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THRESHOLD LOGIC

Threshold gates are based on the so-called majority or thresh-
old decision principle, which means that the output value de-
pends on whether the arithmetic sum of values of its inputs
exceeds a threshold. The threshold principle is general itself
and conventional simple logic gates, such as AND and OR
gates, are special cases of threshold gates. Thus, threshold
logic can treat conventional gates as well as threshold gates
in general, in a unified manner.

For many years logic circuit design based on threshold
gates has been considered an alternative to the traditional
logic gate design procedure. The power of the threshold-gate
design style lies in the intrinsic complex functions imple-
mented by such gates, which allow system realizations that
require fewer threshold gates or gate levels than a design
with standard logic gates. More recently, there has been in-
creasing interest in threshold logic because a number of theo-
retical results show that polynomial-size bounded level net-
works of threshold gates can implement functions that
require unbounded level networks of standard logic gates. In
particular, important functions such as multiple addition,
multiplication, division, or sorting can be implemented by
polynomial-size threshold circuits of small constant depth.
Threshold-gate networks have been found to be also useful in
modeling nerve networks and brain organization, and with
variable threshold (or weights) values they have been used
to model learning systems, adaptive systems, self-repairing
systems, pattern-recognition systems, etc. Also, the study of
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algorithms for the synthesis of threshold-gate networks is im-
portant in areas such as artificial neural networks and ma-
chine learning.

The article has three well differentiated sections. First,
a basic section deals with definitions, basic properties,
identification, and complementary metal-oxide-semiconductor
(CMOS) implementation of threshold gates. The second sec-
tion is dedicated to the synthesis of threshold gate networks,
from those for specific (and very well-studied) functions such
as symmetric or arithmetic functions to general procedures
for generic functions. Finally, the third section describes the
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plementation of median and stack filters. Figure 1. Separation of points of f by a hyperplane.

THRESHOLD AND MAJORITY GATES
between a majority function and a threshold function as far
as logical operations are concerned.A threshold gate (TG) is defined as a logic gate with n input

For example, the TG defined as [2, 1, 1; 3] represents thevariables, xi (i � 1, . . ., n), which can take values 0,1 and for
logical function f (x1, x2, x3) � x1x2 � x1x3. This switching func-which there is a set of n � 1 real numbers w1, w2, . . ., wn
tion can be equally represented as the majority gate [2, 1, 1;and T, called weights and threshold, respectively, such that
�2] provided that binary values �1 and �1 are correlated tothe output of the gate is
1 and 0, respectively.

However, it is important to note that nowadays the term
majority gate is specifically employed for a subset of the gates
defined by (1) or (2). They are 2n � 1 input gates that gener-
ate a binary 1 when more than n inputs are at binary 1. Be-
cause the definition of a threshold function is in terms of lin-

f =




1 for
n∑

i=1

wixi ≥ T

0 for
n∑

i=1

wixi < T
(1)

ear inequalities, threshold functions are often called linearly
A function represented by the output of a threshold gate, de- separable functions. From a geometrical point of view, a TG
noted by f (x1, x2, . . ., xn), is called a threshold function. The with n inputs can be seen as a hyperplane cutting the Boolean
set of weights and threshold can be denoted in a more com- n-cube. It evaluates a function f in the sense that f�1(1) lies
pact vector notation by [w1, w2, . . ., wn; T]. on one side of the plane and f�1(0) on the other. An example

A majority gate is defined as a logic gate with n input vari- is shown in Figure 1.
ables, �i (i � 1, . . ., n), and a constant input �0, which can Figure 2(a) shows the IEEE standard symbol for a TG with
take values �1, �1 and for which there is a set of real num- all input weights equal to 1 and threshold in T. This standard
bers w0, w1, w2, . . ., wn, called weights, such that the output does not have any symbol for a TG with weights other than
of the gate is: 1. It is clear that a symbol for that gate can be built by tying

together several inputs (a weight of wi for the input xi can be
obtained by connecting xi to wi gate inputs) but it can result
in a cumbersome symbol, so we will use the nonstandard sym-
bol of Fig. 2(b) for TGs with generic weights.

f =




+1 for
n∑

i=0

wiξi ≥ 0

−1 for
n∑

i=0

wiξi < 0
(2)

Basic Useful Properties of Threshold Functions

A function represented by the output of a majority gate, de- There are a number of properties of threshold functions that
noted by f (�1, �2, . . ., �n), is called a majority function. Analo- are useful from the point of view of the viability and efficiency
gously to the threshold function, a majority function can be of implementing system using TGs as building blocks. These
denoted in a vector notation as [w1, w2, . . ., wn; w0�0]. properties are not proven here but interested readers can find

Definitions for threshold and majority gates can be seen as a complete treatment in Refs. 1–3. The emphasis here is put
different. However, if �1 and �1 in a majority gate are corre- on their usefulness described previously. Some previous defi-
lated to 1 and 0 in a threshold gate, respectively, then a ma- nitions are required.
jority gate with a structure [w1, w2, . . ., wn; w0�0] and a
threshold gate [w1, w2, . . ., wn; T] have identical logical oper-
ations provided that the relation �i � 2xi � 1 is employed and
that T is given by

