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MATCHED FILTERS rameter t. The corresponding output signal and noise
are so(t) and no(t), respectively.

The history of the matched filter can be traced back to more 2. The system is linear and time invariant.
than half a century ago. In 1940s, due to World War II, radar 3. The criterion of optimization is to maximize the output
became a very important detecting device. To enhance the signal-to-noise power ratio. Since noise no(t) is random,
performance of radar, D. O. North proposed an optimum filter its mean squared value E�n2

o(t)� is used as the output
for picking up signal in the case of white-noise interference noise power.
(1). A little bit later, this technique was called matched filter
by Van Vleck and Middleton (2). Dwork (3) and George (4) Mathematically, this criterion can be written as
also pursued similar work. The filter has a frequency re-
sponse function given by the conjugate of the Fourier trans-
form of a received pulse divided by the spectral density of SNRo = s2

o (t)
E{n2

o(t)}
= maximum (1)

noise. However, the Dwork–George filter is only optimum for
the case of unlimited observation time. It is not optimum if

at a given time t. The form of the matched filter can be de-observations are restricted to a finite time interval. In 1952,
rived by finding the linear time-invariant system impulse re-Zadeh and Ragazzini published the work‘‘Optimum filters for
sponse function h(t) that achieves the maximization of Eq. (1).the detection of signals in noise’’ (5), where they described a
The mathematical derivation process can be described ascausal filter for maximizing the signal-to-noise ratio (SNR)
follows.with respect to noise with an arbitrary spectrum for the case

Since the system is assumed to be linear and time invari-of unlimited observation time, and second for the case of a
ant, the relationship between input signal si(t) and output sig-finite observation interval. Since then, extensive works on
nal so(t) could be written asmatched filters were done in 1950s. A thorough tutorial re-

view paper called ‘‘An introduction to matched filters’’ (6) was
given by Turin. so(t) =

∫ t

−∞
si(τ )h(t − τ ) dτ (2)

In the 1960s, due to rapid developments of digital electron-
ics and digital computers, the digital matched filter has ap-

Similarly, the relationship between input noise ni(t) and out-peared (7–9). Turin gave another very useful tutorial paper
put noise no(t) could also be expressed asin 1976, entitled ‘‘An introduction to digital matched filters’’

(10), in which the class of noncoherent digital matched filters
that were matched to AM signals was analyzed.

At this time, matched filters have become a standard tech-
no(t) =

∫ t

−∞
ni(τ )h(t − τ ) dτ (3)

nique for optimal detection of signals embedded in steady-
Substituting Eqs. (2) and (3) into Eq. (1), the output powerstate random Gaussian noise. The theory of matched filter
SNR can be shown to becan be found in many textbooks (11–13).

In this article, we will briefly discuss the theory and appli-
cation of matched filters. We will start with a continuous in-
put signal case. Then, we will look at the discrete input signal
case. Finally, we will provide some major applications of
matched filters.

SNRo =

∣∣∣∣
∫ t

−∞
si(τ )h(t − τ ) dτ

∣∣∣∣
2

∫ t

−∞

∫ t

−∞
Rn(τ , σ )h(t − τ )h(t − σ ) dτ dσ

(4)

where Rn(�, �) is the autocorrelation function of the inputTHE MATCHED FILTER FOR CONTINUOUS-TIME
noise ni(t) and is given byINPUT SIGNALS

Rn(τ , σ ) = E{ni(τ )no(σ )} (5)As mentioned previously, the matched filter is a linear filter
that minimizes the effect of noise while maximizing the sig-

Now the unknown function h(t) can be found by maximizingnal. Thus, a maximal SNR can be achieved in the output. A
Eq. (4). To achieve this goal from Eqs. (4) and (5), one can seegeneral block diagram of matched-filter system is described
that the optimum h(t) (i.e., the matched-filter case) will de-in Fig. 1. To obtain the matched filter, the following condi-
pend on the noise covariance Rn(�, �). Since h(t) is required totions and restrictions are required in the system:
be time invariance [i.e., h(t � �) instead of h(t, �)], the noise
at least has to be wide-sense stationary [i.e., Rn(t, �) � Rn(t �1. The input signal consists of a known signal si(t) and an
�)]. To obtain the optimum filter, based on the linear systemadditive random noise process ni(t) with continuous pa-
theory (13), Eq. (4) can be rewritten as

SNRo =

∣∣∣∣
∫ ∞

−∞
H( f )S( f )eiωt0 df

∣∣∣∣
2

∫ ∞

−∞
|H( f )|2Pn( f ) df

(6)
Matched filter

h(t)

