on a single 2.7 V supply voltage or lower.
gain cells, since the voltage EK, which controls the slope in all

We will first discuss baseband logamps. The design of de-
the structures considered so far, is proportional to absolute

modulating logamps, which is mainly a matter of adding suit-
temperature. If totally linear, the interposition of these gm able detector (rectifying) cells to a structure that is otherwise
cells would make no difference to the analysis, but because in

very much like a baseband logamp, is presented later.
practice they are also in the nature of analog multipliers (be-

Figure 26 shows the ubiquitous bipolar differential pair
ing constructed of bipolar differential pairs, whose transcon-

with resistive loads, a simple but versatile amplifier–limiter
ductance is proportional to the bias current), we have full and

cell, which, with special biasing techniques, can have accu-
independent control of the temperature behavior of scaling.

rate gain even when the transistors have finite beta, ohmic
A voltage input Vj (the signal at any node j) generates a

resistances, and other imperfections. Using ideal transistors,
current output GVj. The maximum output from a G/0 stage

the small-signal gain is
(for Vj � EK) is GEK, fully analogous to AEK for the voltage-
gain stage. The dimensional change inherent in the gm stage
means that this peak output is a current, which will here be A = ∂VOUT

∂VIN
= RC

rE
= RCIT

2VT
(57)

called ID. The subscript D refers to ‘‘detector,’’ anticipating the
function provided by this cell in demodulating logamps,

Thus, the tail current IT should be PTAT if the gain is to be
though we are here still considering baseband operation. The

temperature-stable. It is important to note that the gain is a
currents ID, which will be provided by a precision biasing
means, control the logarithmic slope. The summed outputs
are converted back to the voltage domain using a simple load
resistance RD, or a transresistance stage of the same effective
scaling. We will define a parameter

VD = IDRD (55)

Figure 25 shows the revised scheme. Consistent with sum-
ming all the voltages at the amplifier nodes, we have added
another gm stage at the front, and labeled this the 0th cell.
The current ID for this cells is altered in according with the
above theory to improve the logarithmic-law conformance at

Vin

It

Vsup

Vout

Rc Rc

the top end of the dynamic range. With the modified
weighting D0 on just the 0th G/0 stage, it can be shown that Figure 26. Differential amplifier–limiter–multiplier cell.
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sizes bear simple binary ratios. Similar methods are used in
the highly calibrated laser-trimmed AD8306, the low-cost
AD8307, the general-purpose 500 MHz AD8309 with limiter
output, and the 0.1 GHz to 2.5 GHz power-controlling
AD8313.

A valuable property of this gain cell is that, for moderate
gains, it can be dc-coupled and cascaded indefinitely without
level-shifting or other intermediate components, such as emit-
ter followers. Under zero-signal conditions, all transistors in
these cells operate at zero collector–base bias VCB. Using a
product RCIT � 8VT � 206.8 mVP, a gain of �4 (12.04 dB) can
be maintained over the temperature range �55�C to �125�C
using a supply voltage of only 1.2 V. Since even lower gains
may be used in a wideband logamp, it will be apparent that

VOUT

VIN2VT

Maximum gm is
(IT/2Vt) sech2(VIN /2Vt )

+RCIT

–RCIT

tanh

single-cell operation is possible. A high-f t process is importantFigure 27. Fitting A/0 to the differential amplifier’s tanh function.
in minimizing the ac loading of each cell by the next.

However, most practical designs achieve higher versatility
through the use of a 2.7 V minimum supply, and these may

linear function of IT, in other words, this is also a multiplier also include the use of emitter followers between stages,
cell, an important asset in the development of the G/0 and whose use increases the bandwidth and improves robustness,
detector cells. through the power gain afforded and consequent reduction in

The peak differential output is cell loading, and also because this increases the VCB from zero
to VBE, or about 800 mV. Furthermore, the overload behavior±VOUT max = ±RCIT = ±2VTA (58)
of the gain cells is improved, by avoiding saturation when in
the limiting condition. However, for a 12 dB gain, now a sup-