T = 1
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(a)As a corollary to this statement, it can be easily shown that
the class of all threshold functions is equivalent to the class Figure 2. Threshold gate symbols: (a) all weights equal to 1; (b)

weights not equal to 1.of all majority functions. Henceforth, we will not differentiate
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A function f (x1, x2, . . ., xn) is positive in xi if and only if
there is a sum-of-product expression for f in which xi does not
appear. It can be shown that if f is positive in xi, then what-
ever the xi residue of f , f xi

(x1, x2, . . ., xn) � f (x1, x2, . . ., xi �
0, . . ., xn), is 1, the xi residue of f , f xi

(x1, x2, . . ., xn) � f (x1,
x2, . . ., xi � 1, . . ., xn), is also 1. This is, f xi

(x1, x2, . . ., xn)
implies f xi

(x1, x2, . . ., xn), or f xi
� f xi

, where � is the symbol
for logical implication.

A function f (x1, x2, . . ., xn) is negative in xi if and only if
there is a sum-of-product expression for f in which xi does not
appear. It can also be shown that f is negative in xi if and
only if f xi

� f xi
.

A function is unate if and only if it is negative or positive
in each of its variables. Now let us enunciate some properties
of threshold functions:

Property 1. All threshold functions are unate. There are
many unate functions that are not threshold functions.

Property 2. The weights associated with variables in which
the function is positive (negative) are positive (nega-
tive).

Property 3. Any threshold function can be realized with

x1 x2 x3 h(x1, x2, x3)

0 0 0 1 0 � T
0 0 1 0 w3 
 T
0 1 0 0 w2 
 T
0 1 1 1 w2 � w3 � T
1 0 0 0 w1 
 T
1 0 1 1 w1 � w3 � T
1 1 0 1 w1 � w2 � T
1 1 1 0 w1 � w2 � w3 
 T

No solution
h is not a threshold function

x1 x2 x3 f (x1, x2, x3)

0 0 0 1 0 � T
0 0 1 0 w3 
 T
0 1 0 1 w2 � T
0 1 1 0 w2 � w3 
 T
1 0 0 1 w1 � T
1 0 1 1 w1 � w3 � T
1 1 0 1 w1 � w2 � T
1 1 1 1 w1 � w2 � w3 � T

w1 � 2, w2 � 1, w3 � �2, T � 0
f is a threshold function represented by the vector [2, 1, �2; 0]

integer weight and threshold values.
Figure 4. Examples of a straightforward procedure for threshold

Property 4. Any threshold function can be realized with function identification.
positive weight and threshold values if inversion is
available.

tively complementing the inputs it is possible to obtain a real-
The first two properties are important for the implementation ization by an element with only positive weights.
of a procedure for identifying threshold functions, an essential
task when a threshold-gate design style is adopted. Determin- Threshold-Function Identification
ing whether a function is unate or not is simpler than de-

A straightforward approach for solving the threshold-functiontermining whether it can be realized by a TG. So first the
identification problem consists in writing a set of inequalitiesfunction is checked for unateness. If it is not a unate function
from the truth table and solving it. If any solution exists, thethen it is not a threshold function either. Moreover, during
function is a threshold function with weights and thresholdthe checking for unateness, variables are classified into posi-
given by the solution. If there is no solution, the function istive or negative variables, which also contributes to the sim-
not a threshold function. In Fig. 4 a pair of examples of thisplification of the identification procedure applying the second
procedure is shown. This procedure is not very efficient be-property.
cause 2n inequalities are required for a function with n vari-The third and fourth properties are interesting from the
ables. The problem can be solved in a more practical mannerpoint of view of the physical implementation of the TGs. For
using some of the properties listed before. In order to describeexample, some of the currently available realizations that will
this alternative procedure some definitions are needed.be described later realize positive weights and thresholds.

There are 2n assignments of values to n Boolean variables.Property 4 guarantees that this does not limit the class of
An assignment A � (a1, a2, . . ., an) is smaller than or equalthreshold functions they can implement.
to an assignment B � (b1, b2, . . ., bn), denoted as A 
 B, ifFigure 3 shows the elementary relations of threshold func-
and only if ai 
 bi (i � 1, 2, . . ., n). Given a set of assign-tions. The meaning of the arrow labeled with 1 is that if f (x1,
ments �A1, A2, . . ., Ak�, those Ai for which there is no Aj suchx2, . . ., xn) is a threshold function defined by [w1, w2, . . .,
that Aj � Ai, 1 
 j 
 k, j � i, are the maximal assignments.wn; T], then its complement f (x1, x2, . . ., xn) is also a thresh-
The minimal assignments are those Ai for which there is noold function defined by [�w1, �w2, . . ., �wn; 1 � T]. If a
Aj such that Aj 
 Ai, 1 
 j 
 k, j � i. Given a function de-function can be realized as a threshold element, then by selec-
pending on n variables, each assignment for which the func-
tion evaluated to 1 is called a true assignment and each one
for which the function is 0 is called a false assignment.

The procedure has the following steps:

1. Determine whether the function f is unate. If not, the
function is not a threshold function and the procedure
finishes.

