
NETWORK PARAMETERS

The Laplace transform is commonly used to solve network
equations. However, the mere computation of the solution
of network equations is one of the many important appli-
cations for this elegant tool of network analysis. Our pur-
pose here is to use this transform to define network func-
tion and to study the different ways of its representation,
the superposition theorem, the characterizations and rep-
resentations of one-port and two-port networks (1–3).

NETWORK PARAMETERS

We begin by considering a system of differential equations
associated with an electrical network, most conveniently
written in matrix notation as

where W(p), x(t), and f(t) are used to represent the coef-
ficient matrix of the differential operator p, the unknown
vector x(t) and the known forcing or excitation vector f(t).
On taking the Laplace transform on both sides, we obtain
a system of linear algebraic equations

where X(s) and F(s) denote the Laplace transforms of x(t)
and f(t), respectively, and h(s) is a vector that includes the
contributions due to initial conditions. The coefficient ma-
trix W(s) in the complex frequency variable s is obtained
from W(p), with s replacing p. An analysis of Eq. (2) is often
referred to as analysis in the frequency domain, in contrast
to the analysis of Eq. (1), which is called analysis in the time
domain.

Network Functions

The unknown transform vector X(s) can be obtained imme-
diately by inverting the matrix W(s):

provided that det W(s) is not identically zero.
Consider a linear time-invariant network that contains

a single independent voltage or current source as the input
with arbitrary waveform. Assume that all initial conditions
in the network have been set to zero. Let the response be
either a voltage across any two nodes of the network or a
current in any branch of the network. Such a response is
known as the zero-state response. Then, the network func-
tion H(s) is defined by

Network functions generally fall into two classes depend-
ing on whether the terminals to which the response relates
are the same or different from the input terminals. For the

same pair of terminals, it is referred to as the driving-point
or input function; and for different pairs of terminals, the
transfer function. Since the input and the response may ei-
ther be a current or a voltage, the network function may be
a driving-point impedance, a driving-point admittance, a
transfer impedance, a transfer admittance, a transfer volt-
age ratio, or a transfer current ratio. Our objective here
is to obtain some general and broad properties of network
functions, recognizing that each of the network functions
mentioned has its own distinct characteristics.

Example. We write the nodal equations for the network
of Fig. 1 for t ≥ 0 after the switch S is closed and compute
the input impedance Zin facing the current source I and the
transfer current ratio relating the transform current I6 to
the transform current source I.

The nodal equations are found to be

By using Cramer’s rule, the nodal voltage V1 can be ex-
pressed in terms of the source current I as

Principle of Superposition

The principle of superposition is intimately tied up with the
concept of linearity, and is applicable to any linear network,
whether it is time invariant or time varying. It is funda-
mental in characterizing network behavior and is very use-
ful in solving linear network problems. For our purposes,
we shall restrict ourselves to the class of linear time in-
variant networks.

Consider an arbitrary linear time-invariant network
with many input excitations describable by a system of lin-
ear algebraic equations:

where

and the prime denotes matrix transpose. Suppose that the
kth row variable Xk of X(s) is the desired response. By ap-
pealing to Cramer’s rule, we obtain from Eq. (8)

Observe that Fi(s) (i = 1, 2, . . . , n) are due to the contri-
butions of independent sources. Therefore, to compute the
complete response transform Xk, we may consider each of
the transform sources Fi one at a time and then add the par-
tial responses so determined to obtain Xk. If Fi represents a
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2 Network Parameters

Figure 1. A network used to illustrate network functions.

linear combination of many sources, each source can again
be considered separately, one at a time, and then add these
partial responses to obtain the complete response. This is
in essence the superposition principle.

Superposition Theorem. For a linear system, the zero-
state response due to all the independent sources acting
simultaneously is equal to the sum of the zero-state re-
sponses due to each independent source acting one at a
time. If, in addition, the system is time invariant, the same
holds in the frequency domain.

Two aspects of superposition are important to empha-
size. The first is the additivity property. The other is the
homogeneity property, which states that if all sources are
multiplied by a constant, the response is also multiplied by
the same constant.

Different versions of the superposition principle can be
advanced. It states that in a linear time-invariant system
the zero-input response is a linear function of the initial
state, the zero-state response is a linear function of the in-
put, and the complete response is the sum of the zero-input
response and the zero-state response. Thus, the complete
response of a linear network to a number of excitations
applied simultaneously is the sum of the responses of the
network when each of the excitations is applied individu-
ally. This statement remains valid even if we consider the
initial capacitor voltages and inductor currents themselves
to be separate excitations. Of course, the controlled sources
cannot be considered as separate excitations. In the case
of linear time-invariant networks, the same holds in the
frequency domain or in the transform network.

