
classical ladder filter design technique was employed exten-
sively until the 1960s when the digital computer made alter-
native filter design techniques practical.

The image parameter method helped to develop an intu-LADDER FILTERS
itive approach to the filter design problem without requiring
a computer. However, it was an approximate method whichLadder filters are an important class of filter structures for

implementing highly selective magnitude frequency re- did not make effective use of the poles and zeros that are
sponses. If the ladder filter structure is used to implement or provided by the filter transfer function, resulting in subopti-
simulate resistively terminated reactive LC filters, desirable mal designs in terms of the order of the filter. Therefore,
properties, such as the inherent stability and low sensitivity much research was devoted to finding an optimal solution for
with respect to parameter changes, can be retained. the LC ladder filter design problem, including both the ap-

The first LC ladder filters were implemented using induc- proximation of the filter transfer function and the synthesis
tors (L’s) and capacitors (C’s), operating in the continuous- of the LC ladder filter network.
time domain and embedded between resistive terminations. In 1924 and 1926, a major advance occurred when Foster
They are referred to as analog or classical LC ladder filters. and Cauer invented canonical one-port LC networks, essen-
These classical LC ladder filters perform remarkably well in tially solving the general one-port LC synthesis problem.
practice and are capable of realizing highly selective magni- Later, in 1931, the general passive one-port synthesis prob-
tude frequency responses. However, they are not suitable for lem was solved by Brune. His solution led to the fundamen-
microelectronic integration because inductors are usually tally important concept of the positive real function, which
bulky. To overcome this limitation, inductorless microelec- became the most important mathematical vehicle for the de-
tronic filters, such as RC-active filters, switched capacitor sign of LC filters and which continues to be the basis of many
(SC) filters, and digital filters, have been developed. In the alternative techniques for designing high-performance RC-ac-
early years of their development, these modern microelec- tive, SC, and digital filters. In 1930, Butterworth and Cauer
tronic filters were unfortunately found to be inferior to LC introduced the maximally flat and Chebyshev approximations
ladder filters for a number of reasons. In particular, they did of the filter transfer function, respectively, thereby solving the
not possess the desired inherent stability and low-parameter approximation problem for an important class of filters. In
sensitivity properties and, as a result, had poor perform- 1937, Norton proposed a new filter design approach which
ance in terms of stability and parameter sensitivity, espe- started from a prescribed insertion loss function. The general
cially for realizing highly selective magnitude frequency re- reactance two-port synthesis problem, which was involved in
sponses. this new filter design method, was solved independently by a

Fortunately, it has been found that the superior classical number of researchers between 1938 and 1941. In particular,
LC ladder filter structure and its corresponding filter design Darlington and Cauer’s work led to optimal LC ladder filters
methodology can be simulated by modern microelectronic fil-

that are now widely known as elliptic filters. The insertion
ters. For example, the desired properties of passivity and loss-

loss theory of filter design was further developed by Belevitchlessness, as possessed by LC ladder filters, can be extended
in 1948 using scattering matrix theory, which evolved to be-to modern microelectronic filters in order to ensure stability
come the most important LC filter design method. However,and to significantly improve the sensitivity performance of
because of the extensive numerical computations that thisthe filter.
technique involved, it only found wide applications when pow-In this article, we are concerned with the design, synthe-
erful digital computers became available in the 1960s.sis, and implementation of ladder filters that conform to or

simulate the ladder structure. We shall explain the general
features of the ladder structure and its inherent advantages The Properties and Classical Implementations
as well as its most successful and widely used technological of LC Ladder Filters
implementations such as reactive LC, RC-active, SC, and dig-

The classical LC filter is a two-port reactance (thus lossless)ital filters. We begin with an overview of this subject and by
network N that consists of ideal inductors and capacitors andplacing the subject in its historical context.
that is inserted between a voltage source E and two terminat-
ing resistors such as shown in Fig. 1(a), where the uppercase

OVERVIEW OF LADDER FILTERS voltages indicate steady-state voltages. If this two-port N is a
ladder structure, then it consists of alternating series and

The Historical Development of Classical LC Ladder Filters (1,2) shunt branches and is referred to as a double-resistively ter-
minated ladder filter. For LC ladder filters, the series andFilter theory was developed at a remarkable pace in the early
shunt branches are made up of simple inductors and capaci-years of the twentieth century. By 1915, Campbell and
tors or simple parallel and series resonant circuits. An exam-Wagner had developed the first LC filter, which not coinciden-
ple of a fifth-order LC ladder filter is shown in Fig. 1(a). Thistally was a ladder implementation. The first systematic LC
filter structure is widely used to implement the elliptic filterladder filter design technique was facilitated by image param-
transfer function, whose typical attenuation response iseter theory as introduced by Zobel in 1923. This theory was

further refined by Bode and Piloty in the 1930s. The resulting shown in Fig. 1(b).
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been given by Fettweis (3) and Orchard (4) and is summa-
rized in the following.

