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TIME-VARYING FILTERS

In many applications of digital signal processing it is neces-
sary that different sampling rates coexist within a system.
One common example is two systems working at different
sampling rates; they have to communicate and the sampling
rates have to be made compatible. Another common example
is a wideband digital signal that is decomposed into several
nonoverlapping narrowband channels in order to be transmit-
ted. In this case, each narrowband channel can have its sam-
pling rate decreased until its Nyquist limit is reached,
thereby saving transmission bandwidth.

In this article we will describe such systems. They are gen-
erally referred to as multirate systems. Most of them have
one property in common: They are not shift invariant or they
are, at most, periodically shift invariant.

First, we will describe the basic operations of decimation
and interpolation and show how arbitrary rational sampling-
rate changes can be implemented using them. Then, we will
deal with filter banks, showing several ways by which a signal
can be decomposed into critically decimated frequency bands,
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and then be recovered from them with minimum error. Fi-
nally, wavelet transforms will be considered. They are a rela-
tively recent development of functional analysis that is arous-

x(m) xd(n)
M

ing great interest in the signal processing community, and
Figure 1. Decimation by a factor of M.their digital implementation can be regarded as a special case

of critically decimated filter banks.

This is the general equation governing sampling-rate
DECIMATION, INTERPOLATION, SAMPLING-RATE CHANGES changes. Observe that there is no restriction on the values of

T1 and T2. Of course, if T2 � T1, and aliasing is to be avoided,
Intuitively, any sampling-rate change can be effected by re- the filter in Eq. (2) must have a frequency response equal to
covering the band-limited analog signal y(t) from its samples zero for � � [	�/T2, �/T2].x(m), and then resampling it with a different sampling rate, Since this equation consists of infinite summations involv-
thus generating a different digital signal x(n). Of course the ing the sinc( � ) function, it is impractical to use it (1). In gen-
intermediate analog signal x(t) must be filtered so that it can eral, for rational sampling-rate changes, which cover most
be resampled without aliasing. As an example, suppose we cases of interest, one can derive expressions working solely
have a digital signal x(m) that was generated from an analog on the digital domain. This will be covered in the next three
signal y(t) with sampling period T1, that is x(m) � y(mT1), subsections, where three special cases will be considered: dec-
m � . . ., 0, 1, 2 . . .. It is assumed that y(t) is band limited imation by an integer factor M, interpolation by an integer
to [	�/T1, �/T1]. Therefore, by replacing each sample of the factor L, and sampling-rate change by a rational factor L/M.
signal by an impulse proportional to it, we have the equiva-
lent analog signal: Decimation

To decimate (or subsample) a digital signal x(m) by a factor of
M is to reduce its sampling rate M times. It is equivalent to

y′(t) =
∞∑

m=−∞
x(m)δ(t − mT1 ) (1)

keeping only every Mth sample of the signal. It is represented
Its spectrum is periodic with period 2�/T1. In order to recover as in Fig. 1.
the original analog signal y(t) from y�(t), the repetitions of the The decimated signal is then xd(n) � x(nM). In the fre-
spectrum must be discarded. Therefore, y�(t) must be filtered quency domain, if the spectrum of x(m) is X(ej�), the spectrum
with a filter h(t) whose ideal frequency response H( j�) is as of the subsampled signal, Xd(ej�), becomes (see Appendix A)
follows (1):

Xd(e jω ) = 1
M

M−1∑
k=0

X (e j ω−2π k
M ) (5)

H( jω) =

1 ω ∈

[
− π

T1
,

π

T1

]
0, otherwise

(2)

As illustrated in Figs. 2(a) and 2(b) for M � 2, Eq. (5)
means that the spectrum of xd(n) is composed of copies of the

It is then easy to show that (1) spectrum of x(m) expanded by M and repeated with period
2�. This implies that, in order to avoid aliasing after subsam-
pling, the bandwidth of the signal x(m) must be limited to they(t) = y′(t) ∗ h(t) = 1

T1

∞∑
m=−∞

x(m)sinc
π

T1
(t − mT1) (3)

interval [	�/M, �/M]. Therefore, the subsampling operation
is generally preceded by a low-pass filter [see Fig. 5(a)], which

Then, resampling y(t) with period T2, generating the digital approximates the following frequency response:
signal x(n) � y(nT2), n � . . ., 0, 1, 2 . . ., we have

x(n) = 1
T1

∞∑
m=−∞

x(m)sinc
π

T1
(nT2 − mT1) (4) Hd(e jω ) =

{
1, ω ∈

[
− π

M
,

π

M

]
0, otherwise

(6)

Figure 2. (a) Spectrum of the original
signal. (b) Spectrum of the signal deci-
mated by a factor of 2.
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x(m) xi(n)
L

Figure 3. Interpolation by a factor of L.

Some important facts must be noted about the decimation
operation:

xd(n)
M

x(m)
Hd(z)

xi(n)
Hi(z)

x(m)

(a)

(b)

L

• It is shift varying, that is, if the input signal x(m) is
Figure 5. (a) General decimation operation. (b) General interpola-shifted, the output signal will not generally be a shifted
tion operation.

version of the previous output. More precisely, be D M the
decimation by M operator. If xd(n) � D M�x(m)�, then in
general D M�x(m 	 k)� � xd(n 	 k). However, D M�x(m 	

The interpolated signal is thenMk)� � xd(n 	 k). Because of this property, the decima-
tion is referred to as a periodically shift-invariant opera-
tion (2).

• Referring to Fig. 5(a), one can notice that, if the filter
xi(n) =

{
x(n/L), n = kL,k ∈ Z
0, otherwise

(8)

Hd(z) is FIR, its outputs need only be computed every M
In the frequency domain, if the spectrum of x(m) is X(ej�),samples, which implies that its implementation complex-

it is straightforward to see that the spectrum of the interpo-ity is M times smaller than the one of a usual filtering
lated signal, Xi(ej�), becomes (2)operation. This is not generally valid for IIR filters. One

case when this sort of reduction in complexity can be ob-
Xi(e

jω ) = X (e jωL ) (9)tained is for IIR filters with transfer function of the type
H(z) � N(z)/D(zM) (2).

Figures 4(a) and 4(b) exemplify the spectra of the signals
• If the frequency range of interest for the signal x(m) is x(m) and xi(n) for an interpolation factor of L.

[	�p, �p], with �p � �/M, one can afford aliasing outside Since the digital signal is periodic with period 2�, the in-
this range. Therefore, the constraints upon the filter can terpolated signal will have period 2�/L. Therefore, in order to
be relaxed, yielding the following specifications for Hd(z) obtain a smooth interpolated version of x(m), the spectrum of
(2): the interpolated signal must have the same shape of the spec-

trum of x(m). This can be obtained by filtering out the repeti-
tions of the spectra beyond [	�/L, �/L]. Thus, the up-sam-
pling operation is generally followed by a low-pass filter [see
Fig. 5(b)] which approximates the following frequency re-
sponse:

Hd(e jω )

=




1, |ω| ∈ [0, ωp]

0, |ω| ∈
[

2πk
M

− ωp,
2πk
M

+ ωp

]
, k = 1,2, . . ., M − 1

(7)

Interpolation Hi(e
jω ) =

{
L, ω ∈

[
−π

L
,
π

L

]
0, otherwise

(10)

To interpolate (or upsample) a digital signal x(m) by a factor
of L is to include L 	 1 zeros between its samples. It is repre- Some important facts must be noted about the interpola-

tion operation:sented as in Fig. (3).

Figure 4. (a) Spectrum of the original
signal. (b) Spectrum of the signal after in-

–2   +   p –   p–4π

– 4  
L

π

π ω ω

X(  )

(a)

ω

pωπ 2   –   pωπ–2 π2 π ω4 (  )

ω(  )

Xi(  )

(b)

ω

– 6  
L

π– 8  
L

π – 2  
L

0
π 2  

L
π–  

L
π

L
π 4  

L
π 6  

L
π 8  

L
π

terpolation by L.



252 TIME-VARYING FILTERS

• As with the decimation operation, the interpolation is
only periodically shift invariant. More precisely, if I L is
the interpolation by L operator, xi(n) � I L�x(m)� implies

x(m)
H(z)

xd(n)
M

x(m)
MH(z)

that I L�x(m 	 k)� � xi(n 	 kL) (2).
Figure 7. Decimation followed by interpolation.

• Referring to Fig. 5(b), one can notice that the computa-
tion of the output of the filter Hi(z) uses only one out of

M can be assumed to be relatively prime, this yields:L samples of the input signal because the remaining
samples are zero. This means that its implementation
complexity is L times smaller than the one of a usual
filtering operation.

• If the signal x(m) is band limited to [	�p, �p], the repeti-
H(e jω ) =




L, |ω| < min
{ωp

L
,

π

M

}

0, min
{

2π

L
− ωp

L
,

2π

M
− ωp

L

}
≤ |ω| ≤ π

(13)

tions of the spectrum will only appear in a neighborhood
of radius �p/L around the frequencies 2�k/L, k � 1, 2,

Inverse Operations. . ., L 	 1. Therefore, the constraints upon the filter can
be relaxed as in the decimation case, yielding (2) At this point, a natural question to ask is: are the decimation

by M (D M) and interpolation by M (I M) operators inverses of
each other? In other words, is D MI M � I MD M � identity?