2. Convert the function f into another one g, positive in all

f(x)

f(x)

[–w;T – Σwi]

[w;T]

f(x)x

f

f

f(x)

f d(x)

[w; 1 – T + Σwi]

[–w;1 – T](1)

its variables by complementing every variable for
which f is negative.Figure 3. Elementary properties of threshold functions.
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x1 x2 x3 h(x1, x2, x3)

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

(1) Unateness checking not passed

x2 x3 h x
1

(x2, x3)

0 0 1
0 1 0
1 0 0
1 1 1

x2 x3 hx
1

(x2, x3)

0 0 0
0 1 1
1 0 1
1 1 0

As neither hx
i
� hx

i
nor hx

i
� hx

i
are verified, then h is not a threshold function

x1 x2 x3 f (x1, x2, x3)

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

(1) Unateness checking: f positive in x1 and x2; f negative in x3

(2) Function g is positive in all variables

x1 x2 x3 g (x1, x2, x3) � f(x1, x2, x3)

A0 0 0 0 0
A1 0 0 1 1
A2 0 1 0 0
A3 0 1 1 1
A4 1 0 0 1
A5 1 0 1 1
A6 1 1 0 1
A7 1 1 1 1

(3) Minimal true assignments �A1, A4�; maximal false assignments �A2�
(4) Reduced set of inequalities: w3 � T, w2 
 T, and w1 � T, solution for

g(x1, x2, x3): [2, 1, 2; 2]
(5) Solution for f (x1, x2, x3): [2, 1, �2; 0]

Figure 5. Examples of the second procedure for threshold function identification.

3. Find minimal true assignments and maximal false as- Static Threshold-Logic Gates. There are two notable contri-
butions to static threshold-gate CMOS implementations: onesignments for g.
is based on the ganged technique (4–7), and the other uses4. Generate inequalities for the assignments obtained in
the neuron MOS (�MOS) transistor principle (8–11). In Refs.step 3. If there is no solution to such a set of inequali-
5 to 7 the ganged technique proposed in Ref. 4 was employedties, the function g is not a threshold function and the
to build TGs with positive and integer weight and thresholdprocedure finishes.
values. Figure 6(a) shows the circuit structure for these

5. Derive weights and threshold vector for original func- ganged-based TGs. Each input xi drives a ratioed CMOS in-
tion f applying the properties just stated. For every verter; all inverter outputs are hard-wired, producing a non-
variable xi that is complemented in the original func- linear voltage divider that drives a restoring inverter or chain
tion, its associated weight is changed to �wi, and T to of inverters whose purpose is to quantize the nonbinary sig-
T �wi.

Figure 5 illustrates the procedure for functions h and f from
Fig. 4.

CMOS Threshold-Gate Implementations

The effectiveness of threshold logic as an alternative for mod-
ern very-large-scale integrated circuit (VLSI) design is deter-
mined by the availability, cost, and capabilities of the basic
building blocks. In this sense, several interesting circuit con-
cepts have been explored recently for developing standard
CMOS-compatible threshold gates. The most promising are

[Wp/Lp, Wn/Ln]b
x1

x2
x3

VC

V

xn

[Wp/Lp, Wn/Ln]i

...

NMOS

CMOS inverters

PMOS

ff
f

ν

(a) (b)presented in this section. In order to denote their context of
application, we distinguish between static and dynamic real- Figure 6. Static threshold logic gates: (a) ganged threshold gate; (b)

�MOS threshold gate.izations.
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nal at the ganged node (�f). The design process for these gates
involves sizing only two different inverters. Assuming the
same length for all transistors, the transistor widths [Wp,
Wn]i,b of each inverter are chosen taking into account the wi

and T values to be implemented. Weight values other than 1
can be realized by simply connecting in parallel the number
of basic inverters (inverter with wi � 1) indicated by the
weight value; on the other hand, the value of T is determined
by the value of the output inverter threshold voltage. Due to
the sensitivity of this voltage and �f to process variations, the
ganged-based TG has a limited number of inputs (fan-in). A
good study of this limitation can be found in Ref. 12. However,
the main drawback of this TG is the relative high power con-
sumption.

Other interesting static TGs are based on the �MOS tran-
sistor. This transistor has a buried floating polysilicon gate
and a number of input polysilicon gates that couple capaci-
tively to the floating gate. The voltage of the floating gate
becomes a weighted sum of the voltages in the input gates,
and hence it is this sum that controls the current in the tran-
sistor channel. The simplest �MOS-based threshold gate is
the complementary inverter using both p- and n-type �MOS
devices. A schematic of this TG is shown in Fig. 6(b). There
is a floating gate, which is common to both the p- and n-type
(PMOS and NMOS) transistors, and a number of input gates
corresponding to the threshold gate inputs, x1, x2, . . ., xn,
plus some extra inputs (indicated by VC in the figure) for
threshold adjustment. Weights for every input are propor-
tional to the ratio between the corresponding input capaci-
tance Ci between the floating gate and each of the input gates,
and the total capacitance, including the transistor channel ca-
pacitance between the floating gate and the substrate, Cchan.
Without using the extra control inputs, the voltage in the
floating gate is given by
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CiVxi

�/
Ctot

Figure 7. Dynamic threshold gates: (a) latch-type threshold gate; (b)
alternative latch-type threshold gate; (c) capacitive-type threshold

where gate.

