
MAJORITY LOGIC

Majority Logic is used to implement a majority decision
mechanism. In particular, an Majority Logic Block (MLB)
can be regarded as a black box that receives possibly dif-
ferent data values at its inputs, and gives, at its output,
the data value present on the majority of its inputs. For in-
stance, if a MLB receives the three input data “1”, “1” and
“0”, it gives the output data “1”.

MLBs are generally used as component blocks of dig-
ital electronic systems devoted to critical operations, like
control systems of nuclear plants, flight control systems of
aircrafts, speed control systems of trains, onboard control
systems of satellites, etc. The correct uninterrupted opera-
tion of these systems is mandatory because their malfunc-
tion could cause catastrophic consequences, such as loss of
human life or huge economical loss. To avoid such losses,
the system must be designed to guarantee its correct be-
havior (that is, the behavior expected in the fault-free case)
despite the occurrence of internal faults.

In fact, electronic systems are prone to faults. Faults oc-
cur during the system’s manufacturing process and during
its operation. For instance, in the presence of a high elec-
trical field, high current density within a circuit metal line
might cause the line to break. This might make the faulty
circuit provide an output datum different from the correct
one, for example, a “0” rather than a “1”. If the faulty signal,
for instance, is a signal that activates the alarm device of
a train’s speed control system when equal to “1”, it is obvi-
ous that a faulty “0” may cause the whole system to become
ineffective with possible catastrophic consequences.

Unfortunately, faults of this kind (and faults of a dif-
ferent kind) might occur within a digital electronic sys-
tem. The likelihood of their occurrence is reduced by using
proper electronic components, but ensuring that they never
occur is impractical.

Hence, if the correct operation of a system is crucially
important, some precautions must be taken to avoid the
catastrophic consequences that faults might produce. The
techniques used to reach this goal are generally called
fault-tolerant techniques.

In particular, to guarantee that a system tolerates its
possible internal faults (that is, to ensure that no system
malfunction occurs because of such faults), redundancy is
used. As an example, to guarantee that a train’s speed con-
trol system tolerates faults in the circuit activating the
alarm device, redundant copies of such a circuit are used.
If these redundant copies are properly isolated from one
another, a single fault during the system operation affects
only one copy, hence only this copy provides incorrect (or
faulty) output data, whereas the other copy (or copies) gives
correct output data.

However, it should be obvious that redundancy alone is
not sufficient to ensure that a system tolerates its possi-
ble internal faults. To reach this goal, we need some deci-
sion criterion that allows us to determine which data value,
among those present at the output of the redundant copies,
can be regarded as correct, and which one(s) as incorrect.
This decision criterion normally is the majority criterion,
implemented by an MLB.

Of course, three is the minimum number of copies of the
same circuit (or, more generally, module) that we must have
to allow the MLB’s selection of the majority data value.

The use of MLBs and redundant copies of the same mod-
ule characterize the fault-tolerant N-Modular Redundancy
(NMR) systems where, as previously introduced, N must be
≥ 3. The idea to use N-Modular Redundancy and majority
logic blocks (also called majority “voting blocks”, or “vot-
ers”) to achieve fault-tolerance was first introduced in (2)
and has been adopted for several critical applications, such
as space exploration missions and nuclear reactor protec-
tion (3, 4).

In the particular case where N = 3, these systems are
called Triple Modular Redundancy (TMR) systems. Hence
a TMR system consists of: (1) three copies of the original,
non fault-tolerant module, that concurrently process the
same information (where a module is simply a circuit, a
gate, or even a microprocessor, depending on system’s re-
lated choices), (2) n MLBs (where n is the number of out-
puts of the replicated module), each comparing bit-by-bit
the corresponding outputs of the three replicated modules,
and producing at its output the majority data value among
those at its inputs (Figure 1). Moreover, suitable techniques
are generally adopted at the system level to avoid exhaust-
ing all of the system’s redundancy as modules get succes-
sively faulty.

Obviously, MLBs play a critical role in the fault-tolerant
systems described. In fact, the correct operation of the
whole system is compromised if an MLB becomes faulty.
For instance, it is obvious that, if the output of an MLB is
affected by a stuck-at “1” fault (for instance, because of a
short between an output line and the circuit power supply),
the faulty MLB always gives an output “1”, regardless of
the data values at its inputs (that is, also when the data
value on the majority of its inputs is a “0”). Similar prob-
lems may occur because of different kinds of faults possibly
affecting the input (5), internal and output lines/nodes of
a MLB.

