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formation. A Wiener filter, in particular, is a specialized linear
(nonadaptive) filter, and it is optimal under certain idealized
conditions. It was named after its developer, the famous
mathematician and originator of the field of cybernetics, Nor-
bert Wiener, who derived and helped implement the first fil-
ter during World War II.

Estimation is the process of inferring the value(s) of a vari-
able of interest, using some relevant measurements. Almost
everything around us can be considered a dynamic system.
Nearly all physical systems have some dynamic nature, and
precise estimation of any quantity that relates to them must
take into consideration their dynamics. For example, the flow
dynamics of a river system can be used to estimate future
flood levels in surrounding communities, and the accurate po-
sition of a spacecraft can be estimated using radar tracking
information. Furthermore, ship navigation can be accom-
plished by estimation methods using gyroscopic measure-
ments.

Estimation of a quantity or a variable can take numerous
forms depending on the problems being studied. In particular,
when dealing with dynamic systems, estimation problems can
be classified into three categories (1):

1. State estimation, the process of inferring the state(s) (or
outputs related to the state) of a system using measure-
ments collected from the system itself and a prespeci-
fied mathematical model of the system,

2. System identification, the process of inferring a mathe-
matical model of a system using measurements col-
lected from the system itself, and,

3. Adaptive estimation, the process of simultaneous state
estimation and system identification.

The function performed by Wiener filters is that of a special-
ized state estimation. In an effort to put these filters in the
proper framework, an attempt must be made to further cate-
gorize state estimation. For the remainder of this article state
estimation will refer to the estimation of system states or out-
puts, where the latter are functions of the states.

In state estimation problems, the estimate of the variable
of interest is usually denoted by x̂(t�t), indicating the esti-
mated value at time t given measurements up to and includ-
ing the time t. The actual, and quite often unknown, value of
the variable of interest is denoted by x(t), and the measure-
ments are usually denoted by y(t) in the case of a system out-
put and u(t) in the case of a system input. The estimate of
the measured output y(t) is usually denoted ŷ(t/t). In this ar-
ticle and in most recent presentations of this subject, all de-
velopments are presented in the discrete-time domain (1a).
The wide use of digital computers and the increased use ofWIENER FILTERS
digital signal processors makes this presentation the pre-
ferred approach. The concepts presented are equally applica-In dealing with the operational aspects of dynamic and static
ble in the continuous-time domain. In fact, the original con-(or memoryless) physical systems one often has to process
cepts about optimal predictors and optimal filters were firstmany measured (observed) signals for extracting meaningful
derived in the continuous-time domain. The interested readerand useful information regarding the system under investiga-
is referred to Grewal and Andrews (2) and Wiener (3). Thetion. Such a sequence of signal processing steps (whether ana-
following three types of state estimation problems can now belog or digital, and whether implemented in hardware or soft-
defined (1,4):ware) forms the thrust of the field of estimation. Strictly

speaking, filtering is a special form of estimation. Filters (or
more generally estimators) are devices (hardware and/or soft- 1. Smoothing: given the measurements, y(t � �) for � posi-

tive integer, up to and including the time instant (t �ware) that process noisy measurements to extract useful in-
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�), the state estimate x̂(t�t � �) at a past time t is deter- This is followed by a brief mathematical description of the
filter structure and the method used to design it. The sectionmined.
ends with a brief treatment of Wiener filter performance. For2. Filtering: given the measurements, y(t), up to and in-
the interested reader, additional details of the Wiener filtercluding the time instant t, the state estimate x̂(t�t), at
derivation can be found in the excellent textbook by Haykinthe present time t is determined.
(8). A mathematically rigorous treatment of the continuous-3. Prediction: given the measurements y(t � �), up to and
time filter derivation for scalar and vector signals can beincluding the time instant (t � �), the state estimate
found in the original text by Wiener (3).x̂(t�t � �), at the future time t is determined. If ��1,

this is referred to as single-step-ahead prediction, and
Filtering Problem Statementif � � p, where p � 1, this is referred to as p-step-ahead

or multistep-ahead prediction. As mentioned at the beginning of this article, the Wiener fil-
ter belongs to the class of linear (nonadaptive) optimal filters.In defining state estimation, it is assumed that there exists
Considering the discrete-time treatment of a single-inputa relation (dynamic and/or static) between the measure-
(and a single-output) filter, let us assume that at time t thements y(t) and the state x(t) to be estimated. In many sys-
signal to be filtered (the input to the filter) consists of an in-tems encountered in engineering, however, one does not al-
finite number of measured input samples u(t), u(t � 1), . . ..ways have an accurate knowledge of this relation. Therefore,
The input samples are assumed to be random variables, and,assumptions must be made regarding the dynamics of the
therefore, the input signal represents a random (or stochastic)system, and these assumptions usually take the form of a
process characterized by some known statistics. The filter ismathematical model of the system investigated. The mathe-
described by an infinite number of constant coefficients, b0,matical model (or relation) between the measurements and
b1, . . ., known as the filter impulse response. At any dis-the estimated variables can be of varying complexity, ranging
crete-time instant t, the filter generates an output (the fil-from extracting a signal corrupted by additive white Gaussian
tered signal) denoted by ŷ(t/t). This output is an estimate ofsensor noise, to estimating a time-varying parameter in a
the desired filter response denoted by y(t). Both the filter in-complex process control problem. The nature of this relation-
put and the desired filter response must be known in order toship dictates the complexity of the state estimation problem
design a Wiener filter. However, only the former is needed forto be solved.
filter operation. The deviation of the filter output from theEven though the earliest sign of an ‘‘estimation theory’’ can
desired filter response gives rise to the estimation error,be traced back to the mid-17th century work of Galileo Gali-
which becomes the key measure of filter performance. A blocklei, credit for the origin of linear estimation theory is given to
diagram representation of a Wiener filter is shown in Fig. 1.Karl Friedrich Gauss, for his late-18th century invention