Output
so(t) + no(t)

Input
si(t) + ni(t)

where H( f) � F [h(t)] is the Fourier transform of the impulseFigure 1. The block diagram of the matched filter in continuous
time. response function h(t) (i.e., the transfer function of the sys-
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tem), S( f) � F [s(t)] is the Fourier transform of the known where C is an arbitrary real positive constant, t0 is the time
of the peak signal output. This last result is one of the reasonsinput signal s(t), � � 2�f is angular frequency, to is the sam-

pling time when SNRo is evaluated, and Pn( f) is the noise why h(t) is called a matched filter since the impulse response
is ‘‘matched’’ to the input signal in the white-noise case.power spectrum density function. To find the particular H( f)

that maximizes SNRo, we can use the well-known Schwarz Based on the preceding discussion, the matched filter theo-
rem can be summarized as follows: The matched filter is theinequality, which is
linear filter that maximizes the output signal-to-noise power
ratio and has a transfer function given by Eq. (12).

In the previous discussion, the problem of the physical re-

∣∣∣∣
∫ ∞

−∞
A( f )B( f ) d f

∣∣∣∣
2

≤
∫ ∞

−∞
|A( f )|2 df

∫ ∞

−∞
|B( f )|2 df (7)

alizability is ignored. To make this issue easier, we will start
with the white-noise case. In this case, the matched filter iswhere A( f) and B( f) may be complex functions of the real vari-
physically realizable if its impulse response vanishes for neg-able f . Furthermore, equality is obtained only when
ative time. In terms of Eq. (15), this condition becomes

A( f ) = kB∗
( f ) (8)

where k is any arbitrary constant and B*( f) is the complex h(t) =
{

0, t < 0

si(t0 − t), t ≥ 0
(16)

conjugate of B( f). By using the Schwarz inequality to replace
the numerator on the right-hand side of Eq. (6) and letting where t0 indicates the filter delay, or the time between when
A( f) � H( f)�Pn( f) and B( f) � S( f)ei�t0/�Pn( f), Eq. (6) becomes the filter begins receiving the input signal and when the max-

imum response occurs. Equation 16 also implies that s(t) � 0,
t � t0, i.e., the filter delay must be greater than the duration
of the input signal. As an example, let us consider the follow-
ing signal corrupted by additive white noise. The known input
signal has the form

SNRo ≤

∫ ∞

−∞
|H( f )|2Pn( f ) df

∫ ∞

−∞

|S( f )|2
Pn( f )

df∫ ∞

−∞
|H( f )|2Pn( f ) df

(9)

In addition, because Pn( f) is a non-negative real function, Eq.
(9) can be further simplified into si(t) =

{
Bebt

, t < 0, B, b > 0

0, t ≥ 0
(17)

Substituting Eq. (17) into Eq. (16), the impulse response ofSNRo ≤
∫ ∞

−∞

|S( f )|2
Pn( f )

df (10)
matched filter h(t) is

The maximum SNRo is achieved when H( f) is chosen such
that equality is attained. This occurs when A( f) � kB*( f), that
is,

h(t) =
{

Beb(t0−t)
, t ≥ t0

0, t < t0

(18)

The physical realizability requirement can be simply satisfied
by letting t0 � 0. The simplest choice is t0 � 0 so that h(t) has

H( f )
√

Pn( f ) = kS∗
( f )e−iωt0√
Pn( f )

(11)

a very simple form
Based on Eq. (11), the transfer function of the matched filter
H( f) can be derived as

h(t) =
{

Be−bt
, t ≥ 0

0, t < 0
(19)

H( f ) = k
S∗( f )

Pn( f )
e−iωt0 (12)

The output signal so(t) of the system can be obtained by sub-
stituting Eqs. (17) and (19) into Eq. (2). The calculated result

The corresponding impulse response function h(t) can be eas-
of so(t) is

ily obtained by taking the inverse Fourier transform of Eq.
(12), that is,

h(t) =
∫ ∞

−∞
H( f )eiωt df =

∫ ∞

−∞
k

S∗( f )

Pn( f )
eiw(t−t0 ) df (13) so(t) =




B2

2b
ebt , t < 0

B2

2b
e−bt, t > 0

(20)

In the matched-filter case, the output SNRo is simply ex-
To give an intuitive feeling about the results above, Figs.pressed as
2(a)–2(c) illustrate the input signal si(t), matched filter h(t),
and output signal so(t). From Fig. 2(c), indeed, one can get the
maximum signal at time t � t0 � 0. Note that, in Fig. 2, we

max{SNRo} =
∫ ∞

−∞

|S( f )|2
Pn( f )

df (14)

have assumed the following parameters: B � b � 1. The phys-
For the case of white noise, the Pn( f) � N0/2 becomes a con- ical implementation of this simple matched filter can be
stant. Substituting this constant into Eq. (13), the impulse achieved by using a simple RC circuit as illustrated in Fig. 3,
response of the matched filter has a very simple form in which the time constant of the RC circuit is RC � 1.