In the remainder of this article we consider the problem
of designing MLBs for TMR and NMR systems and the case
of faulty MLBs.

MAJORITY LOGIC FOR TRIPLE MODULAR
REDUNDANCY SYSTEMS

As previously introduced, an MLB can be regarded as a
black box that must produce at its output the datum value
present on the majority of its inputs. To distinguish such
a majority datum value, an MLB must have at least three
inputs. When this is the case, the MLB must satisfy the
truth table shown in Table 1, where Z denotes the output
of the MLB, and X = (X1, X2, X3) is the MLB input vector.

Hence, the MLB can be implemented (at the logic level)
by a two-level NAND-NAND (Figure 2) or NOR-NOR (Fig-
ure 3) circuit. Equivalently, a two level AND-OR, or OR-
AND implementation can be considered (6).

Of course, the electrical level implementations of these
MLBs depend on the technology adopted. As a significant
example, if the Complementary MOS (CMOS) technology
is used, the NAND-NAND majority logic block can be im-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.



2 Majority Logic

Figure 1. Representation of a Triple
Modular Redundancy (TMR) system.

Figure 2. NAND-NAND logical implementation of a majority logic
block for a TMR system.

Figure 3. NOR–NOR logical implementation of a majority logic
block for a TMR system.

plemented by means of the circuit shown in Figure 4. Al-
ternatively, the circuit shown in Figure 5, for instance, can
be used (6). Other possible electrical implementations of
MLBs for TMR systems (Figure 6 and Figure 7) were pro-
posed in (7, 8). Different from the conventional MLB re-

alizations considered up to now, these MLBs produce an
output error message in case of internal faults that make
them give an incorrect majority output datum value. The
behavior of these circuits is described later while dealing
with the problems due to faults affecting MLBs.
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Figure 4. Example 1 of a possible CMOS implemen-
tation of the NAND–NAND majority logic block in Fig-
ure 2.

Table 1. Truth Table of a Three-Input Majority Logic Block

X1 X2 X3 Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

As regards the number of errors in X tolerated by a gen-
eral TMR system, it is evident that, if only one of the MLB
input data is incorrect (that is either X1, X2, or X3), the MLB
produces the correct output datum value. Instead, if two
input data are incorrect, the MLB produces the incorrect
output datum value. Hence, a TMR system tolerates only a
single error on the corresponding outputs of the replicated
modules. If a higher number of errors must be tolerated (be-
cause of system level requirements) an NMR system with
n MLBs (where n is the number of outputs of the replicated
module), each with N inputs (N > 3), must be used.

MAJORITY LOGIC FOR N MODULAR REDUNDANCY
SYSTEMS

Tto tolerate E errors in the vector X = (X1, X2,. . . , XN) given
to the input of an MLB of an NMR system, N and E must
satisfy the following equation (9):

N ≥ 2 · E + 1.

In fact, when this is the case, the number of erroneous bits
E is smaller than the number of correct bits (N − E).

Barbour and Wojcik (6) added an upper bound to the
value of N of an NMR system tolerating E errors. In par-
ticular, they transformed Eq. (1) into:

2 · E + 1 ≤ N ≤ (E + 1)2.

Moreover, they proposed possible two-level implementa-
tions of MLBs for NMR systems, whose values of N and E
satisfy Eq. (2). These are the implementations most widely
used for MLBs of general NMR systems.

In particular, the first level of the proposed MLBs con-

sists of ( N

K
) AND (or OR, or NAND, or NOR) gates, where

K is a parameter [called a “grouping parameter” (6)] that
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Figure 5. Example 2 of a possible CMOS implementation of the NAND-NAND majority logic block in Figure 2.

Figure 6. Electrical implementation of the majority logic block
giving an output error message in case of internal faults affecting
its correct operation proposed in (7).

must satisfy the following condition:

E + 1 ≤ K ≤ N − E.

The inputs to these first level gates are the ( N

K
) combina-

tions of K elements out of the N elements of the MLB input
vector X.

The second level of the proposed MLBs consists of a
simple OR (or AND, or NAND, or NOR) gate, depending
on whether AND (or OR, or NAND, or NOR, respectively)

gates are used at the first level.
As an example, the general NAND-NAND implementa-

tion of such an MLB, with generic “grouping parameter” K,
is shown in Figure 8. We can easily verify that, if N = 3 and
K = 2, this implementation equals that reported in Figure
2.