It is easy to see that D MI M � identity, because the M 	 1
zeros between samples inserted by the interpolation operation
are removed by the decimation, thereby restoring the original
signal. On the other hand, I MD M is not an identity, since the

Hi(e
jω )=




L, |ω| ∈
[
0,

ωp

L

]

0, |ω| ∈
[

2πk − ωp

L
,

2πk + ωp

L

]
k = 1, 2, . . ., L − 1

(11)
decimation operation removes M 	 1 out of M samples of the
signal and the interpolation operation inserts M 	 1 zerosThe gain factor L in Eqs. (10) and (11) can be understood by
between samples. Their cascade is equivalent to replacingnoting that since we are maintaining one out of L samples of
M 	 1 out of M samples of the signal with zeros, which isthe signal, the average energy of the signal decreases by a
obviously not an identity.factor L2, and therefore the gain of the interpolating filter

However, if the decimation by M operation is preceded bymust be L.
a band-limiting filter from 	�/M to �/M [Eq. (6)], and the

Supposing L � 2, two common examples of interpolators
interpolation operation is followed by the same filter, then

are
I MD M becomes an identity (see Fig. 7). This can be easily
seen in the frequency domain. The band-limiting filter pre-

• Hi(z) � 1 � z	1—zero-order hold vents aliasing after decimation, and the spectrum of the deci-
mated signal will be in [	�, �]. After interpolation by M,• Hi(z) � ��(z � 2 � z	1)—linear interpolation
there will be images of the spectrum of the signal in the inter-
vals [�k/M, �(k � 1)/M], k � 	M, 	M � 1, . . . M 	 1. The

Rational Sampling-Rate Changes band-limiting filter will keep only the image in [	�/M, �/M],
which corresponds to the original signal.A rational sampling rate change by a factor L/M can be imple-

mented by cascading an interpolator by a factor of L with a
Filter Design Using Interpolationdecimator by a factor of M. This is exemplified in Fig. 6.

Since H(z) is an interpolation filter, its cutoff frequency A very interesting application of interpolation is in filter de-
must be less than �/L. However, since it is also a decimation sign. Since the ‘‘transition bandwidths’’ of the interpolated

signal are L times smaller than the ones of the original sig-filter, its cutoff frequency must be less than �/M. Therefore,
nal, this fact can be used to generate sharp cutoff filters withit must approximate the following frequency response:
low computational complexity. A very good example is given
by the frequency masking approach (3). The process is
sketched in Fig. (8), for an interpolation ratio of L � 4.H(e jω ) =

{
L, |ω| ≤ min

{π

L
,

π

M

}
0, otherwise

(12)

Likewise the case of decimation and interpolation, the
specifications of H(z) can be relaxed if the bandwidth of
the signal is smaller than �p. The relaxed specifications are
the result of cascading the specifications in Eq. (11), with the
specifications in Eq. (7) for �p replaced by �p/L. Since L and

F1(z)4H1(z)

X(z) Y(z)
+

+

+
–

F2(z)4z–D

+

+xc(n)
MH(z)

x(m)
L

Figure 8. Filter design and implementation using interpolation (fre-
quency masking approach).Figure 6. Sampling rate change by a factor of L/M.
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The idea is to generate a filter with a transition bandwidth
one-fourth that of the prototype filter H1(z). Initially, a proto-
type half-band filter H1(z) is designed with a given transition
bandwidth, four times larger than the one needed, and there-
fore, with implementation complexity much smaller than the
one of a direct design (1). From this prototype, its complemen-
tary filter H2(z) is generated by a simple delay and subtrac-
tion, that is, H2(z) � z	D 	 H1(z). Their frequency responses
are illustrated in Fig. 9(a). After interpolation, their re-
sponses are as shown in Fig. 9(b). The filters F1(z) and F2(z)
serve to select the parts of the interpolated spectrum of H1(z)
and H2(z) that will be used in composing the desired filter
response F(z) � Y(z)/X(z) [see Fig. 9(b)]. It is interesting to
note that F1(z) and F2(z), besides being interpolation filters,
are allowed to have large transition bandwidths, and there-

H0(z) x0(n)x(n)

x1(n)

xM – 1(n)

H1(z)

⋅
⋅
⋅

⋅⋅⋅

HM – 1(z)

fore have low implementation complexity (1). As can be seen
Figure 10. Decomposition of a digital signal into M frequency bands.from Fig. 9(c), one can generate large bandwidth sharp cutoff

filters with low implementation complexity.

FILTER BANKS

In a number of applications, it is necessary to split a digital
signal x(n) into several frequency bands, as in Fig. 10.

In this case, each of the bands xk(n), k � 0, . . ., M 	 1,
has at least the same number of samples as the original sig-
nal x(n). This implies that after the M-band decomposition,
the signal is represented with at least M times more samples
than the original one. However, there are many cases in
which this expansion on the number of samples is highly un-
desirable. One such case is signal transmission (4), where
more samples mean more bandwidth and consequently in-
creased transmission costs.

In the common case where the signal is uniformly split in
the frequency domain, that is, each of the frequency bands
xk(n) has the same bandwidth, a natural question to ask is:
Since the bandwidth of each band is M times smaller than
the one of the original signal, could the bands xk(n) be deci-
mated by a factor of M without destroying the original infor-
mation? If this were possible, then one could have a digital
signal split into several frequency bands without increasing
the overall number of samples. In other words, the question
is whether it is possible to recover exactly the original signal
from the decimated bands. This section examines several
ways to achieve this.

Decimation of a Band-Pass Signal and Its Inverse Operation

Decimation of a Band-Pass Signal. As was seen in the section
entitled ‘‘Decimation,’’ if the input signal x(m) was low pass
and band limited to [	�/M, �/M], the aliasing after decima-
tion by a factor of M could be avoided [see Eq. (5)]. However,
if a signal is split into M uniform frequency bands, at most
one band will have its spectrum confined to [	�/M, �/M]. In
fact, if a signal is split into M uniform real bands, one can
say that band xk(n) will be confined to [	�(k � 1)/M, 	�k/M]
� [�k/M, �(k � 1)/M] [1] (see Fig. 11).

This implies that band k, k � 0 is not confined to [	�/M,
�/M]. However, by examining Eq. (5) one can notice that

–π –
  2

π (  )ω

H1(  )ω

F(  )ω

H2(  )ω

H1(4  )ω

H2(4  ) F2(w)ω

(a)

2
π π

–π –
  2

π (  )ω
2
π π

–π –
  8

π (  )ω
8
π π

(b)

–π –
  8

π (  )ω
8
π π

(c)

–π (  )ωπ

F1(w)

aliasing is still avoided in this case. The only difference is
that, after decimation, the spectrum contained in [	�(k � 1)/Figure 9. (a) Prototype half-band filter H1(z) and its complementary
M, 	�k/M] is mapped to [0, �] if k is odd, and to [	�, 0] if kH2(z). (b) Frequency responses of H1(z) and H2(z) after interpolation
is even. Similarly, the spectrum contained in the intervalby a factor of 4. Notice the responses of F1(z) and F2(z). (c) Frequency

response of the equivalent filter F(z). [�k/M, �(k � 1)/M] is mapped to [	�, 0] if k is odd and to [0,
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�] if k is even (2). Then, the decimated band k will look as in
Figs. 12(a) and 12(b) for k odd and even, respectively.

Inverse Operation for Bandpass Signals. We have seen above
that a band-pass signal can be decimated by M without
aliasing, provided that its spectrum is confined to [	�(k � 1)/
M, 	�k/M] � [�k/M, �(k � 1)/M]. The next natural question

–(k + 1)
   M

π (k + 1)
  M

π–k
  M

π –
  M 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅
π k

  M
π

Xk(  )

X0(  )ω

ω(  )
  M

π

ω

is: Can the original band-pass signal be recovered from its
Figure 11. Uniform split of a signal into M bands. decimated version by an interpolation operation? The case of

low-pass signals was examined in the subsection entitled ‘‘In-
verse Operations.’’

The spectrum of a decimated band-pass signal is as in
Figs. 12(a) and 12(b) for k odd and even, respectively. After
interpolation by M, the spectrum for k odd will be as in Fig.
13.

We want to recover band k as in Fig. 11. From Fig. 13 it is
clearly seen that it suffices to keep the region of the spectrum
in [	�(k � 1)/M, 	�k/M] � [�k/M, �(k � 1)/M]. The case for
k even is entirely analogous. The process of decimating and
interpolating a band-pass signal is then very similar to the
case of a low-pass signal (see Fig. 7), with the difference that
H(z) is a band-pass filter with bandwidth [	�(k � 1)/M,
	�k/M] � [�k/M, �(k � 1)/M].

Critically Decimated M-Band Filter Banks. It is clear that if
a signal x(m) is decomposed into M non-overlapping band-
pass channels Bk, k � 0, . . ., and M 	 1 such that �M	1

k�0

Bk � [	�, �], then it can be recovered from these M channels
by just summing them up. However, as conjectured above, ex-
act recovery of the original signal might not be possible if

– (  )π ωπ

– (  )π ωπ

0

0

(a)

(b)

each channel is decimated by M. However, in the section enti-Figure 12. Spectrum of band k decimated by a factor of M: (a) k odd;
tled ‘‘Decimation of a Band-Pass Signal and Its Inverse Oper-(b) k even.
ation,’’ we examined a way to recover the band-pass channel
from its subsampled version. All that is needed are interpola-
tion operations followed by filters with passband
[	�(k � 1)/M, 	�k/M] � [�k/M, �(k � 1)/M] (see Fig. 13).
This process of decomposing a signal and restoring it from the
frequency bands is depicted in Fig. 14. We often refer to it as
an M-band filter bank. The frequency bands uk(n) are called
sub-bands. If the input signal can be recovered exactly from
its sub-bands, it is called an M-band perfect reconstruction

–(k + 1)
   M

0

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
π (k + 1)

   M
(  )π ω–k

  M
π –

  M
π

  M
π k

  M
π

filter bank. Figure 15 details a perfect reconstruction filter
Figure 13. Spectrum of band k after decimation and interpolation bank for the 2-band case.
by a factor of M for k odd. However, the filters required for the M-band perfect recon-

struction filter bank described above are not realizable [see
Eqs. (6) and (10)], that is, at best they can be only approxi-
mated (1). Therefore, in a first analysis, the original signal

Figure 14. M-band filter bank.

