
RELAXATION OSCILLATORS AND NETWORKS

Relaxation oscillations comprise a large class of nonlinear
dynamical systems, and arise naturally from many physi-
cal systems such as mechanics, geology, biology, chemistry,
and engineering. Such periodic phenomena are character-
ized by intervals of time during which little happens, in-
terleaved with intervals of time during which considerable
changes take place. In other words, relaxation oscillations
exhibit two time scales. The dynamics of a relaxation oscil-
lator is illustrated by the mechanical system of a seesaw
in Figure 1. At one side of the seesaw is there a water con-
tainer which is empty at the beginning; in this situation the
other side of the seesaw touches the ground. As the weight
of water running from a tap into the container exceeds that
of the other side, the seesaw flips and the container side
touches the ground. At this moment, the container emp-
ties itself, and the seesaw returns quickly to its original
position and the process repeats.

Relaxation oscillations were first observed by van der
Pol [1] in 1926 when studying properties of a triode circuit.
Such a circuit exhibits self-sustained oscillations. van der
Pol discovered that for a certain range of system parame-
ters the oscillation is almost sinusoidal, but for a different
range the oscillation exhibits abrupt changes. In the lat-
ter case, the period of the oscillation is proportional to the
relaxation time (time constant) of the system, hence the
term relaxation oscillation. van der Pol [2] later gave the
following defining properties of relaxation oscillations:

1. The period of oscillations is determined by some form
of relaxation time.

2. They represent a periodic autonomous repetition of
a typical aperiodic phenomenon.

3. Drastically different from sinusoidal or harmonic os-
cillations, relaxation oscillators exhibit discontinu-
ous jumps.

4. A nonlinear system with implicit threshold values,
characteristic of the all-or-none law.

A variety of biological phenomena can be characterized
as relaxation oscillations, ranging from heartbeat, neu-
ronal activity, to population cycles; the English physiologist
Hill [3] even went as far as saying that relaxation oscilla-
tions are the type of oscillations that governs all periodic
phenomena in physiology.

Given that relaxation oscillations have been studied in
a wide range of domains, it would be unrealistic to provide
an up-to-date review of all aspects in this article. Thus, I
choose to orient my description towards neurobiology and

Figure 1. An example of a relaxation oscillator: a seesaw with a
water container at one end (adapted from [4]).

emphasize networks of relaxation oscillators based on the
following two considerations (the reader is referred to [4]
for an extensive coverage of relaxation oscillations). First,
as described in the next section, neurobiology has moti-
vated a great deal of study on relaxation oscillations. Sec-
ond, substantial progress has been made in understanding
networks of relaxation oscillators. In the next section, I de-
scribe a number of relaxation oscillators, including the van
der Pol oscillator. The following section is devoted to net-
works of relaxation oscillators, where the emergent phe-
nomena of synchrony and desynchrony are the major top-
ics. Then, I describe applications of relaxation oscillator
networks to visual and auditory scene analysis, which are
followed by some concluding remarks.

RELAXATION OSCILLATORS

In this section I introduce four relaxation oscillators. The
van der Pol oscillator exemplifies relaxation oscillations,
and has played an important role in the development of dy-
namical systems, in particular nonlinear oscillations. The
Fitzhugh-Nagumo oscillator and the Morris-Lecar oscilla-
tor are well-known models for the conductance-based mem-
brane potential of a nerve cell. The Terman-Wang oscillator
has underlain a number of studies on oscillator networks
and their applications to scene analysis. As demonstrated
by Nagumo et al. [5] and Keener [6], these oscillator models
can be readily implemented with electrical circuits.

Van der Pol Oscillator

The van der Pol oscillator can be written in the form
«
x + x = c(1 − x2)

·
x (1)

where c > 0 is a parameter. This second-order differential
equation can be converted to a two variable first-order dif-
ferential equation,

²
x = c[y − f (x)] (2)

²
y = −x/c (2)

Here f (x) = −x + x3/3. The x nullcline, i.e.
²
x = 0, is a cubic

curve, while the y nullcline,
²
y = 0, is the y axis. As shown

in Fig. 2(a), the two nullclines intersect along the middle
branch of the cubic,and the resulting fixed point is unstable
as indicated by the flow field in the phase plane of Fig. 2(a).
This equation yields a periodic solution.

As c > 1, Eq. (2) yields two time scales: a slow time scale
for they variable and a fast time scale for the x variable.
As a result, Eq. (2) becomes the van der Pol oscillator that
produces a relaxation oscillation. The limit cycle for the van
der Pol oscillator is given in Fig. 2(b), and it is composed of
four pieces, two slow ones indicated by pq and rs, and two
fast ones indicated by qr and sp. In other words, motion
along the two branches of the cubic is slow compared to
fast alternations, or jumps, between the two branches. Fig.
2(c) shows x activity of the oscillator with respect to time,
where two time scales are clearly indicated by relatively
slow changes in x activity interleaving with fast changes.
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Figure 2. Phase portrait and trajectory of a van der Pol oscilla-
tor. (a) Phase portrait. The x nullcline is the cubic curve, and the y
nullcline is the y axis. Arrows indicate phase flows. (b) limit cycle
orbit. The limit cycle is labeled as pqrs, and the arrowheads indi-
cate the direction of motion. Within the limit cycle, qr and sp are
two fast pieces (indicated by double arrowheads), and pq and rs
are slow pieces. (c) Temporal activity of the oscillator. Here the x
activity is shown with respect to time.