We apply the principle of superposition to compute the
inductor current i2 in the network of Fig. 2. When the volt-
age source is short-circuited, the inductor current i′2(t) is
found to be

When the current source is removed, the inductor current
i′′2(t) is obtained as

Figure 2. A network used to illustrate the principle of superpo-
sition.

The inductor current i2(t) is the algebraic sum of these two
currents:

Two-Port Networks

A network is a structure comprised of a finite number of
interconnected elements with a set of accessible terminal
pairs called ports at which voltages and currents can be
measured and the transfer of electromagnetic energy into
or out of the structure can be made. The situation is similar
to ships leaving or entering the ports. Fundamental to the
concept of a port is the assumption that the instantaneous
current entering one terminal of the port is always equal
to the instantaneous current leaving the other terminal of
the port. This assumption is crucial in subsequent deriva-
tions and resulting conclusions. If it is violated, the ter-
minal pair does not constitute a port. A network with one
such accessible port is called a one-port network or simply
a one-port, as represented in Fig. 3(a). If a network is ac-
cessible through two such ports as shown in Fig. 3(b), the
network is called a two-port network or simply a two-port.
The nomenclature can be extended to networks having n
accessible ports called the n-port networks or n-ports.

Figure 4 is a general representation of a one-port that
is electrically and magnetically isolated except at the port
with sign convention for the references of port voltage and
current as indicated. Likewise, Fig. 5 is a general represen-
tation of a two-port that is electrically and magnetically
isolated except at the two ports with sign convention for
the references of port voltages and currents as indicated.
By focusing attention on the ports, we are interested in the
behavior of the network only at the ports. Our discussion
will be entirely in terms of the transform network, under
the assumption that the one-port or two-port is devoid of
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Figure 3. Symbolic representations of a one-port network (a), a
two-port network (b), and an n-port network (c).

Figure 4. A general representation of a one-port with port voltage
and current shown explicitly.

Figure 5. A general representation of a two-port with port volt-
ages and currents shown explicitly.

independent sources inside and has zero initial conditions.

Short-Circuit Admittance Parameters. Refer to Fig. 5.
There are four variables associated with the two ports: V1,
V2, I1, and I2. Suppose that we choose port voltages V1 and
V2 as the independent variables. Then, the port currents
I1 and I2 are related to the port voltages V1 and V2 by the
equation

or, in matrix form,

where I(s) = [I1 I2]′ is the port-current vector and V(s)
= [V1 V2]′ is the port-voltage vector. Equation (13) can be
represented equivalently by the network of Fig. 6. The four
admittance parameters yij(i, j = 1, 2) are called the short-
circuit admittance parameters or simply the y-parameters.
The coefficient matrix Y(s) is referred to as the short-circuit
admittance matrix or simply the admittance matrix. To cal-

Figure 6. Representation of a two-port in terms of its short-
circuit admittance parameters yij.

Figure 7. Networks used to compute the short-circuit admittance
parameters yij of a two-port.

Figure 8. A small-signal network model of a transistor.

culate these parameters, we set either V1 or V2 to zero and
obtain

The choice of the name short circuit becomes obvious.
In computing y11 and y21, the port V2 is short-circuited,
whereas for y12 and y22, the port V1 is short-circuited, as
depicted in Fig. 7.

Example. Consider the equivalent network of a transis-
tor amplifier shown in Fig. 8. Applying Eq. (16) yields

giving the short-circuit admittance matrix as

Open-Circuit Impedance Matrix. Instead of choosing the
port voltages V1 and V2 as the independent variables, sup-
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Figure 9. Representation of a two-port in terms of its open-circuit
impedance parameters zij.

Figure 10. Networks used to compute the open-circuit
impedance parameters zij of a two-port.

pose that we choose port currents I1 and I2 as the indepen-
dent variables. Then, V1 and V2 are related to I1 and I2 by
the equation

or, in matrix form,

Equation (18) can be represented equivalently by the net-
work of Fig. 9. The four impedance parameters zij (i,j =
1,2) are called the open-circuit impedance parameters or
simply the z parameters. The coefficient matrix Z(s) is re-
ferred to as the open-circuit impedance matrix or simply
the impedance matrix. Obviously, if Z(s) is not identically
singular, its inverse is the short-circuit admittance matrix
or

and vice versa. To calculate these parameters, we set either
I1 or I2 to zero and obtain

The choice of the name open circuit becomes obvious. In
computing z11 and z21, the port I2 is open-circuited, whereas
for z12 and z22, the port I1 is open-circuited, as depicted in
Fig. 10.