G0(z)
u0(m)

y(n)

⋅⋅⋅
⋅⋅⋅

x(n)

MMH0(z)

G1(z)
u1(m)

MMH1(z)

GM – 1(z)
uM – 1(m)

MMHM – 1(z)
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Figure 15. Two-band perfect reconstruc-
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tion filter bank using ideal filters.

would be only approximately recoverable from its decimated
frequency bands. This is well illustrated in Fig. 16, which de-
tails a 2-band filter bank using nonideal (or nonrealizable)
filters.

In Fig. 16, one can notice that since the filters H0(z) and
H1(z) are not ideal, the subbands sl(m) and sh(m) will have
aliasing. In other words, the signals xl(n) and xh(n) cannot be
respectively recovered from sl(m) and sh(m). Nevertheless, by
closely examining Fig. 16, one can see that since yl(n) and
yh(n) are added in order to obtain y(n), the aliased components
of yl(n) will be combined with the ones of yh(n). Therefore, at

H(z) =
+∞∑

k=−∞
h(k)z−k =

+∞∑
l=−∞

h(2l)z−2l + z−1
+∞∑

l=−∞
h(2l + 1)z−2l

=
+∞∑

l=−∞
h(Ml)z−Ml + z−1

+∞∑
l=−∞

h(Ml + 1)z−Ml

+ · · · + z−M+1
+∞∑

l=−∞
h(Ml + M − 1)z−Ml

=
M−1∑
j=0

z− jE j (z
M )

(14)

least in principle, there exists the possibility that these alia-
where Ej(z) � ���

l�	� h(Ml � j)z	l are called polyphase compo-sed components cancel out and y(n) is equal to x(n), that is,
nents of the filter H(z).the original signal can be recovered from its subbands. This

Equation 14 is a polyphase decomposition (5) of the filteris indeed the case, not only for the 2-band but also for the
H(z). In the polyphase decomposition we decompose the filtergeneral M-band case (5). In the remainder of this section we
H(z) into M filters, the first one with every sample of h(m)will examine methods of designing the analysis filters Hk(z)
whose indexes are multiples of M, the second one with everyand the synthesis filters Gk(z) so that perfect reconstruction
sample of h(m) whose indexes are one plus a multiple of M,can be achieved, or at least arbitrarily approximated.
and so on. Using a polyphase decomposition, filtering followed
by decimation can be represented as in Fig. 18(b). Applying

Perfect Reconstruction the noble identities to this figure, we arrive at Fig. 18(c) (5).
Figure 18(c) provides an interesting and useful interpreta-Noble Identities. The noble identities are depicted in Figs.

tion to the operation of filtering followed by decimation. Fig-17(a) and 17(b). They have to do with the commutation of the
ure 18(c) means that this operation is equivalent to filteringfiltering and decimation or interpolation operations. They are
the samples of x(m), whose indexes are equal to an integer kvery useful in analyzing multirate systems and filter banks.
plus a multiple of M with a filter composed by only the sam-Their proof can be found in Appendix B.
ples of h(m) whose indexes are equal to the same integer k
plus a multiple of M, for k � 0, . . . M 	 1.

Polyphase Decompositions. The Z transform H(z) of a filter The polyphase decompositions also provide useful insights
into the interpolation operation, but in these cases an alterna-h(n) can be written as

Figure 16. Two-band filter bank using
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realizable filters.
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M
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Figure 19. (a) Interpolation by a factor of M. (b) Interpolation using
polyphase decompositions and the noble identities.
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x(m)
M

y(n)
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H(zM)
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In Fig. 20(a), the model with decimators and delays is non-
Figure 17. Noble identities. (a) Decimation. (b) Interpolation. causal, having ‘‘advances’’ instead of delays. In causal sys-

tems, the causal model of Fig. 21 is preferred.

M-Band Filter Banks in Terms of the Filters’ Polyphase Compo-tive to Eq. (14) is usually employed. In it, we define Rj(z) �
nents. By substituting each of the filters Hk(z) and Gk(z) by itsEM	1	j(z), and the polyphase decomposition becomes:
polyphase components, the M-band filter bank of Fig. 14 be-
comes as in Fig. 22(a). The matrices E(z) and R(z) are formed
from the polyphase components of Hk(z) and Gk(z). Eij(z) is theH(z) =

M−1∑
j=0

z−(M−1− j)Rj (z
M) (15)

jth polyphase component of Hi(z) [see Eq. (14)] and Ruv(z) is
the uth polyphase component of Gv(z) [see Eq. (15)] (5). In Fig.

Based in Eq. (15), interpolation followed by filtering can be 22(b), the noble identities were applied.
represented in a manner analogous to the one in Fig. 18(c),
as depicted in Fig. 19(b) (5). Perfect Reconstruction M-Band Filter Banks. In Fig. 22(b), if

R(z)E(z) � I, where I is the identity matrix, the M-band filter
bank becomes as in Fig. 23.Commutator Models. The operations described in Figs.

18(c) and 19(b) can also be interpreted in terms of rotary By substituting the decimators and interpolators in Fig. 23
by the commutator models of Figs. 21 and 20(b), respectively,switches. These interpretations are referred to as commutator

models. In them, the decimators and delays are replaced by we arrive at the scheme depicted in Fig. 24, which is clearly
equivalent to a pure delay. Therefore, the conditionrotary switches as depicted in Figs. 20(a) and 20(b) (5).

Figure 18. (a) Decimation by a factor of
M. (b) Decimation using polyphase decom-
positions. (c) Decimation using polyphase
decompositions and the noble identities.
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Figure 20. Commutator models for (a)
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Decimation. (b) Interpolation.

R(z)E(z) � I guarantees perfect reconstruction for the M-band Clearly R(z)E(z) � I. The polyphase components Eij(z) of the
analysis filters Hi(z), and Ruv(z) of the synthesis filters Gv(z)filter bank (5). It should be noted that if R(z)E(z) is equal to
are then:the identity times a pure delay, perfect reconstruction still

holds. Therefore, the weaker condition R(z)E(z) � Z	�I is suf-
ficient for perfect reconstruction. E00(z) = 1

2
E01(z) = 1

2
E10(z) = 1 E11(z) = −1 (18)

Example. Two-Band Perfect Reconstruction Filter Bank R00(z) = 1 R01(z) = 1
2

R10(z) = 1 R11(z) = −1
2

(19)
Be M � 2, and

Then, from Eqs. (19) and (14) we can find the Hk(z), and
from Eqs. (18) and (15) we can find the Gk(z). They areE(z) =

�
1
2

1
2

1 −1

�
(16)

H0(z) = 1
2

(1 + z−1) (20)

H1(z) = 1 − z−1 (21)
R(z) =

�
1 1

2

1 − 1
2

�
(17)

Figure 21. Causal commutator model
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. . .

. . .
x0(m)

x1(m)

xM –1(m)

z–M + 1
y(n)x(n)

n = 0 n = 0

Figure 24. The commutator model of an M-band filter bank when
R(z)E(z) � I is equivalent to a pure delay.

What is very interesting in this case is that the filters need
not be selective at all in order for this kind of transmulti-
plexer to work (see Fig. 26).

Two-Band Perfect-Reconstruction Filter Banks. The two-band
case is as seen in Fig. 27.

Representing the filters H0(z), H1(z), G0(z), and G1(z) in
terms of their polyphase components [Eqs. (14) and (15)], we
have
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Figure 22. (a) M-band filter bank in terms of the polyphase compo- H0(z) = H00(z
2) + z−1H01(z2) (24)

nents of the filters. (b) Same as in (a) but after application of the H1(z) = H10(z
2) + z−1H11(z2) (25)

noble identities.

G0(z) = z−1G00(z
2) + G01(z

2) (26)

G1(z) = z−1G10(z
2) + G11(z

2) (27)G0(z) = 1 + z−1 (22)

The matrices E(z) and R(z) in Fig. 22(b) are thenG1(z) = −1
2

(1 − z−1) (23)

This is known as the Haar filter bank. The normalized fre-
quency responses of H0(z) and H1(z) are depicted in Fig. 25.

E(z) =
�

H00(z) H01(z)

H10(z) H11(z)

�
R(z) =

�
G00(z) G10(z)

G01(z) G11(z)

�
(28)

One can see that perfect reconstruction could be achieved
with filters that are far from being ideal. In other words, even If R(z)E(z) � I we have perfect reconstruction (Figs. 23 and
though each subband is highly aliased, one can still recover 24). In fact, from Fig. 24, we see that the output signal will
the original signal exactly at the output. be delayed by M 	 1 � 1 sample. In the general case, one can

have R(z)E(z) � Iz	�, which makes the output signal to be
Transmultiplexers. If two identical M-channel perfect recon- delayed by � � 1. Therefore, the 2-band filter bank will be

struction filter banks as in Fig. 14 are cascaded, we have that equivalent to a delay of � � 1 samples if
the signal corresponding to uk(m) in one filter bank is a de-
layed version of the corresponding signal in the other filter R(z) = z−�E−1(z) (29)
bank, for each k � 0, . . ., M 	 1. Therefore, with the same
filters as in Fig. 14, one can construct a perfect reconstruction
transmultiplexer as in Fig. 26, which can combine the M sig-
nals uk(m) into one single signal y(n) and then recover the
signals vk(m), which are just delayed versions of the uk(m) (5).