The filter transfer function of the reactance two-port N
such as shown in Fig. 1(a) is characterized by

S21 = 2
√

R1/R2V2

E
(1)

In the terminology of scattering matrix theory, S21 is called
the input–output transmittance or the transmission coeffi-
cient. The filter attenuation response �, corresponding to S21,
is given by

a = 10 log(1/|S21|2) = 10 log(Pmax/P2) (2)

where Pmax � �E�2/4R1 is the maximum power available from
the voltage source and P2 � �V2�2/R2 is the power delivered to
the load resistor. Because a reactance two-port is lossless and
therefore passive, we have P2 � Pmax and therefore � � 0. Let
x be any internal component value such as an inductance or
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capacitance inside the reactance two-port. If for a particular
value of x, say x0, we have � � 0 at a certain frequency �0,Figure 1. (a) A fifth-order ladder two-port N inserted between re-
the attenuation �(�0, x), which is a function of x with a fixedsistive terminations. (b) Attenuation response of a fifth-order elliptic

filter. The arrows indicate possible shifts of attenuation caused by parameter �0, has a minimum at x � x0. This leads to ��(�0,
changes of filter parameter values. x)/�x � 0 for x � x0, and in general, ��/�x � 0 for � � 0 and

��/�x � 0 for � � 0. This shows that, for a well-designed
lossless LC filter network (i.e., having an attenuation re-
sponse with the maximum number of attenuation zeros at

The LC ladder filter structure is widely considered to be a real frequencies in the passband etc.), the first-order sensitiv-
preferred filter structure because of its many inherently use- ity of the attenuation response with respect to any LC compo-
ful properties. Apart from the inherent advantages of the lad- nent value is small everywhere in the passband; furthermore,
der topology, the properties of passivity and losslessness are the closer the attenuation response is to its limiting value of
of particular significance. First, the individual inductor and zero, the smaller the sensitivity of the attenuation to pertur-
capacitor components of the embedded LC ladder network are bations of x. Furthermore, this low passband-sensitivity prop-
passive and lossless, implying (according to Kirchhoff ’s volt- erty can be shown to lead to excellent noise immunity and
age and current laws) that the complete LC ladder filter is superior dynamic range.
passive and lossless. It is very important to note that the LC In addition to the above-mentioned property of low sensi-
ladder network actually satisfies a more stringent passivity/ tivity in the passband, LC ladder filters also exhibit superior
losslessness definition, namely the internal passivity/lossless- low-sensitivity performance in the stopband, compared with
ness. A Kirchhoff ’s network is internally passive/lossless if many other lossless filter structures, such as lattice struc-
and only if all the individual internal components are tures. Although the above lossless argument establishes the
passive/lossless. By proper design, the property of internal low passband-sensitivity property, it does not apply to the
passivity/losslessness guarantees stability and freedom from stopband; in fact, the low stopband sensitivity is a result of
parasitic oscillations for the filter realizations that are subject the unique ladder topology, as explained in the following.
to parasitic effects. Filters, in particular, RC-active, SC, and Let us consider the filter network in Fig. 1(a). In the pass-
digital filters, which do not simulate the internal passivity/ band, the transmitted power P2 closely approximates the max-
losslessness, are subject to (usually nonlinear) instability imum available power Pmax, and P2 indeed equals Pmax at the
problems that are caused by such parasitic effects as nonideal attenuation zeros. This means that the input impedance Zin
phase shift, saturation, and lock-up of op-amps or quantiza- equals R1 at those zeros. In the stopband, the attenuation
tion effects in digital filters. It is important to note that the poles are attributed, in a one-to-one correspondence, to the
simulated internal passivity/losslessness must be retained reactance poles in the series branches and susceptance poles
when internal filter parameters are parasitically perturbed in the shunt branches. These poles disconnect the series
from their nominal values. branches and short-circuit the shunt branches, respectively.

In the early years, the inductors and capacitors within LC Therefore, the location of each attenuation pole is indepen-
ladder filters were implemented using coils and condensers, dently determined by a particular series reactance or shunt
respectively, and could not be manufactured to the level of susceptance. Furthermore, because the series reactance and
precision that is achievalble today. However, the attenuation the shunt susceptance are usually either a single inductor/
responses of those early LC ladder filters did not show high capacitor or a simple resonant circuit, the reactance/suscep-
sensitivity with respect to the LC component values and the tance and thus the locations of attenuation poles are easily
filters performed surprisingly well in practice. The theoretical tuned. Furthermore, the deviation of poles with respect to
explanation for this remarkable property, which may be ex- their ideal locations, due to perturbations of LC component

values, is small if the change of the component values isplained in terms of the first-order sensitivity property, has
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small. In general, the series/shunt reactances/susceptances of RC-active filters, remained expensive, thereby lending sig-
nificant advantage to multiple-amplifier filter implementa-are implemented using the Foster canonical forms, which