Thus, a 10 dB amplifier (A � �10) has a peak output of 51.7 ply voltage of at least 2.2 V is required at �55�C, and the
mV � 3.162 � 163.5 mVP. (The suffix P indicates a PTAT power consumption is roughly doubled.
quantity, referenced to T � 300 K.) Without further consider- The basic (unloaded) cell already has some gain error due
ation of the precise nonlinearity of this stage, we can already to finite dc beta (�0), since the collector current in each tran-
fit this behavior to that of the ideal A/0 cell, noting that, in sistor is lowered by the factor �0 � �0/(1 � �0), and the tail
general, an amplifier with a gain of A that limits at an output current IT is also reduced by this factor. Fortunately, the mul-
of 2VTA implies a knee voltage of tiplier aspect of this gain cell allows us to address this prob-

lem very simply, by raising the basic bias current accordingEk = 2VT (59)
to suitable corrective algorithms, built into the bias genera-
tor; the correction can be precise without knowing the value

The full form of the transfer function is of beta a priori.
Likewise, real transistors have ohmic resistances, rbb� andVOUT = RCIT tanh(VIN/2VT) (60)

ree�, associated with the base–emitter junction, which lower
the gain because they increase the effective value of the incre-

Figure 27 shows how this fits the A/0 approximation. Be- mental emitter resistance re. Once again invoking the multi-
cause the transition from a gain of A to a gain of zero is plier nature of the gain cell, and noting that by increasing the
smooth, we can expect the ripple in the log conformance of an bias current we can lower the basic re and restore the gain,
amplifier constructed from such cells to be lower than that
using ideal A/0 stages with abrupt gain transitions, and such
is the case. In fact, the tanh function is highly desirable in
this application.

The input-referred noise spectral density of this cell evalu-
ates to

en = 0.9255nV/Hz1/2

√
IT

(61)

when IT is expressed in milliamperes. The attainment of low
noise is very important for the first one or two stages of a
logamp. To conserve overall current consumption, a tapered
biasing scheme is useful in a fully monolithic multistage de-
sign: the first stage will be scaled to use a higher tail current,
with a corresponding reduction in RC and a proportional in-
crease in the size of the transistors. This is done in the
AD608, where the first stage operates at 4IT, the second at
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2IT, and all further stages at IT; though not completely opti-
mal, these are convenient in that the transistor and resistor Figure 28. A baseband logamp using A/0 cells.
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Figure 29. One stage of the monolithic baseband
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logamp.

correction can be built into the cointegrated bias cell (8,9). In practice, the accuracy of a baseband logamp at the lower
end of the input range will be degraded by the input offsetIndeed, the utilization of synergistic biasing means is an es-
voltage VOS and by noise. However, once good basic adherencesential aspect of contemporary monolithic logamp design.
to the logarithmic function has been achieved, VOS can beA fairly complete baseband logamp, for simulation studies,
eliminated in critical applications by a corrective loop, whileis shown in Figs. 28 and 29. It uses RC � 2 k	 and IT � 109
noise (in this nondemodulating logamp) can be filtered even�AP to provide a gain of 12.5 dB (A � 4.217). Seven such cells
after the final amplifier stage. Finally, a fully robust designare used in this example, sufficient to demonstrate typical be-
requires close attention to many biasing details. The cellshavior, plus an eighth gm cell at the input, to extend the dy-
generating ID and IT will be specially designed to essentiallynamic range upward. The current outputs of all G/0 cells are
eliminate the sensitivity of all scaling parameters to tempera-summed by direct connection, converted to a voltage output
ture, supply voltage, lot-to-lot variations in beta and ohmicby the load resistors RD, and buffered by a difference ampli-
resistance, device mismatches, and so on. While most of thesefier, whose gain, AOUT, is chosen to set up a convenient overall
go beyond the scope of this review, we need to briefly discusslogarithmic slope, VY. Since the overall gain of the eight cells
how the intercept may be stabilized.is 87.5 dB, we can expect to cover a dynamic range of slightly

more than this with good accuracy, aided by the extra top-
end cell.

A temperature-stable ID of 25 �A is used. With load resis-
tors of RD � 2 k	, the voltage change over each 12.5 dB inter-
val at the input is 50 mV (that is, 25 �A � 2 k	), or 4 mV/
dB; using AOUT � 5, the slope voltage is thus 20 mV/dB. The
input gm cell is operated at Id(A � 1)/A, that is, at a current
about 30% higher, to improve the top-end law conformance.
This is a ‘‘true logamp’’ or ‘‘ac logamp,’’ since it can handle
either positive or negative inputs. Figure 30 shows the output
for small inputs (�10 mV), and the difference between this
and the ideal sinh�1 response, as formulated in Eq. (8), exactly
scaled by 0.4 V/ln 10; the peak error of �1.5 mV amounts to
�0.075 dB.