H0 H1

Freq.
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xM –1(m)
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z–1 y(n)
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M

M
Figure 25. Normalized frequency responses of the filters described
by Eqs. (20) and (21).Figure 23. M-band filter bank when R(z)E(z) � I.
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Figure 26. M-band transmultiplexer.

From Eq. (28), this implies that Equations (34–36) suggest a possible way to design 2-band
perfect reconstruction filter banks. The design procedure is as
follows (4):

1. Find a polynomial P(z) such that P(z) 	 P(	z) �
2z	2l	1.

2. Factorize P(z) into two factors, H0(z) and H1(	z). Care

�
G00(z) G10(z)

G01(z) G11(z)

�

= z−�

H00(z)H11(z) − H01(z)H10(z)

�
H11(z) −H01(z)

−H10(z) H00(z)

�
(30)

must be taken in order that H0(z) and H1(	z) be low-
Equation (30) is enough for IIR filter design, as long as pass.

stability constraints are taken into consideration. However, if 3. Find G0(z) and G1(z) using Eqs. (35) and (36).
we want the filters to be FIR, as is often the case, the term in

Some important points should be noted in this case:the denominator must be a pure delay. Therefore,

• If one wants the filter bank to be composed of linearH00(z)H11(z) − H01(z)H10(z) = cz−l (31)
phase filters, it suffices to find a linear phase product
filter P(z), and make linear phase factorizations of it.From Eqs. (24–27) we can express the polyphase compo-

nents in terms of the filters Hk(z) and Gk(z) as • If the delay � is zero, some of the filters will certainly be
noncausal: for l negative, either H0(z) or H1(z) must be
noncausal [see Eq. (34)]; for l positive, either G0(z) or
G1(z) must be noncausal. Therefore, a causal perfect re-
construction filter bank will always have nonzero delay.

• The magnitudes of the frequency responses, �G0(ej�)� and

H00(z2) = H0(z) + H0(−z)

2
H01(z

2) = H0(z) − H0(−z)

2z−1

H10(z2) = H1(z) + H1(−z)

2
H11(z

2) = H1(z) − H1(−z)

2z−1

(32)

�H1(ej�)�, are mirror images of each other around � � �/2
[Eq. (35)], the same happening to �H0(ej�)� and �G1(ej�)�
[Eq. (36)].

G00(z
2) = G0(z) − G0(−z)

2z−1
G01(z

2) = G0(z) + G0(−z)

2

G10(z
2) = G1(z) − G1(−z)

2z−1 G11(z
2) = G1(z) + G1(−z)

2

(33)

Design Examples. One product filter P(z) satisfying P(z) 	
P(	z) � 2z	2l	1 is

Substituting Eq. (32) into Eq. (31), we have that

H0(−z)H1(z) − H0(z)H1(−z) = 2cz−2l−1 (34)

Now, substituting Eq. (31) into Eq. (30), and computing

P(z) = 1
16

(−1 + 9z−2 + 16z−3 + 9z−4 − z−5)

= 1
16

(1 + z−1)4(−1 + 4z−1 − z−2)

(37)

the Gk(z) from Eqs. (26) and (27), we arrive at
We can see from its frequency response in Fig. 28(a) that

P(z) is a low-pass filter.
One possible factorization of P(z) results in the following

G0(z) = −z2(l−�)

c
H1(−z) (35)

filter bank [Eqs. (35) and (36)], a popular symmetric short
length filter (4):G1(z) = z2(l−�)

c
H0(−z) (36)

H0(z) = 1
8

(−1 + 2z−1 + 6z−2 + 2z−3 − z−4) (38)

G0(z) = 1
2

(1 + 2z−1 + z−2) (39)

H1(z) = 1
2

(1 − 2z−1 + z−2) (40)

G1(z) = 1
8

(1 + 2z−1 − 6z−2 + 2z−3 + z−4) (41)

2

2 2

2H0(z)
u0(m)

u1(m)
H1(z)

G0(z)

G1(z)

x(n) y(n)

Figure 27. Two-band filter bank. Their frequency responses are depicted in Fig. 28(b).
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Particular Cases of Filter Bank Design

In the section entitled ‘‘Perfect Reconstruction,’’ we examine
general conditions to design perfect reconstruction filter
banks. In the remainder of this section we will analyze some
specific filter bank types which have been used a great deal
in practice.

Quadrature Mirror Filter Banks. An early, proposed approach
to the design of 2-band filter banks is the so-called quadrature
mirror filter bank (QMF) (6), where the analysis high-pass
filter is designed by alternating the signs of the low-pass filter
impulse response samples, that is

H1(z) = H0(−z) (46)

where we are assuming the filters have real coefficients. For
this choice of the analysis filter bank, the magnitude response
of the high-pass filter (�H1(ej�)�) is the mirror image of the low-
pass filter magnitude response (�H0(ej�)�) with respect to the
quadrature frequency �/2. This is the origin of the QMF no-
menclature.

The analysis of the 2-band filter bank illustrated in Fig. 27
can be alternatively made as follows. The signals after the
analysis filter are described by

Xk(z) = Hk(z)X (z) (47)

for k � 0, 1. The decimated signals are

Uk(z) = 1
2

[Xk(z1/2) + Xk(−z1/2)] (48)

for k � 0, 1, whereas the signal after the interpolator are

Uk(z2) = 1
2

[Xk(z) + Xk(−z)]

= 1
2

[Hk(z)X (z) + Hk(−z)X (−z)]
(49)

Then, the reconstructed signal is represented as

2
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Figure 28. Frequency responses of (a) P(z) from Eq. (37); (b) H0 and
H1(z) from the factorizations in Eqs. (38) and (40); (c) H0 and H1(z)
from the factorizations in Eqs. (42) and (44).

Another possible factorization is as follows:

Y (z) = G0(z)U0(z
2) + G1(z)U1(z2)

= 1
2

[H0(z)G0(z) + H1(z)G1(z)]X (z)

+ 1
2

[H0(−z)G0(z) + H1(−z)G1(z)]X (−z)

= 1
2
�
X (z) X (−z)

�� H0(z) H1(z)

H0(−z) H1(−z)

��
G0(z)

G1(−z)

�
(50)

H0(z) = 1
4

(−1 + 3z−1 + 3z−2 − z−3) (42)

The last equality represents the so called modulation matri-
ces representation of a two-band filter bank. The aliasing ef-G0(z) = 1

4
(1 + 3z−1 + 3z−2 + z−3) (43)

fect is represented by the terms containing X(	z). A possible
solution to avoid aliasing is to choose the synthesis filters as
followsH1(z) = 1

4
(1 − 3z−1 + 3z−2 − z−3) (44)

G0(z) = H1(−z) (51)G1(z) = 1
4

(1 + 3z−1 − 3z−2 − z−3) (45)

G1(z) = −H0(−z) (52)
Their frequency responses are depicted in Fig. 28(c).
In what follows we will examine some particular cases of Note that this choice keeps the desired features of G0(z) and

G1(z) being low-pass and high-pass filters, respectively. Also,filter bank design that have been widely used in many classes
of applications. the alias is now canceled by the synthesis filters instead of
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being totally avoided by analysis filters, relieving the specifi-
cations of the latter filters (see the subsection entitled ‘‘Maxi-
mally Decimated M-Band Filter Banks’’).

The overall transfer function of the filter bank after the
alias component is eliminated is given by

H(z) = 1
2

[H0(z)G0(z) + H1(z)G1(z)]

= 1
2

[H0(z)H1(−z) − H1(z)H0(−z)]
(53)

where in the last equality we employed the alias elimination
constraint in Eq. (52).

In the original QMF design, the alias elimination condition
is combined with the alternating-sign choice for the high-pass
filter of Eq. (46). In this case the overall transfer function is
given by

H(z) = 1
2

[H2
0 (z) − H2

0 (−z)]

= 2z−1[E0(z2)E1(z2)]
(54)

Note that the QMF design approach of two-band filter banks
consists of designing the low-pass filter H0(z). The above equa-
tion also shows that perfect reconstruction is achievable only
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if the polyphase components of the low-pass filter (E0(z) and
E1(z)) are simple delays. This limits the selectivity of the gen- Figure 29. Johnston’s QMF design of order 15. (a) Magnitude re-
erated filters. As an alternative, we can choose H0(z) to be an sponses. (b) Overall amplitude response.
FIR linear-phase, low-pass filter, and eliminate any phase
distortion of the overall transfer function H(z), which in this
case also has linear phase. tice. Figures 29(a) and 29(b) depict the magnitude responses

In this case, the filter bank transfer function can be writ- of the analysis filters of order 15 of a QMF design, along with
ten as the amplitude response of the whole filter bank.