The first latch-type threshold gate was proposed in Ref. 13Ctot = Cchan +
n∑

i=1

Ci

and its schematic is shown in Fig. 7(a). Its main part consists
in a CMOS current-controlled latch (transistor pairs M2/M5

As VF becomes higher than the inverter threshold voltage, the and M7/M10) providing the gate’s output and its complement,
output switches to logic 0. It is obvious that this �MOS and two input arrays (M41

to M4n
and M91

to M9n
) constituted

threshold gate is simpler than the ganged threshold gate, by an equal number of parallel transistors whose gates are
however, its sensitivity to parasitic charges in the floating inputs of the TG and their sizes are determined by the corre-
gate and to process variations could limit its effective fan-in sponding weight and threshold values. Transistor pairs

M1/M3 and M6/M8 specify the precharge or evaluation situa-unless adequate control is provided (15). In particular, ultra-
tion, and the two extra transistors M4n�1

and M9n�1
ensure cor-violet light (UV) erasure is recommended for initialization.

rect operation when the weighted sum of inputs is equal to
the threshold value. Precharging occurs when the reset sig-

Dynamic Threshold-Logic Gates. Two different principles nal �R is at logic 0. Transistors M1 and M6 are on, transistors
have been exploited in dynamic TG implementations: the bi- M3 and M8 are off, and both OUT and OUT are at logic 1.
stable operation of simple CMOS latches, and the capacitive Evaluation begins when �R is at a logic 1, transistors M1 and
synapse used in artificial neuron architectures. In both cases, M6 are turned off, M3 and M8 are turned on, and nodes OUT
compact gates with low power consumption, high speed, and and OUT begin to be discharged. In this situation, depending

on the logic values at the inputs of the two transistor arrays,high fan-in have been developed (13–15).
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one of the paths will sink more current than the other, mak- The principle of capacitive synapse has been exploited in
the capacitive threshold-logic gate proposed in Ref. 15. Itsing the decrease of its corresponding output node voltage

faster (OUT or OUT). When the output node of the path with conceptual circuit schematic is shown in Fig. 7(c) for an n-
input gate. It consists of a row of capacitors Ci, i � 1, 2, . . .,the highest current value is below the threshold voltage of

transistors M5 or M10, one of them is turned off, fixing the n, with capacitances proportional to the corresponding input
weight, Ci � wiCu, and a chain of inverters that functions aslatch situation completely. Supply current only flows during

transitions and, consequently this TG does not consume a comparator to generate the output. This TG operates with
two nonoverlapping clock phases �R and �E. During the resetstatic power.

Input terminal connections and input transistor sizes in phase, �R is high and the row voltage VR is reset to the first
inverter threshold voltage while the capacitor bottom platesthis TG must be established according to the threshold value

T to be implemented, and to the fact that when all transis- are precharged to a reference voltage Vref. Evaluation begins
when �E is at a logic 1, setting gate inputs to the capacitortors M4i

and M9i
(i � 1, 2, . . ., n) have the same dimension

and the same voltage at their gate terminal, then Iin 	 Iref due bottom plates. As a result, the change of voltage in the capaci-
tor top plates is given byto M4n�1

. If a programmable TG is required, the best design
choice is to use one of the input arrays for the TG inputs and
the other array for control inputs, which must be put to logic
1 or 0 depending on the value of T. For illustration, the opera- �VR =

�
n∑

i=1

Ci(Vi − Vref)

�/
Ctot

tion of a 20-input threshold gate [1, 1, . . ., 1; T] with pro-
grammable threshold T is shown in Fig. 8. The outputs de-

where Ctot is the row total capacitance including parasitics.picted correspond to different values of T: (a) T � 1, this is a
Choosing adequate definitions for Vref and Ci as functions of20-input OR-gate; (b) T � 10; and (c) T � 20, a 20-input AND-
the input weight and threshold values, this above relation-gate. The results shown correspond to the following sequence
ship can be expressed asof logic input patterns: (x1, x2, . . ., x19, x20) � �(0, 0, . . ., 0,

0), (0, 0, . . ., 0, 1), (0, 0, . . ., 1, 1), . . ., (1, 1, . . ., 1, 1)�.
The i-th input combination is evaluated in the i-th reset
pulse. So, we have the weighted sum of the inputs in the x

�VR =
�

n∑
i=1

(wixi − T )CuVDD

�/
Ctot

scales.
The circuit in Fig. 7(b) is an alternative realization pro- which together with the comparison function of the chain of

posed in Ref. 14 for dynamic latch-type threshold gates. In inverters give the TG operation:
this gate, the input transistor arrays (Mxi

and Myi
, i � 0, 1,

. . ., n) are connected directly to the latch’s output nodes, and
precharging occurs when �1 and �2 are at logic 0, putting Vo = VDD if

n∑
i=1

wixi ≥ T

nodes D, OUT, and OUT at logic 1. For the evaluation phase
both �1 and �2 are at logic 1 but �2 must return to the low

andlevel before �1 in order to allow latch switching. The perfor-
mance of this TG is similar to that in Ref. 13 but it needs
more transistors and two different control signals that have
to be obtained from a general clock.

