
LOGIC DESIGN 557

LOGIC DESIGN

The purpose of a design process is to develop a hardware sys-
tem that realizes certain user-defined functionalities. A hard-
ware system is one constructed from electronic components.
Signals enter and leave the system. They are either analog or
digital. Information carried by an analog signal is continuous,
whereas information carried by a digital (binary) signal is dis-
crete, represented as 1 and 0. Input signals are processed by
the hardware system which produces the output signals. Sig-
nals are also generated internally, and can be either digital
or analog. Digital subsystems can be combinational or se-
quential. There are two types of digital sequential systems;
synchronous systems and asynchronous systems. A synchro-
nous system is one whose elements change their values only
at certain specified times determined clock changes. Inputs,
states, and outputs of an asynchronous system can change at
any time.

A design process develops a hardware system capable of
performing some predefined functionality. The functionality
of a digital hardware system can be realized by two processes:
using logic circuits that are implemented with logic gates
and/or using software to drive the system. The former process
is referred to as hardware implementation, and the latter as
software implementation. The use of the software is related
to the use of microprocessors. If microprocessors are used in
a design, the design is referred to as a microprocessor-based
design.

In a microprocessor-based design, the functionalities are
implemented partially by hardware and partially by software.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

558 LOGIC DESIGN

The designer needs to divide the tasks between hardware and scription and improve optimization of such circuits as se-
quence generators or language acceptors. They use some fi-software, which is sometimes referred to as software-hard-

ware co-design. The hardware portion includes the micropro- nite alphabet of symbols (letters) and the set of operations.
The operations are concatenation, union, and iteration. Con-cessor, memory, peripheral integrated circuits (IC), and glue

logic (glue logic are circuits that ‘‘glue’’ digital components to- catenation E1
 E2 means subsequent occurrence of events E1

and E2. Union E1 � E2 means logical-OR of the two events.gether). The software is a set of computer programs stored in
the memory. Iteration E* of event E means repetition of the event E an

arbitrary finite number of times or no occurrence of thisLogic circuits for digital hardware systems may be combi-
national or sequential. A combinational circuit is one whose event. The simplest event is an occurrence of a single symbol.

Extended regular expressions generalize Regular Expressionsoutput values depend only on its present input values. A se-
quential circuit is one whose outputs depend not only on its by adding the remaining Boolean operations. All the Boolean

operators can be used in an extended regular expression. Forpresent inputs but also on its current (internal) state. In other
words, the present outputs are functions of present and previ- instance, negation or Boolean product.

Petri nets are concurrent descriptions of sequential pro-ous input values. The input history is remembered by mem-
ory elements (e.g., registers). A register is a set of flip-flops. cesses. They are usually converted to finite state machines or

directly converted to sequential netlists. Because they areThe control unit of a digital system is normally imple-
mented by a sequential circuit. The data path can be imple- also used in concurrent system specification, verification, and

software design, Petri nets are increasingly used in software-mented by either a sequential circuit or a combinational cir-
cuit (and usually, also some registers). The data path may hardware codesign and to specify hardware (25).
consist of logic, arithmetic, and other combinational operators
and registers, as well as counters, memories, small state ma- Finite State Machines
chines, interface machines, and other sequential blocks. Logic

Finite state machines (FSMs) are usually of Mealy or Mooredesign research develops procedures for efficient design of
types. Both Moore and Mealy machines have the following:digital circuits. Various technologies and related design meth-
the set of input symbols, the set of internal states (symbols),odologies as well as computer tools are used to transform high
and the set of output symbols. They also have two functions:level system characterizations to working devices.
the transition function � and the output function �. The tran-Complex modern systems include subsystems that require
sition function � specifies the next internal state as a functionboth digital hardware design and microprocessor-based de-
of the present internal state and the present input state. Thesign. To design such systems, the designers need to be famil-
output function � describes the present output state. Mooreiar with both the co-design methodologies and co-design tools.
machines have output states which are functions of only the
present internal states. Mealy machines have output states

MATHEMATICAL CHARACTERIZATION which are functions of both present internal states and pres-
ent input states. Thus state machines can be described and

The mathematical characterization is concerned with mathe- realized as composition of purely combinational blocks � and
matical specification of the problem as some kind of transfor- � with registers that hold their states.
mation, equation solving, and so on. In the case of digital Parallel state machines are less commonly used compared
circuit/system applications, the mathematical characteriza- to Moore machines and Mealy machines. In a parallel state
tions include, for example, the following models: regular ex- machine several states can be successors of the same internal
pressions, extended regular expressions, data flow graphs, Pe- state and input state. In other words, the parallel state ma-
tri nets, finite state machines, Boolean functions, timed chine is concurrently in several of its internal states. This is
Boolean functions, and physical design models. The physical similar in principle to concurrently having many tokens in
design models can only be realized in hardware. All of the places of the Petri net graph description.
other models mentioned above can be realized either in hard- Nondeterministic state machines are another model. In a
ware or in software or in both. nondeterministic state machine, there are several transitions

The goal of mathematical characterizations is to provide to next internal states from the same present input state and
the ability to investigate formally the problems of equiva- the same present internal state. From this aspect, nondeter-
lence, optimization, correctness, and formal design correct ministic state machines are syntactically similar to parallel
from specification, by transformational methods. state machines. However, the interpretation between these

Nowadays, most of the design is done automatically by two machines is different. In a nondeterministic state ma-
electronic design automation (EDA) tools. The logic and sys- chine, the several transitions to a next internal state is inter-
tem designers not only use the EDA tools, but also often de- preted that any of these transitions is possible, but only one
sign their own tools or adapt and personalize the existing is actually selected for next stages of design. The selection
tools. That is why the problems of logic representation and may occur at the state minimization, the state assignment,
mathematical characterization are unseparable from the logic the state machine decomposition, or the circuit realization of
design, and will be devoted here due attention. the excitation and output logic. The transition is selected in

order to simplify the circuit at the next design stage, or to
High-Level Behavioral Specifications improve certain property of the circuit. The above selection is

done either automatically by the EDA tools, or manually by aRegular expressions are an example of high-level behavioral
human. Nondeterminism expands the design space, and thusspecification of a sequential circuit. They describe the input
gives the designer more freedom to improve the design. How-sequences accepted by a machine, output sequences gener-
ever, this can also lead to a more complex or a longer designated by a machine, or input-output sequences of a machine.

Regular expressions are used in digital design to simplify de- process.

LOGIC DESIGN 559

There are several other generalizations of FSMs, such as Cube Representation. An array of cubes is a list of cubes,
which is usually interpreted as a sum of products of literals,Buechi or Glushkov machines, which in general assume more

relaxed definitions of machine compatibility. For instance, where a cube corresponds to a product of literals. A (binary) lit-
eral is a variable or a negated variable. In binary logic, symbolmachines can be defined as compatible even if their output

sequences are different for the same starting internal states 0 corresponds to a negated variable, symbol 1 to a positive (af-
firmative, nonnegated) variable, symbol X to the absence of aand the same input sequences given to them, but the global

input–output relations of their behaviors are equivalent in variable in the product, and symbol
 to a contradiction. A cube
is a sequence of symbols 0, 1, X, and
, corresponding to theirsome sense. All these machines can be described in tabular,

graphical, functional, HDL language, or netlist forms, and re- respective ordered variables. For instance, assuming the order
of variables: x1, x2, x3, x4, the cube 01X1 corresponds to the prod-alized in many listed below technologies.
uct of literals x1x2x4, and the cube 0
X0 is an intermediate data
generated to show contradiction or a nonexisting result cube ofBoolean Functions Characterizations
some cube operation. A minterm (a cell of a Karnaugh map and