Example. Consider the equivalent network of a transis-
tor amplifier shown in Fig. 8. Applying Eq. (21) yields

Figure 11. Representation of a two-port in terms of its hybrid
parameters hij.

Figure 12. Networks used to compute the hybrid parameters hij
of a two-port.

giving the open-circuit impedance matrix as

The Hybrid Parameters. Suppose that we choose port
variables I1 and V2 as the independent variables. Then,
the remaining port variables V1 and I2 are related to I1

and V2 by the equation

or, in matrix form,

where y(s) = [V1 I2]′ and u(s) = [I1 V2]′. Equation (24)
can be represented equivalently by the network of Fig. 11.
The four immittance parameters hij (i,j = 1,2) are called
the hybrid parameters or simply the h parameters. The
coefficient matrix H(s) is referred to as the hybrid matrix.
To calculate these parameters, we set either I1 or V2 to zero
and obtain

In computing h11 and h21, the port V2 is short-circuited,
whereas for h12 and h22, the port I1 is open-circuited, as
depicted in Fig. 12. Thus, h11 is the short-circuit input
impedance, h21 is the short-circuit forward current ratio,
h12 is the open-circuit reverse voltage ratio, and h22 is the
open-circuit output admittance. These parameters are not
only dimensionally mixed but also under a mixed set of
terminal conditions. For this reason they are called hybrid
parameters.
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Figure 13. Representation of a two-port in terms of its inverse
hybrid parameters gij.

Example. Consider the equivalent network of a transis-
tor amplifier shown in Fig. 8. Applying Eq. (27) yields

giving the hybrid matrix as

Inverse Hybrid Parameters. Suppose now that we choose
V1 and I2 as the independent variables. Then I1 and V2 are
related to V1 and I2 by the equation

or, in matrix form,

Equation (30) can be represented equivalently by the net-
work of Fig. 13. The four immittance parameters gij (i,j =
1,2) are called the inverse hybrid parameters or simply the
g parameters. The coefficient matrix G(s) is referred to as
the inverse hybrid matrix. To calculate these parameters,
we set either V1 or I2 to zero and obtain

If G(s) is not identically singular, its inverse is the hybrid
matrix or

Transmission Parameters. Another useful set of parame-
ters is formed by choosing V2 and −I2 as the independent
variables. Then V1 and I1 are related to V2 and −I2 by the
equation

The four immittance parameters A, B, C, and D are called
the transmission parameters, which are also known as the
chain parameters or the ABCD parameters. The coefficient
matrix is referred to as the transmission matrix. The first
two names come from the fact that they are the natural

ones to use in a cascade, tandem,or chain connection of two-
ports. We remark that there is a negative sign associated
with I2, being a consequence of our choice of reference for
I2 in Fig. 5. To calculate these parameters, we set either V2

or I2 to zero and obtain

Example. Consider again the equivalent network of a
transistor amplifier shown in Fig. 8. Applying Eq. (34)
yields

giving the transmission matrix as

By interchanging the roles of the excitation and the re-
sponse in Eq. (33), we obtain yet another set of parameters
called the inverse transmission or inverse chain param-
eters, and their corresponding matrix the inverse trans-
mission or inverse chain matrix, the details of which are
omitted.

Interrelations Among the Parameters Sets

The various ways of representing the external behaviors of
a two-port are presented in the foregoing. Each finds use-
ful applications, depending on the problem on hand. Table
1 gives the interrelationships among the different sets of
parameters.

Interconnection of Two-Ports

Simple two-ports are interconnected to yield more compli-
cated and practical two-ports. Two two-ports are said to be
connected in cascade or tandem if the output terminals of
one two-port are connected to the input terminals of the
other, as depicted in Fig. 14. This type of connection is
most conveniently described by the transmission param-
eters. From Fig. 14 we have for the two-port Nb

and for two-port Na

where the subscripts a and b are used to distinguish the
transmission parameters of Na and Nb. Combining Eqs.
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(37) and (38) gives

showing that the coefficient matrix, being the product of
two matrices, is the transmission matrix of the composite
two-port N. Thus, the transmission matrix of two two-ports
connected in cascade is equal to the product of the trans-
mission matrices of the individual two-ports:

Another useful connection is depicted in Fig. 15 where the
input terminals and output terminals of the individual
two-ports are connected in parallel, and is called a parallel
connection.This connection forces the equality of the termi-
nal voltages of the two-ports, and is most conveniently de-
scribed by the short-circuit admittance parameters. From
Fig. 15 we have

showing that the short-circuit admittance matrix of the
composite two-port N is the sum of those of the component
two-ports Na and Nb.