FitzHugh-Nagumo Oscillator

By simplifying the classical Hodgkin-Huxley equations [5]
for modeling nerve membranes and action potential gener-
ation, FitzHugh [7] and Nagumo et al. [8] gave the follow-
ing two-variable equation, widely known as the FitzHugh-
Nagumo model,

²
x = c[y − f (x) + I] (3)

²
y = −(x + by − a)/c (3)

where f(x) is as defined in Eq. (2), I is the injected current,
and a, b, and c are system parameters satisfying the condi-
tions: 1 > b > 0, c2 > b, and 1 > a > 1 − 2b/3. In neurophys-
iological terms, x corresponds to the neuronal membrane
potential, and y plays the aggregate role of three variables
in the Hodgkin-Huxley equations. Given that the x null-
cline is a cubic and the y nullcline is linear, the FitzHugh-
Nagumo equation is mathematically similar to the van der
Pol equation. Typical relaxation oscillation with two time
scales occurs when c > 1. Because of the three parameters
and the external input I, the FitzHugh-Nagumo oscillator
has additional flexibility. Depending on parameter values,
the oscillator can exhibit a stable steady state or a stable
periodic orbit. With a perturbation by external stimulation,
the steady state can become unstable and be replaced by
an oscillation; the steady state is thus referred to as the
excitable state.

Morris-Lecar Oscillator

In modeling voltage oscillations in barnacle muscle fibers,
Morris and Lecar [9] proposed the following equation,

²
x = −gCam∞(x)(x − 1) − gKy(x − xK) − gL(x − xL) + I (4)

²
y = −ε[y∞(x) − y]/τy(x) (4)

where

m∞(x) = {1 + tanh[(x − x1)/x2]}/2
y∞(x) = {1 + tanh[(x − x3)/x4]}/2
τy(x) = 1/cosh[(x − x3)/(2x4)]

and x1 x2, x3, x4, gCa , gK , gL , xK , and xL are parameters.
Ca stands for calcium, K for potassium, L for leak, and I is
the injected current. The parameter ε controls relative time
scales of x and y. Like Eq. (3), the Morris-Lecar oscillator is
closely related to the Hodgkin-Huxley equations, and it is
used as a two-variable description of neuronal membrane
properties or the envelope of an oscillating burst [10]. The
x variable corresponds to the membrane potential, and y
corresponds to the state of activation of ionic channels.

The x nullcline of Eq. (4) resembles a cubic and the y
nullcline is a sigmoid. When ε is chosen to be small, the
Morris-Lecar equation produces typical relaxation oscilla-
tions. From the mathematical point of view, the sigmoidal
y nullcline marks the major difference between the Morris-
Lecar oscillator and the FitzHugh-Nagumo oscillator.

Terman-Wang Oscillator

Motivated by mathematical and computational considera-
tions, Terman and Wang [11] proposed the following equa-
tion,

²
x = f (x) − y + I (5)

²
y = ε[g(x) − y] (5)

where f (x) = 3x − x3 + 2, g(x) = α[1 + tanh(x/β)], and I
represents external stimulation to the oscillator. Thus x
nullcline is a cubic and the y nullcline is a sigmoid, where α

and β are parameters. When ε � 1, Eq. (5) defines a typical
relaxation oscillator. When I > 0 and with a small β, the
two nullclines intersect only at a point along the middle
branch of the cubic and the oscillator produces a stable pe-
riodic orbit (see Fig. 3(a)). The periodic solution alternates
between silent (low x) and active (high x) phases of near
steady-state behavior. As shown in Fig. 3(a), the silent and
the active phases correspond to the left branch (LB) and
the right branch (RB) of the cubic, respectively. If I < 0, the
two nullclines of Eq. (5) intersect at a stable fixed point
along the left branch of the cubic (see Fig. 3(b)), and the
oscillator is in the excitable state. The parameter α deter-
mines relative times that the periodic solution spends in
these two phases. A larger α results in a relatively shorter
active phase.

The Terman-Wang oscillator is similar to the afore-
mentioned oscillator models. It is much simpler than the
Morris-Lecar oscillator, and provides a dimension of flex-
ibility absent in the van der Pol and FitzHugh-Nagumo
equations. In neuronal terms, the x variable in Eq. (5) cor-
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Figure 3. Nullclines and trajectories of a Terman-Wang oscilla-
tor. (a) Behavior of a stimulated oscillator. The x nullcline is a cubic
and the y nullcline is a sigmoid. The limit cycle is shown with a
bold curve, and its direction of motion is indicated by arrowheads.
LB and RB denote the left branch and the right branch of the cubic,
respectively, (b) Behavior of an excitable (unstimulated) oscillator.
The oscillator approaches the stable fixed point PI .

responds to the membrane potential, and y the state for
channel activation or inactivation.