Vo = 0 if
n∑

i=1

wixi < T

Figure 8. Simulation results for a pro-
gammable threshold gate implemented by
the circuit of Fig. 7(a). The letter n stands
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Experimental results from different capacitive threshold-logic related to the speed and to the required amount of hardware,
gates fabricated in a standard CMOS technology (15) have respectively. For example, it is well known that any function
shown the proper functionality of this type of threshold gates can be implemented with a depth-2 logic network of AND and
and its large fan-in capability. OR gates (depth-3 network of NOT–AND–OR gates if input

variables are in single rail). However, it is also well known
that there are common functions for which the number of re-THRESHOLD-GATE NETWORKS
quired gates in such implementations increases exponentially
with the number of variables, and so they are not realized inThere are functions that cannot be implemented by a single
two levels. From a different point of view, there are functionsthreshold element. However, as TGs realize more complex
that cannot be implemented by a polynomial-sized networkfunctions than the conventional gates, this section studies the
with constant depth (independent of the number of variables),capabilities of interconnecting TGs so that the potential ad-
resulting in too large a computation time for large n.vantages of realizing digital systems using TGs as building

It follows from the previous arguments that a more realis-blocks are pointed out. First, the question of whether any
tic problem is determining the existence of a constant-depthBoolean function can be realized interconnecting TGs is ad-
network with size bounded by a polynomial in n, O(n), for adressed. Then the computation power of such a network is an-
Boolean function of n variables. There are a number of func-alyzed.
tions for which the answer to this question is negative forFigure 9 shows the model for a feed-forward network of
logic networks and positive for threshold networks.functional elements. It is the most general type of network

Consider, for example, the parity function, f parity(x1, x2,without feedback because inputs can be connected to any of
. . ., xn), which is 1 if and only if an even number of its inputsthe functional blocks in the network, and the only restriction
are logical 1. No logic circuit with a polynomial (in n) numberaffecting the functional blocks to which the output of one of
of unbounded fan-in AND–OR–NOT gates can compute itthem can be connected is that loops are not allowed. The
with constant depth (16). In Fig. 10(a) a depth-2 logic networkdepth of a network is the maximum number of functional ele-
implementing parity for n � 4 is depicted. For arbitrary n, itsments in a path from any input to any output. The size of a
size is 2n�1 � 1. A depth-2 threshold network for f parity of fournetwork is defined as the total number of functional elements
variables is shown in Fig. 10(b). For an arbitrary n only n �it contains. In the following a feed-forward network in which
1 gates are required.the functional elements are conventional digital gates (AND,

The parity function belongs to the more general class ofOR, NOT) will be referenced as a logic circuit or logic net-
symmetric functions that can be efficiently implemented bywork. It is well known that any Boolean function can be im-
threshold networks and that have received much attention.plemented by a logic circuit, and so, any Boolean function can
Symmetric functions are the subject of the next subsection.also be implemented by a feedforward network of TGs as

AND, OR and NOT gates are TGs. However, from a practical
point of view, these results are not enough. The existence of Threshold Networks for Symmetric Functions
a determinate network implementing a given function can be

Symmetric functions are not particularly easy to realize usingirrelevant. This is illustrated by a network that computes the
traditional logic gates. However, an important feature offunction too slowly to fulfill speed specifications or a network
threshold logic gates is their capability for obtaining imple-with too large a hardware cost. That is, the depth and the

size of the network are critical because these parameters are mentations of symmetric functions by simple networks.

Figure 9. Feed-forward network of func-
tional elements (FU). The letter c denotes
where connections can exist.
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Figure 12. Minnick solution to the threshold-gate network imple-
mentation of a symmetric function.

weighted sum of these inputs is �1, and the output gate will
give an output of 1. When k�i � 1 
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2i gates with output 1, but the weighted sum of these inputs
to the second TG is 0 and, consequently the output of thatFigure 10. Networks realizing f parity for n� 4: (a) logic network; (b)
output gate is 0.threshold network. Symbol & denotes AND gates and symbol � de-

notes OR gates. Minnick (in Ref. 1) authored a solution for which the input
variables are available at gates of any level. A symmetric
function of n variables can be implemented by a network that
has at most 1 � n/2 TGs in at most two levels. Here xClassically, two main solutions have been considered de-
denotes the integral part of x. To show that, let us supposepending on the availability of the input variables of the net-
that the symmetric function is 1 if and only if the number ofwork. Muroga (1) proposed a solution suitable when the input
1’s in the n variables, given by k, is in one of the ranges k1 
variables are available only at the first-level gates and the
k 
 k�1, k2 
 k 
 k�2, . . . ks 
 k 
 k�s. Figure 12 shows thenetwork has feed-next interconnections. Then any symmetric
threshold-gate network used to implement the symmetricfunction of n variables can be implemented by a network that
function. If the number of 1’s in the input variables k is ki 
has at most n � 1 threshold gates in two levels. To show that,
k 
 k�i, 1 
 i 
 s, then all the TGs with threshold equal to orlet us suppose that the symmetric function is 1 if and only if
smaller than k have an output of 1. As k�i�1 � 1 
 ki 
 k 
the number of 1’s in the n variables, given by k, is in one of
k�i, then there are i � 1 TGs giving an output of 1, which addthe ranges k1 
 k 
 k�1, k2 
 k 
 k�2, . . ., ks 
 k 
 k�s. Figure