In many real cases, the input noise may not be white noise
h(t) = Csi(t0 − t), (15) and the designed matched filter may be physically unrealiza-



412 MATCHED FILTERS

ble. Now, let us look at another example with color noise (11).
We assume that the input signal si(t) has a form of

Input OutputR

C so(t) + no(t)si(t) + ni(t)

Figure 3. Implementation of the discussed example in text using a
si(t) =

{
e−t/2 − e−3t/2, t > 0

0, t < 0
(21)

RC circuit. This figure shows that the continuous time matched filter
can be physically implemented by using a simple RC circuit.and the input noise is wide-sense stationary with power spec-

tral density

input signal can be shown to bePn( f ) = 4
1 + 4(2π f )2

(22)

To obtain the matched filter, first, we take the Fourier trans- Si(2πf ) = 4
(1 + i4πf )(3 + i4πf )

(23)

form of input signal si(t). Based on Eq. (21), the spectrum of

Substituting Eqs. (22) and (23) into Eq. (12), the transfer
function of matched filter H( f) can be derived as

H( f ) = k
S∗( f )

Pn( f )
e−iωt0

= k
1 + i4πf
3 − i4πf

e−iωt0

(24)

To simplify the expression, we let the arbitrary constant
k � 1 for the later derivations. By taking the inverse Fourier
transform of Eq. (24), the impulse response of the matched
filter is

h(t) = −δ(t − t0) + 2e(t−t0 )3/2u(t0 − t) (25)

where u(t) is the unit step function. Note that this filter is not
physically realizable because it has a nonzero value for t �
0. To solve this problem, one method is to take a realizable
approximation by letting h(t) � 0 for t � 0. In this case, the
approximated matched filter ha(t) can be expressed as

ha(t) = h(t)u(t)

= −δ(t − t0) + 2e(t−t0 )3/2u(t0 − t)u(t)
(26)

Then, the output spectrum So( f) of the output signal so(t) due
to this approximated matched filter is

So( f ) = Si( f )Ha( f ) (27)

where Ha( f) is the Fourier transform of ha(t). Again, by taking
the inverse Fourier transform of Eq. (27), the output signal
so(t) can be derived as

so(t) = − e−3t0/2e−t/2u(t) + 2
3 e−3(t0+t)/2u(t)

− 1
3 e−3(t0−t)/2u(−t) + 1

3 e−3(t0−t)/2
(28)

Again, to have an intuitive feeling about this example, Fig. 4
illustrates the input signal si(t), the ideal physically unrealiz-
able matched filter h(t), approximated realizable matched fil-
ter ha(t), and the output signal so(t) obtained with the approxi-
mated filter.
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(c) For the purpose of convenience, we assume that t0 � 1 for
these plots. From Fig. 4(d), one can see that, indeed, the out-Figure 2. A simple matched-filter example for white noise and con-
put signal has a maximum value at t � t0 � 1. However, theretinuous time. (a) Input signal. (b) Matched filter. (c) Output signal.
is no guarantee that this approximated filter is the optimumThis figure provides an intuitive feeling about using matched filter

for continuous time signal processing. filter. In fact, it is shown that, a better output SNR can be
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achieved for this problem if the prewhitening technique is em-
ployed for the signal detection (11).

Before the end of this section, we want to point out that,
in practical terms, it is impossible to design an optimal
matched filter for any signal which has an infinite time dura-
tion because it requires infinite delay time. However, the
above examples are very fast exponential decaying signal, for
which one can make the delay time long enough so that opti-
mality can be approached to any desired degree. In other
words, the practically ‘‘realizable’’ matched filter only exists
for a time limited function. From this point of view, mathe-
matically speaking, the above two examples both have infinite
time duration. Thus, even for the second example, it becomes
unrealizable. However, since there are extremely fast expo-
nentially decaying signals, optimality can be achieved to any
desired degree. In this sense, example 2 can be treated as
‘‘realizable’’ matched filter. Finally, since t0 represents the de-
lay time of the filter in the above examples, in practice, it
must be selected longer than the time duration of the target
signal. For the sole purpose of simplicity, in the above exam-
ples, the simple values (that are not strict in the mathemati-
cal sense) of t0 are selected.