Boolean functions are characterized usually as truth tables, a row of a truth table) is thus a sequence of symbols 1 and 0.
arrays of cubes, and decision diagrams. Representations can Arrays of cubes can also correspond to exclusive sums of prod-
be canonical or noncanonical. Canonical means that the rep- ucts, products of sums, or others. For instance, the array of
resentation of a function is unique. If the order of the input cubes {01X1, 11XX} describes the sum-of-products expression
variables is specified, then both truth tables and binary deci- x1x2x4 � x1x2 called also the cover of the function with product
sion diagrams are canonical representations. Cube represen- implicants (usually, with prime implicants). Depending on the
tations are not canonical, but can be made canonical under context, the same array of cubes can also describe the exclu-
certain assumptions (for instance, all prime implicants of a sive-sum-of-products expression x1x2x4 � x1x2, or a product-of-
completely specified function). In a canonical representation sums expression (x1 � x2 � x4)
 (x1 � x2). The correct meaning of
the comparison of two functions is simple. This is one of the the array is taken care of by applying respective cube calculus
advantages of canonical representations. This advantage has operators to it.
found applications in the verification and synthesis algo- An algebra of cube calculus has been created with cubes
rithms. and arrays of cubes and operations on them. The most impor-

Good understanding of cube calculus and decision dia- tant operators (operations) are negation of a single cube or
grams is necessary to create and program efficient algorithms nondisjoint sharp, disjoint sharp, consensus, crosslink, inter-
for logic design, test generation and formal verification. section, and supercube of two cubes. The cube operators most

often used in EDA programs are presented briefly below. The
nondisjoint sharp, A#B, creates a set of the largest cubes inTruth Tables and Karnaugh Maps
function A
 B. Disjoint sharp, A#dB, creates a set of disjoint

A truth table for a logic function is a list of input combina- cubes covering function A
 B. Sharp operations perform
tions and their corresponding output values. Truth tables are graphical subtraction and can be used in algorithms to re-
suitable to present functions with small numbers of inputs move part of the function that has been already taken care
(for instance, single cells of iterative circuits). Truth tables of. Consensus of cubes A and B is the largest cube that in-
can be easily specified in hardware description languages cludes part of cube A and part of cube B. Supercube of cubes
such as VHSIC hardware description language (VHDL). A and B is the smallest cube that includes entirely both cubes

Table 1 shows the truth table of a full adder. A full adder A and B. Consensus and supercube are used to create new
is a logic circuit with two data inputs A and B, a carry-in product groups. Intersection of cubes A and B is the largest
input Cin, and two outputs Sum and carry-out Cout. common subcube of cubes A and B. It is perhaps the most

Karnaugh maps are two-dimensional visual representa- commonly used cube calculus operation, used in all practically
tions of truth tables. In a Karnaugh map, input variables are known algorithms. These operations are used mostly in the
partitioned into vertical and horizontal variables, and all inclusive (AND–OR) logic. Crosslink is the chain of cubes be-
value combinations of input variables are expressed in Gray tween two cubes. The chain of cubes covers the same min-
codes. The Gray code expressions allow the geometrically ad- terms as the two cubes, and does not cover the minterms not
jacent cells to become combinable using the law AB � AB � covered by the two cubes. Since A � A � 0, an even number
A. For instance, cells abcd and abcd are combined as a prod- of coverings is treated as no covering, and an odd number of
uct acd. For functions with large numbers of inputs, the corre- coverings is treated as a single covering. It is used mostly in
sponding truth tables or Karnaugh maps are too large. the exclusive (AND–EXOR) logic, for instance, in exclusive-

sum-of-products minimization (21). Positive cofactor f a is
function f with variable a substituted to 1. Negative cofactor
f a is function f with variable a substituted to 0.

Cube calculus is used mostly for optimization of designs
with two or three levels of logic gates. It is also used in test
generation and functional verifications. Multivalued cube cal-
culus extends these representations and operations to multi-
valued variables. In multivalued logic, each variable can have
several values from a set of values. For a n-valued variable,
all its literals are represented by n-element binary vectors
where value 0 in the position corresponds to the lack of this
value in the literal, and value 1 to the presence of this value.
For instance, in 4-valued logic, the literal X0,1,2 is represented

Table 1. Truth Table of Full Adder

A B Cin Sum Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

560 LOGIC DESIGN

as a binary string 1110, which means the following assign- sions of Boolean functions are thus included in KDD. Other
known decision diagrams include zero-suppressed binary de-ment of values: X 0 � 1, X 1 � 1, X 2 � 1, X 3 � 0. It means, the

literal X �0,1,2� is a 4-valued-input binary-output function de- cision diagrams (ZSBDDs) and moment diagrams. They are
used primarily in verification or technology mapping. Multi-fined as follows: X �0,1,2� � 1 when X � 1, or X � 2, or X � 3,

X �0,1,2� � 0 when X � 4. Such literals are realized in binary valued decision diagrams have more than two terminal nodes
and multivalued branchings with more than two successorscircuits by input decoders, literal generators circuits, or small

PLAs. Thus, multivalued logic is used in logic design as an of a node. These diagrams allow one to describe and verify
some circuits (such as large multipliers) that are too large tointermediate notation to design multilevel binary networks.

For instance, in 4-valued model used in programmable logic be described by standard BDDs. Some diagrams may also be
better for logic synthesis to certain technologies.array (PLA) minimization, a 4-valued set variable corre-

sponds to a pair of binary variables. PLA with decoders allow There are two types of decision diagrams: canonical dia-
grams and noncanonical diagrams. Canonical diagrams areto decrease the total circuit area in comparison with standard

PLAs. This is also the reason of using multivalued logic in used for function representation and tautology checking.
ZSBDDs and KDDs are examples of canonical representa-other types of circuits. Well known tools like MIS and SIS

from the University of California at Berkeley (UC Berkeley) tions. An example of noncanonical decision diagrams is a free
pseudo-Kronecker decision diagram. In this type of diagram,(23) use cube calculus format of input/output data.

A variant of cube calculus representation are the factored any types of Shannon and Davio expansions can be mixed in
levels and all orders of variables are allowed in branches.forms (for instance, used in MIS), which are multilevel compo-

sitions of cube arrays (each array specifies a two level logic Free pseudo-Kronecker decision diagrams are used in synthe-
sis and technology mapping (21,22). Decision diagrams can beblock). Factored form is thus represented as a multi-DAG (di-

rected acyclic graph with multiedges). It has blocks as its also adapted to represent state machines. By describing a
state machine as a relation, the (logic) characteristic functionnodes and logic signals between them as multiedges. Each

component block specifies its cube array and additionally its of the machine can be described by a decision diagram.
input and output signals. Input signals of the block are pri-
mary inputs of the multilevel circuit, or are the outputs from Level of Design Abstraction
other blocks of this circuit. Output signals of the block are

A design can be described in different levels of abstraction, asprimary outputs of the multi-level circuit, or are the inputs
shown in Fig. 1.to other blocks of this circuit. Initial two-level cube calculus

description is factorized to such multi-level circuit described
• Architecture level (also called behavioral level). At thisas a factored form. Also, a multilevel circuit can be flattened

level, the designer has the freedom to choose differentback to a two level cube representation.
algorithms to implement a design (for instance, different
digital filtering or edge detection algorithms). The em-Binary Decision Diagrams. Decision diagrams represent a
phasis is on input–output relations. Different implemen-function by a directed acyclic graph (DAG). In the case of the
tations for the same function can be considered. For in-most often used binary decision diagrams (BDDs), the nodes
stance, for a given function, one can chose between twoof the graph correspond to Shannon expansions (realized by
logic implementations: sequential and parallel combina-multiplexer gates), controlled by the variable a associated
tional (arithmetic adder, comparator or multiplier beingwith this node: F � a
 Fa � a
 Fa. Shared BDDs are those in
good examples).which equivalent nodes of several output functions are