Thus far the only assumption that has been made regard-called the method of least squares, to study the motion of
ing Wiener filters is of their linear structure. The fact that theheavenly bodies. In one way or another the least squares
filter operates in the discrete-time domain is not a restrictivemethod by Gauss forms the basis for a number of estimation
assumption, rather a necessity of the digital world. The con-theories developed in the ensuing 200 years, including the
tinuous-time version of the filter can be developed at the ex-Kalman filter (5). Following the work of Gauss, the next ma-
pense of some mathematical complications. Additionally, andjor breakthrough in estimation theory came from the work of

A. N. Kolmogorov in 1941 and N. Wiener in 1942. In the early
years of World War II, Wiener was involved in a military proj-
ect at the Massachusetts Institute of Technology (MIT) re-
garding the design of automatic controllers for directing anti-
aircraft fire using radar information. As the speeds of the
airplane and the bullet were comparable, it was necessary to
account for the motion of the airplane by shooting the bullet
‘‘into the future.’’ Therefore, the controller needed to predict
the future position of the airplane using noisy radar tracking
information. This work led first to the development of a linear
optimum predictor, followed by a linear optimum filter, the
so-called Wiener filter. Both the predictor and the filter were
optimal in the mean-squared sense and they were derived in
the continuous-time domain. The filter design equations were
solved in the frequency domain (3). Later in 1947, Levinson
formulated the Wiener filter in the discrete-time domain (6).
An analogous, but by no means identical, derivation of the
optimal linear predictor was developed by Kolmogorov in the
discrete-time domain (7), prior to the widespread publication
of the work by Wiener in 1949.

WIENER FILTERS—LINEAR OPTIMAL FILTERING
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A more detailed treatment of Wiener filters is now presented Figure 1. Block diagram of infinite impulse response (IIR) imple-
mentation of a Wiener filter.by first defining the precise estimation problem they address.
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without loss of generality, an implicit assumption is made re- us now return to the depiction of Fig. 1. Considering an infi-
nite observation horizon for the filter inputs u(t), u(t � 1),garding real-valued observations. The Wiener filter can be de-

rived for complex-valued observations, commonly encountered . . ., and an IIR filter structure described by the coefficients
b0, b1, . . ., we can express the filter response ŷ(t/t) asin communications applications. The interested reader is re-

ferred to the Wiener filter presentation by Haykin (8), which
assumes complex-valued observations.

The filtering problem addressed by Wiener filters can now
ŷ(t/t) =

∞∑
k=0

bku(t − k), t = 0,1, 2, . . . (1)

be defined as follows:

Filter Theory Development. The objective of a Wiener filter
Design a linear (discrete-time) filter by completely defining all of is to provide an optimal estimate of the desired filter re-
its unknown parameters, such that for any given set of inputs

sponse y(t), where the estimate is optimal in some mean-u(t), u(t � 1), . . ., the estimation error, defined as the difference
squared sense. To obtain an optimal estimate, the estimationbetween the desired filter response, y(t), and the filter output,
error is defined asŷ(t/t), is minimized in some statistical sense.

e(t) ≡ y(t) − ŷ(t/t) (2)In order to solve the forementioned problem for filter de-
sign, two important issues must be dealt with as follows:

The estimation error is utilized in the following filter objective
function to be minimized:1. How to select (or restrict) the structure of the filter im-

pulse response?
J = E{e2(t)} (3)

2. What statistical criterion to use for optimizing the fil-
ter design?

Furthermore, in order to proceed with the Wiener filter devel-
opment, it is assumed that the filter input and desired filterThe first issue must deal with whether the filter should
response, u(t) and y(t) respectively, are zero-mean jointlyhave a finite (FIR) or an infinite impulse response (IIR). That
(wide-sense) stationary stochastic processes. For definitionsis, whether the filter should have only ‘‘feedforward,’’ or both
and other clarifications regarding stationary stochastic pro-‘‘feedforward’’ and ‘‘feedback’’ signal flow paths. This is of
cesses, the reader is referred to Papoulis (11).great practical implication because design and implementa-