THE MATCHED FILTER FOR DISCRETE-TIME INPUT SIGNALS

In recent years, with rapid developments of the digital com-
puters, digital signal processing becomes more and more pow-
erful. Some major advantages of using digital signals as com-
pared to their analog forms are the high accuracy, high
flexibility, and high robustness. Right now, the matched filter
can be easily implemented with the digital computer in real
time. To implement the filter with digital computer, one has
to deal with the discrete signal instead of continuous signal.
In this case, for the same linear time invariant system as de-
scribed in Fig. 1, the relationship between the output signal
so(t) and input signal si(t) has changed from the continuous-
time form Eq. (2) to the following discrete time form (11):

so j =
j∑

k=−∞
hj−ksik (29)

where sik represents the input signal at time k (k � 0, �1, �2,
. . .), hk is the discrete impulse response function of the lin-
ear, time-invariant matched filter, and soj is the corresponding
discrete output signal at time j. In other words, the integra-
tion in Eq. (2) has been replaced by the summation in Eq.
(29). Similarly, in the discrete-time case, the Eq. (3) is rewrit-
ten as
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Figure 4. Example of a matched filter with color noise for a continu-
no j =

j∑
k=−∞

hj−knik (30)

ous-time signal. (a) Input signal. (b) Ideal matched filter. (c) Approxi-
mated matched filter. (d) Output signal with approximated matched Again, our objective is to find the optimum form of matched
filter. This figure illustrates how to deal with color noise with filter so that the output signal-to-noise power ratio will be
matched filter. maximum at some time q. Mathematically, it can be written

as

SNRo = s2
oq

E{n2
oq}

= maximum (31)
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To find hk, we let maximim SNR, symbolized as SNRomax, equal The input noise is additive white noise with autocorrelation
functiona constant 1/�. Since SNRomax represents the maximum power

ratio, it has to be larger than 0, i.e., � � 0. Substituting this
assumption into Eq. (31), one can obtain

Rn(k) =



No

2
= 1, k = 0

0, k 
= 0
(41)

SNRo = s2
oq

E{n2
oq}

≤ SNRomax = 1
α

(32)

Substituting Eqs. (40) and (41) into Eq. (39), we have
Equation (32) can be rewritten as

E{n2
oq} − αs2

oq = C ≥ 0 (33) hk = si(q−k) =
{

eq−k, k ≥ q

0, k < q
(42)

where C is a positive real constant and the equality holds
Substituting Eqs. (40) and (42) into Eq. (29), the output sig-only for the optimum matched filter. To find this matched fil-
nal soj can be derived aster, one can substitute Eqs. (29) and (30) into Eq. (33). Then,

one can get

so j = 1
1 − e2

e−| j|, j = 0,±1,±2, . . . (43)

Again, to have an intuitive feeling about this result, Figs.

q∑
k=−∞

q∑
j=−∞

Rn(k − j)hq−khq− j − α

∣∣∣∣∣
q∑

k=−∞
sikhq−k

∣∣∣∣∣
2

= C′ ≥ 0

(34)
5(a), 5(b), and 5(c) illustrate the discrete input signal sik, the
discrete matched filter hk, and the discrete output signal soj.where Rn(k � j) is the autocorrelation function of the input
To get the simplest form in Fig. 5, we assumed q � 0.noise ni and C’ is another positive constant. Note that, in the

Equation (36) only deals with the physically realizableprocess of deriving Eq. (34), we already assume that the input
case. In general, Eq. (36) will be written as (11)noise is at least wide-sense stationary. Under this assump-

tion, the following condition holds:

Rn(k − j) = Rn( j − k) = E{nknj} (35)

∞∑
j=−∞

Rn(k − j)hq− j = sik (44)

Since the equality holds in Eq. (34) when hk is an optimum
In Eq. (44), we have replaced the limit q by �. To get thematched filter regardless of the detail forms of input signal
general form of a discrete matched filter for nonwhite noise,and noise, it can be shown that the following equation can be
we take the z transform on both size of Eq. (44) and use thederived under this condition (11):
convolution theorem for z transforms. Then, Eq. (44) can be
shown to be (14)q∑

j=−∞
Rn(k − j)hq− j = sik (36)

z−qPn(z)H(1/z) = Si(z) (45)

To make our discussion easy to be understood, we start with
wherethe simple white-noise case. In this case, the autocorrelation

function can be simply written as

Rn(k) =
{

No/2, k = 0

0, k 
= 0
(37)

Substituting Eq. (37) into Eq. (36), we obtain

Pn(z) =
∞∑

k=−∞
Rn(k)z−k

H(z) =
∞∑

k=−∞
hkz−k

Si(z) =
∞∑

k=−∞
sikz−k

(46)