We remark that the validity of Eq. (41) is based on the
assumption that the instantaneous current entering one
terminal of a two-port is equal to the instantaneous current
leaving the other terminal of the two-port after the inter-
connection. If this condition is violated, the statement that
when two two-ports are connected in parallel, their admit-
tance matrices add is no longer valid. To ensure that the
nature of the ports are not altered after the connection, we

Figure 14. Symbolic representation of two two-ports connected
in cascade.

Figure 15. Symbolic representation of two two-ports connected
in parallel.

employ the Brune’s test as shown in Fig. 16: the voltage
marked V is zero. If Brune’s test is not satisfied, an ideal
transformer with turns ratio 1:1 is required, and this trans-
former needs to be inserted either at the output or input
port of one of the two-ports.

Example. Figure 17 is a simple RC twin-Tee used in the
design of equalizers. This two-port N can be considered as
a parallel connection of two two-ports Na and Nb of Fig.
18. It is easy to verify that the Brune’s test is satisfied and
the short-circuit admittance matrix Y(s) of the twin-Tee is
simply the sum of those Ya(s) and Yb(s) of the component
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Figure 16. Brune’s test for parallel connection of two two-ports.

Figure 17. A twin-Tee used in the design of equalizers.

Figure 18. The parallel connection of two two-ports to form the
twin-Tee of Fig. 17.

two-ports Na and Nb:

Two two-ports Na and Nb are said to be connected in se-
ries if they are connected as shown in Fig. 19. This con-
nection forces the equality of the terminal currents of the
two-ports, and is most conveniently described by the open-
circuit impedance parameters. From Fig. 19 we have

showing that the open-circuit impedance matrix of the
composite two-port N is the sum of those of the component
two-ports Na and Nb.

Note again that the validity of Eq. (43) is based on the
assumption that the instantaneous current entering one
terminal of a two-port is equal to the instantaneous cur-
rent leaving the other terminal of the two-port after the

Figure 19. Symbolic representation of two two-ports connected
in series.

Figure 20. Brune’s test for series connection of two two-ports.

Figure 21. Symbolic representation of two two-ports connected
in series-parallel.

Figure 22. Symbolic representation of two two-ports connected
in parallel-series.

interconnection. If this condition is violated, the previous
statement is no longer valid. To test to see if this condition
is satisfied, we employ the Brune’s test as shown in Fig. 20:
the voltage marked V is zero. If Brune’s test is not satisfied,
an ideal transformer with turns ratio 1:1 is required, and
this transformer needs to be inserted either at the output
or input port of one of the two-ports.

Combinations of the parallel and series connections are
possible such as the series-parallel and parallel-series con-
nections shown in Figs. 21 and 22.
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Figure 23. A feedback network N.

Figure 24. A decomposition of the feedback network N into three
two-ports Na, Nb, and Nf .

Example. Consider the feedback network N of Fig. 23.
To compute its short-circuit admittance matrix Y(s), it is
advantageous to consider N as being composed of two two-
ports Na and Nb connected in cascade and then in parallel
with another Nf as depicted in Fig. 24. The transmission
matrix of the two two-ports Na and Nb connected in cas-
cade, being the product of their transmission matrices, is
given by

where yija are the y-parameters of Na and �y = y11ay22a −
y12ay21a . The corresponding admittance matrix of Eq. (44)
is found from Table 1 as

The short-circuit admittance matrix Y(s) of the overall two-
port N of Fig. 23 is obtained as

Power Gains

Refer to the two-port network of Fig. 5. The simplest mea-
sure of power flow in N is the power gain Gp defined as the
ratio of the average power delivered to the load P2 to the
average power entering the input port P1:

Gp = P2

P1
(47)

which is a function of the two-port parameters and the load
impedance Z2, being independent of the source impedance
Z1. For a passive and lossless two-port network, Gp = 1.