• Register transfer level (RTL). At this stage, the design isshared. Equivalent nodes g and h are those whose cofactor
specified at the level of transfers among registers. Thus,functions are mutually equal: ga � ha and ga � ha. Ordered
the variables correspond to generalized registers, such asBDDs are those in which the order of nodes in every branch

from the root is the same. A diagram can be obtained from
arbitrary function specifications, such as arrays of cubes, fac-
tored forms, expressions, or netlists. The diagram is obtained
by recursive application of Shannon expansion to the func-
tion, next its two cofactors, four cofactors of its two cofactors,
and so on, and by combination of any isomorphic (logically
equivalent) nodes. The function corresponds to the root of the
diagram. There are two terminal nodes of a binary decision
diagram, 0 and 1, corresponding to Boolean false and true. If
two successor nodes of a node Si point to the same node, then
node Si can be removed from the DAG. There are other simi-
lar reduction transformations in those diagrams which are
more general than BDDs. Decision diagrams with such reduc-
tions are called reduced ordered decision diagrams.

In addition, negated (inverted) edges are introduced in
BDDs. Such edges describe negation of its argument function.
In Kronecker decision diagrams (KDDs) three types of expan-
sion nodes exist: Shannon nodes (realizing function f �
a
 f a � a
 f a), positive Davio nodes [realizing function f �

Architectural level

Register transfer
level

Logic gate level

Circuit level

a
 (fa � f a) � f a], and negative Davio nodes [realizing function
f � a
 (fa � f a) � f a]. All of the three possible canonical expan- Figure 1. The abstraction levels of a logic design.

LOGIC DESIGN 561

shifters, counters, registers, memories, and flip-flops. arithmetic datapath operations, EXOR based logic can de-
crease area, improve speed and power consumption, and im-The operations correspond to transfers between registers

and logical, arithmetical and other combinational opera- prove significantly the testability. Such circuits are thus used
in design for test. Other gate models include designing withtions on single or several registers. Examples of opera-

tions on a single register are shift left, shift right, shift EPLDs, which realize AND–OR and OR–AND architectures,
corresponding to sum-of-products and product-of-sums ex-cyclically, add one, subtract one, clear, set, negate. An

example of more general register-transfer operations is pressions, respectively. In standard cell technologies more
powerful libraries of cells are used, such as AND–OR–A � B � C, which adds the contents of registers B and

C and transfers the result to register A. A register-trans- INVERT, or OR–AND–INVERT gates. In FPGAs different
combinations of multiplexers, cells that use positive Daviofer description specifies the structure and timing of oper-

ations in more detail but still allows for transformations (AND–EXOR) and negative Davio (NOT–AND–EXOR)
expansion gates, or similar cells with a small number of in-of data path, control unit, or both. The transformations

will allow improved timing, lower design cost, lower puts and outputs are used. The lookup-table model assumes
that the arbitrary function of some small number of variablespower consumption, or easier circuit test.
(3, 4, or 5) and small number of outputs, usually 1 or 2, can be• Logic level (gate level). At this level every individual flip-
realized in a programmable cell. Several design optimizationflop and logic bit is specified. The timing is partially fixed
methodologies have been developed for each of these models.to the accuracy of clock pulses. The (multioutput) Bool-

ean functions with certain number of inputs, outputs,
Boolean Expressions. Boolean expressions use logic functorsand certain fixed functionality are specified by the user

(operators) such as AND, OR, NOR, NOT, NAND, EXOR, andor obtained by automatic transformations from a regis-
MAJORITY, as well as literals, to specify the (multioutput)ter-transfer level description. These functions are speci-
function. In order to specify netlists that correspond to DAGs,fied as logic equations, decision diagrams, arrays of
intermediate variables need to be introduced to the expres-cubes, netlists, or some hardware description language
sions. Every netlist or decision diagram can be specified by a(HDL) descriptions. They can be optimized for area,
set of Boolean expressions with intermediate variables. Bool-speed, testability, number of components, cost of compo-
ean expressions can use infix (or standard), prefix (or Polish),nents, or power consumption, but the general mac-
or postfix (or reverse Polish) notations. Most modern specifi-ropulses of the algorithm’s execution cannot be changed.
cation languages use infix notation for operators such as AND• Physical level. At this level a generic, technology-inde-
or OR. Operator AND can sometimes be omitted, as in stan-pendent logic function is mapped to a specific technol-
dard algebraic notations. In conjunction with operators suchogy—such as electronically programmable logic devices
as NAND, both infix and prefix notations are used. For in-(EPLD), complex programmable logic devices (CPLD),
stance, (NAND a b c) in prefix and (a NAND b NAND c) infield programmable gate arrays (FPGA), standard cells,
infix. Care is recommended when reading and writing suchcustom designs, application specific integrated circuits
expressions in hardware description languages and input for-(ASIC), read only memory (ROM), random access mem-
mats to tools. It is always good to use parentheses in case ofory (RAM), microprocessor, microcontroller, standard
doubt about operators’ precedence. In some languages, arbi-small scale integration (SSI)/medium scale integration
trary operators can be defined by users and then can be used(MSI)/large scale integration (LSI) components, or any
in expressions on equal terms with well-known operators. Ex-combinations of these. Specific logic gates, logic blocks,
pressions can be created for SOP (sum-of-products), POSor larger design entities have been thus defined and are
(product-of-sums), factorized SOPs and POSs, and other rep-next placed in a two-dimensional area (on a chip or
resentations as a result of logic synthesis and optimizationboard) and routed (interconnected).
algorithms. Some of these algorithms will be described in the
section on combinational logic design.

Logic Design Representations

Behavioral Descriptions. A logic system can be described byA logic function can be represented in different ways. Both
hardware description languages (HDL). The most popularbehavioral (also called functional) representations and struc-
ones are Verilog and VHDL. Both Verilog and VHDL can de-tural representations are used in logic designs. The represen-
scribe a logic design at different levels of abstraction, fromtations can be used at all different levels of abstraction: archi-
gate-level to architectural-level representations. Both are nowtecture level, register-transfer level, and logic level.
industrial standards, but VHDL seems to gain its popularity
faster, especially outside the United States. In recent yearsWaveforms. Waveforms are normally used for viewing sim-

ulation results and specifying stimulus (input) to the simula-
tor. Recently they are also being used increasingly as one pos-
sible input data design specification, especially for designing
asynchronous circuits and circuits that cooperate with buses.
Figure 2 shows the waveforms of a full adder.

Logic Gate Networks. Standard design uses basic logic
gates: AND, OR, NOT, NAND, and NOR. Recently EXOR and
XNOR gates were incorporated into tools and designs. Several

A

B

Cin

Sum

Time

Cout

algorithms for logic design that take into account EXOR and
XNOR gates have been created. For certain designs, such as Figure 2. Waveforms for the full adder.