The nomenclature QMF filter banks is also used to denote
M-channel maximally decimated filter banks. For M-channel
QMF filter banks there are two design approaches that are
widely used, namely the perfect reconstruction QMF filter
banks and the pseudo-QMF filter banks. The perfect recon-

H(e jω ) = e− jωN

2
[|H0(e jω )|2 + |H0(e j(ω−π ) )|2]

= e− jωN

2
[|H0(e jω )|2 + |H1(e jω )|2]

(55)

struction QMF designs require the use of sophisticated non-
linear optimization programs because the objective functionfor N odd. For N even the sum becomes a subtraction, gener-
is a nonlinear function of the filter parameters. In particularating an undesirable zero at � � �/2.
for a large number of subbands, the number of parameters isThe design procedure consists of minimizing the following
usually large. On the other hand, the pseudo-QMF designsobjective function using an optimization algorithm
consist of designing a prototype filter, with the subfilters of
the analysis bank being obtained by the modulation of the
prototype. As a consequence, the pseudo-QMF filter has a
very efficient design procedure. However, only recently it was
discovered that the modulated filter banks could achieve per-
fect reconstruction. The pseudo-QMF filter banks are also

ξ = ξ1 + ξ2 = δ

∫ π

ωs

|H0(e jω )|2 dω

+ (1 − δ)

∫ π

0

∣∣∣∣H(e jω ) − e− jωN

2

∣∣∣∣
2

dω

(56)

known as cosine-modulated filter banks, since they are de-
signed by applying cosine modulation to a low-pass prototypewhere �s is the stopband edge, usually chosen a bit above
filter (see the section entitled ‘‘Cosine-Modulated Filter0.5�. The parameter � provides weighting between the stop-
Banks’’).band attenuation of the low-pass filter and the amplitude dis-

tortion of the filter bank, with 0 � � � 1. Although this objec-
tive function has local minima, a good starting point for the Conjugate Quadrature Filter Banks. In the QMF design, it

was noted that designing the high-pass filter from the low-coefficients of the low-pass filter and an adequate nonlinear
optimization algorithm lead to good results, that is, filter pass prototype by alternating the signs of its impulse re-

sponse is rather simple, but the possibility of getting perfectbanks with low amplitude distortions and good selectivity of
the filters. Usually, a simple window-based design provides a reconstruction is lost except for trivial designs. In a later

stage of development (see Ref. 7), it was discovered that bygood starting point for the low-pass filter. In any case, the
simplicity of the QMF design makes it widely used in prac- time-reversing the impulse response and alternating the
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signs of the low-pass filter, we can design perfect reconstruc- obtained when all zeros are either inside or on the unit
circle of the Z plane.tion filter banks with selective subfilters. The resulting filters

are called conjugate quadrature (CQF) filter banks.
Cosine-Modulated Filter Banks. The cosine-modulated filterTherefore, in the CQF design, we have that the analysis

banks are an attractive choice for the design and implementa-high-pass filter is given by:
tion of filter banks with a large number of sub-bands. Their
main features are:H1(z) = −z−NH0(−z−1) (57)

1. ease of design. It consists essentially of generating aBy verifying again that N must be odd, the filter bank trans-
low-pass prototype whose impulse response satisfiesfer function is given by
some constraints required to achieve perfect reconstruc-
tion;

2. low cost of implementation, measured in terms of multi-
plication count, since the resulting analysis and synthe-
sis filter banks rely on the discrete cosine transform

H(e
jω

) = e− jωN

2
[H0(e jω )H0(e− jω) + H0(−e− jω)H0(−e− jω)]

= e− jωN

2
[P(e jω ) + P(−e jω )] (58)

(DCT), which is amenable to fast implementation and
can share the prototype implementation cost with eachFrom Eqs. (35–36) we have that, in order to guarantee perfect
subfilter.reconstruction, the synthesis filters should be given by

In the cosine-modulated filter bank design, we begin byG0(z) = z−NH0(z−1) (59)
finding a linear phase prototype low-pass filter H(z) whose
passband edge is 2�/M � � and the stop-band edge is 2�/M �G1(z) = −H0(−z) (60)

�, 2� being the transition band. For convenience, we assume
Perfect reconstruction is equivalent to having the time- that the length of the prototype filter is an even multiple of

domain response of the filter bank equal to a delayed impulse, the number M of subbands, that is, N � 2LM. Although the
that is, actual length of the prototype can be arbitrary, this assump-

tion greatly simplifies our analysis.
h(n) = δ(n − �) (61) Given the prototype filter, we generate cosine-modulated

versions of it in order to obtain the analysis and synthesis
Now by examining H(e j�) in Eq. (58), one can easily infer that filter banks as follows:
the time-domain representation of P(z) satisfies

p(n)[1 + (−1)n] = 2δ[n − (� − N)] (62) hl (n) = 2h(n) cos
[
(2l + 1)

π

2M

�
n − N − 1

2

�
+ (−1)l π

4

]
(63)

Therefore, the design procedure consists of the following
steps:

gl (n) = 2h(n) cos
[
(2l + 1)

π

2M

�
n − N − 1

2

�
− (−1)l π

4

]
(64)

for 0 � n � N � 1 and 0 � l � M � 1. We should notice that• By noting that p(n) � 0 for odd n except for n � N, we
in Eq. (63), the term that multiplies 2h(n) represents the (l,can start by designing a half-band filter of order 2N, spe-
n) element of the DCT matrix, cl,n.cifically a filter whose average value of the passband and

The prototype filter can be represented on its polyphasestopband edges is equal to �/2 (that is �p � �s/2 � �/2)
decomposition as followsand has the same ripple (�hb) in the passband and stop-

band. In this case, the resulting half-band filter will have
zero samples on its impulse response for n odd. This half-
band filter can be designed by using a standard minimax

H(z) =
L−1∑
l=0

2M−1∑
j=0

h(2lM + j)z−(2lM+ j) =
2M−1∑

j=0

z− jE j (z
2M) (65)

approach for FIR filters. However, since the product fil-
where Ej(z) = �L�1

l�0 h(Ml � j)z�l are the polyphase componentster P(ej�) has to be positive, we should add (�hb/2) to the
of the filter H(z). With this formulation, the analysis filterfrequency response of the half-band filter in order to gen-
bank can be described aserate P(ej�). The stopband attenuation of the half-band

filter should be at least twice the desired stopband atten-
uation of the low-pass filter plus 6 decibels (5).

• If one wants the filter bank to be composed of linear
Hl (z) =

N−1∑
n=0

hl (n)z−n =
2LM−1∑

n=0

cl,nh(n)z−n (66)

phase filters, it suffices to find a linear phase product
filter P(z), and make linear phase factorizations of it (see
the subsection entitled ‘‘Two-Band Perfect-Reconstruc-

=
L−1∑
l=0

2M−1∑
j=0

cl,nh(2lM + j)z − (2lM + j) (67)

tion Filter Banks’’). For this case, we will obtain the triv-
The expression above can be further simplified if we exploreial linear phase filters described in Eqs. (20–23), that
the following property:show very little selectivity, as shown in Fig. 25.

• The usual approach is to decompose P(z) such that H0(z)
has either near linear phase or has minimum phase. In
order to obtain near linear phase, one can select the zeros
of H0(z) to be alternatively from inside and outside the
unit circle as frequency is increased. Minimum phase is

cos
{
(2l + 1)

π

2M

[
(n + 2kM) − N

2

]}

= (−1)k cos
{
(2l + 1)

π

2M

[
n − N

2

]}
(68)
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Figure 30. Cosine-modulated filter bank.

which leads to der to achieve perfect reconstruction, that is

(−1)kcl,n = cl,n+2kM (69)

With this relation and after a few manipulations, we can re-
write Eq. (67) as follows

Hl (z) =
2M−1∑

j=0

cl,nz−( j)Ej (−z2M) (70)

The above expression can be rewritten in a compact form as
follows

e(z) =

�
H0(z)

H1(z)

...
HM−1(z)

�

= (C1 C2)

�
E0(z2M)

z−1E1(z2M)

...
z−(2M−1)E2M−1(z

2M)

� (71)

where C1 and C2 are matrices whose elements are cl,n and
cl,n�M, respectively, for 0 � l, n � M � 1. The above equation
and Eqs. (132–134) suggest the structure of Fig. 30 for the
implementation of the cosine modulated filter bank. This
structure consists of the implementation of the polyphase

e(z) =

�
H0(z)

H1(z)

...
HM−1(z)

�

=
�
C1 C2

��
E0(−z−2M) 0

E1(−z−2M)

. . .

0 E2M−1(−z−2M)

�
�

d(z)

z−Md(z)

�
=


C1

�
E0(−z−2M) 0

E1(−z−2M)

. . .

0 EM−1(−z−2M)

�

+ z−MC2�
EM (−z−2M) 0

EM+1(−z−2M)

. . .

0 E2M−1(−z−2M)

�
 d(z)

(72)
components of the prototype filter in cascade with a DCT-
based matrix. = E(zM)d(z) (73)

Equation (71) can be expressed in a convenient form to de-
duce the constraint on the prototype impulse-response in or- where E(z) is the polyphase matrix as defined in Eq. (28).



264 TIME-VARYING FILTERS

In order to achieve perfect reconstruction in a filter bank cause they lead to linear-phase analysis filters and have fast
implementation. The LOT-based filter banks are members ofwith M channels, we should have E(z)R(z) � R(z)E(z) � Iz��.