NETWORKS OF RELAXATION OSCILLATORS

In late eighties, neural oscillations in the gamma frequency
range (about 40 Hz) were discovered to in the visual cortex
[12] [13]. The experimental findings can be summarized as
the following: (1) neural oscillations are triggered by sen-
sory stimulation, and thus the oscillations are stimulus-
dependent; (2) long-range synchrony with zero phase-lag
occurs if the stimuli appear to form a coherent object; (3)
no synchronization occurs if the stimuli appear to be un-
related. These intriguing observations are consistent with
the temporal correlation theory [14], which states that in
perceiving a coherent object the brain links various feature
detecting neurons via temporal correlation among the fir-
ing activities of these neurons.

Since the discovery of coherent oscillations in the visual
cortex and other brain areas, neural oscillations and syn-
chronization of oscillator networks have been extensively
studied. Most of the early models are based on sinusoidal
or harmonic oscillators and rely on all-to-all connectivity to
reach synchronization across the network. In fact, accord-
ing to the Mermin and Wagner theorem [15] in statistical
physics, no synchrony exists in one- or two-dimensional
locally coupled isotropic Heisenberg oscillators, which are
similar to harmonic oscillators. However, all-to-all connec-
tivity leads to indiscriminate synchrony because the net-
work is dimensionless and loses critical information about
topology. Thus, such networks are very limited in address-
ing perceptual organization and scene analysis – the main
motivations behind computational studies of oscillatory
networks – that appear to require topological relations.

Somers and Kopell [16] and Wang [17] first realized
that there are qualitative differences between sinusoidal
and non-sinusoidal oscillators in achieving emergent syn-

chrony in a locally coupled network. Specifically, Somers
and Kopell using relaxation oscillators and Wang using
Wilson-Cowan oscillators [18] each demonstrated that an
oscillator network can synchronize with just local coupling.
Note that Wilson-Cowan oscillators in their normal param-
eter regime are neither sinusoidal nor relaxation-type.

Two Oscillators: Fast Threshold Modulation

When analyzing synchronization properties of a pair of
relaxation oscillators, Somers and Kopell [16] introduced
the notion of fast threshold modulation. Their mechanism
works for general relaxation oscillators, including those de-
scribed in the previous section. Consider a pair of identical
relaxation oscillators excitatorily coupled in a way mim-
icking chemical synapses. The coupling is between the fast
variables of the two oscillators,and can be viewed as binary,
resulting in the so-called Heaviside coupling. The two os-
cillators are uncoupled unless one of them is in the active
phase, and in this case the effect of the excitatory coupling
is to raise the cubic of the other oscillator by a fixed amount.

Let us explain the mechanism of fast threshold modula-
tion using the Terman-Wang oscillator as an example. The
two oscillators are denoted by o1 = (x1, y1) and o2 = (x2, y2),
which are initially in the silent phase and close to each
other with o1 leading the way as illustrated in Fig. 4. Fig-
ure 4 shows the solution of the oscillator system in the
singular limit ε → 0. The singular solution consists of sev-
eral pieces. The first piece is when both oscillators move
along LB of the uncoupled cubic, denoted as C. This piece
lasts until o1 reaches the left knee of C, LK, at t = t1. The
second piece begins when o1 jumps up to RB, and the exci-
tatory coupling from o1 to o2 raises the cubic for o2 from C
to CE as shown in the figure. Let LKE and RKE denote the
left and right knees of CE . If |y1 − y2| is relatively small,
then o2 lies below LKE and jumps up. Since these interac-
tions take place in fast time, the oscillators are effectively
synchronized in jumping up. As a result the cubic for o1

is raised to CE as well. The third piece is when both os-
cillators lie on RB and evolve in slow time. Note that the
ordering in which the two oscillators track along RB is re-
versed and now o2 leads the way. The third piece lasts until
o2 reaches RKE at t = t2. The fourth piece starts when o2

jumps down to LB. With o2 jumping down, the cubic for o1

is lowered to C. At this time, if o1 lies above RK, as shown
in Fig. 4, o1 jumps down as well and both oscillators are
now in the silent phase. Once both oscillators are on LB,
the above analysis repeats.

Based on the fast threshold modulation mechanism,
Somers and Kopell further proved a theorem that the syn-
chronous solution in the oscillator pair has a domain of at-
traction in which the approach to synchrony has a geomet-
ric (or exponential) rate [16]. The Somers-Kopell theorem
is based on comparing the evolution rates of the slow vari-
able right before and after a jump, which are determined
by the vertical distance of an oscillator to they nullcline
(see Fig. 4).