11 shows the threshold-gate network used to implement this
function. If the number of 1’s in the input variables, k, is ki 

k 
 k�i, 1 
 i 
 s, then all the TGs whose thresholds are equal

−
i−1∑
j=1

wj = −(ki − k1)

to or smaller than k have outputs of 1, and the other TGs
have outputs of 0. Then, there are 2i � 1 gates with output to the weighted sum of the output threshold gate. The
1. Among them, i gates are connected to the output gate with weighted sum of that gate will be �(ki � k1) � k, which, when
weight �1, and i � 1 gates with weight �1. Thus the compared to k1, results in a number that is equal to or greater

than zero, and in consequence, the output of the output
threshold gate is 1. The case for an output of 0 can be shown
in a similar manner. Also an equivalent realization can be
found by expressing the outputs of the first-level threshold
gates as inverted instead of weighted negatively.

An interesting solution for the modulo-2 sum (parity) of n
variables was proposed by Kautz in (1). It is realizable with
at most s � 1 � log2n threshold gates. The feed-forward
network proposed is shown in Fig. 13(a), and the synthesis
problem can be easily extended to solve a general symmetric
function. Let us consider the general feed-forward solution
shown in Fig. 13(a) specific to s � 4. Figure 13(b) shows the
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output values of the gates of this network in terms of the
number of 1’s in the input variables. It can be easily seen thatFigure 11. Muroga solution to the threshold-gate network imple-

mentation of a symmetric function. the number of 1’s in the input variables at which transitions
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Figure 13. Kautz solution to the threshold-
gate network implementation of a symmec-
tric function: (a) general structure, (b) transi-
tions of output values for s � 4.
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from the value 0 to 1 occur in gk defines the oppositely direct two n-bit binary numbers x � xnxn�1 � � � x1 and y � ynyn�1

transitions from 1 to 0 in gk�1, gk�2, . . ., g0. Also, it is impor- � � � y1 and produces output equal to 1 if and only if x � y.
tant to consider that although T3, T2, T2 � w32, T1, T1 � w21, Figure 14(a) shows a TG implementing the function. The
T1 � w31, T0, T0 � w10, T0 � w20, T0 � w30 for g3, g2, g1, and g0 depth-2 network in Fig. 14(b) would be preferable for moder-
are independent and arbitrarily determined, some of the rela- ately large values of n because of the smaller weights it re-
tions for g1 and g0 (T1 � w31 � w21, T0 � w20 � w10, T0 � quires. A subclass of the threshold gates, those for which the
w30 � w10, T0 � w30 � w20, and T0 � w30 � w20 � w10) are weights are polynomially bounded by the number of input
consequently determinated. Thus, the synthesis of a general variables, is more practical. Restricting the allowed weights
symmetric function can become very complex because of this does not limit too much the computational power of the net-
mutual dependence of parameters. work. It has been shown (18,19) that any depth-d polynomial-

Solutions proposed by Muroga and Minnick (1) implement size threshold circuit can be implemented by a depth-(d � 1)
symmetric functions in an O(n) depth-2 threshold network. polynomial-size network of the restricted threshold elements.
Reducing the size of the network significantly from O(n) re- Interesting results have been derived for functions such as
quires an increasing of the network depth beyond 2. Recently multiple addition, multiplication, division, or sorting, which
it has been shown (17) that any symmetric function of n vari- have been shown to be computable by small constant-depth
ables can be implemented with a depth-3 threshold network polynomial-size threshold networks. Different proposed im-
with at most 2�n � O(1) threshold gates, that is, an increase plementations exhibit different depth-size trade-offs. Some
of 1 in the depth allows an implementation with a gate count results concerning optimal depth threshold networks are
reduced by a factor of O(�n). given in Ref. 20. It is demonstrated that multiplication, divi-

sion, and powering can be computed by depth-3 polynomial-
Threshold Networks for Arithmetic Functions size threshold circuits with polynomially bounded weights.

The efficient threshold networks derived for these func-Usually when implementing arithmeticlike functions by
tions rely in many cases on the underlying new computationthreshold networks, the required weights can grow exponen-
algorithms. One example is the block save addition (BSA)tially fast with the number of variables. This is undesirable
principle for multiple addition. Siu and Bruck (21) showedbecause of the requirements of high accuracy it places on the
that the sum of n numbers can be reduced to the sum of twoactual implementations. An example is the comparison func-

tion f comp(x1, x2, . . ., xn, y1, y2, . . ., yn), which takes as input numbers by using the BSA principle. The key point of this
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technique is the separation of the n numbers in columns of logic gates, many basic functions can be computed much
log n bits that are separately added. Each sum is at most faster and/or much cheaper using TGs than using logic gates.
2log n bits long, and hence it overlaps only with the sum of This is one of the motivations for investigating devices able
the next column. Here x denotes the smallest integer equal to implement TGs. However, the usefulness of threshold logic
to or greater than x. So a number is obtained by concatenat- as a design alternative, in general, is determined not only by
ing the partial sums from the columns placed in even posi- the availability, cost, and capabilities of the basic building
tions and another number with the concatenation of the sum blocks but also by the existence of synthesis procedures. The
from the odd columns. problem to be solved at this level can be stated as given a