The filter objective function J can now be minimized bytion of IIR filters introduces many complications. Therefore,
computing the IIR filter coefficients bk such that the gradienteven though the general theory of Wiener filters was devel-
of J with respect to each one coefficient becomes simultane-oped based on IIR filters, practical applications are usually
ously zero. As a result of simultaneously setting all of thetreated employing some form of a FIR filter. The reason for
gradients to zero, the optimality of the Wiener filter is in thethis choice is the inherent stability of FIR filters, compared
mean-squared-error sense. Taking the derivative of the objec-to the potential instabilities that can result from IIR filters.
tive function given by Eq. (3) with respect to the IIR filterNevertheless, properly designed IIR filters are guaranteed to
coefficients b0, b1, . . .. and setting them to zero we obtainbe stable. Adaptation of such filters, however, raises serious

complications.
The second issue is of mathematical importance. The ∇kJ = ∂J

∂bk
= E

{
2e(t)

∂e(t)
∂bk

}
= 0, k = 0, 1, 2, . . . (4)

choice of a complex statistical criterion to be optimized results
in increased complexity in filter design equations. Generally,

Using the IIR filter response expressed by Eq. (1) and thein designing a filter a cost (or objective) function is selected
estimation error of Eq. (2), the error gradient in Eq. (4) canthat is then minimized by choosing the appropriate filter pa-
further be expressed asrameters. The choice of the cost function varies, although the

following are possible options: ∂e(t)
∂bk

= −∂ ŷ(t/t)
∂bk

= −u(t − k) (5)
1. Mean-square estimation error;
2. Expectation of the absolute value of the estimation er- Utilizing this expression of the gradient, the following condi-

ror; and tion is obtained for minimizing the filter objective J:
3. Expectation of higher powers of the absolute value of

the estimation error. ∇kJ = −2E{e(t)u(t − k)} = 0 (6)

Additionally, combinations of the above objective functions In light of the objective function convexity, the filter be-
are often used in attempts to minimize the effects of bad data. comes optimal whenever Eq. (6) is satisfied. Let us denote
This is the subject of robust estimation, and the interested with a zero subscript the characteristics of the optimal filter.
reader is referred to Söderström and Stoica (9) and Ljung That is, bok represents the optimal IIR filter coefficients,
(10). The mean-square estimation error is a popular choice, ŷo(t/t) represents the optimal filter response (or filter output),
because it results in a convex optimization problem and a rel- and eo(t) represents the optimal filter estimation error. The
atively simple set of filter design equations. value of the objective function for the optimal filter is denoted

by Jmin. The optimality conditions for the Wiener filter can
Filter Theory and Design now be expressed as
To develop the equations used in the design of Wiener filters,

E{eo(t)u(t − k)} = 0,k = 0,1, 2, . . . (7)an expression for the filter output must first be developed. Let
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and the minimum mean-squared estimation error is given by M−1∑
j=0

bo jR( j − k) = P(−k),k = 0, 1, 2, . . . (M − 1) (12)

Jmin = E{e2
o (t)} (8)

where bo0, bo1, . . ., bo(M�1) are the optimal FIR filter coeffi-
Equation (7) brings-up some important points regarding cients. The assumed FIR filter structure is depicted in Fig. 2.

the operation of optimal filters. Specifically, this equation im- The Wiener–Hopf equations, Eq. (12), can be solved using
plies that if the filter operates in its optimal condition, then one of the many numerical analysis methods for linear alge-
at each time t the (optimal) estimation error is orthogonal braic equations. These equations can be reformulated in ma-
with the filter input. In other words, at each time t the opti- trix form
mal estimation error is uncorrelated with the filter input. The
implication of this observation is consistent with filter opti- Rbo = P (13)
mality. It indicates that if a filter operates in optimal condi-
tions, then all useful information carried by the filter inputs where the autocorrelation matrix is defined as
must have been extracted by the filter, and must appear in
the filter response. The (optimal) estimation error must con-
tain no information that is correlated with the filter input;
rather it must contain only information that could not have
been extracted by the filter.

R =




R(0) R(1) · · · R(M − 1)

R(1) R(0) · · · R(M − 2)

...
...

...
...

R(M − 1) R(M − 2) · · · R(0)


 (14)

Filter Design Equations. The previous section presented the
the cross-correlation matrix is defined asdevelopment of the Wiener filter theory, but it did not address

issues related to the design of such filters. The filter opti-
P = [P(0),P(−1), . . ., P(1 − M)]T (15)mality condition, Eq. (7), becomes the starting point for Wie-

ner filter design. The IIR filter structure can still be used
and where the vector containing the filter coefficients is de-prior to the selection of a more appropriate structure.
fined asIn view of filter response Eq. (1), and the definition of Eq.

(2), substitution of the optimal estimation error in Eq. (7) re-
sults in the following expression: bo = [bo0, bo1, . . ., bo(M−1)]

T (16)

Assuming the correlation matrix R is nonsingular, Eq. (13)
can now be solved for bo

E{u(t − k)(y(t) −
∞∑

k=0

boku(t − k))} = 0,k = 0,1, 2, . . . (9)

bo = R−1P (17)
Further expanding and manipulating the expectations in the
above equation results in representing the coefficients of the optimal filter. Design of an

optimal Wiener filter requires computation of the right-hand
side of Eq. (17). This computation requires knowledge of the
autocorrelation and cross-correlation matrices R and P. Both
of these matrices depend on observations of the filter input

∞∑
j=0

bo jE{u(t − k)u(t − j)} = E{u(t − k)y(t)},k = 0, 1, 2, . . .