A Network of Locally Coupled Oscillators

In the same paper Somers and Kopell suspected that their
analysis extends to a network of relaxation oscillators, and



4 Relaxation Oscillators and Networks

Figure 4. Fast threshold modulation. C and CE indicate the un-
coupled and the excited cubic, respectively. The two oscillators o1
and o2 start at time 0. When o1 jumps up at t = t1, the cubic cor-
responding to o2 is raised from C to CE . This allows o2 to jump up
as well. When o2 jumps down at t = t2, the cubic corresponding to
o1 is lowered from CE to C. This allows o1 to jump down as well.
In the figure, LK and RK indicate the left knee and the right knee
of C, respectively. LKE and RKE indicate the left knee and right
knee of CE , respectively.

performed numerical simulations with one-dimensional
rings to support their suggestion. In a subsequent study, by
extending Somers and Kopell analysis, Terman and Wang
proved a theorem that for an arbitrary network of locally
coupled relaxation oscillators there is a domain of attrac-
tion in which the entire network synchronizes at an expo-
nential rate [11].

In their analysis, Terman and Wang employed the time
metric to describe the distance between oscillators. When
oscillators evolve either in the silent phase or the active
phase, their distances in y in the Euclidean metric change;
however, their distances in the time metric remain con-
stant. On the other hand, when oscillators jump at the
same time (in slow time), their y distances remain un-
changed while their time distances change. Terman and
Wang also introduced the condition that the sigmoid for
the y nullcline (again consider the Terman-Wang oscilla-
tor) is very close to a step function [11], which is the case
when β in Eq. (5) is chosen to be very small. This condition
implies that in the situation with multiple cubics the rate
of evolution of a slow variable does not depend on which
cubic it tracks along.

Recently, Campbell et al. [19] showed that the definition
of a canonical relaxation oscillator can lead to qualitatively
different kinds of oscillation through parameter choices.
In addition, their numerical investigation indicates that a
network of relaxation oscillators in the relaxation regime
(the normal case) approach synchrony with an average
time that is a power relation of the network size with a
small exponent. On the other hand, relaxation oscillators in
the spiking regime, where the active phase is much shorter
than the silent phase, approach synchrony with an average
time that is a logarithmic relation of the network size, al-
though for the same network synchrony in the relaxation
regime is typically faster than that in the spiking relation.

Figure 5. Architecture of a two dimensional LEGION network
with nearest neighbor coupling. The global inhibitor is indicated
by the black circle, and it receives excitation from every oscillator
of the 2-D grid and feeds back inhibition to every oscillator.

LEGION Networks: Selective Gating

A natural and special form of the temporal correlation the-
ory is oscillatory correlation [20], whereby each object is
represented by synchronization of the oscillator group cor-
responding to the object and different objects in a scene are
represented by different oscillator groups which are desyn-
chronized from each other. There are two fundamental as-
pects in the oscillatory correlation theory: synchronization
and desynchronization. Extending their results on syn-
chronizing locally coupled relaxation oscillators, Terman
and Wang used a global inhibitory mechanism to achieve
desynchronization [11].The resulting network is called LE-
GION, standing for Locally Excitatory Globally Inhibitory
Oscillator Networks [20].

The original description of LEGION is based on Terman-
Wang oscillators, and basic mechanisms extend to other
relaxation oscillator models. Each oscillator i is defined as

²
xi = f (xi) − yi + Ii + Si + ρ (6)

²
yi = ε[g(xi) − yi] (6)

Here f(x ) and g(x) are as given in Eq. (5). The parameter
ρ denotes the amplitude of Gaussian noise; to reduce the
chance of self-generating oscillations the mean of noise is
set to −ρ. In addition to test robustness, noise plays the
role of assisting desynchronization. The term Si denotes
the overall input from other oscillators in the network:

Si =
∑

k ∈ N(i)

WikH(xk − θx) − WzH(z − θz) (7)

where Wik is the dynamic connection weight from k to i, and
N(i) is the set of the adjacent oscillators that connect to i.
In a two-dimensional (2-D) LEGION network, N(i) in the
simplest case contains four immediate neighbors except on
boundaries where no wrap-around is used, thus forming a
2-D grid. This architecture is shown in Fig. 5. H stands for
the Heaviside function, defined as H(ν) = 1 and H(ν) = 0 if
ν < 0. θx is a threshold above which an oscillator can affect
its neighbors. Wz is the weight of inhibition from the global
inhibitor z, whose activity is defined as

²
z = φ(σ∞ − z) (8)

where φ is a parameter. The quantity σ∞ = 1 if xi ≥ θz for at
least one oscillator i, and σ∞ = 0 otherwise. Hence θz (see
also Eq. (7)) represents a threshold.
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Figure 6. Selective gating with two oscillators coupled through a
global inhibitor. C and CZ indicate the uncoupled and the inhibited
cubic, respectively. The two oscillators o1 and o2 start at time 0.
When o1 jumps up at t = t1 the cubic corresponding to both o1 and
o2 is lowered from C to CZ . This prevents o2 from jumping up until
o1 jumps down at t = t2 and releases o2 from the inhibition. LK and
RK indicate the left knee and the right knee of C, respectively. PZ
denotes a stable fixed point at an intersection point between CZ
and the sigmoid.