562 LOGIC DESIGN

several languages at higher level than VHDL have been pro- another level, or when the design functionality has changed
posed, as well as preprocessors to VHDL language from these at the same level. Equivalence checking can verify if the origi-
new representations, but so far none of them enjoyed wide nal design and the modified design are functionally equiva-
acceptance (e.g., State Charts, SpecCharts, SDL, and VAL). lent. For instance, two Boolean functions F1 and F2 are equiv-
State Charts and SpecCharts are graphical formalisms that alent when they constitute a tautology F1 ⇔ F2, � 1, which
introduce hierarchy to state machines. SDL stands for the means the function G � F1 ⇔ F2 is equal to 1 (or function
Specification and Description Language. It is used mainly in F1 � F2 is equal to zero) for any combination of its input vari-
telecommunication. VHDL Annotation Language (VAL) is a able values. A more restricted version of tautology may in-
set of extensions to VHDL to increase its capabilities for ab- volve equality only on combinations of input values that actu-
stract specification, timing specification, hierarchical design, ally may happen in actual operation of the circuit (thus ‘‘don’t
and design validation. Other known notations and corre- care’’ combinations are not verified). Verification of state ma-
sponding data languages include regular expressions, Petri chines in the most narrow sense assumes that the two ma-
nets, and path expressions. chines generate exactly the same output signals in every

pulse and for every possible internal state. This is equivalent
Design Implementation to creating, for machines M1 and M2 with outputs z1 and z2,

respectively, a new combined machine with output zcom �A design can be targeted to different technologies: full custom
z1 � z2 and shared inputs, and proving that output zcom � 0circuit design, semicustom circuit design (standard cell and
for all combinations of state and input symbols (9). A moregate array), FPGAs, EPLDs, CPLDs, and standard compo-
restricted equivalence may require the identity of output sig-nents.
nals for only some transitions. Finally, for more advancedIn the full custom circuit designs, the design effort and cost
state machine models, only input–output relations may be re-are high. This design style is normally used when high-qual-
quired to be equivalent in some sense. Methods based on au-ity circuits are required. Semicustom designs use a limited
tomatic theorem proving in predicate calculus and higher or-number of circuit primitives, and therefore have lower design
der logic have been also developed for verification and formalcomplexity and may be less efficient when compared to the
design correct from specification, but are not yet much usedfull custom designs.
in commercial EDA tools. Computer tools for formal verifica-
tion are available from EDA companies and from universitiesDesign Verification
(e.g., VIS from UC Berkeley (5), and HOL (10) available from

A design can be tested by logic simulation, functional testing,
the University of Utah).timing simulation, logic emulation, and formal verification.

All these methods are called validation methods.
Design Transformation

Logic Simulation. Logic simulation is a fast method of ana- High-level design descriptions make it convenient for design-
lyzing a logic design. Logic simulation models a logic design ers to specify what they want to achieve. Low-level design
as interconnected logic gates but can also use any of the

descriptions are necessary for design implementation. Design
mathematical characterizations specified previously (for in-

transformations are therefore required to convert a designstance, binary decision diagrams). The simulator applies test
from a higher level of abstraction to lower levels of abstrac-vectors to the logic model and calculates logic values at the
tion. Examples of design transformations include removal ofoutput of the logic gates. The result of the logic simulation
dead code from the microcode, removal of dead register vari-can be either logic waveforms or truth tables.
ables, minimization of the number of generalized registers,
cost minimization of combined operations units (SUM/SUB-Timing Simulation. Timing simulation is similar to logic
TRACT, MULTIPLY, etc.), Mealy-to-Moore and Moore-to-simulation, but it also considers delays of electronic compo-
Mealy transformations of state machines (which can changenents. Its goal is to analyze the timing behavior of the circuit.
the system’s timing by one pulse), transformation of a nonde-The results from the timing simulation can be used to achieve
terministic state machine to an equivalent deterministic ma-target circuit timing characteristics (e.g., operational fre-
chine, transformation of a parallel state machine to an equiv-quency).
alent sequential machine, and mapping of a BDD to a netlist
of multiplexers.Formal Verification. While simulation can demonstrate

that a circuit is defective, it is never able to formally prove
that a large circuit is totally correct, because of the excessive Logic Design Process
number of input and state combinations. Formal verification

A logic design is a complex process. It starts from the designuses mathematical methods to verify exhaustively the func-
specification, where the functionality of the system is speci-tionality of a digital system. Formal verification can reduce
fied. Design is an iterative process involving design descrip-the search space by using symbolic representation methods
tion, design transformation, and design verification. Throughand by considering many input combinations at once. Cur-
each iteration, the design is transformed from a higher levelrently, there are two methods that are widely used: model
of abstraction to a lower level. To ensure the correctness ofchecking and equivalence checking. Model checking is used at
the design, verification is needed when the design is trans-the architectural level or register-transfer level to check if the
formed from one level to another level. Each level may involvedesign holds certain properties. Equivalence checking com-
some kind of optimization (for instance, the reduction of thepares two designs at the gate level or register-transfer level.

It is useful when the design is transformed from one level to description size). The logic design process is shown in Fig. 3.

LOGIC DESIGN 563

These implicants are then the largest products-of-literals
groups of true minterms in a Karnaugh map that imply the
function. Next, an exact program creates a covering table and
find its best covering with prime implicants. Such a table has
true minterms as columns and prime implicants (or their sub-
set) as rows (or vice versa). If an implicant covers (includes)
a minterm, it is denoted by an entry 1 at the intersection of
the row corresponding to the implicant and the column corre-
sponding to the minterm. The exact solution (minimum, prod-
uct-wise) is the subset of rows that cover (have minterms in)
all columns and that has the minimum number of rows. The
minimum solution (literal-wise) is the subset of rows that
cover (have minterms in) all columns and has the minimum
total number of literals in product terms (or that minimizes
another similar cost function). Some algorithms use the con-
cept of essential prime implicants. An essential prime is a
prime that includes a certain minterm that is covered only by
this prime. A redundant prime is an implicant that covers
only minterms covered by essential primes. Redundant
primes can thus be disregarded. A secondary essential prime
is a prime that becomes essential only after previous removal
of some redundant primes.

Design specification

Description

Transformation

Verification

Implementation

The essential primes found are taken to be the solution
Figure 3. The logic design process. and the minterms covered by them are removed from the

function (using for instance sharp operator of cube calculus).
This causes some primes to become redundant and results inCOMBINATIONAL LOGIC DESIGN
origination of the secondary essential primes. This process of
finding essential and secondary essential primes is iteratedA combinational logic design involves a design of a combina-
until no further minterms remain in the function—thus thetional circuit. For instance, the design may assume two levels
exact solution is found without creating and solving the cov-of logic. A two-level combinational logic circuit consists of two
ering table. Functions with such a property are called noncy-levels of logic gates. In the sum-of-products two-level form,
clic functions. Most of real-life functions are either noncyclicthe first (from the inputs) level of gates are AND gates and
or have large noncyclic cores, which is the reason for the rela-the second level of gates are OR gates. In the product-of-sums
tive efficiency of such algorithms.two-level form, the first level of gates are OR gates and the

Approximate algorithms try to generate primes and findsecond level of gates are AND gates.
primes cover at the same time; thus they reshape the currentThe reason of logic minimization is to improve the perfor-
cover by replacing some groups of primes with other primes,mance and decrease the cost by decreasing the area of the

silicon, decreasing the number of components, increasing the applying cube operations such as consensus.
speed of the circuit, making the circuit more testable, making Program Espresso from UC Berkeley (4) is a standard for
it use less power, or achieving any combination of the above two-level logic functions. The original program was next ex-
design criteria. The optimization problem can be also speci- tended to handle multivalued logic to allow for PLAs with
fied to minimize certain weighted cost functions under certain decoders, function generators, and preprocessing PLAs.
constraints (for instance, to decrease the delay under the con- Espresso–MV is useful for sequential machine design, espe-
straint of not exceeding certain prespecified silicon area). cially state assignment and input/output encodings. Its ideas