guarantee that the reactance/susceptance poles are indepen- tions that allowed low-cost RC elements to be used. The RC-
active filters that are based on simulating classical LC ladderdent of each other and are attributed to either a single

inductor/capacitor or to a single second-order resonant cir- filters possess this very property and thus have been rapidly
developed.cuits. Therefore, the sensitivity of the locations of attenuation

poles with respect to changes of component values is low for There are two basic LC ladder simulation techniques. One
technique is based on simulating the LC ladder signal flowLC ladder filters. This leads to the low stopband sensitivity

for LC ladder filters, because the attenuation response in the graphs (SFG) and is referred to as the operational simulation
technique. The other is based on simulating the inductors instopband is mainly determined by the number and the loca-

tions of attenuation poles. the LC ladders and is referred to as the component simulation
technique. The inductor simulation technique is best ex-The low stopband sensitivity of LC ladder filters is supe-

rior to that of other types of LC filters, such as LC lattice plained by using the concept of the two-port gyrator, which
was originally proposed by Tellegen in 1948 and led to thefilters. In LC lattice filters, the attenuation poles are achieved

by signal cancellation of two or more transmission paths, invention of active generalized impedance converters (GIC) by
Riordan (6) and Antoniou. An alternative inductor simulationcausing the above-mentioned superior stopband sensitivity

property to be lost. As a result of this relatively poor stopband technique is to use the so-called frequency-dependent nega-
tive resistance (FDNR) elements, which were invented bysensitivity performance, classical LC lattice filters are used in

special cases where the problem can be contained. For exam- Bruton. These methods are discussed later in this article,
along with other modern ladder filter implementations. Inple, modern digital techniques have revitalized LC lattice fil-

ter structures, because the high stopband-sensitivity may be Ref. 7, a historical review of the development of RC-active
filters and a large number of references are listed.alleviated by means of appropriate discrete numerical optimi-

zation techniques. In the 1970s, the pervasive MOS technology offered new
opportunities for making microelectronic active ladder filtersClassical LC ladder filters are implemented by using dis-

crete inductors and capacitors, usually mounted on printed because low-power amplifiers and highly accurate capacitor
ratios could be made at very low cost and at very high densitycircuit boards. Continued advances in materials research

have led to small and inexpensive LC components of very by using the same fabrication process. These technical ad-
vances led to the development of SC filters, where capacitorshigh quality. Filter designers can refer to practical guides,

such as Ref. 5, in order to select the LC values and parts and and switches were initially used to replace the resistors in
RC-active filter configurations.to find information on testing and manufacturing.

In general, the voltages in SC filters are ideally constant
except at the instants of time when switches are caused toModern Implementations of Ladder Filters
open or close. Thus, the voltages waveforms are sampled-data

The invention of transistors in the 1950s has played an im- staircase waveforms that are related to each other by the
portant role in the integrated circuit revolution and, in partic- same family of linear difference equations that describe the
ular, has fueled the pervasive growth of the modern computer relationships between the variables of digital filters. A histor-
and telecommunications industries. In spite of the high de- ical review of the development of SC filters is given in Refs.
mand for filter systems in microelectronic form and the above- 8–10.
mentioned attractive properties of classical LC ladder filters, While SC filters are analog sampled data systems, digital
the integration of the inductor has generally proven to be im- filters are quantized sampled data systems. The widely
practical, thereby preventing the application of classical LC spread industrial applications of digital filters have been en-
filters in microelectronic forms. This limitation of classical abled by the invention of CMOS VLSI technology in the
LC filters led to much research on the topic of inductorless 1980s. Digital filters have the advantage over analog filters
filters. that they do not suffer from manufacturing and temperature

In the 1950s, Yanagisawa and Linvill pioneered the field variations and aging effects. This advantage of digital filters
of RC-active filters and showed that passive RC elements and provides an opportunity to exploit the higher-order low-pass-
active controlled voltage or current sources could be combined band-sensitivity property of classical LC filters (11) when de-
to realize general filter transfer functions. Sallen and Key signing digital filters to simulate classical lossless LC filters,
proposed a single-amplifier configuration for realizing second- such as wave digital filters (WDF) which were invented by
order transfer functions, which were very useful for imple- Fettweis and lossless discrete integrator/differentiator (LDI/
menting low-order low-sensitivity filter transfer functions. LDD) digital filters which were invented by Bruton. A techni-
Nevertheless, these early RC-active filters proved to be overly cal review of digital filters and a large number of references
sensitive with respect to changes of component values for ap- can be found in Ref. 12.
plications involving high order and highly selective transfer The benefits of using high-order low passband sensitivity
functions. Moreover, they also required impractically large are considerably greater than might be expected from the
spreads of component values and had a tendency to be unsta- first-order sensitivity property discussed in the previous sec-
ble due to parasitics. tion. To show this, let us consider the attenuation response of