However, it is well known (see Ref. 5), that the polyphase the family of lossless FIR perfect-reconstruction filter banks
with linear phase.matrix of the analysis filter bank can be designed to be para-

unitary, that is ET(z�1)E(z) � I, where I is an identity matrix
Lapped Transforms. Although there are a number of possi-of dimension M. In this case the synthesis filters can be easily

ble designs for linear-phase filter banks with perfect recon-obtained from the analysis filter bank using either Eq. (64),
struction, the LOT-based design is simple to derive and toor
implement. The term LOT applies to the cases where the
analysis filters have length 2M. Generalizations of the LOTR(z) = z−�E−1(z) = z−�ET (z−1) (74)
to longer analysis and synthesis filters (length LM) are avail-

The task remains of showing how the prototype filter can able. They are known as the extended lapped transforms
be constrained such that the polyphase matrix of the analysis (ELTs) proposed by Malvar (8) and the generalized LOT (Gen-
filter bank becomes paraunitary. The desired result is the fol- Lot) proposed in Ref. 9. The ELT is closely related to the co-
lowing: The polyphase matrix of the analysis filter bank becomes sine-modulated filter banks and does not produce linear-
paraunitary, for a real coefficient prototype filter, if and only if phase analysis filters. The GenLot is a good choice when long

analysis filters (with high selectivity) are required together
with linear phase.Ej (z

−1)Ej (z) + Ej+M(z−1)Ej+M(z) = 1
2M

(75)
In this subsection we will briefly discuss the LOT filter

bank, where the analysis and synthesis filter banks havefor 0 � j � M � 1. An outline of the proof of this result is
lengths 2M. The analysis filters are given bygiven in Appendix C. These M constraints can be reduced be-

cause the prototype filter has linear phase, that is, for M odd
0 � j � (M � 1)/2 and for M even 0 � j � M/2 � 1.

The necessary and sufficient conditions for perfect recon-
struction on cosine-modulated filter banks are equivalent to
having pairwise power complementary polyphase components

e(z) =

�
H0(z)

H1(z)

...
HM−1(z)

�
(76)

on the prototype filter. This property can be explored to fur-
ther reduce the computational complexity of these type of fil-
ter banks by implementing the power complementary pairs
with lattice realizations, which are structures specially suited
for this task (see Ref. 5).

=
�
C ′

1 C ′
2

�� 1
z−1

...
z−(2M−1)

�
(77)

Figure 31 depicts the frequency response of the analysis
filters each with length 35, for a bank with five subbands.

where C�1 and C�2 are matrices whose elements are c�l,n andThe filters banks discussed in this section have as main
c�l,n�M, respectively, for 0 � l, n � M � 1. The above equationdisadvantage the nonlinear phase of the analysis filters, an
can also be rewritten in a more convenient form asundesirable feature in applications such as image coding. The

lapped orthogonal transforms (LOTs) were originally pro-
posed to reduce the blocking effects caused by discontinuities
across block boundaries, specially for images (see Ref. 8). It
turns out that LOT-based filter banks are very attractive be-

e(z) =

�
H0(z)

H1(z)

...
HM−1(z)

�
(78)

= {C ′
1 + z−MC ′

2} d(z) (79)

= E(zM)d(z) (80)

where E(z) is the polyphase matrix of the analysis filter bank.
The perfect reconstruction condition with paraunitary

polyphase matrices is generated if

R(z) = z−�E−1(z) = z−�ET (z−1) (81)

The polyphase matrix of the analysis filter bank becomes
lossless for a real coefficient prototype filter if the following
conditions are satisfied:

C ′T
1 C ′

1 + C ′T
2 C ′

2 = I (82)

C ′T
1 C ′

2 = C ′T
2 C ′

1 = 0 (83)
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where the last relation guarantees that the overlapping tails
of the basis functions are orthogonal. The proof of this resultFigure 31. Frequency response of the analysis filters of a cosine-

modulated filter bank. is given elsewhere (8).
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Figure 32. Lapped orthogonal transform.

A simple construction for the matrices above based on the transforms. This formulation differs somewhat from the one
DCT is choosing in Eqs. (76–87). He starts with an orthogonal matrix based

on the DCT having the following form:

C′
1 = 1

2

�
Ce − Co

Ce − Co

�
(84)

L0 = 1
2

�
Ce − Co J(Ce − Co)

Ce − Co −J(Ce − Co)

�
(88)

C′
2 = 1

2

�
J(Ce − Co)

−J(Ce − Co)

�
(85)

This choice is not at random. First, it satisfies the conditions
of Eqs. (82) and (83). Also, the first half of the basis functionswhere the matrices Ce and Co are M/2 by M matrices con-
are symmetric whereas the second half is antisymmetric, thussisting of the even and odd DCT basis of length M, respec-
keeping the phase linear. The choice of DCT basis is the keytively. The reader can easily verify that the above choice sat-

isfies the relations (82) and (83). With this we can build an to generate a fast implementation algorithm. Starting with
initial LOT whose polyphase matrix is given by L0 we can generate a family of more selective analysis filters

in the following form

Llot = L1L0 (89)

where the matrix L1 should be orthogonal and also be amena-

E(z) = 1
2

�
Ce − Co z−1J(Ce − Co)

Ce − Co −z−1J(Ce − Co )

�

= 1
2

�
I z−1J
I −z−1J

��
I −I
I −I

��
Ce

Co

� (86)

ble to fast implementation. The most widely used form for
The last equality above suggests the structure of Fig. 32 for this matrix is
the implementation of the LOT filter bank. This structure
consists of the implementation of the polyphase components
of the prototype filter using a DCT-based matrix. It is also L1 =

�
I 0
0 L2

�
(90)

included in the figure an orthogonal matrix L1 whose choice
is discussed next. The inclusion of this matrix generalizes the
choice of the filter bank and keeps the perfect reconstruction where L2 is a square matrix of dimension M/2 consisting of a
conditions. The polyphase matrix is then given by set of plane rotations whose angles are submitted to optimiza-

tion aiming at maximizing the coding gain when using the
filter bank in subband coders, or improving the selectivity of
the analysis and synthesis filters (8).

E(z) = 1
2

L1

�
I z−1J
I −z−1J

��
I −I
I −I

��
Ce

Co

�
(87)

Figure 33 depicts the frequency response of the analysis
filters of an LOT with eight subbands.The basic construction of the LOT presented above is

Fast Algorithms. We now present a general construction ofequivalent to the one proposed by Malvar (see Ref. 8), who
utilizes a block transform formulation to generate lapped a fast algorithm for the LOT. Start by defining two matrices
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expansions, compressions, and translations of a single mother
function 	(t), called wavelet.

Its applications range from quantum physics to signal cod-
ing. It can be shown that for digital signals, the wavelet
transform is a special case of critically decimated filter banks
(11). In fact, its numerical implementation relies heavily on
that. In what follows, we will give a brief introduction to
wavelet transforms, emphasizing its relation to filter banks.
Indeed it is quite easy to find in the literature good material
analyzing wavelet transforms from different points of view.
For example, Ref. 10 is a very good book on the subject, writ-
ten by a mathematician. For people with a signal processing
background, Ref. 4 is very useful. The text in Ref. 12 is excel-
lent and very clear, at a more introductory level.

Hierarchical Filter Banks
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The cascade of 2-band filter banks can produce many differentFigure 33. Frequency response of the analysis filters of an LOT-
kinds of critically decimated decompositions. For example,based filter bank with eight sub-bands.
one can make a 2k-band uniform decomposition as depicted in
Fig. 34(a) for k � 3. Another common type of hierarchical de-
composition is the octave-band decomposition, in which onlyas follows
the low-pass band is further decomposed. In Fig. 34(b), one
can see a 3-stage octave-band decomposition. The synthesisC ′

3 = C ′
1C

′T
1 (91)

filter banks are not drawn because they are entirely anal-
ogous.C ′

4 = C ′
1 + C ′

2 (92)

By premultiplying both terms in Eq. (82) separately by C�1 and Octave-Band Filter Banks and Wavelet Transforms
by C�2, and using the results in Eq. (83), one can show that

Wavelets. Consider the octave-band analysis and synthesis
filter bank in Fig. 35, where the low-pass bands are recur-C ′

1 = C ′
3C

′
4 (93)

sively decomposed into low- and high-pass channels. The out-
C ′

2 = {I − C ′
3}C ′

4 (94) puts of the low-pass channels after an S � 1 stages decompo-
sition are xS,n and the outputs of the high-pass channels are

With the above relations it is straightforward to show that cS,n, S 
 1.
the polyphase components of the analysis filter can be written Applying the noble identities to Fig. 35 we arrive at Fig.
as 36. After S � 1 stages and before decimation by a factor of

2S�1, the Z transforms of the analysis low- and high-pass
channels, H(S)

low(z) and H(S)
high(z), respectively, areE(z) = {C ′

3 + z−1[I − C ′
3]}C ′

4 (95)

The previously discussed initial solution for the LOT ma-
trix can be analyzed in the light of this general formulation. H (S)

low(z) = XS(z)

X (z)
=

S∏
k=0

H0(z2k
) (98)

After a few manipulations the matrices of the polyphase de-
scription above corresponding to the LOT matrix of Eq. (88)
are given by H (S)

high(z) = CS(x)

X (z)
= H1(z2s

)H (S−1)

low (z) (99)

The synthesis channels are analogous to the analysis ones,
i.e.,

C ′
3 = 1

2

�
CeCT

e + CoCT
o CeCT

e + CoCT
o

CeCT
e + CoCT

o CeCT
e + CoCT

o

�
(96)

C ′
4 = 1

2

�
Ce − Co J(Ce − Co)

Ce − Co −J(Ce − Co )

�
(97)

G (S)

low(z) =
S∏

k=0

G0(z2k
) (100)

The substitution of these equations back in Eq. (95) clarifies G (S)

high(z) = G1(z2s
)H (S−1)

low (z) (101)
the relation between the algebraic formulations and the ac-
tual structure that implements the algorithm.