The derived electrical level implementations of these
MLBs are straightforward.

An alternative implementation of MLBs for NMR sys-
tems was proposed in (10). These MLBs (Figure 9) are suit-
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Figure 7. Electrical implementation of
the majority logic block giving an output
error message in case of internal faults af-
fecting its correct operation proposed in (8).

Figure 8. NAND-NAND logical implementation of a ma-
jority logic block for an NMR system with “grouping pa-
rameter” = K.

able for NMR dynamic systems, that is, in systems where,
differing from the conventional cases considered until now,
the number of processed replicated modules (hence the
number of inputs of the MLBs) can be dynamically changed
during the system’s operation.

PROBLEMS IN CASE OF FAULTY MAJORITY LOGIC

As previously mentioned, if the MLB of a TMR (NMR) sys-
tem becomes faulty, it might produce at its output an in-
correct majority datum value, hence making the adoption
of the TMR (NMR) fault-tolerant technique useless.

To deal with this problem, MLBs can be themselves
replicated (11), as schematically shown in Figure 10 for

a TMR system. Note that in this and in the following fig-
ures, we use a common symbol to represent n MLBs, and
the n outputs of the replicated modules, respectively. It is
obvious that, if this scheme is adopted, faults affecting one
of the replicated MLBs that make it produce incorrect out-
put data can be tolerated. However, similar to the case of
replicated modules only, in this case the problem of dis-
tinguishing the datum value provided by the majority of
the replicated MLBs also arises. Of course, if other MLBs
(receiving the outputs of the replicated MLBs) are used to
fulfill this purpose, the problem discussed here is simply
translated to these final MLBs.

An alternative strategy for dealing with this problem is
to renounce the fault-tolerance requirement of the MLBs
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Figure 9. Majority logic block suitable to NMR dynamic systems
introduced in (11).

and to require only that the MLBs give an output error
message in case of internal faults making them produce
incorrect output data. Such an error message can be ex-
ploited at the system level to avoid the dangerous conse-
quences possibly resulting from incorrect MLB operation.
For instance, if an error message is received by one of the
MLBs of a train’s speed control system, a system level re-
covery procedure can be automatically started, eventually
making the train stop.

MLBs of this kind can be found in (1–8).
In particular, in (1), the MLBs are duplicated (Figure

11), and their outputs are given to the inputs of a compara-
tor that verifies whether or not such outputs are equal to
one another. In the case of a disagreement, the compara-
tor gives an output error message. It is obvious that this
strategy guarantees that, in case of faults affecting an MLB
that make it produce erroneous majority output data, the
comparator gives an output error message.

However, compared with the case where single MLBs
are used, this solution implies an inevitable increase of the
area overhead and power consumption costs of the fault-
tolerant system.

To reduce these costs in TMR systems, the MLB intro-
duced in (7) or (8) can be adopted.

The electrical structure of the MLB in (7) is shown in
Figure 6, where CKS and CK′

S denote a periodic signal
whose period is T and an opposite waveform, respectively.

This MLB provides an output error message when in-
ternal faults occur that make it give an output incorrect
majority datum value. This behavior is guaranteed for all
MLB node stuck-at, transistor stuck-on, transistor stuck-
open and resistive bridging faults (whose values of the con-
necting resistance are in the range 0 � to 6 k�).

In the fault-free case, this MLB gives as its output: (1)
a signal equal to CK′

S if the majority of its input signals is
equal to “0”; (2) a signal equal to CKS if the majority of its
input signals is equal to “1” (Table 2). Hence, in the fault-
free case, this MLB gives at its output a signal assuming
both high and low logic values within the same period T. In
particular, the logic value produced when CKS = 1 is equal
to the majority datum value (MV in Table 2) among those
given to its input during such a period T.