N0

2
hq−k = sik (38)

represent the power density spectrum, z transform of a dis-To get a simpler expression of hk, we let l � q � k. Then, Eq.
crete matched filter, and z transform of discrete input signal.(38) can be rewritten as
To obtain the z transform of a discrete matched filter H(z),
Eq. (45) is rewritten ash1 = 2

No
si(q−l) (39)

Comparing Eq. (39) with Eq. (15), one can see that Eq. (39) is H(z) = Si(1/z)

Pn(z)
z−q (47)

exactly the discrete form of Eq. (19).
As an example, let us consider a discrete input signal sik to

In deriving Eq. (47), we have used a property of power densitybe given by
spectrum, that is, Pn(z) � Pn(1/z). Theoretically speaking, the
discrete matched filter in the time domain (that is, the im-
pulse response function of discrete matched filter) can be ob-
tained by taking the inverse z transform of Eq. (47) (14), that

sik =
{

ek, k ≤ 0

0, k > 0
(40)
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is

hk = 1
2πi

∮
�

H(z)zk−1 dz = 1
2πi

∮
�

Si(1/z)

Pn(z)
z−qzk−1 dz (48)

where � represents a counterclockwise contour in the region
of convergence of H(z) enclosing the origin. Note that, similar
to the continuous-time case, the discrete matched filter de-
fined by Eqs. (47) and (48) may not be realizable for arbitrary
input signal and noise because hk will not vanish for negative
values of the index k.

To implement the color noise effectively, the prewhitening
technique is used (11). In this approach, the input power den-
sity spectrum Pn(z) is written as the multiplication of two
facts P�

n (z) and P�
n (z), that is,

Pn(z) = P+
n (z)P−

n (z) (49)

where P�
n (z) has all of the poles and zeros of Pn(z) that are

inside the unit circle and P�
n (z) has all the poles and zeroes of

Pn(z) that are outside the unit circle. By this definition, it is
easy to show that

P+
n (z) = P−

n (1/z) (50)

Note that, in the time domain, P�
n (z) corresponds to a discrete-

time input signal that vanishes for all times t � 0. Similarly,
P�

n (z) corresponds to a discrete-time input signal that van-
ishes for all time t � 0. This property can be easily proven in
the following way. Assume that nk is a discrete-time function
that vanishes on the negative half-line; that is,

nk = 0, k < 0 (51)

If nk is absolutely summable, that is, if

∞∑
k=−∞

| fk| =
∞∑

k=0

| fk| < ∞ (52)

then, the z transform of this discrete function nk becomes

N(z) =
∞∑

k=−∞
nkz−k =

∞∑
k=0

nkz−k (53)

From Eq. (53), one can see that the function N(z) exists every-
where when �z� � 1. Hence, the poles of N(z) will all be inside
the unit circle. Thus, P�

n (z) corresponds to a discrete-time in-
put signal that vanishes for all time t � 0. Similarly, it can
be shown that P�

n (z) corresponds to a discrete-time input sig-
nal that vanishes for all time t � 0. Assume Hpw(z) is the
prewhitening filter. Based on the definition of prewhitening
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Figure 5. An example of matched filter for the white noise in dis- (11)
crete time. (a) Discrete input signal. (b) Discrete matched filter. (c)
Discrete output signal. This figure gives an intuitive feeling about [

P+
n (z)Hpw(z)

][
P−

n (z)Hpw(1/z)
] = 1 (54)

using matched filter for discrete time signal processing.

From Eq. (54), one can conclude that the prewhitening filter
is

Hpw(z) = 1
P+

n (z)
(55)
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ing about the time signal detection by a matched filter, let
us consider the following simple example. For the purpose of
convenience, the ideal input signal is assumed to be a normal-
ized sinc function, that is, sinc(t) � sin(�t)/�t, as shown in
Fig. 7(a). This ideal signal is embedded into an additive
broadband white noise. The corrupted signal is shown in Fig.

Unit
circle
1

x      x       x
e–α eα

iy

7(b). Figure 7(c) shows the system output when this corrupted
Figure 6. Pole locations of the power spectrum density.