In the 1960s, the availability of high-performance micro- the lossless filter �(�, x0) again, where x0 indicates any origi-
electronic operational amplifiers (op-amps) allowed single op- nal digital filter coefficient value. If x0 changes to x0 � �x in
amp RC-active filters to be used in many applications. In the such a way that the losslessness is maintained, �(�, x0 �
1970s and 1980s, the cost of op-amps declined dramatically �x) � 0 still holds for the resulting attenuation response. In

this case, the size of �x does not have to be small and thewhereas the precision RC elements, as required by this type
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attenuation minima can only shift in the same upward direc- clopedia and Refs. 15–19 for a more comprehensive treatment
of this topic.tion [see Fig. 1(b)]. The resulting attenuation distortion �� is

predominantly determined by the differences of these shifts
and is therefore smaller, possibly substantially smaller, than The General Design Procedure
the individual changes of the minima. Because, once the filter

There are two steps in designing a filter. The first step is tocoefficients are determined, the attenuation responses of
find a transfer function having a frequency response that sat-digital filters do not change due to manufacturing process,
isfies the specified attenuation and/or phase response require-temperature, and aging, this higher-order low passband sen-
ments. The second step is to synthesize a filter network thatsitivity can be used for the discrete optimization of filter co-
realizes this transfer function. In the case of LC ladder filters,efficients to obtain extremely simple-valued coefficients, thus
the filter transfer function is realized using an LC ladder net-minimizing the hardware complexity of digital filter imple-
work. In the following, we review the method of determiningmentations.
the filter transfer function and the ladder synthesis techniqueHigh-order direct-form recursive digital filters suffer from
for LC filters.poor sensitivity performance, limit cycle, and parasitic oscilla-

The double-resistively terminated filter network N in Fig.tory problems, due to underflow/overflow and high noise dis-
1(a) possesses transmittance S21 as defined in Eq. (1) and re-tortion. However, due to the internal passivity property of
flectance (or the reflection coefficient) S11, which is defined asclassical LC filters, digital filters that are properly derived

from LC ladder filters, such as WDFs, can be made free from S11 = (2V1 − E)/E
parasitic oscillations even under extremely difficult looped
conditions. It is noted that in order to obtain superior perfor- For LC ladder filters, the embedded network N is lossless.
mance, passivity or losslessness must be maintained under Therefore, no power is dissipated in the network N. Thus, the
quantized conditions and considerable design effort may be two transfer functions S11 and S21 are complementary, im-
required to ensure that this is achieved. plying that

The above-mentioned benefits of digital filters were often
offset by the requirement for relatively expensive analog-to- |S11( jω)|2 + |S21( jω)|2 = 1 (3)
digital and digital-to-analog converters (ADC and DAC) and
by the relatively high cost of digital filters. However, during By introducing a new variable C � S11/S21 and by taking Eq.
the 1990s, the advent of deep-submicron CMOS VLSI technol- (3) into account, the attenuation response given by Eq. (2) can
ogy has virtually reversed the cost equation in favor of digital be rewritten as
filters. Moreover, the transition of the computer and telecom-
munications industries to entirely digital systems has elimi- a(ω) = 10 log(1/|S21(ω)|2) = 10 log(1 + |C( jω)|2) (4)
nated the need for local ADCs and DACs and, in many cases,
has dictated the use of digital filters. The use of analog con- The function C( j�) is the so-called characteristic function
tinuous-time filters, such as LC, RC-active, and SC filters, having zeros and poles that correspond with those of the at-
may soon be restricted to ultrahigh-frequency applications tenuation response �(�). This one-to-one correspondence of
where sampling and digitization are not economical or feasi- zeros and poles between the characteristic function and the
ble. For example, front-end analog radio-frequency (RF) fil- attenuation response makes the characteristic function an
ters in wireless systems are typically implemented as analog important and sufficient choice for approximating the filter
circuits because small low-valued RF inductors may be made transfer function. It can be shown (18) that for lossless filters
at low cost. Furthermore, RF resonator-type ladder filters the transmittance S21 and the reflectance S11 are rational
such as surface acoustic wave (SAW) ladder filters find wide functions in the complex frequency s (s � � � j�) and that
applications in wireless systems. In this type of filters, the S21 and S11 have the common denominator polynomial g,
ladder branches consist of (SAW) resonators, and the corre- where g is a Hurwitz polynomial. Let
sponding filter design procedure has many similarities to the
image parameter method. S21 = f/g (5a)

S11 = h/g (5b)