There are usually two logic minimization processes; the help also to develop new programs for these applications. Al-
first one is generic and technology-independent minimization, though heuristic version of Espresso does not guarantee the
the next one is technology-dependent minimization, called exact solution, it is close to minimum on several families of
also technology mapping. This second stage may also take practical functions. Its variant, Espresso–Exact, finds the
into account some topological or geometrical constraints of minimum solution, and program Espresso-Signature can find
the device. exact solutions even for functions with extremely large num-

ber of prime implicants. This is due to a smart algorithm that
Two-Level Combinational Logic can find exact solutions without enumerating all the prime

implicants. There are some families of practical functions forThere are two types of programs for two-level logic minimiza-
which Espresso does not give good results and which are tootion. Exact programs minimize the number of product impli-
large for Espresso–Exact or Espresso-Signature. Programscants, the number of literals, or some weighted functions of
such as McBoole or other internally designed programs arethe two. Heuristic or approximate programs attempt to mini-
combined with Espresso as user-called options in some com-mize these cost functions but do not give assurance of their
mercial tools. Two-level minimization is used in many pro-minimum values. Usually, the exact programs generate all
grams for multilevel synthesis, EPLD-based synthesis, andprime implicants or a subset of them, which can be proven to
PLD/CPLD device fitting. These algorithms constitute theinclude at least one minimal solution. The prime implicant is

a product of literals from which no literal can be removed. most advanced part of today’s EDA theory and practice.

564 LOGIC DESIGN

Topics close to sum-of-products minimization are product- sume any particular type of gates: rather they just decompose
a larger function to several smaller functions. Both functionsof-sums design, three-level design (AND–OR–AND or OR–

AND–OR), four-level design (AND–OR–AND–OR), and other can be specified as tables, arrays of cubes, BDDs, netlists, or
any other aforementioned logic representations, both binarydesigns with a few levels of AND–OR logic. Algorithms for

their solution usually generate some kind of more complex and multivalued. Functional decompositions can be separated
into parallel and serial decompositions. Parallel decomposi-implicants and solve the set-covering or graph-coloring prob-

lems, either exactly or approximately. Such approaches are tion decomposes multioutput function [F1(a, b, c, . . ., z),
F2(a, b, c, . . ., z), . . ., Fn�1(a, b, c, . . ., z), Fn(a, b, c, . . .,used for PLD and CPLD minimization.

Another two-level minimization problem is to find, for a z)] to several, usually two, multioutput functions, called
blocks. For instance, [F1(a, b, c, . . ., z), F2(a, b, c, . . ., z),given function, the exclusive-sum-of-products expression with

the minimum gate or literal cost. Several algorithms have . . ., Fn�1(a, b, c, . . ., z), Fn(a, b, c, . . ., z)] is decomposed
into [Fi1

(a, . . ., x), . . ., Fir
(c, . . ., z)] and [Fir�1

(a, b, . . ., y),been created for this task (21,22). Tools for circuits that have
few, usually three, levels and have levels of gates AND, . . ., Fin

(c, . . ., x)], such that each component function de-
pends now on fewer variables (thus the support set of each isEXOR and OR, in various orders, have been also recently de-

signed (21,22). decreased, often dramatically). This problem is similar to the
partitioning of a PLA into smaller PLAs.Many concepts and techniques used in two-level minimiza-

tion (for instance, essential implicants or covering tables) are Serial decomposition is described by a general formula:
also used in multilevel synthesis. Similar techniques are used
in sequential synthesis (for example, a binate covering prob- F(A, B, C) = H(A ∪ C, G(B ∪ C)) (1)
lem is used in both three-level design and state minimization,

where the set of variables A � C is called the set of free vari-and clique covering is used in creating primes and in several
ables (free set), the set of variables B � C is called the set ofproblems of sequential design).
bound variables, and the set of variables C is called theAn important stage of the logic design involves finding the
shared set of variables. If C � 0�, the decomposition is calledminimum support of a function, which means the minimum
disjoint, otherwise it is called nondisjoint. Function G isset of input variables on which the given function depends.
multioutput (or multivalued) in Curtis decomposition, andThis can be used for logic realization with EPLDs (because of
single-output in classical Ashenhurst decomposition. Func-the limited number of inputs) or in ROM-based function real-
tion G can be also multivalued. Every function is nondisjointization.
decomposable, and many practical functions are also disjointMany efficient generic combinatorial algorithms have been
decomposable. The more a function is unspecified (the morecreated for logic synthesis programs. They include: unate cov-
‘‘don’t cares’’ it has), the better are the decompositions andering (used in SOP minimization, decomposition and mini-
higher the chances of finding disjoint decompositions withmum support problems), binate covering (used in state ma-
small bound sets.chine minimization and three-level design), satisfiability (is

It was shown that practical benchmark functions are wellF � 0? if yes, when?), tautology (is F � G?), and graph color-
decomposable with small or empty shared sets, in contrast toing (used in SOP minimization and functional decomposition).
randomly generated completely specified functions, for whichAll these algorithms can be used for new applications by EDA
such decompositions do not exist. Most of the decompositiontool designers.
methods decompose recursively every block G and H, until
they become non-decomposable. What is defined as non-Multilevel Combinational Logic
decomposable depends on any particular realization tech-

Factorization. A multilevel combinational logic circuit con- nology (for instance, any function with not more than four
sists of more than two levels of logic gates. There are several variables is treated as non-decomposable, assuming the
design styles that are used to obtain such circuits. The first lookup-table model with four input variables in a block). In a
method is called factorization. It recursively applies factoring different technology, the decomposition is conducted until ev-
operations such as ab � ac � a(b � c) and (a � b)
 (a � c) � ery block becomes a simple gate realized in this technology
a � (bc). Some factoring algorithms also use other transfor- (for instance, a two-input AND gate, a MUX, or a three-input
mations as well, such as ab � ac � abc, and abcd � ababcd majority gate). Important problems in decomposition are
� abacd. Efficient factoring algorithms based on kernels and finding good bound sets and shared sets and the optimal en-
rectangle covering have been created (11). They are used in coding of multivalued functions G to binary vectors, in order
many commercial tools, and are still being refined and im- to simplify concurrently both functions G and H.
proved to add special functionalities (for instance, improved Designing combinational logic using ROMs or RAMs is an-
testability). They are also being adapted for state assignment other important area. Because of the limited width of indus-
or reduced power consumption of the circuit. Another advan- trial chips, one has to create additional combinational address
tage of factorization is that it allows representation of large generator circuits, or other circuits that collaborate with the
circuits. A high-quality multi-level program, SIS, based memory chip. Some of these techniques are quite similar to
mostly on factorization, can be obtained from UC Berkeley decomposition.
(23). Decomposition methods are not yet used in many indus-

trial tools, but their importance is increasing. A universal
Functional Decomposition functional decomposer program can be obtained from Port-

land State University (19).The second group of multilevel synthesis methods are those
based on functional decomposition. Such methods have origi-
nated from early research of Ashenhurst (2), Curtis (7), and Decision Diagrams. Finally, the last group of multilevel

synthesis methods is based on various kinds of decision dia-Roth/Karp (20). Functional decomposition methods do not as-