Because P�
n (z) corresponds to a discrete-time input signal that

vanishes for all time t � 0, the impulse response hpwk of this
prewhitening filter will vanish for k � 0. Hence, the prewhit-
ening filter Hpw(z) is physically realizable. For example, let us
consider a color noise with power density spectrum

Pn(z) = N0

2
e2α

(eα − z−1)(eα − z)
, α > 0 (56)

Equation (56) shows that Pn(z) contains poles both inside and
outside the unit circle. As discussed in the early part of this
section, this Pn(z) can be written as the multiplication of
P�

n (z) and P�
n (z). For the purpose of convenience and symme-

try, we let

P+
n (z) =

√
No

2
eα

eα − z−1

P−
n (z) =

√
No

2
eα

eα − z

(57)

Based on Eq. (57), it is easy to show that P�
n (z) has a pole at

z � e�� (11). Since � � 0, z � e�� � 1. In other words, this
pole is inside the unit circle. Similarly, P�

n (z) has a pole at
z � e� that is a real number greater than unity. Figure 6
illustrates these pole locations of above power spectral den-
sity Pn(z) in the complex plane. In the figure, we assume that
z � x � iy. For this particular example, the poles are on the
real axis.

When applying this prewhitening technique to the discrete
matched filter, Eq. (47) will be rewritten as

H(z) = 1
P+

n (z)

(
Si(1/z)

P−
n (z)

z−q
)

(58)

Equation (58) is the multiplication of two terms. The first
term is the prewhitening filter and the second term is the
remainder of the unrealizable matched filter. Note that this
multiplication is equivalent to put two linear systems in tan-
dem. Similar to the continuous-time case, this remaining un-
realizable filter can be made realizable by throwing away the
part that does not vanish for negative time.

APPLICATIONS OF A MATCHED FILTER

As mentioned in the first part of this article, the major appli-
cation of the matched filter is to pick up the signal in a noisy
background. As long as the noise is additive, wide-sense sta-
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tionary, and the system is linear and time invariant, the
matched filter can provide a maximum output signal-to-noise Figure 7. Results of the matched filter acting on an input signal
power ratio. The signal can be a time signal (e.g., radar sig- with sinc function embedded in white noise. (a) Ideal input signal. (b)

Signal with noise. (c) Matched-filter output.nal) or spatial signals (e.g., images). To have an intuitive feel-
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signal passes through the matched filter. From Fig. 7(c), one put in the spectrum domain, that is, (p, q) domain, becomes
can see that the much better signal-to-noise power ratio can
be achieved by applying matched filter for the signal detection T(p, q)H(p, q) = K ′T(p, q)S∗(p,q) (63)
as long as the noise is additive at least wide-sense station-
ary noise. Assume that the final system output is g(x�, y�), where (x�,

Besides applying matched filters for the time-signal detec- y�) are the spatial coordinates in the output spatial domain.
tion (such as the radar signal previously mentioned), they can Based on the discussion in the section titled ‘‘The Matched
also be used for spatial signal detection (15–17). In other Filter for Continuous-Time Input Signals,’’ g(x�, y�) can be ob-
words, we can use a matched filter to identify specific targets tained by taking the inverse Fourier transform of Eq. (63),
under the noisy background. Thousands of papers have been that is,
published in this field. To save space, here, we just want to
provide some basic principles and simple examples of it. Since
spatial targets, in general, are two-dimensional signals, the g(x′, y′) =

∫ +∞

−∞

∫ ∞

−∞
T(p, q)S∗(p,q)ei(px′+qy′ ) dp dq (64)

equations developed for the one-dimensional time signal
needs to be extended into the two-dimensional spatial signal.

In Eq. (64), if the input unknown function t(x, y) is the sameNote that when matched filter is applied to the 2-D spatial
as the prestored function s(x, y), Eq. (64) becomes(or image) identification, this filtering process can be de-

scribed simply as a cross-correlation of a larger target image
(including the noisy background) with a smaller filter kernel.
To keep the consistency of the mathematical description, a
similar derivation process (used for the 1-D time-signal case)
is employed for the 2-D spatial signal. Assume that the target

g(x′, y′) =
∫ +∞

−∞

∫ ∞

−∞
S(p,q)S∗(p,q)ei(px′+qy′ ) dp dq

=
∫ +∞

−∞

∫ ∞

−∞
|S(p,q)|2ei(px′+qy′ ) dp dq

(65)

image is a two-dimensional function s(x, y) and this target
image is embedded into a noisy background with noise distri-

In this case, the system output g(x�, y�) is the Fourierbution n(x, y). Thus, the total detected signal f (x, y) is
transform of the power spectrum �S(p, q)�2, which is an en-
tirely positive real number so that it will generate a big out-f (x, y) = s(x, y) + n(x,y) (59)
put at the original point (0, 0). Notice that, in recent years,
due to the rapid development of digital computers, most 2-D