ON THE DESIGN OF PASSIVE LC LADDER FILTERS The characteristic function C becomes

The design of modern microelectronic ladder filters is based C = h/ f (6)
on the same underlying approximation theory and ladder syn-
thesis methods that are used to design classical LC ladder which is also a rational function. It can be shown from Eqs.
filters. The values of ladder elements for prototype low-pass (3) and (5) that the following fundamentally important rela-
filters are tabulated in design handbooks (13,14). High-pass, tion holds between f , h, and g for the entire s domain:
band-pass, and band-stop filters are often derived from proto-
type low-pass filters using frequency transformation tech- f (s) f (−s) + h(s)h(−s) = g(s)g(−s) (7)
niques. Alternatively, the filter approximation and synthesis
can also be performed by filter design software packages. In Furthermore, for LC filters, f (s) is either an even or an odd

function of s because of the reciprocity property of embeddedthis section we will briefly discuss the underlining principles
of filter approximation theory and the ladder synthesis tech- LC two-ports. Now, the transfer function approximation prob-

lem can be formulated so as to find the rational functionsniques that lead to optimal LC ladder filter structures. The
interested readers may consult related articles in this ency- h( j�), f ( j�) and thereby �C( j�)�2 � h( j�)h(�j�)/f ( j�)f (�j�)
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such that the attenuation response �(�), as defined by Eq. also be written as continued fractions
(4), satisfies the specified attenuation requirements. The fact
that g(s) is a Hurwitz polynomial, having its zeros in the left
half of the s plane, allows itself to be obtained by solving the
equation f (s)f (�s) � h(s)h(�s) � 0. Subsequently, the func-
tions S21 and S11 are fully determined. Note that we have
omitted discussion of phase responses because the phase re-
sponse requirements for a ladder filter are usually satisfied by

Z(s) = L1s + 1

C2s + 1

L3s + 1

C4s + 1
. . .

(8a)

cascading an equalizing all-pass filter. Nevertheless, special
ladder filters may be designed to satisfy the phase response or
requirements, such as the Thomson filter that is discussed in
the following.

The transfer function approximation problem, which is the
determination of the characteristic function C, was solved for
low-pass filters by Butterworth, Cauer, Thomson, and others
in the early years of filter design. In the next section, we dis-
cuss design examples for low-pass prototype filters where it is

Z(s) = 1
C′

1s
+ 1

1
L′

2s
+ 1

1
C′

3s
+ 1

1
L′

4s
+ 1

. . .

(8b)

understood that simple frequency transformations are used to
obtain high-pass, band-pass, and band-stop filters from low- leading directly to the first and second Cauer canonical forms
pass prototype filters. shown in Fig. 2(b).

The synthesis of the double-resistively terminated two-port The Cauer canonical forms are reactance one-ports having
N in Fig. 1(a) is facilitated by the LC one-port synthesis tech- a ladder structure. The continued fraction expansion tech-
niques as developed by Foster and Cauer. A reactance func- nique is especially useful for synthesizing resistively termi-
tion, which is obtained as the input immitance of an LC nated two-port ladder network. It can be shown that the re-
one-port, can always be realized in the Foster and Cauer ca- flectance S11 can be written as
nonical forms. The first and second Foster canonical forms
are based on the partial fraction expansion of the reactance S11 = (Zin − R1)/(Zin + R1) (9a)
function, and the first and second Cauer canonical forms are
based on the continued fraction expansion. It can be shown so that Zin can be written as
that a reactance function can be written in the following par-
tial fraction form as the impedance function Zin = R1(1 + S11)/(1 − S11) (9b)

However, Zin is an impedance function and thus a rational
positive real function which, according to Darlington’s theory,Z(s) = B∞s + B0/s +

n∑
i=1

2Bis/(s
2 + ω2

i )

can always be synthesized as a lossless two-port network ter-
minated by a resistive load.or admittance function

In general, the resulting two-port network involves the so-
called Brune section, which is a second-order two-port net-
work containing coupled inductors or ideal transformers, and
thus strictly does not have the LC ladder structure according

Y(s) = D∞s + D0/s +
n∑

i=1

2Dis/(s
2 + ω2

i )

to our definition. However, in most cases, an LC ladder struc-
leading directly to the first and second Foster canonical forms ture can be found for the input impedance Zin that results
as shown in Fig. 2(a). Similarly, the reactance function can from the reflectance S11 of a practical low-pass filter. This is

especially true if the resulting two-port is allowed to be a non-
canonical network. In fact, the continued fraction expansion
technique, illustrated by Eq. (8), can be applied to Zin in order
to realize an LC ladder two-port that is terminated by a
resistor.