LOGIC DESIGN 565

grams. In the first phase the decision diagram such as a BDD, type flip-flop triggers its state from 0 to 1 and from 1 to 0
KFDD, or ZSBDD, is created, and its cost (for instance, the whenever its input T is 1 during the change of clock. It re-
number of nodes), is minimized. An important design problem mains in its current state if the input T is 0 during the
is to find a good order of input variables (i.e., one that mini- change. A JK flip-flop has two inputs; J is the setting input,
mizes the number of nodes). For synthesis applications these K is the resetting input. Thus, with J � 1 and K � 0 the flip-
diagrams are not necessarily ordered and canonical, because flop changes to state 1 (with the clock’s change). If both inputs
the more general diagrams (with less constraints imposed on are equal to 1, the flip-flop toggles, thus working as a T flip-
them) can correspond to smaller or faster circuits. A universal flop. If they are both 0, it remains in its present state. Various
Decision Diagram package PUMA that includes BDDs, procedures have been created to design special machines
KFDDs, and ZSBDDs, is available from Freiburg University (such as counters or registers), general Finite State Machines,
(8). Free BDDs, with various orders of variables in branches, or other sequential mathematical models, with these flip-
or noncanonical Pseudo–Kronecker decision diagrams with flops.
mixed types of expansions in levels, are used in technology
mapping (22). In the next phase, certain rules are used to

Standard FSM Design Methodologysimplify the nodes. Among these rules, the propagation of
constants is commonly used. For instance, a Shannon node (a Sequential logic design typically includes three phases. In the
MUX) realizing a function a
 0 � a
 b is simplified to AND first phase a high-level description is converted into a state
gate a
 b. MUX realizing ab � a is simplified to OR gate a � machine or equivalent abstract description. For instance, a
b. All rules are based on simple Boolean tautologies. For in- regular expression is converted into a regular nondeterminis-
stance, a positive Davio node realizing a function a
 b � a is tic graph. The graph is converted into an equivalent deter-
simplified to an AND gate a
 b. The heuristic algorithms that ministic graph, and finally into a Moore or Mealy machine
apply these transformations are iterative, recursive, or rule- state table. In some systems this table is then minimized.
based. They are usually very fast. State minimization always attempts to reduce the number of

For some technologies, the stage of generic multilevel opti- internal states, and sometimes, also the number of input sym-
mization is followed by the technology-related phase (called bols. In some algorithms the numbers of output bits are also
technology mapping), in which techniques such as DAG cov- minimized. After minimization, the machine has a smaller ta-
ering, or tree covering by dynamic programming are applied ble size but is completely equivalent, with accuracy of the
(11). At this stage, the particular technological constraints of clock pulses, to the initial table. The next design stage is the
a given target technology are taken into account by rede- state assignment, in which every present and next state sym-
signing for particular cell libraries, fitting to certain fan-in or bol in the table is replaced with its binary codes. In this way
fan-out constraints, minimizing the number of cells to fit the the encoded transition table is created, which functionally
IC device, or decreasing the number of connections to fit the links the encoded present internal states, present input
routing channel width. states, present output states, and next internal states. Now

combinational functions � and � have been uniquely deter-
mined. They are usually incompletely specified. In some sys-

SEQUENTIAL LOGIC DESIGN
tems, the encoding (state assignment) is also done for input
and/or output symbols. Assignment of states and symbols isSequential logic design involves designing sequential circuits.
done either automatically or manually. Good assignmentA sequential circuit contains flip-flops or registers. A good un-
leads to a better logic realization in terms of the number ofderstanding of flip-flop’s behavior is necessary to design se-
product terms, literals, speed, etc. Several good assignmentquential circuits. A flip-flop is an elementary register with a
programs, KISS, MUSTANG, and NOVA, are available in thesingle bit. Flip-flops are synchronous and asynchronous. An
SIS system from UC Berkeley. DIET encoding program isexample of an asynchronous flip-flop is a simple latch that
available from University of Massachusetts, Amherst (6).changes its state instantly with the change of one of its in-
State minimizer and encoder STAMINA is available from theputs; it is set to state ON with logic value 1 on input S (set)
University of Colorado. In general, much information aboutand reset to state OFF with logic value 1 on input R (reset).
public domain or inexpensive programs for state machine de-The disadvantage of such a latch is a nonspecified behavior
sign is available on the World Wide Web (WWW).when both set and reset inputs are active at the same time.

Because the minimized table is not necessarily the bestTherefore, synchronization signals are added to latches and
candidate for state assignment, in some systems the phasesmore powerful edge-triggered or master-slave circuits are
of state minimization and state assignment are combined intobuilt, called the synchronized flip-flops. The most popular flip-
a single phase and only partial state minimization results asflop is a D-type flip-flop. It has a clock input C, a data input
a byproduct of state assignment of a nonminimized table (15).D, and two outputs, Q and Q. Output Q is always a negation
This means that some compatible states may be assigned theof Q. The present state of input D (i.e., the excitation function
same code. This is done to minimize some complex cost func-D of the flip-flip) becomes the next state of output Q upon
tions, which may take into account all kinds of optimizationsa change of the flip-flop’s clock. Therefore, we can write an
of logic realizing this machine: area, speed, power consump-equation, Q� � D, where Q� is the new state of the flip-flop.
tion, testability, and so on. State assignment is a very impor-The state changes may occur at the raising slope or the falling
tant design phase that links the stages of abstract and struc-slope of the clock. The moment of change is irrelevant from
tural synthesis of state machines. It can influence greatly thethe point of view of design methodologies, and modern meth-
cost of the solution [for instance, in FPGA or programmableods assume that all change moments are of the same type. It
array logic (PAL) technologies]. It can improve dramaticallyis not recommended to design a sequential circuit that

changes its states with both leading and falling slopes. A T- the testability of designs, and n out of k codes are used for

566 LOGIC DESIGN

this task. For FPGAs good results are usually achieved by tion under cycle-time constraints (18). It has also been used
for low power design and as a general optimization techniqueencoding machines in 1 out of k (or, one-hot) codes.
in architectural and logic synthesis.

Finally, approaches have been created that combine theseState Machine Decomposition
different synthesis and decomposition methods, with the tech-

Another methodology of designing sequential circuits is de- nology for which they are applied, such as EPLD, FPGA, PLA,
composition. There are basically two methods of decomposi- ROM, or custom design. Design methods have also been cre-
tion. Formal decomposition of state machines is a generaliza- ated to realize finite state machines with RAMs, ROMs, and
tion of functional decomposition of Boolean and multivalued content addressable memories (CAM).
functions. Most of the decomposition methods are based on
the partition theory (12), a mathematical theory also used in

MICROPROCESSOR-BASED DESIGNstate assignment. This theory operates on groups of states
that have some similar properties and groups of states to