In general, the realizations introduced so far cannot be di- combinational logic function, described in the functional do-
rectly applied if the fan-in of the TGs is constrained to be not main (by means of truth tables, logic expressions, etc.), derive
more than m, m � n, where n stands for the number of input a network of the available building blocks realizing f that is
variables. Thus another area receiving attention is that of de- optimal according to some design criteria.
riving depth-size trade-off for threshold networks implement- Many logic synthesis algorithms exist for targeting conven-
ing arithmeticlike functions with a simultaneous bound on tional logic gates but few have been developed for TGs, al-
the maximum allowable fan-in. Let us resort again to the par- though the problem was addressed as early as the beginning
ity function in order to illustrate this statement. In Ref. 22 it of the 1970s by Muroga. The procedure described by this au-
is shown that the parity function of n inputs can be computed thor (1) transforms the problem of deriving the smallest (low-
using a threshold circuit of size O(nm�1/(2d

�1)), depth O(d log est gate count) feed-forward network realizing a given func-
n/log m), and fan-in bounded by m for every integer d 	 0. tion in a sequence of mixed integer linear programming

(MILP) problems. The problem of determining whether a
Threshold Network Synthesis given function f can be realized by a feed-forward threshold

network with M gates, and if it can, determining the weightsThe significance of the preceding results is that assuming
TGs can be built with a cost and delay comparable to that of and the threshold for each of the M elements can be formu-

Figure 14. Networks realizing f comparison:
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lated as a MILP problem (the cost function is usually the total But the smaller this window width, the poorer the filter noise-
reduction capability (25).weight sum of the network). Starting with M � 1 and incre-

menting M until a feasible MILP problem is encountered, one This contradiction can be solved by incorporating in the
filter output the index order of the sequence of elements. It isderives the implementation with less gates. Clearly, exact ap-

proaches are practical only for small instances of the synthe- typically done by weighting filter input values according to
their relative sequence index order. This idea leads in a natu-sis problem. The main limitation seems to be the number of

variables that the function being synthesized depends on, be- ral way to the concept of the weighted-median (WM) filter
(26), which has the same advantages as the median filter butcause the number of inequalities and variables in the MILP

problem to be solved increase exponentially with n. Thus, is much more flexible in preserving desired signal structures
due to the defining set of weights. Median and weighted-me-heuristic approaches are more relevant.

Concerning two-level (depth-2) threshold networks, an al- dian filters are well-known examples of a larger class of non-
linear filters: the stack filters, which also include the maxi-gorithm called LSAT (23), inspired in techniques used in clas-

sical two-level minimization of logic circuits, has been devel- mum-median filters, the midrange estimators, and several
more filters.oped. The core of the algorithm performs as follows. Suppose

we have a two-level threshold network satisfying the follow- Stack filters are a class of sliding finite-width-window,
nonlinear digital filters defined by two properties called theing conditions: (1) weights of first-level TGs are restricted to

the range [�z, �z] and (2) weights of the second-level gate threshold decomposition (a superposition property) and the
stacking property (an ordering property) (24). The thresholdare all equal to 1 and the threshold of this gate is S. Another

threshold network that also satisfies previous conditions (1) decomposition of an M-valued signal X � (X1, X2, . . ., XN),
where Xi � �0, 1, 2, . . ., M � 1�, i � 1, . . ., N is the set ofand (2) with a minimal number of gates is obtained. This op-

eration is repeated increasing S by 1 until a value of S is (M � 1) binary signals x1, x2, . . ., xM�1, called threshold sig-
nals, defined as:reached for which no solution is found. As a two-level

AND–OR network is a threshold network of the type handled
by the procedure with z � 1, S � 1, the algorithm is started
with this network. Such a two-level circuit is easy to obtain xj

i =
{

1 if Xi ≥ j

0 else
j = 1, . . ., M − 1 (3)

and in fact is a standard input for other synthesis tools. LSAT
has a run-time polynomial in the input size given by n � z,

From this definition, it is clear thatwhere n stands for the number of variables and z defines the
allowed range for the weights. This means central processing
unit (CPU) time increases if large weights are required.

The practical use of synthesis procedures for TGs is not

M−1∑
j=1

xj
i = Xi ∀ i ∈ {1, . . ., N}

restricted to the design of integrated circuits but to areas
such as artificial neural networks or matching learning. Dif- and also that the xj

i are ordered, that is, x1
i � x2

i � � � � �
ferent problems encountered in these fields are naturally for- xM�1

i � i � �1, . . ., N�. This ordering property is called the
mulated as threshold network synthesis problems stacking property of sequences.