The continued fraction expansion technique is also re-
ferred to as the pole removal technique because it removes
the attenuation poles of the filter one by one during the
course of the fractional expansion. For low-pass filters, having
multiple attenuation poles at infinity, each step in fractional
expansion removes a full attenuation pole at infinity, re-
sulting in a canonical implementation. For low-pass filters
that have attenuation poles located at finite frequencies, the
removal of a finite frequency pole has to be accompanied by a

(a)

(b)

partial removal of an infinity pole, in order to avoid the BruneFigure 2. (a) The first Foster canonical form. (b) The first Cauer
section and to obtain a ladder structure. Because of this par-canonical form. The second canonical form is the dual network to the
tial pole removal, the resulting LC ladder two-port is a nonca-first canonical form. The Foster canonical forms implement each
nonical network. We will consider examples for LC ladderreactance/susceptance pole by a separate second-order resonant cir-

cuit. The Cauer canonical forms have a ladder structure. synthesis in the following section.
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Low-Pass Prototype Filters the passband, the source terminating resistor, and the load
terminating resistor (where possible) are normalized to unity.

The most widely used low-pass prototype filters are the But-
The LC element formula for the nth-order minimum inductor

terworth, (inverse) Chebyshev, elliptic, and Thomson filters.
Butterworth ladder filter is given by

Each of these filters has particular characteristics that may
be preferred for a given application. We shall briefly discuss
each type of these filters. Cm(m is odd)

Lm(m is even)

}
= 2ε1/n sinγ2m−1 and m = 1,2, . . ., n

Butterworth Filters. The nth order Butterworth low-pass
filter has the following characteristic function:

Chebyshev Filters. The characteristic function of the Cheb-
yshev filter is a Chebyshev polynomial, which can be writtenC(s) = ε(s/ωp)n

in a compact form as follows:
where �p is the passband edge frequency and 	 is the pass-
band ripple factor related to the maximum attenuation in the
passband by �pmax � 10 log(1 � 	2). The first n � 1 derivatives C(ω/ωp) = εTn(ω/ωp) = ε

{
cos(n cos−1 ω/ωp) for |ω/ωp| ≤ 1

cosh(n cosh−1
ω/ωp) for |ω/ωp| ≥ 1of the characteristic function are zero at the origin. For this

reason, the attenuation response has the special characteris-
where Tn(�) is the nth-order Chebyshev polynomial. There-tic that it is maximally flat at the frequency origin. The But-
fore, the Chebyshev filter is an all-pole low-pass filter, havingterworth filter has all of its attenuation zeros and poles at the
all attenuation poles at infinity. In the passband, however,frequencies zero or infinity. This leads to a less steep transi-
the Chebyshev filter has attenuation zeros at the finite fre-tion region from the passband to the stopband and results in
quencies and the attenuation function has an equiripple form.a high filter order that is required to satisfy the attenuation
Because of the optimally distributed attenuation zeros in therequirements in both the passband and stopband. The polyno-
passband, the Chebyshev filter has a steeper transition regionmial characteristic function of the Butterworth filter leads to
than the Butterworth filter so that the Chebyshev filter cana transfer function having a constant numerator. This type of
satisfy the same attenuation requirements with a much lowerfilters is called all-pole low-pass filters. For the Butterworth
filter order than the Butterworth filter. For example, anfilter, Eq. (7) can be solved analytically. Thus, S21 and S11 can
eighth-order Chebyshev filter may satisfy the practical atten-be written in analytical forms. In particular,
uation requirements that would require a 20th-order Butter-
worth filter. However, it is also noted that because of the max-
imum flat property, Butterworth filters have a much
smoother phase/delay response than Chebyshev filters, lead-

S11 = R1
(ε1/ns/ωp)n

n∑
i=0

ai(ε
1/ns/ωp)i

ing to lower time-domain distortion of passband signals.
The LC ladder synthesis of Chebyshev filters can be

where the coefficients a0 � 1 and ai (i � 1, 2, . . ., n) are
achieved in the same way as for Butterworth filters and the

given by
synthesized two-ports also have the same ladder structures
as illustrated in Fig. 3. The explicit formulas for LC ladder
component values of an nth-order Chebyshev filter are given
with help of two intermediate constants h and 
 (15) as fol-

ai =
i∏

κ=1

cos γk−1

sinγk
with γk = kπ/2n

lows:
According to Eq. (9b), the input impedance function Zin can be
readily determined and then expanded into a continued frac-
tion at infinity according to the first Cauer canonical form
(8a). The resulting LC ladder filter is illustrated in Fig. 3,
where the minimum inductor structure is selected. It is noted
that the minimum capacitor structure is available as the dual
network to the minimum inductor structure. The LC values
of the resulting ladder filter can be determined either ac-
cording to the continued fraction expansion of Eq. (8a) or by
using explicit formulas, which are available for all-pole filters
(15). Such formulas are especially simple for frequency and
impedance normalized filters, for which the edge frequency of

h =
[

1
ε

+
(

1 + 1
ε2

)1/2
]1/n

and η =
(

h − 1
h

)