A microprocessor-based design involves a design of a digitalwhich these states transit under a given input. Other de-
system which contains one or more microprocessors.composition methods operate on state graphs of machines, as

on labeled graphs in the sense of graph theory. They use
What Is a Microprocessor?graph-theoretical methods to partition graphs into smaller

subgraphs that are relatively disconnected. Yet another de- A microprocessor is a general-purpose digital circuit. A typical
composition method decomposes the given state table into two microprocessor consists of a data path and a control unit, as
tables: one describes a state machine, such as a counter or shown in Fig. 4. The data coming from the system’s input is
shift register, and the other describes a remainder machine. manipulated in the data path and goes to the system’s output.
For instance, methods have been developed to decompose a The data path contains registers to hold data and functional
state machine to an arbitrary counter and the remainder units to perform data-processing operations. These operations
machine. Another method decomposes a FSM into a special include arithmetic operations, logic operations, and data
linear counter (that uses only D flip-flops and EXOR gates) shifting. The control unit contains a program counter, an in-
and a remainder machine. Yet another decomposition type struction register, and the control logic. The control unit con-
uses two counters, shift registers, fixed preprocessor or post- trols the data path with regard to how to manipulate the data.
processor machines, and many other variants as one of the The microprocessor is operated under the control of soft-
blocks of the decomposition. Each of these methods assumes ware. The software is stored in standard memory devices. The
that there is some kind of elementary component machine software enables the same microprocessor to perform differ-
that can be realized more inexpensively, can be realized in a ent functions.
regular structure, or has a small delay. Finally, methods have A computer system is a combination of hardware and soft-
been developed to decompose a machine into several small ware designed for general-purpose applications. The micro-
machines, each of them realizable in some technology (for in- processor is the major component of a computer. Besides the
stance, as a logic block of a CPLD or a FPGA, or in a single microprocessor, a computer system hardware includes mem-
PAL integrated circuit). ory (RAM and ROM) and input/output devices. Memory can

In addition to formal decomposition methods that operate be a main memory and a microcode memory. Additional cir-
on state tables, there are many informal and specialized de- cuits, contained in FPGAs or special ASICs, and designed us-
composition methods that are either done by hand by the de- ing the previously outlined techniques, can be also incorpo-
signer or are built into VHDL compilers or other high-level rated.
synthesis tools. For instance, many tools can recognize regis-
ters, counters, adders, or shifters in a high-level specification What Is a Microprocessor-Based System?
and synthesize them separately using special methods. Most

The fundamental microprocessor-based system structure con-of the existing approaches for sequential logic design assume
tains microprocessor, memory, and input/output devices withthe use of specific types of flip-flops, typically D flip-flops.
address, data, and control buses (24). A microprocessor-basedThere are, however, methods and algorithms, especially used
system is shown in Fig. 5.in EPLD environments, that take into account other types of

The functionalities performed by a microprocessor are de-flip-flops, such as JK, RS, and T.
termined by the programs. These programs, commonly calledTo directly convert and decompose high-level descriptions
software, are stored in the memory or off-line storage devicessuch as Petri nets, SpecCharts, or regular expressions to net-
(e.g., hard drives). There are different technologies used inlists of flip-flops and logic gates, or registers/shifters and logic
memory: static random-access memory (SRAM), dynamic ran-equations, special methods have been also created, but are
dom-access memory (DRAM), read-only memory (ROM), elec-not yet very popular in commercial systems.

If a sequential circuit does not meet the requirements,
there are postprocessing steps such as retiming, re-encoding,
re-synthesis, speed-up, etc. (16,17), which can improve the de-
sign to achieve a higher performance. For instance, retiming
allows shifting of registers through logic without changing its
functionality but affecting the timing. This method is applied
at many description levels of synchronous circuits: behavioral,

Datapath

Microprocessor

Control
unit

register-transfer, architectural, logic, etc. It is most often used
as a structural transformation on the gate-level, where it can Figure 4. A simple microprocessor consisting of a datapath and a

control unit.be used for cycle-time minimization or for register minimiza-

LOGIC DESIGN 567

performance is usually higher, and the cost for software de-
velopment is reduced. Software-intensive approaches, on the
other hand, require more software development and are
slower. In return, the flexibility may be enhanced and the pro-
duction cost is reduced.

Microprocessor Selection

Microprocessor Memory

Input/output
There are many different microprocessor product families on
the market. The number of bits processed in parallel insideFigure 5. A microprocessor-based system.
the microprocessor is a primary criterion with which to evalu-
ate the performance of a microprocessor. The low-end prod-
ucts are 4-bit or 8-bit ones. Typical microprocessors are 16 ortrically programmable read-only memory (EPROM), electri-
32 bits wide. The 64-bit products are currently entering thecally erasable programmable read-only memory (EEPROM),
market. There are two factors that should be considered inand flash memory. A program stored in a read-only memory
microprocessor selection: architecture and development tools.is called a firmware.

There are two types of microprocessor architectures: com-The basic operation of all microprocessor-based systems is
plex instruction set computer (CISC) and reduced instructionthe same. The program in the memory is a list of instructions.
set computer (RISC). A CISC architecture has a larger in-The microprocessor reads an instruction from the memory,
struction set than a RISC architecture. Besides the instruc-executes that instruction, and then reads the next in-
tion sets, other considerations regarding architecture includestruction.
on-chip and off-chip peripherals, operating frequency, and
prices.Logic Design Using a Microcontroller

Development tools for microprocessor-based systems in-
A microcontroller is a complete computer system on a chip. clude in-circuit emulators, logic analyzers, and on-chip debug-
Like the microprocessor, a microcontroller is designed to fetch gers. In-circuit emulators are specially designed hardware
and manipulate the incoming data, and generate control sig- that emulate the microprocessor operations in the target sys-
nals. A microcontroller contains a microprocessor, input/out- tem. An in-circuit emulator has its own microprocessor and
put (I/O) ports, timer/counter, and interrupt-handling circuit. its own memory. During debugging, the tasks are run on an
A typical microcontroller (e.g., 8051) contains both serial and emulator’s microprocessor and memory. The breakpoint can
parallel I/O ports (3). Microcontrollers are widely used in ap- be set by the user through software to trace the system’s oper-
plications like motor control, remote access, telephones and ations. The emulator is connected to a workstation or a PC.
so on. The same microcontroller (e.g., 8051), running different Thus the user can monitor the system’s performance in real
software, can be used for different applications. Conse- time. Logic analyzers are devices that can monitor the logic
quently, the overall product cost of a microcontroller-based values of a target system. They can be used to monitor any
design is much lower than an ASIC-based design. bus, control line, or node in the system, and they monitor the

While microcontrollers are commonly used in control appli- microprocessor passively. On-chip debuggers are software
cations, microprocessors are often used for applications re- programs that can monitor a microprocessor’s on-chip debug-
quiring large amounts of I/O, memory, or high-speed pro- ging registers.
cessing. Such applications include data processing and
complex control applications. For instance, personal comput- Design Process
ers mainly perform data processing.

A microprocessor-based system can be as simple as a liquid
crystal device (LCD) controller and can be as complex as a

Hardware Software Tradeoffs
modern network management system. In spite of the diver-
sity in the system complexity, the design of a microprocessor-A logic function can be realized in hardware, as discussed in

the previous sections, or in software. In most cases, however, based system always starts with a system-level specification.
After the system-level functions are clearly defined in the sys-the required functionalities are realized partially by specially

designed hardware and partially by software. tem specification, the overall function is divided into different
functional blocks. The hardware/software implementationIf the hardware is used more than the software, or vice

versa, the designs are referred to as a hardware-intensive de- and the selection of the components for each functional block
will be determined at this stage. At this point, the tradeoffsign or a software-intensive design, respectively. A designer

can make a tradeoff between the hardware- and software- between hardware and software implementation and the
advantage/disadvantage of each component need to be eval-intensive realizations. Performance is usually better with

hardware implementations than with software implementa- uated.
The system design activity is typically divided into hard-tions for a variety of reasons. The microprocessor is a general-

purpose device, and some speed is sacrificed for generality. ware design and software design. Depending on the complex-
ity of interaction between hardware and software, the two de-Microprocessors perform tasks in sequential fashion. Logic

circuits can be designed to perform operations in parallel. signs may need to be tested together in an integrated
environment. The most commonly used tool for the integratedMost logic functions occur in tens of nanoseconds. A micropro-

cessor instruction execution time ranges from several hun- debugging is the in-circuit emulator, often referred to as ICE.
An in-circuit emulator can run the software in the target mi-dred nanoseconds to tens of microseconds.