If H0(z) has enough zeros at z � �1, it can be shown (4,12)
that the envelope of the impulse response of the filters from
Eq. (99) has the same shape for S � 0, 1, 2, . . . In otherWAVELET TRANSFORMS
words, this envelope can be represented by expansions and
contractions of a single function 	(t) (see Fig. 37 for the analy-Wavelet transforms are a relatively recent development from

functional analysis and have attracted great attention in the sis filter bank).
In Fig. 37, the envelopes before and after the decimatorssignal processing community (10). The wavelet transform of a

function belonging to L 2���, the space of the square integ- are the same. However, it must be noted that after decimation
we cannot anymore refer to impulse responses in the usualrable functions, is its decomposition in a base composed by
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Figure 34. Hierarchical decompositions: (a)
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8-band uniform; (b) 3-stage octave-band.

way, because the decimation operation is not shift invariant an impulse response with half the width and double the sam-
(see the subsection entitled ‘‘Decimation’’). pling rate of the previous one. If we keep adding channels to

If �s is the sampling rate at the input of the system in Fig. both the right and the left indefinitely, we arrive at Fig. 39.
37, we have that this system has the same output as the one If a continuous-time signal is input to the system of Fig. 39
from Fig. 38, where the boxes mean continuous-time filters its output is referred to as the wavelet transform of x(t), and
with impulse responses equal to the envelopes of Fig. 37. Note the mother function 	(t) is called the wavelet, or, more spe-
that in this case, sampling with frequency �s/k is equivalent cifically, the analysis wavelet (13).
to subsampling by k. Assuming, without loss of generality, that �s � 2� (Ts � 1),

As stated above, the impulse responses of the continuous- it is straightforward to derive from Fig. 39 that the wavelet
time filters of Fig. 38 are expansions and contractions of a transform of a signal x(t) is (actually, in this formula, the im-
single mother function 	(t). In Fig. 38, the highest sampling pulse response of the filters are expansions and contractions
frequency was �s/2. Each channel added to the right had an of 	(�t))
impulse response with double the width and sampling rate
half of the previous one. There is no impediment in also add-
ing channels to the left of the channel with sampling fre-
quency �s/2. Each new channel added to the left would have

cm,n =
∫ ∞

−∞
2− m

2 ψ(2−mt − n)x(t) dt (102)
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Figure 37. The impulse response of the filters from Eq. (102) has
the same shape for every S.
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Figure 35. Octave-band analysis and synthesis filter bank.
a single parent function 	(t). Using a similar reasoning to the
one leading to Figs. 37–39, one can obtain the continuous-
time signal x(t) from the wavelet coefficients cm,n [Eq. (102)]The constant 2�m/2 is included because, if 	(t) has unity en-
(4):ergy, 2�m/2	(2�mt � n) has also unity energy, which can be as-

sumed without loss of generality.
From Figs. 36 and 39 and Eq. (99), one can see that the x(t) =

∞∑
m=−∞

∞∑
n=−∞

cm,n2− m
2 ψ(2−mt − n) (103)

wavelet 	(t) is band-pass, because each channel is a cascade
of several low-pass filters and a high-pass filter. When the

Equations (102) and (103) are the direct and inverse wave-wavelet is expanded by 2, its bandwidth is decreased by 2, as
let transforms of a continuous-time signal x(t). The waveletseen in Fig. 40. Therefore, the decomposition in Fig. 39 and
transform of the corresponding discrete-time signal x(n) isEq. (102) is, in the frequency domain, as in Fig. 41.
merely the octave-band decomposition in Figs. 35 and 36. AIn a similar manner, the envelopes of the impulse re-
natural question to ask at this point is: How are the continu-sponses of the equivalent synthesis filters after interpolation
ous-time signal x(t) and the discrete-time signal x(n) related[see Fig. 36 and Eq. (101)] are expansions and contractions of
if they generate the same wavelet coefficients? In addition,
how can the analysis and synthesis wavelets be derived from
the filter bank coefficients and vice and versa? In order to
answer these questions we need the concept of a scaling
function.
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Figure 36. Octave-band analysis and synthesis filter bank after the Figure 38. This system has the same outputs as the system from
Fig. 37.application of the noble identities.
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C0,n C1,n C2,n Figure 39. Wavelet transform of a continuous signal x(t).

Scaling Functions. By looking at Eqs. (102) and (103) we see where
that the values of m which are associated with the ‘‘width’’ of
the filters (Fig. 39) range from �� to ��. Since all signals
encountered in practice are somehow band limited, one can

xS,n =
∫ ∞

−∞
2− S

2 φ(2−St − n)x(t) dt (105)

assume generally that the output of the filters with impulse
Therefore, the wavelet transform is in practice given byresponses 	(2�mt) are zero for m � 0. Therefore, m now varies

Eq. (105). The summations in n will in general depend on thefrom 0 to ��. Looking at Figs. 35–37, we see that m � ��
supports (those regions where the functions are nonzero) ofmeans the low-pass channels will be indefinitely decomposed.
the signal, wavelets, and scaling functions (13).However, in practice, the number of stages of decomposition

Relation Between x(t) and x(n)<. Equation (105) shows howis fixed, and after S stages we have S band-pass channels and
to compute the coefficients of the low-pass channel after anone low-pass channel. Therefore, if we restrict the number of
S � 1 stages wavelet transform. In Fig. 35, xS,n are the out-stages of decomposition in Figs. 35–39 and add a low-pass
puts of a low-pass filter H0(z) after S � 1 stages. Since in Fig.channel, we can modify Eq. (103) such that m assumes only
36 the discrete-time signal x(n) can be regarded as the outputa finite number of values.
of a low-pass filter after ‘‘zero’’ stages, we can say that x(n)In order to do this, we notice that if H0(z) has enough zeros
would be equal to x�1,n. In other words, the equivalence of theat z � �1, the envelopes of the analysis low-pass channels
outputs of the octave-band filter bank of Fig. 35 and the wave-[Eq. (98)] are also expansions and contractions of a single
let transform given by Eqs. (102) and (103) occurs only if thefunction �(t), which is called analysis scaling function. Like-
digital signal input to the filter bank of Fig. 35 is equal towise, the envelopes of the synthesis low-pass channels are
x�1,n. From Eq. (105) this means:expansions and contractions of the synthesis scaling function

�(t) (4). Therefore, if we make an S � 1 stage decomposition,
Eq. (103) becomes: x(n) =

∫ ∞

−∞

√
2φ(2t − n)x(t) dt (106)

Equation (106) can be interpreted as x(n) being the signal
x(t) digitized with the band-limiting filter having as impulse
response �2�(�2t).

Therefore, a possible way to compute the wavelet trans-

x(t) =
∞∑

n=−∞
xS,n2− s

2 φ(2−St − n)

+
S−1∑
m=0

∞∑
n=−∞

cm,n2− m
2 ψ(2−mt − n)

(104)

form of a continuous-time signal x(t) is as depicted in Fig. 42.
x(t) is passed through a filter having as impulse response the
scaling function contracted by 2 in time and sampled with
Ts � 1 (�s � 2�), the resulting digital signal being input to
the octave-band filter bank in Fig. 35 with the filter coeffi-
cients given by Eqs. (107) and (109). At this point, it is impor-
tant to note that, strictly speaking, the wavelet transform is

(t)

(2  )

(   /2)

(  )ψ ω

ω
ω

ω

(  )ω

(  )ω

(  )ω

ψ

ψ
(t/2)ψ

(2t)ψ

0

ω0

ω0

/2

2
ω0/4 ω0 ω0/2 (  )ω

Figure 40. Expansions and contractions of the wavelet in the time
and frequency domains. Figure 41. Wavelet transform in the frequency domain.
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a wavelet transform is not necessarily defined for every two-
band perfect reconstruction filter bank. There are cases in
which the envelope of the impulse responses of the equivalent
filters of Eqs. (98)–(101) is not the same for every S (4).

The regularity of a wavelet or scaling function is roughly
the number of continuous derivatives that a wavelet has. It
is somehow a measure of the extent of convergence of the
products in Eqs. (111)–(114). In order to define regularity
more formally, we first need the following concept (15):

A function f (t) is Lipschitz of order �, 0 � � � 1 if, �x, h �

x(t) x(n)
Octave
band
filter
bank

c0,n

c1,n

c2,n

cs,n

as,n

2 φ (–2t) ωs = 2π .
.
.

�,
Figure 42. Practical way to compute the wavelet transform of a con- | f (x + h) − f (x)| ≤ chα (115)tinuous-time signal.

where c is a constant.
Using this definition, we have that the Hölder regularity ofonly defined for continuous-time signals. However, it is com-

a scaling function �(t) is r � N � �, where N is integer and 0mon practice to refer to the wavelet transform of a discrete-
� � � 1, if (15):time signal x(n) as the output of the filter bank in Fig. 35 (4).

Relation between the Wavelets and the Filter Coefficients. If
dNφ(t)

dtN
is Lipschitz of order α (116)

h0(n), h1(n), g0(n) and g1(n) are the impulse responses of the
analysis low- and high-pass filters and synthesis low- and It can be shown that, in order that a scaling function �(t)
high-pass filters, respectively, and �(t), �(t), 	(t) and 	(t) are be regular, H0(z) must have enough zeros at z � �1. In addi-
the analysis and synthesis scaling functions and analysis and tion, supposing that �(t) generated by H0(z) [Eq. (111)] has
synthesis wavelets, respectively, we have (11): regularity r, if we take

h0n =
∫ ∞

−∞
φ(t)

√
2φ(2t + n) dt (107) H ′

0(z) =
�

1 + z−1

2

�
H0(z)

then ��(t) generated by H�0(z) will have regularity r � 1 (15).g0n =
∫ ∞

−∞
φ(t)

√
2φ(2t − n) dt (108)

The regularity of a wavelet is the same as the regularity
of the corresponding scaling function (15).