C1 = 4 sinγ1

ηR1
with γm = mπ/2n

C2m−1L2m = 16 sinγ4m−3 sinγ4m−1

η2 + 4 sin2
γ4m−2

, m = 1, 2, . . ., n/2

C2m+1L2m = 16 sinγ4m−1 sinγ4m+1

η2 + 4 sin2
γ4m

, m = 1, 2, . . ., n/2

Cn = 4 sinγ1

ηR2
for odd n

Ln = 4R2 sinγ1

η
for even n

R2

L2R1

C1E
+

Ln–2 Ln

C3 Cn–3 Cn–1

Inverse Chebyshev Filters. The inverse Chebyshev filters
have the reverse passband and stopband behavior with re-Figure 3. Minimum inductor ladder structure for all-pole filters. The
spect to the Chebyshev filters. The passband of the inversenumber of inductors is equal to (when Ln � 0) or less than (when

Ln � 0 and Cn�1 � 0) the number of capacitors. Chebyshev filter is maximum flat at the origin and the stop-
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band has the equiripple form. The characteristic function for ��, j are calculated by means of the elliptic functions, which
are discussed in many filter design books (19). The attenua-inverse Chebyshev filters can be written as
tion zeros and poles of an elliptic characteristic function are
located symmetrically around a frequency �t in the transitionC(s) = 1/εTn(ωp/ω)

band such that �0, j��, j � �2
t . This frequency �t is a measure of

where Tn is the nth Chebyshev polynomial. For the LC ladder the selectivity of the filter. The synthesis process for elliptic
synthesis of the inverse Chebyshev filter, which has finite- filters is very similar to that for inverse Chebyshev filters. In
frequency attenuation poles, the continued fraction expansion particular, the LC ladder network in Fig. 1(a) can be used to
technique can be generalized by allowing the removal of sim- implement a fifth-order elliptic filter.
ple resonant circuit branches that have resonant frequencies
in one-to-one correspondence with the finite frequencies of at- Thomson Filters. All of the above filter types are designed
tenuation poles. However, this poses a potential problem such to meet specified attenuation requirements. The Thomson fil-
that, during the generalized continued fraction expansion, the ter, on the other hand, achieves maximally flat group delay
removal of a finite frequency pole requires shifting a zero of by maintaining the first n derivatives of the group delay to be
the remaining input impedance/admittance to the same fre- zero at the frequency origin. The transfer function of Thom-
quency as the attenuation pole that is to be removed. This so- son filters is an all-pole function with the Bessel polynomial
called zero-shifting process can introduce a negative LC ele- as the denominator:
ment value that can be absorbed into a Brune section after
the pole removal. Fortunately, there is a way around this
problem of physically unrealizable negative LC elements if S21(s) = Bn(0)

Bn(s)
the filter has an attenuation pole at infinity, such as the odd-
order inverse Chebyshev filter. In this case, the zero-shifting where
can be achieved by the so-called partial removal of the infinity
attenuation pole. The resulting LC ladder two-port is no
longer a canonical network and no longer contains Brune sec-
tions.

Bn(s) =
n∑

i=0

(2n − 1)!si

2n−ii!(n − i)!

A fifth-order inverse Chebyshev filter can have an imple-
The normalized group delay of the Thomson filter approxi-mentation such as that shown in Fig. 1(a), where the two left-
mates unity in the neighborhood of the frequency origin. Thehand shunt capacitors only partially remove the attenuation
higher the filter order n, the wider the frequency band overpole at infinity and the right-hand shunt capacitor finally re-
which a flat delay response is achieved. The time-domain re-moves this pole completely. For the even-order inverse Cheb-
sponses of the Thomson filter are very smooth. For example,yshev filters, which do not have attenuation poles at infinity,
the step response has no overshoot. The synthesis of Thomsona frequency transformation, which will be discussed in the
filters is similar to that for other all-pole filters.next section, should be performed before the synthesis process

It is noted that all the prototype filters discussed so farin order to introduce an attenuation pole at infinity.
allow a closed-form solution for the filter approximation prob-Because LC ladder implementations of inverse Chebyshev
lem. The filter approximation of more general filter types suchfilters are not canonical networks, they require a larger num-
as filters with nonequiripple attenuation/phase behavior mayber of LC elements than do Chebyshev filters of the same or-
be solved in a satisfactory manner by using computer-aidedder. Furthermore, because the transition region of both types
numerical methods.of filters are similar with regard to their transition-band

steepness, the Chebyshev filter is usually preferred to its in-
verse version. However, the inverse Chebyshev filter has a Frequency Transformations
better phase/delay response due to its maximally flat pass-