Table 2. Truth Table of the Majority Logic Block in (6), and Corresponding
Majority Datum Value

X1 X2 X3 Z MV
0 0 0 CK′

S
0

0 0 1 CK′
S

0
0 1 0 CK′

S
0

0 1 1 CK′
S

1
1 0 0 CK′

S
0

1 0 1 CKS 1
1 1 0 CKS 1
1 1 1 CKS 1

Instead, in case of an internal fault of the kind previ-
ously reported, either the MLB is not affected by the fault
(that is it continues providing the correct majority output
data), or it produces an output error message (in partic-
ular a signal that does not change logic value within T).
If a fault does not affect the MLB and following internal
faults occur, either the MLB is not affected by these in-
ternal faults or it provides an output error message. This
condition holds for all possible sequences of internal faults
under the general assumptions that internal faults occur
one at a time during the operation of an integrated circuit
and that the time interval elapsing between two succeed-

Figure 10. Triplicated MLB scheme proposed in
(12). In priciple, triplication of the MLB allows faults
that could possibly affect one of the replicated MLBs
to be tolerated. In practice, problems arise in correctly
discriminating the value given by the majority of the
replicated MLBs.
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Figure 11. Duplicated MLB scheme presented in (1). Faults affecting one of the duplicated MLBs
can not be tolerated, but can be detected by the output comparator.

Figure 12. Detecting scheme possibly adopted to avoid the exhaustion of a TMR system redun-
dancy. The detectors (DTRi, i = 1, 2, 3) reveal the disagreement between the outputs of the replicated
modules and the majority output data given by the MLBs.

ing faults is long enough to allow the fault-free modules to
produce both high and low output data values.

The presence of an error message at the output of this
MLB can be simply revealed. For instance a flip-flop sam-
pling the MLB output on both the CKS rising and falling
edges (12) can be used.

This MLB implementation can also be extended to NMR
systems (13). In this case, compared with the electrical
structure shown in Figure 6: (1) the number of parallel pull-

up/pull-down branches changes from ( 3
2

) to ( N

(N + 1)/2
), (2)

each branch consists of (N + 1)/2 series transistors, rather
than of 2. Obviously these conditions may limit the maxi-
mal value of N for which this implementation can be con-
veniently used.

The electrical structure of the MLB in (8) is shown in
Figure 11, where CKS and CK′

S denote a periodic signal
with period T, and an opposite waveform, respectively.

Similarly to the MLB in (7), also this MLB provides
an output error message in case of the occurrence of in-
ternal faults making it give an output incorrect majority

data value. This behavior is guaranteed for all MLB’s node
stuck-at, transistor stuck-on, transistor stuck-open and re-
sistive bridging faults (with values of the connecting re-
sistance in the range 0 � to 6 k�), but for the bridging
fault between its two outputs, which should consequently
be avoided, for instance by proper design of the circuit lay-
out.

In the fault-free case, this MLB gives as its output: (1)
(Z1i, Z2i) = (1, 1), if the majority of its input signals is equal
to “0”; (2) (Z1i,Z2i) = (0,0), if the majority of its input signals
is equal to “1”.

In case of internal faults of the kind previously reported,
this MLB behaves as the MLB in (7), with the difference
that the provided error message is an output word with
Z1i �= Z2i, rather than a a signal that does not change logic
value within T (as for the MLB in (7)).

Compared to the MLB in (7), the MLB in (8) features
the advantage of being faster (offering a reduction of the
input/output propagation delay of approximately the 80%),
thus being more suitable to high speed, high reliability sys-
tems,while requiring comparable power consumption.This
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is achieved at the cost of a small increase in area overhead
(14). Additionally, as proven in (14), the MLB in (8) contin-
ues to work properly (i.e., either it continues to provide the
correct majority vote, or it produces an output error mes-
sage) even when affected by high leakage currents, which
are expected to become a major concern for dynamic CMOS
circuits.

As previously introduced, suitable techniques must be
also adopted to avoid exhausting the TMR (NMR) system’s
redundancy because modules become successively faulty.
To fulfill this purpose, detectors that reveal the disagree-
ment between the outputs of the MLBs and of the repli-
cated modules can be used (15), as shown schematically in
Figure 11. A possible electrical implementation of detec-
tors of this kind, suitable for use together with the MLBs
described, can be found in (13).

Voters operating on a word basis, rather than the tradi-
tional bit-by-bit basis, have also been proposed (16), which
are able to provide an output error message, should the
words produced by the three replicated modules of a TMR
system differ from each other.

Finally, several critical applications require that the
MLBs of the used TMR (NMR) systems provide “fail-safe”
outputs; that is, signals whose value is either correct or
safe (where, as an example, the red color is the “safe” value
for traffic control lights). Possible implementations of this
kind of MLBs can be found in (17).
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