Two binary signals u and v ‘‘stack’’ if ui � vi, i � 1, . . .,
N. Let us suppose that both signals are filtered with a binary

APPLICATION TO MEDIAN AND STACK FILTERS window filter of width L [i.e., we use a Boolean function B:
�0, 1�L � �0, 1� for the filtering operation, which results in

For some time, linear filters have been widely used for signal B(u) and B(v)]. The binary filter B exhibits the stacking prop-
processing mainly due to their easy design and good perfor- erty if and only if B(u) � B(v) whenever u � v.
mance. However, linear filters are optimal among the class of The stack filter SB(X) is defined by a binary filter B(x) as
all filtering operations only for additive Gaussian noise. follows:
Therefore problems such as reduction of high frequency and
impulsive noise in digital images, smoothing of noisy pitch
contours in speech signal, edge detection, image prepro-
cessing in machine recognition, and other related problems

SB(XXX ) =
M−1∑
j=1

B(xxxj ) (4)

with the suppression of noise that is non-Gaussian, nonaddi-
tive, or even not correlated with the signal can be difficult to The threshold decomposition architecture of stack filters

means that filtering an M-valued input signal by the stacksolve (24).
These unsatisfactory results provided by linear filters in filter SB is equivalent to threshold decomposing the input sig-

nal to M � 1 binary threshold signals, filtering each binarysignal and image processing have been overcome by resorting
to nonlinear filters. The more well known is perhaps the me- signal separately with the binary filter B, and finally adding

the binary output signal together to reconstruct the M-valueddian filter, which has found widespread acceptance as the
preferred technique to solve the signal restoration problem signal. As stack filters possess the stacking property, this re-

construction section needs only to detect the level just beforewhen the noise has an impulsive nature or when the signals
have sharp edges that must be preserved. But the median the transition from 1 to 0 takes place.

Figure 15 illustrates the threshold decomposition architec-filter has inherent problems because its output depends only
on the values of the elements within its window. So, a median ture of a stack filter with a window width of 3 for the four-

valued input signal shown at the upper left corner. The bi-filter with a window width of n � 2L � 1 can only preserve
details lasting more than L � 1 points. To preserve smaller nary signals are obtained by thresholding the input signal at

levels 1, 2, and 3. Binary filtering is independently performeddetails in the signal, a smaller window width must be used.



THRESHOLD LOGIC 189

Figure 15. Illustration of threshold decomposi-

Interger signals:      Xi      2 3 0 1 2 1 3 2 2

Binary signals:      x3
i      0 1 0 0 0 0 1 0 0
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tion and the stacking property.

by the digital function B(a, b, c) � ac � b, in which a, b, and bounded by
c are the bits, in time order, appearing in the filter’s window.

In the original integer domain of the M-valued input sig-
nal, the stack filter corresponding to a positive Boolean func-

�
n

�n/2	

�
or

�
n


n/2�

�

tion (PBF) can be expressed by replacing logical operators
AND and OR with MIN and MAX operations, respectively. In for a window width of n can be obtained. The hardware com-
consequence, the output of a stack filter is a composition of plexity for sort-and-select circuits is O(n log n) and O(n) for
maximum and minimum operations on the samples in the count-and-compare circuits. The PBF can also be realized as
window. For the example in Fig. 15, this means that the oper- a look-up table by a 2n-sized random-access memory (RAM) or
ation performed by SB is SB(A, B, C) � MAX�MIN�A, C�, B�. read-only memory (ROM), and if a RAM is used, programma-
Both filtering operations are represented in Fig. 15: by ble PBF-based filters can be made.
threshold decomposition if the lightface arrows are followed In the case of a WOS filter, its PBF can be realized by a
and directly, by the stack filter SB, following the boldface TG. It constitutes a great advantage because the number of
arrows. product terms or sum terms of the PBF can be as large as

The next question is to know which binary functions pos-
sess the stacking property. It has been shown that the neces-
sary and sufficient condition for this is that the binary func-

�
n
T

�
tion is a PBF, that is, positive in all its variables. These
functions are a subset of unate functions that have the prop- while the representation of a TG needs only n � 1 compo-
erty that each one possesses a unique minimum sum-of-prod- nents, the n weights and the threshold T. Therefore, while
ucts (SOP) expression, and hence each stack filter can be de- the implementation of a generic stack filter can be very diffi-
scribed in terms of a unique minimum SOP Boolean
expression. Finally, as shown previously, threshold functions
are a subset of unate functions. Stack filters that are based
on TGs with nonnegative weights and nonnegative threshold
values are called weighted-order statistics filters.

It can be very instructive to show the relations of the more
usual members of the class of stack filters, namely, weighted-
order statistic (WOS), weighted-median (WM), order-statistic
(OS), and standard-median (SM) filters. In Fig. 16 these rela-
tions are shown by means of boxes and arrows. Each box cor-
responds to a filter subclass specified by the integer domain
filter and the binary domain filter. The arrows indicate the
containing conditions among classes of filters.

From a practical point of view, there are several options
for the very-large-scale integrated circuit (VLSI) implementa-
tion of the PBFs of a stack filter: binary logic gates, sort-and-

Positive Boolean functions
Stack filters, MAX-MIN network

Threshold gates, linearly separable PBFs
WOS filters

Self-dual linearly separable isobaric PBFs
SM filters

Linearly separable self-dual PBFs 
WM filters

Linearly separable isobaric PBFs 
OS filters

select circuits, or count-and-compare circuits. If logic gates or
a programmable logic array (PLA) is used, a number of terms Figure 16. Relations of linearly separable subclasses of stack filters.
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