The dynamic weights Wik ’s are formed on the basis of
permanent weights Tik ’s according to the mechanism of dy-
namic normalization [21] [22], which ensures that each os-
cillator has equal overall weights of dynamic connections,
WT , from its neighborhood. According to Ref. [11], weight
normalization is not a necessary condition for LEGION to
work, but it improves the quality of synchronization. More-
over, based on external input Wik can be determined at the
start of simulation.

To illustrate how desynchronization between blocks of
oscillators is achieved in a LEGION network, let us con-
sider an example with two oscillators that are coupled only
through the global inhibitor. Each oscillator is meant to cor-
respond to an oscillator block that represents a pattern in a
scene.The same notations introduced earlier are used here.
Again, assume that both oscillators are in the silent phase
and close to each other with y1 < y2, as shown in Fig. 6. The
singular solution of the system consists of several pieces,
where the first one lasts until o1 reaches LK at t = t1. When
both oscillators are on LB, z = 0. The second piece starts
when o1 jumps up, and when o1 crosses θz, σ∞ switches from
0 to 1, and z → 1 on the fast time scale. When z crosses θz,
the cubic corresponding to both o1 and o2 lowers from C to
CZ , the inhibited cubic. The third piece is when o1 is the
active phase, while o2 is in the silent phase. The parame-
ters are chosen so that CZ intersects with the sigmoid at
a stable fixed point PZ along LB as shown in Fig. 6. This
guarantees that o2 → PZ, and o2 cannot jump up as long as
o1 is on RB, which lasts until o1 reach the right knee of CZ

at t = t2. The fourth piece starts when o1 jumps down to
LB. When o1 crosses θz, z → 0 in fast time. When z crosses
θz, the cubic corresponding to both o1 and o2 returns to C.
There are now two cases to consider. If o2 lies below LK, as
shown in Fig. 6, then o2 jumps up immediately. Otherwise
both o1 and o2 lie on LB, with o2 leading the way. This new
silent phase terminates when o2 reaches LK and jumps up.

The above analysis demonstrates the role of inhibition
in desynchronizing the two oscillators: o1 and o2 are never
in the active phase simultaneously. In general, LEGION
exhibits a mechanism of selective gating, whereby an os-
cillator, say oi jumping to its active phase quickly acti-
vates the global inhibitor, which selectively prevents the
oscillators representing different blocks from jumping up,
without affecting oi ’s ability in recruiting the oscillators
of the same block because of local excitation. With the se-
lective gating mechanism, Terman and Wang proved the
following theorem. For a LEGION network there is a do-
main of parameters and initial conditions in which the net-
work achieves both synchronization within blocks of oscil-
lators and desynchronization between different blocks in
no greater than N cycles of oscillations,where N is the num-
ber of patterns in an input scene. In other words, both syn-
chronization and desynchronization are achieved rapidly.

The following simulation illustrates the process of syn-
chronization and desynchronization in LEGION [20]. Four
patterns – two O’s, one H, and one I, forming the word
OHIO – are simultaneously presented to a 20 × 20 LE-
GION network as shown in Figure 7(a). Each pattern is
a connected region, but no two patterns are connected to
each other. The oscillators under stimulation become oscil-
latory, while those without stimulation remain excitable.
The parameter ρ is set to represent 10% noise compared to
the external input. The phases of all the oscillators on the
grid are randomly initialized. Figs. 7(b)–7(f) show the in-
stantaneous activity (snapshot) of the network at various
stages of dynamic evolution. Fig. 7(b) shows a snapshot of
the network at the beginning of the simulation, display-
ing the random initial conditions. Fig. 7(c) shows a snap-
shot shortly afterwards. One can clearly see the effect of
synchronization and desynchronization: all the oscillators
corresponding to the left O are entrained and have large
activity; at the same time, the oscillators stimulated by the
other three patterns have very small activity. Thus the left
O is segmented from the rest of the input. Figures 7(d)–(f)
show subsequent snapshots of the network, where differ-
ent patterns reach the active phase and segment from the
rest. This successive “popout” of the objects continues in an
approximately periodic fashion as long as the input stays
on. To provide a complete picture of dynamic evolution, Fig.
7(g) shows the temporal evolution of every oscillator. Syn-
chronization within each object and desynchronization be-
tween them are clearly shown in three oscillation periods,
which is consistent with the theorem proven in [11].