(10)
and the desired filter response.

Notice that the preceding equation includes the unknown fil-
ter coefficients and observed quantities. The expectations
present in Eq. (10) are the autocorrelation of the filter input
and the cross correlation between the filter input and the de-
sired filter response. Defining the forementioned autocorrela-
tion and cross correlation by R( j � k) and P(�k), respectively,
Eq. (10) can be expressed as

∞∑
j=0

bo jR( j − k) = P(−k),k = 0, 1, 2, . . . (11)

The set of (infinite) equations given by Eq. (11) is called the
Wiener–Hopf equations.

The structure of the assumed filter must be further simpli-
fied before attempting to solve the design equations in Eq.
(11). The solution to these equations can be greatly simplified
by further assumptions regarding the optimal filter structure.
It should be noted that in the original formulation by Wiener,
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Eq. (11) was derived in the continuous-time domain at the
expense of significant mathematical complications. Assuming Figure 2. Finite impulse response (FIR) implementation of a Wie-

ner filter.an M-th order FIR filter, Eq. (11) is simplified as
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Filter Performance

The performance of Wiener filters can be explored by express-
ing the filter objective function in terms of the filter parame-
ters, that is, in terms of the impulse response coefficients b0,
b1, . . ., bM�1. Then, the objective function can be investigated
as a function of these coefficients.

For the M-th order FIR Wiener filter shown in Fig. 2, let
us rewrite the objective function of Eq. (3) in terms of the
filter inputs and the desired filter response as follows:

J = E{(y(t) −
M−1∑
k=0

bku(t − k))2} (18)

Optimal
Wiener filter

Suboptimal filters

Jmin

bok bk

J(b)k

This equation can be expanded as
Figure 3. Wiener filter objective function depicting the impact of fil-
ter parameters on filter optimality.

not discussed in this article.) In practical applications and ir-
respective of the selected filter structure, use of suboptimal

J = E{y2(t)} − 2
M−1∑
k=0

bkE{u(t − k)y(t)}

+
M−1∑
k=0

M−1∑
j=0

b2
kE{u(t − k)u(t − j)}

(19)

filters is quite often inevitable because of violations in the
Now, using the definition for the variance assumptions underlying the optimal Wiener filter, such as the

assumptions of filter input and desired response stationarity
and other practical implementation considerations.σ 2

y = E{y2(t)} (20)
The filter performance analysis can be taken a step further

to determine the optimal filter performance in terms of thealong with the autocorrelation and cross correlation, R( j �
statistics of the filter input and the desired filter response.k) and P(�k), the objective function can be rewritten as
The optimal filter response can be expressed as

J = σ 2
y − 2

M−1∑
k=0

bkP(−k) +
M−1∑
k=0

M−1∑
j=0

b2
kR( j − k) (21)

ŷo(t/t) =
M−1∑
k=0

boku(t − k) = bT
o u(t) (24)

Equation (21) can now be written in vector form as

The filter response, a function of the filter input, is a stochas-
tic process itself. The variance of the filter response can beJ(b) = σ 2

y − 2bT P + bT Rb (22)

expressed as
where the objective function dependence on the filter parame-
ters b is explicitly shown, and where the other parameters σ 2

ŷ = E{bT
o u(t)uT (t)bo} = bT

o E{u(t)uT (t)}bo = bT
o Rbo (25)

are as previously defined.
In view of the joint stationarity assumptions placed upon

or, using Eqs. (13) and (17),the filter input and the desired filter response signals, the
objective function equation (21) or (22) is a quadratic function
of the filter impulse response parameters bk. Therefore, per- σ 2

ŷ = bT
o P = PT bo = PT R−1P (26)

formance optimization of the Wiener filter is a quadratic opti-
mization problem with a unique minimum. This unique mini- Applying the definition given in Ref. 2 for the optimal filter,
mum Jmin occurs when the filter parameter values correspond the desired filter response can be expressed as
to the optimal filter bo such that

y(t) = ŷo(t/t) + eo(t) (27)Jmin = J(bo) (23)

Taking the expectation of the square of both sides of Eq. (27)The shape of the quadratic performance index depicting the
results in the following relation between the variance of theoptimal and suboptimal filters is shown in Fig. 3. The optimal
filter response and the desired response:filter parameters are computed by solving Eq. (17) for bks. For

other values of the parameters bk, the resulting filter is subop-
timal. In fact, a truly optimal Wiener filter is realized if M is σ 2

y = σ 2
ŷ + Jmin (28)

allowed to approach infinity, that is, M � �. Therefore, all
FIR implementations of a Wiener filter result in suboptimal Using Eqs. (26) and (28), the minimum mean-squared error
performance. This practical limitation imposed by the need to of the objective function can be expressed as
select a finite M can be overcome by allowing ‘‘feedback’’
paths in the filter structure. Feedback allows implementation
of a Wiener filter via finite-order IIR filters. (IIR filters are Jmin = σ 2

y − PT R−1P = σ 2
y − PT bo (29)
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Defining the normalized mean-squared error of the optimal 1. The filter input must consist of an infinite number of
observations;filter as

2. The filter input must be stationary; and
3. The filter output must be related to the filter input byε0 = Jmin

σ 2
y

(30)
a linear relation.