Driving the input over a much larger input voltage range,
using an exponential dc sweep, we obtain the output shown
in Fig. 31; the intercept occurs at 0.5 �V. The middle panel
shows that the dynamic range for a �1 dB error extends from
1 �V to 60 mV, that is, 95.6 dB. The lower panel shows that
the log ripple (the deviation from an ideal logarithmic re-
sponse) is �0.06 dB. Note that with IT � 109 �A and ID � 25
�A, we have used only 963 �A, including the top-end correc-
tion, or 2.6 mW from a 2.7 V supply. Results of this sort dem-
onstrate that amazingly accurate performance is possible us-
ing very simple, low-power cells; these simulation-based
predictions have been amply proven in numerous commercial
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products. Using low-inertia IC processes, several-hundred-
megahertz bandwidths can be achieved at milliwatt power Figure 30. Output of the baseband logamp and deviation from the

sinh�1 function.levels.
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by the logamp; it would have dc offsets, it would limit the
attainable bandwidth, and so on.

However, a passive attenuator with PTAT loss has none of
these problems. We have already used such an attenuator in
the translinear logamp described earlier. In a monolithic im-
plementation, the PTAT resistor can be made using, in part,
the aluminum interconnect metalization, which may be quite
low in value. If the input impedance is 50 	, about 3 	 of
aluminum is needed, providing a nominal attenuation of
about 24 dB, with a corresponding increase in the intercept.
In the AD640 (where the input resistance is 500 	), laser
trimming is used to eliminate the large ratio uncertainty in
the two resistor layers. The use of an attenuator has the
added advantage, in certain cases, of raising the upper end of
the dynamic range, from about �60 mVP for the basic struc-
ture described here, to �1 V. The attenuator has no effect on
the slope voltage VY. This method provides an essentially per-
fect fix, without any artifacts. The intercept remains within
about 0.2 dB over the full military temperature range, and
the limits of the dynamic range are temperature-invariant.

The second approach illustrates another use of Eq. (2),
which showed that the intercept can be moved by simply add-
ing or subtracting a suitable offset to the output. In this case,
the offset must vary with temperature. For a current-sum-
ming system, this can be achieved most simply by adding a
PTAT current directly to one of the log-summing nodes. For
a demodulating logamp, the output is unipolar, and the cor-
rection current is easily added. In the case of the baseband
logamp, it may be achieved just as readily, by using a cor-VOUT (V)
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rectly proportioned PTAT bias current for the last G/0 cell in
Figure 31. Output and deviation from ideal log function (expanded place of the stable current ID.
in lower panel). Figure 32 shows the result of using this simple modifica-

tion on the baseband logamp shown in Fig. 28. This result
shows that the left–right shift in the basic response remains;
that is, unlike the use of a PTAT attenuator, this techniqueTemperature Stabilization of Intercept
slightly erodes the dynamic range. It can be seen that the net

The use of the G/0 stages eliminates the PTAT form of EK �1 dB range now extends from 2.5 �V (at 125�C) to 50 mV
from the slope calibration, but we have not yet addressed this (at �55�C), which is 86 dB. (In practice, the reduction will be
direct temperature dependence of the intercept. It can be ex- less, because the lower limit of the dynamic range is deter-
pressed in decibels per degree Celsius in the following way. mined by the noise floor.) On the other hand, the intercept
The fundamental Eq. (1) can be written now varies by only �0.4 dB at either temperature extreme.

Looking at Eq. (62) more carefully, it is apparent that the
desired temperature compensation shape is not quite PTAT,
even though the intercept is. The reason is simply that there

VVV W = VY log
�

VVV X

VZ0

T0

T

�
(62)

is a logarithmic transformation between input and output
for an input VX that is temperature-stable and an intercept axes. A more exact function, of the form VFIX � VY log(T/T0),
VZ that is PTAT, having a value of VZ0 at T0. The decibel varia- can be readily generated in a monolithic circuit, and is used,
tion in output for a one-degree temperature change in the vi- for example, in the AD640.
cinity of T0 � 300 K is