Time Delay Networks

Time delays in signal transmission are inevitable in both
the brain and physical systems. In local cortical circuits,
for instance, the speed of nerve conduction is less than 1
mm/ms such that connected neurons 1 mm apart have a
time delay of more than 4% of the period of oscillation as-
suming 40 Hz oscillations. Since small delays may com-
pletely alter the dynamics of differential equations, it is
important to understand how time delays change the be-
havior, particularly synchronization, of relaxation oscilla-
tor networks.



6 Relaxation Oscillators and Networks

Figure 7. Synchronization and desynchronization
in LEGION. (a) A scene composed of four patterns
which were presented (mapped) to a 20 × 20 LE-
GION network. (b) A snapshot of the activities of the
oscillator grid at the beginning of dynamic evolution.
The diameter of each black circle represents the x
activity of the corresponding oscillator. (c) A snap-
shot taken shortly after the beginning. (d) Another
snapshot taken shortly after (c). (e) Another snap-
shot taken shortly after (d). (f) Another snapshot
taken shortly after (e). (g) The upper four traces show
the combined temporal activities of the oscillator
blocks representing the four patterns, respectively,
and the bottom trace shows the temporal activity of
the global inhibitor. The ordinate indicates the nor-
malized x activity of an oscillator. Since the oscilla-
tors receiving no external input are excitable during
the entire simulation process, they are excluded from
the display. The activity of the oscillators stimulated
by each object is combined into a single trace in the
figure. The differential equations were solved using
a fourth-order Runge-Kutta method (from [20]).

Campbell and Wang [23] studied locally coupled relax-
ation oscillators with time delays. They revealed the phe-
nomenon of loose synchrony in such networks. Loose syn-
chrony in networks with nearest neighbor coupling is de-
fined as follows. Coupled oscillators approach each other so
that their time difference is less than or equal to the time
delay between them. They analyzed a pair of oscillators
in the singular limit ε → 0, and gave a precise diagram in
parameter space that indicates regions of distinct dynami-
cal behavior, including loosely synchronous and antiphase
solutions. The diagram points out that loose synchrony ex-
ists for a wide range of time delays and initial conditions.
Numerical simulations show that the singular solutions
derived by them extend to the case 0 < ε � 1. Furthermore,
through extensive simulations they conclude that their pa-
rameter diagram for a pair of oscillators says much about
networks of locally coupled relaxation oscillators. In partic-
ular, the phenomenon of loose synchrony exists in a similar
way. Figure 8 demonstrates loosely synchronous behavior
in a chain of 50 oscillators with a time delay that is 3%
of the oscillation period between adjacent oscillators. The
phase relations between the oscillators in the chain become

stabilized by the third cycle.
Two other results regarding relaxation oscillator net-

works with time delays are worth mentioning. First, Camp-
bell and Wang [23] identified a range of initial conditions in
which the maximum time delays between any two oscilla-
tors in a locally coupled network can be contained. Second,
they found that in LEGION networks with time delay cou-
pling between oscillators, desynchronous solutions for dif-
ferent oscillator blocks are maintained. Thus, the introduc-
tion of time delays does not appear to impact the behavior
of LEGION in terms of synchrony and desynchrony.

Subsequently, Fox et al. [24] proposed a method to
achieve zero phase-lag synchrony in locally coupled relax-
ation oscillators with coupling delays. They observed that
different speeds of motion along different nullclines could
result in rapid synchronization. Their analysis in particu-
lar shows how to choose appropriate y nullclines to induce
different speeds of motion, which in turn lead to zero-lag
synchrony. Numerical simulations demonstrate that their
analytical results obtained in the case of two coupled os-
cillators extend to 1-D and 2-D networks. More recently,
Sen and Rand [25] numerically investigated the dynam-
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ics of a pair of van der Pol oscillators coupled with time
delays. Their comprehensive analysis revealed regions in
the 2-D plane of coupling strength and time delay where
stable zero-lag synchrony occurs, as well as regions where
antiphase solutions exist. Interestingly, there is an over-
lap between synchronous and antiphase solutions; in other
words, the coupling and delay parameters can be chosen
so that the two modes of behavior are both stable, a phe-
nomenon of bi-rhythmicity.

APPLICATIONS TO SCENE ANALYSIS

A natural scene generally contains multiple objects, each of
which can be viewed as a group of similar sensory features.
A major motivation behind studies on oscillatory correla-
tion is scene analysis, or the segmentation of a scene into a
set of coherent objects. Scene segmentation, or perceptual
organization, plays a critical role in the understanding of
natural scenes. Although humans perform it with apparent
ease, the general problem of scene segmentation remains
unsolved in sensory and perceptual information process-
ing.

Oscillatory correlation provides an elegant and unique
way to represent results of segmentation. As illustrated in
Fig. 7, segmentation is performed in time; after segmen-
tation, each segment pops out at a distinct time from the
network and different segments alternate in time. On the
basis of synchronization and desynchronization properties
in relaxation oscillator networks, substantial progress has
been made to address the scene segmentation problem; see
Wang [26] for a comprehensive review.