Eq. (28) can be expressed as Furthermore, for designing an optimal Wiener filter the sta-
tistics of the desired filter response must be available, and it
also must be stationary. Finally, there are additional limita-
tions imposed by the underlying theory of Wiener filters, but

ε0 = 1 −
σ 2

ŷ

σ 2
y

(31)

these limitations relate to filter implementation.
Equation (31) is a performance index for the optimal Wiener
filter, expressed as a function of the variance of the filter re- Nonstationary Finite Duration Signals
sponse and the desired filter response. In view of Eq. (28),

A close look at the key assumptions made in deriving the Wie-this performance index takes values in the range
ner filter reveals that stationarity of the filter input is re-
quired. The desired filter response statistics must also be0 ≤ ε0 ≤ 1 (32)
available, and further the filter input and the desired filter
response must be zero mean, jointly wide sense stationary.If the optimal filter results in zero mean-squared estimation
Stationarity of a stochastic signal implies that its statisticalerror, then the performance index �0 becomes zero. As the
properties are invariant to a shift in time. Furthermore, thesemean-squared estimation error of the optimal filter increases,
signals are required to be observed for an infinite observationthe performance index �0 approaches one. The variation in the
interval (or window).performance index for a family of Wiener filters is depicted in

In engineering practice many signals that serve as filterFig. 4.
inputs are not stationary and they are subject to finite obser-It should be noted that the range given by Eq. (32) is valid
vation intervals. This is especially true in control engineeringonly for the optimal Wiener filter. For such a filter, the cross-
applications of filters. In such applications the essence of thecorrelation between the filter error and filter output is zero,
filter function is performed during periods in which the sys-resulting in the expression of Eq. (28). For suboptimal filters,
tem generating the signals to be filtered is undergoing a tran-the term E� ŷ(t/t) 	 e(t)� must be included on the right-hand-
sient. This results in signals with varying means, renderingside of Eq. (28). Then, the performance index given by Eq.
them nonstationary. Additionally, in many engineering appli-(31) does not have an upper-bound of 1.
cations the desired filter response statistics may not be avail-
able. This is further complicated by the requirement of a zero

LIMITATIONS OF WIENER FILTERS mean, stationarity desired filter response. Finally, it is worth
mentioning that practical implementation forbids excessively

Following the successful application of Wiener filters during long observation intervals for all signals involved in the fil-
World War II, it became clear that the functionality offered ter operation.
by such a device (a filter) would be immense in many techno- The limitation of Wiener filters in processing nonstation-
logical applications. Careful consideration of the filter deriva- ary, finite observation interval signals was well known to
tion, however, immediately points out a number of key limita- Wiener himself, who during the years following the develop-
tions. The three main assumptions of Wiener filters for ment of the original linear optimal filter rigorously investi-
optimal operation are as follows: gated its possible extensions (12). During the 1950s, many

researchers attempted to extend the applicability of Wiener
filters to nonstationary, finite observation interval signals
with little success. Although some theoretical results were ob-
tained that eliminated these assumptions, the rather compli-
cated results did not find much use in practical filter design.
The two main difficulties were associated with filter update
as the number of observations increased, and the treatment
of the multiple (vector) signal case. Both of these limitations
of the Wiener filters were eliminated by the development of
the Kalman filter. This development made the assumption of
a stationary, infinite observation horizon filter input unnec-
essary.

Nonlinear Systems

Another limitation of Wiener filters results from the assumed
linear relation between the filter input and the desired filter

J1
min

b1
ok bk

J(b)k

1

0

Optimal
Wiener filters

response. This implies a linear relation between the filter in-
put and output also. Having a linear structure, Wiener filtersFigure 4. Wiener filter performance index depicting famlies of filter

performance curves and location of optimal filters. can not effectively address filtering problems in which the fil-
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ter inputs and outputs must be related by some nonlinear 3. The Wiener filter assumes stationary stochastic pro-
cesses as filter inputs, whereas the inputs to the Kal-functional form. That is, if the filter inputs and the desired

filter response is inherently nonlinear, then use of Wiener fil- man filter may be nonstationary.
ters results in suboptimal filtering. 4. The Wiener filter assumes the availability of a desired

During the 1950s, Wiener conducted extensive research on filter response, whereas the Kalman filter assumes the
the use of a special class of nonlinear functional form to relate availability of a model of the system to be filtered.
the filter inputs and the desired filter response. He used the 5. The Wiener filter inputs and outputs are related using
so-called Volterra series, which was first studied in 1880 as a an input–output (or transfer function) model repre-
generalization of the Taylor series expansion of a function. sented by the impulse response coefficients. The Kal-
Wiener used Volterra series to model the input-output rela- man filter inputs and outputs are related by a state-
tionship of a system (10). The integral approach of Wiener’s space model.
formulation of the nonlinear extensions to the Wiener filters,

6. Derivation of the linear optimum filter based on theand the lack of computational capabilities during that period,
principles of Kalman filtering requires less mathemati-limited the application and use of his developments until the
cal sophistication than the equivalent derivation using

mid-1980s (13).
the principles of Wiener filtering.