It can be shown that the regularity of a wavelet imposesh1n =
∫ ∞

−∞
ψ(t)

√
2φ(2t + n) dt (109)

the following a priori constraints on the filter banks (4):
g1n =

∫ ∞

−∞
ψ(t)

√
2φ(2t − n) dt (110)

H0(1) = G0(1) =
√

2 (117)

H0(−1) = G0(−1) = 0 (118)And, considering their Fourier transforms (4),

Equation (117) implies that the filters H0(z), H1(z), G0(z)
and G1(z) have to be normalized in order to generate a wave-	(ω) =

∞∏
n=1

1√
2

H0(e− j w
2n ) (111)

let transform.
It is interesting to note that when deriving the wavelet

transform from the octave-band filter bank in the subsection	(ω) =
∞∏

n=1

1√
2

G0(e j w
2n ) (112)

‘‘Wavelets,’’ it was supposed that the low-pass filters had
enough zeros at z � �1. In fact, what was meant there was
that the wavelets should be regular.


(ω) = 1√
2

H1(e− j w
2 )

∞∏
n=2

1√
2

H0(e− j w
2n ) (113)

In Fig. 43 we can see examples of wavelets with different
regularities.
(ω) = 1√

2
G1(e j w

2 )

∞∏
n=2

1√
2

G0(e j w
2n ) (114)

Examples
When �(t) � �(t) and 	(t) � 	(t), the wavelet transform is

Every two-band perfect reconstruction filter bank with H0(z)
orthogonal (13). Otherwise, it is only biorthogonal (14). It is

having enough zeros at z � �1 has corresponding analysis
important to notice that, for the wavelet transform to be de-

and synthesis wavelets and scaling functions. For example,
fined, the corresponding filter bank must provide perfect re-

the filter bank described by Eqs. (20)–(23), normalized such
construction.

that Eq. (117) is satisfied, generates the so-called Haar wave-
let. It is the only orthogonal wavelet that has linear phase (4).

Regularity
The scaling function and wavelets are shown in Fig. 44.

The wavelets and scaling functions corresponding to theFrom Eqs. (111)–(114) one can see that the wavelets and scal-
ing functions are derived from the filter bank coefficients by filter bank described by Eqs. (38)–(41) are depicted in Fig. 45.

A good example of orthogonal wavelet is the Daubechie’sinfinite products. Therefore, in order for a wavelet to be de-
fined, these infinite products must converge. In other words, wavelet, whose filters have length 4. They are also an exam-
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–2 –1.5 –0.5 0.5 1.5–1 0 1 –1.5 –0.5 0.5 1.5–1 0 1

–4 –3 –2 –1 0 1 2 3 4 –5 –4 –3 –2 –1 0 1 2 3 4 5

(a)

(c)

(b)

(d)

Figure 43. Examples of wavelets with different regularities. (a) Regularity � �1. (b) Reg-
ularity � 0. (c) Regularity � 1. (d) Regularity � 2.

ple of CQF filter banks (see the section entitled ‘‘CQF filter It is important to notice that, unlike the biorthogonal
wavelets in Fig. 45, these orthogonal wavelets are nonsym-banks’’). The filters are (13)
metrical, and, therefore, do not have linear phase.

APPENDIX A

H0(z) = + 0.4829629 + 0.8365163z−1

+ 0.2241439z−2 − 0.1294095z−3
(119)

Here we prove Eq. (5), which gives the spectrum of the deci-
mated signal xd(n) as a function of the spectrum of the origi-

H1(z) = − 0.1294095 − 0.2241439z−1

+ 0.8365163z−2 − 0.4829629z−3
(120)

nal signal x(m). We have thatG0(z) = − 0.1294095 + 0.2241439z−1

+ 0.8365163z−2 + 0.4829629z−3
(121)

xd (n) = x(nM) (123)

Defining x�(m) asG1(z) = − 0.4829629 + 0.8365163z−1

− 0.2241439z−2 − 0.1294095z−3
(122)

Since the wavelet transform is orthogonal, the analysis x ′(m) =
{

x(m), m = nM, n ∈ Z
0, otherwise

(124)

and synthesis scaling functions and wavelets are the same.
The scaling function and wavelet are depicted in Fig. 46. x�(m) can also be expressed as:

x ′(m) = x(m)

∞∑
l=−∞

δ(m − lM) (125)

The Fourier transform of xd(n), Xd(ej�) is then:

Scaling function Wavelet

– 0.5 + 0.5 + 0.5– 0.5

Figure 44. Haar wavelet and scaling function.

Xd(e jω ) =
∞∑

n=−∞
xd(n)e− jωn =

∞∑
n=−∞

x(nM)e− jωn

=
∞∑

n=−∞
x ′(nM)e− jωn =

∞∑
θ=−∞

x ′(θM)e− j ω
M θ = X ′(e j ω

M )

(126)
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Figure 45. Wavelet transform generated by
the filter bank from Eqs. (38)–(40). (a) Analy-
sis scaling function. (b) Analysis wavelet. (c)
Synthesis scaling function. (d) Synthesis
wavelet.
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But from Eq. (125),

X (e jω ) = 1
2π

X (e jω ) ∗ F

{ ∞∑
l=−∞

δ(m − lM)

}

= 1
2π

X (e jω ) ∗ 2π

M

M−1∑
k=0

δ

�
ω − 2πk

M

�

= 1
M

M−1∑
k=0

X [e
�
ω− 2π k

M

�
]

(127)

Then, from Eq. (126),

Xd(e jω ) = X ′(e j ω
M ) = 1

M

M−1∑
k=0

X [e
�

ω−2π k
M

�
] (128)

which is the same as Eq. (5).

APPENDIX B

In order to prove the identity in Fig. 17(a), one has to first
rewrite Eq. (5), which gives the Fourier transform of the deci-
mated signal xd(n) as a function of the input signal x(m), in
terms of Z transforms:

Xd(z) = 1
M

M−1∑
k=0

X (z
1
M e− 2π k

M ) (129)

For the decimator followed by filter H(z), we have that:
(b)

(a)

–2 –1.5 –1 –0.5 0.50 1 1.5

–2 –1.5 –1 –0.5 0.50 1 1.5

Figure 46. Wavelet and scaling function corresponding to the filter
bank from Eqs. (122)–(125). (a) Scaling function. (b) Wavelet.

Y (z) = H(z)Xd(z) = 1
M

H(z)

M−1∑
k=0

X (z
1
M e− 2π k

M ) (130)
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For the filter H(zM) followed by the decimator, if U(z) �

X(z)H(zM) we have, from Eq. (129):

Y (z) = 1
M

M−1∑
k=0

U (z
1
M e− 2π k

M ) = 1
M

M−1∑
k=0

X (z
1
M e− 2π k

M )H(ze− 2π Mk
M )

= 1
M

M−1∑
k=0

X (z
1
M e− 2π k

M )H(z) (131)

This is the same as Eq. (130), and the identity is proved.
The identity in Fig. 17(b) is straightforward. H(z) followed

by an interpolator gives Y(z) � H(zM)X(zM), which is the ex-
pression for an interpolator followed by H(zM).

APPENDIX C

Before we prove the desired result, we need properties related
to the modulation matrix that are required in the proof. These
results are widely discussed in the literature, see for example
Ref. 5. The results are

�
E0(−z−2) 0

E1(−z−2)

. . .

0 EM−1(−z−2)

�

.J

�
E0(−z−2) 0

E1(−z−2)

. . .

0 EM−1(−z−2)

�

=

�
EM (−z−2) 0

EM+1(−z−2)

. . .

0 E2M−1(−z−2)

�

.J

�
EM (−z−2) 0

EM+1(−z−2)

. . .

0 E2M−1(−z−2)

�
(136)

This result allows some simplification in Eq. (135) after weCT
1 C1 = 2M[I + (−1)L−1J] (132)

replace Eqs. (132) and (133). The final result is
CT

2 C2 = 2M[I − (−1)L−1J] (133)

CT
1 C2 = CT

2 C1 = 0 (134)

where I is the identity matrix, J is the reverse identity ma-
trix, and 0 is a matrix with all elements equal to zero. All
these matrices are square with order M. With this result it
straightforward to show that

ET (z−1)E(z)

= 2M




�
E0(−z−2) 0

E1(−z−2)

. . .

0 EM−1(−z−2)

�

·

�
E0(−z−2) 0

E1(−z−2)

. . .

0 EM−1(−z−2)

�

+

�
EM (−z−2) 0

EM+1(−z−2)

. . .

0 E2M−1(−z−2)

�

·

�
EM (−z−2) 0

EM+1(−z−2)

. . .

0 E2M−1(−z−2)

�


(137)

If the matrix above is equal to the identity matrix, we achieve
perfect reconstruction. The result above is equivalent to re-
quire that polyphase components of the prototype filter are
pairwise power complementary which is exactly the result of
Eq. (75).

ET (z−1)E(z)

=

�
E0(−z−2) 0

E1(−z−2)

. . .

0 EM−1(−z−2)

�
C T

1

.C1

�
E0(−z−2) 0

E1(−z−2)

. . .

0 EM−1(−z−2)

�

+

�
EM(−z−2) 0

EM+1(−z−2)

. . .

0 E2M−1(−z−2)

�
CT

2

.C2

�
EM (−z−2) 0

EM+1(−z−2)

. . .

0 E2M−1(−z−2)

�
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