Image Segmentation

Wang and Terman [22] studied LEGION for segmenting
real images. In order to perform effective segmentation,
LEGION needs to be extended to handle images with noisy
regions.Without such extension,LEGION would treat each
region, no matter how small it is, as a separate segment,
resulting in many fragments. A large number of fragments
degrade segmentation results, and a more serious prob-
lem is that it is difficult for LEGION to produce more than
several (5 to 10) segments. In general, with a fixed set of
parameters, LEGION can segment only a limited number
of patterns [11]. This number depends on the ratio of the
times that a single oscillator spends in the silent and ac-
tive phases; see, for example, Figs. 3 and 7. This limit is
called the segmentation capacity of LEGION [22]. Noisy
fragments therefore compete with major image regions for
becoming segments, and the major segments may not be
extracted as a result. To address this problem of fragmen-
tation, they introduced the notion of lateral potential for
each oscillator, which allows the network to distinguish be-
tween major blocks and noisy fragments. The basic idea is
that a major block must contain at least one oscillator, de-
noted as a leader, which lies in the center area of a large ho-
mogeneous image region. Such an oscillator receives large
lateral excitation from its neighborhood, and thus its lat-
eral potential is charged high. A noisy fragment does not
contain such an oscillator.

More specifically, a new variable pi denoting the lateral
potential for each oscillator i is introduced into the defini-
tion of the oscillator (cf. (6)). pi → 1 if i frequently receives
a high weighted sum from its neighborhood, signifying that
i is a leader, and the value of pi determines whether or not
the oscillator i is a leader. After an initial time period, only
leaders can jump up without lateral excitation from other
oscillators. When a leader jumps up, it spreads its activ-
ity to other oscillators within its own block, so they can
also jump up. Oscillators not in this block are prevented
from jumping up because of the global inhibitor. Without
a leader, the oscillators corresponding to noisy fragments
cannot jump up beyond the initial period. The collection of
all noisy regions is called the background, which is gener-
ally discontiguous.

Wang and Terman obtained a number of rigorous re-
sults concerning the extended version of LEGION [22]. The
main analytical result states that the oscillators with low
lateral potentials will become excitable after a beginning
period, and the asymptotic behavior of each oscillator be-
longing to a major region is precisely the same as the net-
work obtained by simply removing all noisy regions. Given
the Terman-Wang theorem on original LEGION, this im-
plies that after a number of cycles a block of oscillators cor-
responding to a major region synchronizes, while any two
blocks corresponding to different major regions desynchro-
nize. Also, the number of periods required for segmentation
is no greater than the number of major regions plus one.

For gray-level images, each oscillator corresponds to a
pixel. In a simple scheme for setting up lateral connections,
two neighboring oscillators are connected with a weight
proportional to corresponding pixel similarity. To illustrate
typical segmentation results, Fig. 9(a) displays a gray-level
aerial image to be segmented. To speed up simulation with
a large number of oscillators needed for processing real
images, Wang and Terman abstracted an algorithm that
follows LEGION dynamics [22]. Fig. 9(b) shows the re-
sult of segmentation by the algorithm. The entire image
is segmented into 23 regions, each of which corresponds to
a different intensity level in the figure, which indicates the
phases of oscillators. In the simulation, different segments
rapidly popped out from the image, as similarly shown in
Fig. 7. As can be seen from Fig. 9(b), most of the major
regions were segmented, including the central lake, major
parkways, and various fields. The black scattered regions
in the figure represent the background that remains in-
active. Due to the use of lateral potentials, all these tiny
regions stay in the background.

Auditory Scene Analysis

A listener in an auditory environment is generally exposed
to acoustic energy from different sources. In order to un-
derstand the auditory environment, the listener must first
disentangle the acoustic wave reaching the ears. This pro-
cess is referred to as auditory scene analysis. According to
Bregman [27], auditory scene analysis takes place in two
stages. In the first stage, the acoustic mixture reaching the
ears is decomposed into a collection of sensory elements (or
segments). In the second stage, segments that likely arise
from the same source are grouped to form a stream that is
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Figure 8. Loose synchrony in a chain of 50 relax-
ation oscillators (from [23]). This network achieves
loose synchrony and stability by the third period of
oscillation.

Figure 9. Image segmentation (from [22]). (a) A
gray-level image consisting of 160 × 160 pixels. (b)
Result of segmenting the image in (a). Each segment
is indicated by a distinct gray level. The system pro-
duces 23 segments plus a background, which is indi-
cated by the black scattered regions in the figure.