In engineering practice, and especially in the many indus-
7. The Kalman filter provides a better framework than thetrial applications of filtering and of estimation in general,

Wiener filter for the detection and rejection of outliersnonlinearities are widely encountered facts of life. These non-
(or bad data).linearities are currently handled in an ad hoc manner, be-

8. The Wiener filter implementation in analog electronicscause an effective nonlinear filtering method has yet to be
can operate at much higher effective throughput thandeveloped. The development of the Extended Kalman Filter
the (digital) Kalman filter.(EKF), as a means to account for nonlinear process and/or

9. The Kalman filter is best suited for digital implementa-noise dynamics, has not eliminated the problems associated
tion. Although this implementation might be slower, itwith practical nonlinear filtering problems at all. The main
offers greater accuracy than that which is achievablereason for this inadequacy is the inherent modeling uncer-
with analog filters.tainties in many nonlinear filtering problems. The modeling

uncertainties render the EKF quite often ineffective. More re-
Variations of the Wiener Filtercently during the 1990s, a different type of functional rela-

tion, based on the so-called artificial neural networks, has The first true variation of the Wiener filter came from Levin-
shown promise in nonlinear input-output modeling (14). In son in 1947, who reformulated the original derivation in the
principle, the application of these mathematical tools has fol- discrete-time domain (6). During the 1950s several attempts
lowed the initial attempts by Wiener on the use of Volterra were made to relax the infinite observation horizon and the
series to extend the capabilities of linear optimal filters by stationarity requirements of the original Wiener filter formu-
the use of black-box nonlinear models. lation. These attempts resulted in mathematically very com-

plex variations of the Wiener filter. Furthermore, handling of
the vector case was excessively difficult. These complicationsRelation to Kalman Filters
resulted in Swerling’s early attempts at recursive algorithms

The Kalman filter, probably the most significant and techno- (8). They were followed by Kalman’s derivation of the Wiener
logically influential development in estimation theory during filter in the time-domain.
this century, first appeared in the literature in 1959. It is not One of the most widely used variants of the Wiener filter is
a secret that the Kalman filter was initially developed as a the so-called linearly constrained minimum variance (LCMV)
means of circumventing some of the limitations of the Wiener filter. The derivation of this filter was motivated by the need
filters. The relation between these two filters can be best un- to relax the presence of the desired filter response in Wiener
derstood by considering the model-based nature of the ‘‘filter- filter design. In some filtering applications the desired filter
ing operation’’ performed on a signal generated by a system. response is not always known or available. Furthermore, in
In effect, the Wiener filter attempts to model the filter inputs some applications it is desired to minimize a mean-squared
and outputs by an ‘‘input–output’’ (or transfer function) error criterion subject to some constraints. In such circum-
model. On the contrary, the Kalman filter poses the following stances, the LCMV is utilized as an alternative to Wiener fil-
question: Why not apply the concept of state-space to Wiener ters. Design of an LCMV filter requires the solution of a con-
filters? The answer to this question was the mathematical de- strained optimization problem. This is accomplished by using
velopment of linear optimal filtering theory based on ‘‘state- one of the many constrained optimization methods, such as
space’’ models. In doing so, many of the limitations imposed the method of Lagrange multipliers. Another variation of
by the Wiener filter are eliminated. Some of the similarities Wiener filters is the linear optimal predictor, which preceded
and relative advantages of the Wiener and Kalman filters can the development of the Wiener filter and which laid the foun-
be summarized as follows (2): dations of the linear optimal filtering theory.

1. Both the Wiener and Kalman filters have linear struc- WIENER FILTER APPLICATIONS
ture.

2. The Wiener filter assumes an infinite observation hori- Since its introduction in the 1940s, the Wiener filter has
zon for the filter inputs, compared to the Kalman filter found many practical applications in science and technology.

As with all other filters that were developed following Worldassumption of a finite observation horizon.
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War II, the Wiener filter extracts information from noisy sig- 3. How is the order of the Wiener filter selected?
nals. Nevertheless, the inherent assumptions made in deriv-

In many real-world filtering applications the statistics of theing the Wiener filter place certain limitations on its applica-
desired response are not easily quantified. Furthermore, inbility to many practical problems. In fact, these limitations
many instances the desired response may not be a well-be-have been among the primary motivations for the develop-
haved stochastic process. Similarly, the relation between thement of the Kalman filter.
desired response and the inputs to the Wiener filter may notDespite the apparent superiority of the Kalman filter, it is
be simple. As a result, the third forementioned issue, the or-still advantageous to implement a Wiener filter when proper
der of the Wiener filter, is not easily determined.conditions arise. Such conditions include either filtering sta-

For the sake of this example, let us assume that the de-tionary or quasi-stationary signals, or equivalently filtering
sired filter response is generated as the output of a zero-signals from systems operating under steady-state or quasi-
mean, white-noise driven linear time-invariant system with asteady-state conditions.
transfer function H(z). The white-noise is denoted by w(t).
This assumption greatly simplifies the analysis of the statisti-General Uses
cal properties of the desired filter response. Furthermore, let

