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LATTICE FILTERS Figure 1. (a) Generic lattice structure. (b) Analog lattice two-port
with v1 and i1 being the input port variables and v2 and i2 the output

This article discusses filters of a special topology called lattice port variables. Here ya, yb, yc, and yd represent the one-port admit-
filters which can be very useful for system phase correction. tances of the four branches of the lattice. (c) Digital lattice signal

flow graph. Here the branches are transmittances and the terminalHere the focus is on the analog lattice described in terms of
variables are signal inputs (u1 and u2) and outputs (y1 and y2).admittance, scattering, and transfer scattering matrices. A

synthesis technique based on the constant-resistance method
that yields a cascade realization in terms of degree-one or de-
gree-two real lattices is included. Also included is an example

as we now show through the use of symmetrical constant Rto illustrate the technique.
lattices (4, Chap. 12; 5, p. 223; 6, Chap. 5).

We assume that the lattice branches are described by the
respective admittances, ya, yb, yc, yd in which case the two-portDEFINITION
admittance matrix Y has symmetry around the main and the
skew diagonalsA lattice structure is one of the form of Fig. 1(a). In the case

of analog circuits, it is taken to be the two-port of Fig. 1(b)
with the port variables being voltages and currents, in which
case the branches are typically represented by their one-port Y =

[
y11 y12

y12 y11

]
(1)

impedances or admittances. When the lattice is a digital lat-
tice, the structure represents a signal flow graph where the
branches are transmittances and the terminal variables are y11 = (ya + yb )(yc + yd )

ya + yb + yc + yd
(2)

signal inputs and outputs, as shown in Fig. 1(c). Here we
treat the analog lattice only; a treatment of the digital lattice
can be found in Refs. 1–3.

y12 = ybyc − yayd

ya + yb + yc + yd
(3)

In the case where the lattice is symmetrical as well about anANALOG LATTICE
horizontal line drawn through its middle, called a symmetri-
cal lattice,The analog lattices are most useful for the design of filters

based upon the principle of constant R structures. These are
especially useful for phase correction via all-pass structures yd = ya and yc = yb (4)
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we see by inspection

Y = 1
2

[
ya + yb yb − ya

yb − ya ya + yb

]
(5)

From Eq. (5) we note that the mutual (off-diagonal) terms can
have zeros in the right half s-plane even when ya and yb may
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not. Consequently, the lattice can give nonminimum phase
Figure 3. Cascade of n constant-R two-port lattices of the typeresponses in which case it can be very useful for realizing a
shown in Fig. (1b) terminated on an R-ohm resistance at the outputdesired phase shift, possibly for phase correction.
port.

SYNTHESIS BY THE CONSTANT-R LATTICE METHOD

From Eq. (6) we can obtain the lattice arm impedances ya andAdmittance Matrix
yb � G2/ya since Eq. (9) gives

The constant-R lattice is defined by using dual arms. Specifi-
cally, writing G � 1/R, we obtain

Ryb = 1
Rya

�⇒ yayb = G2 (6) ya = G
1 + V2

V1

1 − V2

V1

(11)

which results in
In order for a passive synthesis to proceed, ya must be positive
real, the requirement for which is that ya(s) be analytic in the
right half s-plane, Re(s) 
 0, andYR = 1

2ya

[
G2 + y2

a G2 − y2
a

G2 − y2
a G2 + y2

a

]
(7)

Re{ya(s)} ≥ 0 in Re(s) > 0 (12)The name of this structure results from its beautiful property
that if it is terminated at port 2 on an R-ohm resistor, the

Translated into the voltage transfer function, after some alge-input impedance is an R-ohm resistor, as calculated from the
bra on Eq. (11), this is seen to be equivalent toinput admittance

∣∣∣∣V2

V1

∣∣∣∣ ≤ 1 in Re(s) > 0 (13)
Yin = det Y + Gy11

G + y22
=

G
�

ya + yb + 2
yayb

G

�

ya + yb + 2G
= G (8)

In other words, if the voltage transfer function is rational inand as illustrated in Fig. 2. The transfer voltage ratio is given
s and bounded in magnitude by 1 in the right-half plane, it isby
guaranteed to be synthesized by a passive symmetrical con-
stant-R lattice with an R-ohm termination.

However, this synthesis in one whole piece of V2/V1 may
V2

V1
= −y21

G + y22
= yb − ya

yb + ya + 2G
= ya − G

ya + G
(9)

require rather complex lattice arms, in which case we can
take advantage of the constant-R property to obtain a cascadeAlso we have
of lattices. Toward this consider Fig. 3, which shows a cascade
of constant-R two-ports loaded in R. As is clear from Fig. 3
we obtain a factorization of the voltage transfer function intoV1 = Vin

2
(10)

the product of n voltage transfer functions, one for each sec-
tion:

V2

Vin
= 1

2

[
V2

V1

]
N(1)

[
V2

V1

]
N(2)

. . .

[
V2

V1

]
N(n)

(14)

In order to synthesize a given realizable voltage transfer func-
tion, we can perform a factorization of V2/V1 into desirably
simple factors and realize each factor by a corresponding con-
stant-R lattice. The factorization can be done by factoring the
given transfer function into its poles and zeros and associat-
ing appropriate pole–zero pairs with the V2/V1 terms of Eq.