A hardware-intensive design requires more hardware in croprocessor and provide the capability of monitoring the in-
ternal registers. As a result, an in-circuit emulator is an effi-the system and therefore increases the production cost. The

568 LOGIC DESIGN

requirements are evolving constantly, the flexibility is an im-
portant design consideration.

On the other hand, while hardware designs are less flexi-
ble, they usually have better performance. Furthermore, mi-
croprocessor-based designs normally require additional de-
vices, including program memory, data memory, and glue
logic. Consequently, the requirements for board space and
power consumption may be increased.

BIBLIOGRAPHY

1. P. Ashar, S. Devadas, and A. R. Newton, Sequential Logic Synthe-
sis, Boston: Kluwer, 1992.

2. R. L. Ashenhurst, The Decomposition of Switching Functions,
Proc. of the Symposium on the Theory of Switching, April 2–5,
1957, Ann. Computation Lab., Harvard University, 29, pp. 74–
116, 1959.

3. K. J. Ayala, The 8051 Microcontroller, Architecture, Program-
ming, and Applications, West Publishing Company, 1991.

4. R. K. Brayton et al., Logic Minimization Algorithms for VLSI Syn-
thesis, Boston: Kluwer, 1984.

Design specification

System design

System testing

System integration

Hardware design

Hardware
implemation

Hardware testing

Software design

Software coding

Software testing

5. R. K. Brayton et al., VIS: A System for Verification and Synthe-
sis, in Computer-Aided Verification, July 1996.Figure 6. The process of a microprocessor-based design.

6. M. Ciesielski and J. Shen, A Unified Approach to Input-Output
Encoding for FSM State Assignment, Proc. Design Automation
Conf., 176–181, 1991.

cient tool for debugging the software in real time. It can also
7. H. A. Curtis, A New Approach to the Design of Switching Circuits,interface with the hardware to provide the real application

Princeton, 1962.
environment. This hardware-software co-verification is in-

8. R. Drechsler et al., Efficient Representation and Manipulationcreasingly important in complex system design. A logic ana-
of Switching Functions Based on Ordered Kronecker Functional

lyzer is also used to trace the signals in a real-time operation. Decision Diagrams, Proc. of the Design Automation Conference,
This signal tracing involves the data storage and manipula- San Diego, CA, June 1994, 415–419.
tion of the signal waveforms. Many in-circuit emulators have 9. A. Ghosh, S. Devadas, and A. R. Newton, Sequential Logic Testing
this capability built into the system. and Verification, Boston: Kluwer, 1992.

A real-time design involves processing of the events at the 10. M. J. C. Gordon and T. F. Melham (eds.), Introduction to HOL: A
speed at which the events occur. A popular example is the theorem proving environment for higher order logic, Cambridge,
display of image data coming from the network. The image UK: Cambridge University Press, 1993.
processing includes image data decompression and displaying 11. G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification
onto the monitor window with a specified location and dimen- Algorithms, Boston: Kluwer, 1996.
sion. A real-time design is often performance demanding and 12. J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of Se-
needs to coordinate different event flows. Interrupt handling quential Machines, Upper Saddle River, NJ: Prentice-Hall, 1996.
can also be complicated. In most cases, the design contains 13. R. H. Katz, Contemporary Logic Design, Menlo Park, CA:
hardware circuit design and one or more processors. The Benjamin/Cummings Publishing Company, 1994.
hardware-software co-design and/or co-verification become 14. Z. Kohavi, Switching and Finite Automata Theory, New York:
imperative in a complex real-time design. McGraw-Hill, 1970.

In summary, a microprocessor-based system design in- 15. E. B. Lee and M. Perkowski, Concurrent Minimization and State
cludes the following design activities: design specification, Assignment of Finite State Machines, Proc. IEEE Conference on

Systems, Man and Cybernetics, Halifax, Canada, Oct. 1984, pp.system design, hardware/software tradeoffs, microprocessor
248–260.selection, other IC selection, software design and implementa-

16. C. Leiserson, F. Rose, and J. Saxe, Optimizing Synchronous Cir-tion, hardware design and implementation, hardware testing,
cuitry by Retiming, Third Caltech Conference on VLSI, 1983, pp.hardware/software integration, hardware and software co-
87–116.verification, and system testing. Figure 6 shows the stages of

17. G. De Micheli, Synchronous Logic Synthesis: Algorithms for Cycle-the microprocessor-based system design process.
Time Optimization, IEEE Trans. on CAD, 10: (1), Jan. 1991, pp.
63–73.Comparing Microprocessor-Based Design and Hardware Design

18. G. De Micheli, Synthesis and Optimization of Digital Circuits, New
Microprocessor-based designs have several benefits. Software York: McGraw-Hill, 1994.
control allows easier modification and allows complex control 19. M. Perkowski et al., Decomposition of Multiple-Valued Relations,
functions to be implemented far more simply than with other Proc. ISMVL ’97, Halifax, Nova Scotia, Canada, May 1997, pp.
implementations. A hardware design implementation is for- 13–18.
warded to the manufacturer and needs to be fully tested. A 20. J. P. Roth and R. M. Karp, Minimization over Boolean Graphs,
software implementation is more flexible than a hardware im- IBM Journal Res. and Develop., No. 4, pp. 227–238, April 1962.
plementation. It has the ability to revise the design quickly 21. T. Sasao (ed.), Logic Synthesis and Optimization, Boston: Kluwer,

1993.and easily. Since the standards, specifications, and customer

LOGIC PROGRAMMING 569

22. T. Sasao and M. Fujita, Representations of Discrete Functions, Bos-
ton: Kluwer, 1993.

23. E. M. Sentovich et al., SIS: A System for Sequential Circuit Syn-
thesis, Tech. Rep. UCB/ERL M92/41, Electronics Research Lab.,
Univ. of California, Berkeley, CA 94720, May 1992.

24. M. Slater, Microprocessor-Based Design, A Comprehensive Guide
to Effective Hardware Design, Englewood Cliffs, NJ: Prentice-
Hall, 1989.

25. M. C. Zhou, Petri Nets in Flexible and Agile Automation, Boston:
Kluwer, 1995.

NING SONG

Lattice Semiconductor Corp.

MAREK A. PERKOWSKI

Portland State University

STANLEY CHEN

Lattice Semiconductor Corp.

LOGIC DESIGN. See also NAND CIRCUITS; NOR CIR-

CUITS.
LOGIC DEVICES, PROGRAMMABLE. See PROGRAM-

MABLE LOGIC DEVICES.
LOGIC, DIODE-TRANSISTOR. See DIODE-TRANSISTOR

LOGIC.
LOGIC, EMITTER-COUPLED. See EMITTER-COUPLED

LOGIC.
LOGIC EMULATORS. See EMULATORS.
LOGIC, FORMAL. See FORMAL LOGIC.
LOGIC, FUZZY. See FUZZY LOGIC.
LOGIC GATES. See INTEGRATED INJECTION LOGIC.
LOGIC, HORN CLAUSE. See HORN CLAUSES.
LOGIC, MAGNETIC. See MAGNETIC LOGIC.
LOGIC, MAJORITY. See MAJORITY LOGIC.
LOGIC NETWORKS. See COMBINATIONAL CIRCUITS.
LOGIC OPTIMIZATION. See LOGIC SYNTHESIS.
LOGIC PROBABILISTIC. See PROBABILISTIC LOGIC.