In general, Wiener filters are applicable to problems in which us assume that the desired response and the filter inputs are
all signals of interest can be assumed stationary, and the de- also related by a linear time-invariant system with a transfer
sired filter response can be either expressed analytically and/ function G(z), corrupted by additive zero-mean, white noise.
or measured. These preconditions limit, to a large extent, the It is desired to design a Wiener filter such that the difference
use of Wiener filters. For example, many filtering problems between the filter response ŷ(t/t) and the desired response
encountered in control applications are characterized by non- y(t) is minimized in the mean-squared sense. The block dia-
stationary signals. Furthermore, very often the desired filter gram for this example is shown in Fig. 5.
response and its statistics are not explicitly known and/or Let us now assume, for simplicity, that the desired filter
measured. An exception to this class of problems is the area response is generated by the following first-order transfer
of target-tracking and navigation, the very first application of function:
Wiener filters. Additionally, Wiener filters have found many
applications in communication systems, for example, in chan-
nel equalization and beamforming problems. Wiener filters H(z) = 1

1 + h1z−1
= 1

1 + 0.5z−1
(33)

have also found wide use in two-dimensional image pro-
cessing applications. where the zero-mean, white noise input w(t) driving H(z) has

In tracking applications, Wiener filters are used to esti- a variance 
2
w � 0.35. It is further assumed that the desired

mate the position, velocity, and acceleration of a maneuvering response is related to the filter input by the following, also
target from noisy measurements. The target being tracked first-order, transfer function:
may be an aircraft, a missile, or a ship. Radar and other in-
struments measure the range, azimuth, and elevation angles
of the target. If a Doppler radar is available, then range-rate G(z) = 1

1 + g1z−1
= 1

1 − 0.75z−1
(34)

information is also included. If the target moves at constant
velocity, then the Wiener filter position estimates might be The output of the transfer function G(z) is further corrupted
quite accurate. Because of the limitations inherent in the by the additive zero-mean, white noise n(t), with a variance
Wiener filter, however, evasive maneuvers of the target can- 
2

n � 0.15.
not be accounted for with accuracy. Estimation of target posi- To design a Wiener filter, we need to characterize two cor-
tion is usually part of an overall system to improve the accu- relation functions related to the desired filter response and
racy of a fire control system. the filter input. Specifically, we need to compute the autocor-

relation R of the filter input, u(t), and the cross-correlation
A Simple Example P between the filter input and the desired response y(t). Addi-

tionally, we need to compute the variance of the desired re-In this section we present a very simplified example of the
sponse. This is accomplished by observing that the varianceWiener filter in the discrete-time domain. As the example
of the output of a linear filter driven by white noise is relatedprogresses, comments regarding realistic applications will be
to the variance of its input [for details of the appropriatemade to inform the reader of some of the difficulties involved
equations, the reader is referred to Haykin (8) and Papoulisin real-world filtering applications.
(9)]. This calculation results inThe three key issues involved in Wiener filter design are:

1. What are the statistics of the desired response?
2. How is the filter input related to the desired response?

σ 2
y = σ 2

w

1 − h2
1

= 0.47 (35)

Figure 5. Wiener filter example block di-

n(t)
+

+ u(t)x(t)y(t)
G(z)H(z)

Wiener
Filter

w (t) ŷ(t/t)
∑

agram.
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In calculating the correlation matrices, it helps to observe
that the two transfer functions specified in the preceding com-
pletely define the structural information needed for the de-
sign of the Wiener filter. The Wiener filter input can be ex-
pressed as the response of a white-noise driven second-order
filter G(z)H(z), corrupted by additive noise. Therefore, the au-
tocorrelation matrix of the filter input is a two-dimensional
matrix and the Wiener filter can be chosen as a second-order
FIR filter. For more realistic problems, the precise character-
ization of the transfer functions G(z) and H(z) makes filter
design a challenging task.

Let us now return to the calculation of the correlation ma-
trices. The autocorrelation matrix R can be calculated as the
sum of the autocorrelations of the uncorrupted response of
G(z) and additive noise n(t). Furthermore, the autocorrelation
of the uncorrupted response of G(z) can be calculated in terms
of the statistical properties of the desired filter response,
y(t), and the coefficients of G(z). The cross-correlation matrix
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P can be calculated using similar arguments, in terms of the
Figure 7. Error performance contours for Wiener filter example.statistical properties of the desired response and the filter in-

put. For this example these calculations result in the follow-
ing numerical results:

Jmin = 0.47 − [0.1848 0.0364][0.4230− 0.2092]T = 0.3961
(40)

The variations in the filter error performance, from optimal
R =

[
0.6348 0.4

0.4 0.6348

]
(36)

to suboptimal, are best visualized by the contour plot shownP = [0.1848 0.0364]T (37)
in Fig. 7. The objective function value corresponding to the
optimal filter is at the center of the ellipse depicted by contourThe Wiener filter coefficients can now be computed using Eq.
value 1.(17),

bo = R−1P = [0.4320 − 0.2092]T (38) A PRACTICAL EXAMPLE: ELECTRIC MOTOR RESPONSE FILTER

In view of Eq. (22), the filter objective function J(b0, b1), In the final section of this article, we present a more practi-
can now be expressed in terms of the filter coefficients cal—though still simplified—application of a Wiener filter. In

particular, we filter the electrical response of an induction
motor assumed to be operating under constant load conditions
and without the presence of a variable speed drive. The power