+ +

– –

R

R

Zin = R

Vin V1 V2

yb yb

+
–

ya

ya

(14). Usually the most desirable factors are obtained by asso-
ciating the poles and zeros into degree-one or degree-twoFigure 2. Symmetric analog lattice terminated on an R-ohm resis-

tance at the output port. real factors.
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Lossless Synthesis By placing the zeros of N(s) one can usually obtain a desirable
phase shift. In particular, maximally flat delay can be ob-

A particularly interesting case is when the lattice is lossless,
tained by choosing N(s) to be a Bessel polynomial (7, p. 151).

which is expressed by

Example. For R � 5, design a cascade of two lattices andya(−s) = −ya(s) for a lossless lattice (15)
compare with an equivalent single lattice for the all-pass
function

from which we see by Eq. (9) that

V2(s)
V1(s)

V2(−s)
V1(−s)

= 1 for a lossless lattice (16)

Vout(s)
Vin(s)

= 1
2

s2 − 3s + 2
s2 + 3s + 2

= 1
2

(s − 2)(s − 1)

(s + 2)(s + 1)

(18)

In this lossless case we see that for s � j� the magnitude of
the voltage transfer function, from port 1 to 2, is unity; the For the first lattice of a cascade of two, using Eqs. (11) and
circuit is all-pass and serves to only introduce phase shift for (6) with V2/V1 � (s � 2)/(s � 2), this gives
phase correction and for the design of constant time-delay
networks (7, pp. 144–152). If V2/V1 is written as the ratio of
a numerator polynomial, N(s), over a denominator polyno- ya = sG

2
= s

10
and yb = 2G

s
= 1

2.5s
(19)

mial, D(s), then in the all-pass case we have N(s) � �D(�s),
in which case the phase shift becomes twice that of the nu- and for the second lattice, with V2/V1 � (s � 1)/(s � 1), we
merator, which is then obtain

ya = Gs = s
5

and yb = G
s

= 1
5s

(20)�

�
V2( jω)

V1( jω)

�
= 2 arctan

[
Im(N( jω))

Re(N( jω))

]
(17)

Figure 4. Lossless lattice synthesis of an all-
pass transfer function of degree two. (a) Syn-
thesis using a cascade of two lattices of degree
1 Arms. (b) Equivalent realization using a sin-
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In the case of a single lattice, for V2/V1 twice the first expres- The entries s12 and s21 are calculated in terms of ya and G
using Eq. (11):sion of Eq. (18), we have

s12 = s21 = 2
[

V2

e1

]
e2=0

= 2
Vout

Vin
= V2

V1
= ya − G

ya + G
(25)

The above results give the following scattering matrix:

ya = G(s2 + 2)

3s
= G

�
s
3

+ 1
3
2 s

�
and yb = 3Gs

s2 + 2
= G

s
3

+ 1
3
2 s

(21)

The final cascade of lattices and equivalent lattice are given
in Fig. 4(a) and Fig. 4(b), respectively. S =

�
0

ya − G
ya + G

ya − G
ya + G

0

�
(26)

Scattering Matrix

The zeros on the diagonal of S indicate that the constant-RIt is also of interest to look at the scattering matrix referenced
lattice is matched to its terminations. Since cascade synthesisto R, S, for the constant-R lattice which can be found from
can proceed via factorization of the transfer scattering matrixthe augmented admittance matrix, Yaug, of the lattice filter as
(3), it is of interest to note that the transfer scattering ma-illustrated in Fig. 5(a):
trix, T(s), is given by

S = I2 − 2RYaug (22)

where I2 is the 2 � 2 identity matrix. By symmetry, we have
from Fig. 5(b)

T(s) = 1
s12

�
1 −s22

s11 det S

�
=

�
ya + G
ya − G

0

0
Ya − G
ya + G

�
(27)

When working with the digital lattices of Fig. 1(c), the trans-
fer scattering matrix is particularly convenient since its fac-

yaug11 = yaug22 = yin = 1
2R

(23)

torization is readily carried out using Richard’s functions ex-
tractions of degree-one and degree-two sections [see (3) forand thus
details].

s11 = s22 = 1 − 2R
1

2R
= 0 (24)

TRADE-OFFS AND SENSITIVITY

Despite its versatility, the lattice structure presents several
disadvantages of a practical nature. As seen in Fig. 4, there
is no possibility of a common ground between the input and
the output terminals of a lattice circuit. Although generally it
is difficult to obtain a transformation of the lattice to a circuit
with common input–output ground, a Darlington synthesis
can be undertaken with the desired result (8, Chap. 6). The
lattice also uses at least twice the minimum number of com-
ponents required since the upper arms repeat the lower arms.
Furthermore, since the transmission zeros are a function of
the difference of component values as seen by Eq. (5), small
changes in these may distort the frequency response, the
phase in particular, considerably (6, p. 148). However, if cor-
responding arm components simultaneously change in a loss-
less lattice, so that the constant-R property is preserved, then
the sensitivity of �V2( j�)/V1( j�)� is zero since it is identically 1.
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