Similar to the one-dimensional time signal case, if f (x, y) is a filtering can be carried out digitally at relatively fast speed.
Fourier-transformable function of space coordinates (x, y) and However, to have an intuitive feeling about 2-D filtering, an
n(x, y) is an additive wide-sense stationary noise, the matched optical description about this filtering process that was widely
filter exists. It can be shown that H(p, q) has a form of (15) used in the earlier stage of image identification (15) is pro-

vided. Optically speaking, the result described by Eq. (65) can
be explained in the following way. When the input target t(x,
y) is same as the stored target s(x, y), all the curvatures of

H(p,q) = k
S∗(p,q)

N(p,q)
(60)

the incident target wave are exactly canceled by the matched
where S*(p, q) is the complex conjugate of the signal spec- filter. Thus, the transmitted field, that is, T(p, q)S*(p, q), in
trum, N(p, q) is the spectral density of the background noise, the frequency domain, is a plane wave (generally of nonuni-
k is a complex constant, and (p, q) are corresponding spatial form intensity). In the final output spatial domain, this plane
angular frequencies. Mathematically, S(p, q) and N(p, q) are wave is brought to a bright focus spot g(0, 0) by the inverse
expressed as Fourier transform as described in Eq. (65). However, when

the input signal t(x, y) is not s(x, y), the wavefront curvature
will in general not be canceled by the matched filter H(p, q)
in the frequency domain. Thus, the transmitted light will not
be brought to a bright focus spot in the final output spatial
domain. Thus, the presence of the signal s(x, y) can conceivably
be detected by measuring the intensity of the light at the focal
point of the output plane. If the input target s(x, y) is not lo-
cated at the center, the output bright spot simply shifts by a
distance equal to the distance shifted by s(x, y). Note that this

S(p,q) =
∫ +∞

−∞

∫ ∞

−∞
s(x, y)e−i(px+qy) dx dy

N(p,q) =
∫ +∞

−∞

∫ ∞

−∞
n(x,y)e−i(px+qy) dx dy

F(p,q) =
∫ +∞

−∞

∫ ∞

−∞

[
s(x, y) + n(x, y)

]
e−i(px+qy) dx dy

= S(p,q) + N(p,q)

(61)

is the shift-invariant property of the matched filter. The pre-
ceding description can also mathematically be shown byFor the purpose of simplicity, we assume that the input
Schwarz’s inequality. Based on the cross-correlation theoremnoise n(x, y) is white noise. In this case, Eq. (60) is reduced to
of Fourier transform (17), Eq. (64) can also be written in thethe simpler form
spatial domain as

H(p, q) = k′S∗(p,q) (62)

where k� is another constant. Now, assume that there is an
g(x′, y′) =

∫ +∞

−∞

∫ ∞

−∞
t(x, y)s∗(x − x′, y − y′) dx dy (66)

input unknown target t(x, y). Then, the corresponding spec-
trum is T(p, q). When this input target passes through the which is recognized to be the cross-correlation between the

stored target s(x, y) and the unknown input target t(x, y). Bymatched filter H(p, q) described by Eq. (62), the system out-
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intensity function is defined as

∣∣∣∣
∫ +∞

−∞

∫ ∞

−∞
t(x, y)s∗(x − x′, y − y′) dx dy

∣∣∣∣
2

∫ +∞

−∞

∫ ∞

−∞
|t(x, y)|2 dx dy

∫ +∞

−∞

∫ ∞

−∞
|s(x, y)|2 dx dy

(70)

Based on Eq. (69), we obtain

∣∣∣∣
∫ +∞

−∞

∫ ∞

−∞
t(x, y)s∗(x − x′, y − y′ ) dx dy

∣∣∣∣
2

∫ +∞

−∞

∫ ∞

−∞
|t(x, y)|2 dx dy

∫ +∞

−∞

∫ ∞

−∞
|s(x, y)|2 dx dy

≤ 1 (71)

with the equality if and only if s(x, y) � t(x, y). Thus, one can
conclude that the normalized correlation intensity function
has a maximum value 1 when the unknown input target t(x,
y) is same as the stored target s(x, y). In other words, if there
is a 1 detected in the normalized correlation intensity func-
tion, we know that the unknown input target is just our
stored target. Therefore, this unknown target is recognized.