J(b0, b1) = 0.47 − 0.1848b0 − 0.0364b1 + 0.8b0b1

+ 0.6348(b2
0 + b2

1)
(39)

supply voltage applied to an induction motor is considered to
be a motor input, whereas the electric current drawn by theThe error performance surface expressed by Eq. (39) is de-
motor is considered to be a motor output. In this applicationpicted in Fig. 6.
of Wiener filters, the motor current is estimated (or filtered)The optimal Wiener filter, corresponding to the filter coef-
using voltage measurements, and the filter response is com-ficients given by Eq. (38), has minimum mean-squared error
pared to the actual motor current measurements. If properlygiven by Eq. (29). The numerical value of this mean-squared
designed, such a filter could be utilized in practice to detecterror is
changes in the motor electrical response that might be due to
power supply variations, load variations, incipient motor
faults, or a combination of these conditions.
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Figure 8. Depiction of experimental set-up for induction motor fil-
ter application.Figure 6. Error performance surface for Wiener filter example.
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3. What is the best way to select the order of the Wiener
filter?

In this application, the desired filter response is the measured
motor current. This is a nonstationary signal with mean 60
Hz fundamental sinusoid. We could attempt to detrend the
fundamental signal and then proceed with the filtering pro-
cess. In this application, however, detrending was not pur-

Induction
motor

3 phase
line

voltage
measurements

Electric
current

measurements

Electric
current

estimates

y(t)

y(t/t)^Wiener
filter

sued. Furthermore, the filter input (i.e., the measured motor
line voltage) is related to the desired filter response via theFigure 9. Input–output depiction of motor filter application.
generally nonlinear induction motor dynamics. Therefore, in
this example two of the key assumptions of Wiener filters are
violated, and an optimal filter cannot be designed. The vio-In this example, several key assumptions are made regard-
lated assumptions are the nonstationarity of the filter re-ing motor operation that simplify this application problem,
sponse and the nonlinear relation between the filter inputas follows:
and the desired filter response. A block diagram depicting the
filter input and filter response is given in Fig. 9.

1. The motor is assumed to be connected to a balanced To design a suboptimal Wiener filter, we need to deal with
power supply. the issue of filter order. In this application, the exact filter

2. The motor is assumed to consist of three balanced stator order is not easily determined and an iterative approach must
windings. be followed. In order to determine a satisfactory filter order,

3. The motor is assumed to be operating under constant one must compare the performance of various filters against
load conditions. a predetermined criterion. In this study, we have used two

error criteria for this comparison—the normalized mean-
squared error (NMSE) and the relative error (RE), defined asUnder these simplifying assumptions, the three motor phases
follows:can be decoupled, and filtering of a single motor current phase

can be pursued based on a single line voltage measurement.
In this example, voltage and current measurements were ob-
tained from the experimental set-up depicted in Fig. 8.

NMSE ≡
∑

[ ŷ(t/t) − y(t)]2∑
y2(t)

(41)

The three key issues involved in Wiener filter design are
as follows: RE ≡ | ŷ(t/t) − y(t)|

yrms
(42)

1. What are the statistics of the desired response? where yrms is the root-mean-square value of the measure-
ments y(t) over a specific time interval and where all other2. How is the filter input related to the desired response?

Figure 10. Normalized desired filter re-
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14. S. Haykin, Neural Networks: A Comprehensive Foundation, 2ndvariables are as previously defined. The two sums in the
ed., Upper Saddle River, NJ: Prentice-Hall, 1999.above error equations are carried over a sufficiently long in-

terval to enable meaningful results. A first-order Wiener filter
ALEXANDER G. PARLOSresults in 0.5% NMSE. As the order of the filter increases, the
Texas A&M UniversityNMSE decreases from approximately 0.1% (for a 5th order

filter) to 0.06% (for a 10th order filter), 0.05% (for a 20th order
filter), and 0.04% (for a 30th order filter). Further increase in
the filter order does not produce any significant decrease in WIMP (WINDOWS, ICONS, MENUS, AND POINT-
the NMSE. ING DEVICES) INTERFACES. See GRAPHICAL USER IN-

A 10th order Wiener filter has been designed and the re-
TERFACES.

sults are now presented. The normalized desired filter re- WINDOWS, FIR FILTERS. See FIR FILTERS, WINDOWS.
sponse and filter output are both shown in Fig. 10. The peak WINDOWS, SPECTRAL ANALYSIS. See SPECTRALRE for the steady-state filter response shown in Fig. 10 is

ANALYSIS WINDOWING.11.2%, and NMSE for the interval shown in Fig. 10 is 0.06%.
With the exception of the initial few cycles, during which the
peak RE reaches 46%, the accuracy of the filter is acceptable
considering that several of the key Wiener filter theory as-
sumptions have been violated. Additionally, the good accuracy
of these results is the direct consequence of the simplifying
assumptions made in this application example. Relaxing some
of these key assumptions, such as allowing for nonconstant
motor load conditions, makes filter design a much more diffi-
cult task.
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