The second measure of power flow is called the avail-
able power gain Ga defined as the ratio of the maximum
available average power P2a at the load to the maximum

available average power P1a at the source:

Gp = P2a

P1a

(48)

Therefore, it is a function of the two-port parameters and
the source impedance Z1, being independent of the load
impedance Z2.

Finally, the third and most useful measure of power flow
is known as the transducer power gain G defined as the
ratio of average power P2 delivered to the load to the max-
imum available average power P1a at the source:

G = P2

P1a

(49)

Clearly, it is a function of the two-port parameters and the
source and load impedances Z1 and Z2. It is important be-
cause it compares the average power delivered to the load
with the average power that the source is capable of sup-
plying under the optimum terminations, thereby making
this the most meaningful description of the power transfer
capabilities of a two-port network. Notice that the three
power gains can only be meaningfully defined on the real-
frequency axis s = jω. In other words, we have substituted
s = jω in all the equations, even though they are not ex-
plicitly shown.

To show how these power gains can be expressed in
terms of the two-port parameters of Fig. 5 and Z1 and Z2,
we substitute V2 = −I2Z2 in Eq. (18) and solve for I1 and
I2, yielding

I2

I1
= − z21

z22 + Z2
(50)

The average power P1 entering the input port and the av-
erage power P2 delivered to the load Z2 are given by

P1 = |I1|2 Re Z11 (51)

P2 = |I2|2 Re Z2 (52)

where Z11 is the impedance looking into the input port with
the output port terminating in Z2.

The maximum available average power P1a at the input
port is attained, when the source impedance Z1 and the

input impedance Z11 are conjugately matched, or Z11 = °
Z1,

the complex conjugate of Z1, giving

P1a = |Vs|2
4 Re Z1

(53)

where Vs is the voltage source at the input port.
To express Z11 in terms of the two-port parameters zij

and Z2, we substitute V2 = −I2Z2 in Eq. (18) and solve for
I1, yielding

Z11 = V1

I1
= z11 − z12z21

z22 + Z2
(54)

Combining Eqs. (51)–(55) obtains

Gp = P2

P1
= |z21|2 Re Z2

|z22 + Z2|2 Re Z11
= |z21|2 Re Z2

|z22 + Z2|2 Re(z11 − z12z21
z22+Z2

)
(55)

G = P2

P1a

= 4|z21|2 Re Z1Re Z2

|(z11 + Z1)(z22 + Z2) − z12z21|2 (56)
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For the available power gain, we first compute Thévenin
equivalent voltage Veq and impedance Zeq looking into the
output port of Fig. 5, when the input port is terminated
in a series combination of a voltage source Vs and source
impedance Z1:

Zeq = z22 − z12z21

z11 + Z1
(57)

Veq = z21Vs

z11 + Z1
(58)

Using this Thévenin equivalent network, the maximum
available average power at the output port is attained

when Z2 = °
Zeq, the complex conjugate of Zeq, obtaining

P2a = |z21|2|Vs|2
4|z11 + Z1|2 Re Zeq

(59)

The available power gain is found to be

Ga = P2a

P1a

= |z21|2 Re Z1

|z11 + Z1|2 Re Zeq

(60)

which in conjunction with Eq. (57) gives

Pa = P2a

P1a

= |z21|2 Re Z1

|z11 + Z1|2 Re(z22 − z12z21
z11+Z1

)
(61)

Likewise, we can evaluate the three power gains in terms
of other two-port parameters as follows:

Gp = P2

P1
= |z21|2 Re Z2

|z22 + Z2|2 Re(z11 − z12z21

z22 + Z2
)

= |y21|2 Re Y2

|y22 + Y2|2 Re(y11 − y12y21

y22 + Y2
)

= |h21|2 Re Y2

|h22 + Y2|2 Re(h11 − h12h21

h22 + Y2
)

(62)

G = P2

P1a

= 4|z21|2 Re Z1Re Z2

|(z11 + Z1)(z22 + Z2) − z12z21|2 = 4|y21|2 Re Y1Re Y2

|(y11 + Y1)(y22 + Y2) − y12y21|2
= 4|h21|2 Re Z1Re Y2

|(h11 + Z1)(h22 + Y2) − h12h21|2
(63)

Pa = P2a

P1a

= |z21|2 Re Z1

|z11 + Z1|2 Re(z22 − z12z21

z11 + Z1
)

= |y21|2 Re Y1

|y11 + Y1|2 Re(y22 − y12y21

y11 + Y1
)

= |h21|2 Re Z1

|h11 + Z1|2 Re(h22 − h12h21

h11 + Z1
)

(64)
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