Range Extension Using an Auxiliary Logamp�dB = 20 lgt(300/301) = −0.029dB/◦C (63)
The top end of the dynamic range of this BJT logamp is lim-
ited by the signal capacity of the first G/0 cell. However, byFor a �55�C to �125�C operating range the total change in
using two logamps operating in a parallel manner, the rangeintercept is over 5 dB.
can be considerably extended (Fig. 33). The L amplifier, han-There are several solutions to this problem. Two methods,
dling the lower part of the range, is driven directly by theboth of which are provided in the AD640, will be described.
signal; it would be optimized for ultralow noise, and givenFirst, note that if we could somehow multiply VX by a factor
special attention with regard to thermal behavior in overload.that is PTAT, we would completely cancel the reciprocal fac-
The U amplifier is driven via the attenuator and handles thetor in Eq. (62). It makes no sense to consider doing this using
upper end of the dynamic range.an analog multiplier based on, say, translinear techniques

In this way, a very sensitive low-end response can be com-(though in principle that is possible): it would be noisy, its
dynamic range would likely be much less than that provided bined with the ability to handle input amplitudes that, with
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Motorola MC3356. A large amount of the knowledge about
logamps relates to discrete designs, and must, in a time of 30
GHz monolithic technologies, be regarded as all but obsolete.

The main features of logamps intended for the rapid deter-
mination of the envelope amplitude of an RF input are similar
to those delineated for a baseband logamp:

• The necessary high gain is distributed over many low-
gain, high-bandwidth stages of the amplifier–limiter, or
A/0, type, which subject the input to a process of progres-
sive compression, and the logarithmic function approxi-
mation is analyzed using essentially the same mathe-
matics as for the baseband logamp.

• The output of all the amplifiers stages, plus the direct
input, is summed through the mediation a type of trans-
conductance (G/0) cell; similar small adjustments to the
weighting of these cells can be used to improve the accu-
racy of the law conformance.

• Differential circuit topologies are used to achieve a high
degree of HF balance and to minimize common-mode ef-
fects, such as the intrusion of spurious signals and noise
from the power-supply. L and U sections are used to ex-
tend the dynamic range; the attenuator sections are also
built in differential form.

• The stabilization of the EK proportional logarithmic in-
tercept over temperature can be achieved using eitherVin (V)
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signal multiplication by a PTAT attenuator at the input
Figure 32. Output (top panel) and error (lower panels) of baseband or the addition of a temperature-dependent correction atlogamp after intercept compensation, at T � �55�C (solid curves),

the output.30�C (dashed curves), and 125�C (dot–dash curves).

The chief differences are that:

appropriate design techniques, can be as large as the supplies
• The logamp now incorporates the demodulation function.(for example, �5 V), provided that the emitter–base break-

Its input is an ac signal (for example, a modulated sinu-down voltage of the input transistors in the L amplifier is not
soidal carrier of from 100 kHz to several gigahertz, or pos-exceeded. (The U amplifier never sees large inputs.) Both base-
sibly an audio signal), and its output is a single-polarityband and demodulating types can benefit from this treatment.
(usually positive) voltage proportional to the logarithm ofThe choice of the attenuation ratio depends on several con-
the amplitude of this input.siderations, but it must have one of the values A, A2, A3, . . ..

• This output is generated by rectifying the signals alongThus, using A � 4, the choices would be 4, 16, 64, . . ., ex-
the amplifier chain and then averaging the resultingtending the 1 dB upper input from �62.5 mV to �0.25 V, �1
fluctuating output over some finite time in a low-passV, �4 V, . . .. A somewhat different approach is used in the
filter, usually integrated into the output amplifier. Eitherlogamp section of the AD608, the AD8306, and the AD8309.
full-wave or half-wave rectification can be used. The for-The upper end of the dynamic range in these cases is ex-
mer is preferable, since it doubles the carrier frequencytended using independent attenuator sections, each followed
and thus reduces the residual carrier feedthrough at theby a detector (G/0) cell.
output of the low-pass filter. These rectifier cells (usuallyThe demodulation function can be introduced by a modifi-
called detectors in a logamp context) operate in a trans-cation of the basic structure. The literature contains descrip-
conductance mode.tions of many different practical ways to go about this, and

other methods are found in commercial products such as the • The cyclical ripple in the error curve is lower in a demo-
dulating logamp, for similar values of A, than for base-
band operation, because the instantaneous value of a
sinusoidal input voltage is sweeping over a wide range of
values during each cycle of the RF carrier. It is roughly
halved for sine excitation.

The design of monolithic demodulating logamps is a specialist
topic, the details of which have yet to be fully described in a
comprehensive text. The material provided here has provided
the essential framework and emphasized the importance of
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approaching all aspects of logamp synthesis with the funda-
mental issue of scaling firmly in mind.Figure 33. Wide-range logamp uses two parallel-driven sections.
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