Again, to have an intuitive feeling about the pattern recog-
nition with matched filter, let us look at the following exam-
ple. Figure 8(a) shows a triangle image that is used to con-

Figure 8. Autocorrelation results of the matched filter application to struct the matched filter. Mathematically speaking, this
pattern recognition. (a) Stored training image. (b) Absolute value of image is s(x, y). Then, the matched filter S*(p, q) is synthe-
the matched filter. (c) Unknown input target. (d) Autocorrelation in-
tensity distribution. (e) Three-dimensional surface profile of autocor-
relation intensity distribution. This figure shows that there is a sharp
correlation peak for autocorrelation.

applying Schwarz’s inequality into Eq. (66), we have

∣∣∣∣
∫ +∞

−∞

∫ ∞

−∞
t(x, y)s∗(x − x′, y − y′ ) dx dy

∣∣∣∣
2

≤
∫ +∞

−∞

∫ ∞

−∞
|t(x, y)|2 dx dy

∫ +∞

−∞

∫ ∞

−∞
|s(x − x′, y − y′)|2 dx dy

(67)

with the equality if and only if t(x, y) � s(x, y). Because the
integral limit is �� in Eq. (67), by letting x � x � x�, y �
y � y�, we have

∫ +∞

−∞

∫ ∞

−∞
|s(x − x′, y − y′)|2 dx dy =

∫ +∞

−∞

∫ ∞

−∞
|s(x, y)|2 dx dy

(68)

Substituting Eq. (68) into Eq. (67), we have

∣∣∣∣
∫ +∞

−∞

∫ ∞

−∞
t(x, y)s∗(x − x′, y − y′ ) dx dy

∣∣∣∣
2

≤
∫ +∞

−∞

∫ ∞

−∞
|t(x, y)|2 dx dy|

∫ +∞

−∞

∫ ∞

−∞
|s(x, y)|2 dx dy (69)

Figure 9. Cross-correlation results of the matched filter applied to
pattern recognition. (a) Stored training image. (b) Absolute value of

with the equality if and only if t(x, y) � s(x, y). To recognize the matched filter. (c) Unknown input target. (d) Cross-correlation
the input target, we can use the normalized correlation inten- intensity distribution. (e) Three-dimensional surface profile of cross-
sity function as the similarity criterion between the unknown correlation intensity distribution. This figure shows that there is no

sharp correlation peak for cross correlation.input target and the stored target. The normalized correlation
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11. J. B. Thomas, An Introduction To Communication Theory andsized based on this image. Figure 8(b) shows the absolute
System, New York: Springer-Verlag, 1988, p. 202.value of this matched filter. When the unknown input target

12. J. H. Karl, An Introduction to Digital Signal Processing, Newt(x, y) is the same triangle image as shown in Fig. 8(c), Fig.
York: Academic Press, 1989, p. 217.8(d) shows the corresponding autocorrelation intensity distri-

13. L. W. Couch, Digital and Analog Communication Systems, Newbution on the output plane. Figure 8(e) depicts the corre-
York: Macmillan, 1990, p. 497.sponding three-dimensional surface profile of the autocorrela-

14. L. B. Jackson, Digital Filters and Signal Processing, Boston:tion intensity distribution. From this figure, one can see that,
Kluwer Academic Publishers, 1989, p. 34.indeed, there is a sharp correlation peak in the correlation

15. A. Vander Lugt, Signal detection by complex spatial filtering,plane. However, if the unknown input target t(x, y) is not the
IEEE Trans. Inf. Theory, IT-10, 139–145, 1964.same image used for the matched-filter construction, the cor-

16. SPIE Milestone Series on Coherent Optical Processing, edited byrelation result is totally different. As an example, Figs. 9(a)
F. T. S. Yu and S. Yin (eds.), Bellingham, WA: SPIE Optical Engi-and 9(b) show the same stored image and matched filter. Fig-
neering Press, 1992.ure 9(c) shows a circular image used as the unknown input

17. S. Yin, et al., Design of a bipolar composite filter using simulatedtarget. Figures 9(d) and 8(e) illustrate the cross-correlation
annealing algorithm, Opt. Lett. 20: 1409–1411, 1995.intensity distribution and corresponding three-dimensional

18. F. T. S. Yu, Optical Information Processing, New York: Wiley-surface profile. In this case, there is no sharp correlation
Interscience, 1983, p. 10.peak. Therefore, from the correlation peak intensity, one can

19. X. Yu, I. Reed, and A. Stocker, Comparative performance analysisrecognize the input targets. In other words, one can tell
of adaptive multispectral detectors, IEEE Trans. Signal Process.,whether the unknown input target is the stored image or not.
41, 2639, 1993.Before the end of this section, we would like to point out that,

besides the 2-D matched filter, in recent years, 3-D (spatial-
SHIZHUO YINspectral) matched filters were also developed. Due to space
FRANCIS T. S. YUlimitations, we can not provide a detail description about this
University Park, PAwork. Interested readers are directed to papers such as the

one written by Yu et al. (19).
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