Figure 10. Speech segregation (from [30]). (a) Peripheral responses to a mixture of voiced ut-
terance and telephone ringing. The 2-D response is produced by 128 auditory filters with center
frequencies ranging from 80 Hz to 5 kHz, over 150 time frames. (b) Segregated speech that is in-
dicated by white pixels representing active oscillators at a time. (c) Segregated background that is
indicated by white pixels representing active oscillators at a different time.
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a perceptual representation of an auditory event.
Auditory segregation was first studied from the oscil-

latory correlation perspective by von der Malsburg and
Schneider [14]. They constructed a fully connected oscil-
lator network, each oscillator representing a specific audi-
tory feature. Additionally, there is a global inhibitory os-
cillator introduced to segregate oscillator groups. With a
mechanism of rapid modulation of connection strengths,
they simulated segregation based on onset synchrony, i.e.,
oscillators simultaneously triggered synchronize with each
other, and these oscillators desynchronize with those rep-
resenting another stream presented at a different time.
However, due to global connectivity that is unable to en-
code topological relations, their model cannot simulate the
basic phenomenon of stream segregation.

By extending LEGION to the auditory domain, Wang
proposed an oscillator network for addressing stream seg-
regation [28]. The basic architecture is a 2-D LEGION net-
work, where one dimension represents time and another
represents frequency. This network, plus systematic delay
lines, can group auditory features into a stream by phase
synchronization and segregate different streams by desyn-
chronization. The network demonstrates a set of psycholog-
ical phenomena regarding auditory scene analysis, includ-
ing dependency on frequency proximity and temporal prox-
imity, sequential capturing, and competition among differ-
ent perceptual organizations [27]. Brown and Wang [29]
used an array of relaxation oscillators for modeling the per-
ceptual segregation of double vowels. It is well documented
that the ability of listeners to identify two simultaneously
presented vowels is improved by introducing a difference
in fundamental frequency (F0) between the vowels. Prior
to the oscillator array, an auditory mixture is processed by
an auditory filterbank, which decompose an acoustic sig-
nal into a number of frequency channels. Each oscillator
in the array receives an excitatory input from its corre-
sponding frequency channel. In addition, each oscillator
sends excitation to a global inhibitor which in turn feeds
back inhibition. The global inhibitor ensures that weakly
correlated groups of oscillators desynchronize to form dif-
ferent streams. Simulations on a vowel set used in psy-
chophysical studies confirm that the results produced by
their oscillator array qualitatively match the performance
of human listeners; in particular vowel identification per-
formance increases with increasing difference in F0.

Subsequently, Wang and Brown [30] studied a more dif-
ficult problem, speech segregation, on the basis of oscil-
latory correlation. Their model embodies Bregman’s two-
stage conceptual model by introducing a two-layer network
of relaxation oscillators. The first layer is a LEGION net-
work with time and frequency axes that segments an au-
ditory input into a collection of contiguous time-frequency
regions. This segmentation is based on cross-channel corre-
lation between adjacent frequency channels and temporal
continuity. The second layer, which is a laterally connected
network, then groups auditory segments produced in the
first layer on the basis of common periodicity. More specif-
ically, dominant F0 detected within a time frame is used
to divide all frequency channels into those that are con-
sistent with F0 and the rest. As a result, the second layer
segregates the segments into a foreground stream and the

background. Figure 10 shows an example of segregating a
mixture of a voiced utterance and telephone ringing. The
input mixture after peripheral analysis is displayed in Fig.
10(a). The segregated speech stream and the background
are shown in Figs. 10(b) and 10(c), respectively, where a
segment corresponds to a connected region.

CONCLUDING REMARKS

Relaxation oscillations are characterized by two time
scales, and exhibit qualitatively different behaviors than
sinusoidal or harmonic oscillations. This distinction is par-
ticularly prominent in synchronization and desynchroniza-
tion in networks of relaxation oscillators. The unique prop-
erties in relaxation oscillators have led to new and promis-
ing applications to neural computation, including scene
analysis. It should be noted that networks of relaxation os-
cillations often lead to very complex behaviors other than
synchronous and antiphase solutions. Even with identical
oscillators and nearest neighbor coupling, traveling waves
and other complex spatiotemporal patterns can occur [31].

Relaxation oscillations with a singular parameter lend
themselves to analysis by singular perturbation theory
[32]. Singular perturbation theory in turn yields a geomet-
ric approach to analyzing relaxation oscillation systems,
as illustrated in Figs. 4 and 6. Also based on singular so-
lutions, Linsay and Wang [33] proposed a fast method to
numerically integrate relaxation oscillator networks. Their
technique, called the singular limit method, is derived in
the singular limit ε → 0. A numerical algorithm is given for
the LEGION network, and it produces large speedup com-
pared to commonly used integration methods such as the
Runge-Kutta method. The singular limit method makes it
possible to simulate large-scale networks of relaxation os-
cillators.

Computation using relaxation oscillator networks is in-
herently parallel, where each single oscillator operates in
parallel with all the other oscillators. This feature, plus
continuous-time dynamics makes oscillator networks at-
tractive for direct hardware implementation. Using CMOS
technology, for example, Cosp and Madrenas [34] fabri-
cated a VLSI chip for a 16 × 16 LEGION network and used
the chip for a number of segmentation tasks. With its dy-
namical and biological foundations, oscillatory correlation
promise to offer a general computational framework.
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