In the previous sections, we discussed various types of low-band. Therefore, it may be preferred if a smooth delay re-
pass prototype filters. The approximation solutions and thesponse is required.
filter structures of these prototype filters can also be used to
obtain other filter types by means of appropriate frequencyElliptic Filters. The elliptic filter has equiripple attenuation
transformations.in both the passband and stopband. It provides the lowest

filter order satisfying a given attenuation requirement. For
Frequency Scaling. Low-pass prototype designs are usuallycomparison, a sixth-order elliptic filter can satisfy the same

obtained for normalized case so that the passband edge fre-attenuation requirement that would require an eighth-order
quency is normalized to unity. This is especially the caseChebyshev filter. The characteristic function for the nth-order
when the explicit design formulas are used. To denormalizeelliptic filter is a Chebyshev rational function given by
the passband edge to a specified value �p, the following fre-
quency transformation can be used:

p = s/ωp

where p is the complex frequency before transformation. The

C(s) = εd




s
m∏

i=0

s2 + ω2
0,2i

s2 + ω2
∞,2i

for n = 2m + 1

m∏
i=0

s2 + ω2
0,2i−1

s2 + ω2
∞,2i−1

for n = 2m

filter structure does not change after the denormalization, but
the LC element values of a given filter structure are scaled ac-where d is a scaling constant such that the passband ripple

factor is once again 	 and the attenuation zeros �0, j and poles cordingly.
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Low-Pass to High-Pass Transformation. A high-pass filter can characteristic function that is not realizable as an LC ladder
two-port into a realizable one.be obtained the following frequency transformation:

The even-order elliptic filter has the property that its at-
tenuation has a nonzero value at the origin and a finite valuep = ωp/s
at infinity. However, a practical LC ladder implementation

which results in replacing each inductor with a capacitor and requires an attenuation pole at infinity. Furthermore, it is
vice versa. often desirable to have the zero attenuation at the dc level,

which also allows for a balanced load resistance equal to the
Low-Pass to Bandpass Transformation. The specification of a source resistance. In order to achieve these requirements, the

bandpass filter is given by the two passband edges �pl and following transformation can be applied to the characteristic
�ph (�pl � �ph) and the two stopband edges �sl and �sh (�sl � function before the synthesis process:
�sh). The bandpass characteristic can be thought of as a com-
bination of a low-pass and a high-pass characteristic such as

s2 = ω2
p

ω2
∞ − ω2

p

ω2
p − ω2

0

· p2 + ω2
0

p2 + ω2∞
p = s

(ωph − ωpl)
+ ωplωph/(ωph − ωpl)

s
(10)

where �0, �p, and �� are respective frequencies for the first
passband attenuation zero, the passband edge, and the last

The stopband edges �sl and �sh can be calculated using Eq. finite-frequency attenuation pole. This transformation trans-
(10) by setting p equal to the low-pass prototype stopband forms the passband attenuation zero at �0 to the origin, the
edge. Because Eq. (10) is a second-order equation in s, it de- stopband attenuation pole at �� to infinity, while retaining
termines both stopband edges �sl and �sh. Therefore, these the passband edge at �p. In general, the transformed filter
stopband edges are not independent of each other but related has a poorer performance (especially in the transition region)
by �pl�ph � �sl�sh, resulting in a frequency-domain symmetri- than the original elliptic filter, because the latter is the opti-
cal bandpass filter. According to Eq. (10), a bandpass filter mum solution. However, the transformed filter still has a bet-
structure is obtained from its low-pass prototype by replacing ter performance than an original elliptic filter of lower order.
each inductor with a series resonant circuit and each capaci- The even-order Chebyshev filters do not have an attenua-
tor with a parallel resonant circuit. tion zero at the origin while having attenuation poles at in-

A minor problem can arise from the direct application of finity. The above transformation can be modified to just move
Eq. (10) to a parallel or series resonant circuit, such as the the attenuation zero at �0 to the origin:
parallel resonant circuit in Fig. 1(a), when transforming an
inverse Chebyshev or an Elliptic low-pass filter into the corre-
sponding band-pass filter. The transformed resonant circuit, s2 = ω2

p

ω2
p − ω2

0

( p2 + ω2
0 )

which is a combination of a parallel and a series resonant
circuits, does not directly relate to the anticipated attenuation

Similarly, for even-order inverse Chebyshev filters, the atten-poles, resulting in a less favorable stopband sensitivity. This
uation pole at �� can be moved to infinity by the followingproblem can be resolved by using network transformations
transformation:such that a parallel resonant circuit transforms into two par-

allel resonant circuits in series while a series resonant circuit
transforms into two series resonant circuits in parallel. s2 = (ω2

∞ − ω2
p)

p2

p2 + ω2∞
Low-Pass to Band-stop Transformation. The band-stop filter

can be obtained from a bandpass filter by interchanging its
ACTIVE INTEGRATED CIRCUIT IMPLEMENTATIONSpassband with its stopband frequency location. Therefore, the
OF LC LADDER FILTERSband-stop characteristic can be obtained by performing a

bandpass transformation on a high-pass filter instead of a
In the following sections, we discuss various techniques forlow-pass filter, resulting in the low-pass to band-stop trans-
the design of RC-active filters that are derived from LC lad-formation
der filters. However, the design details and parasitic effects
(primarily due to the finite gain and bandwidth of the op-
amps) are not discussed. Reference material on these topicsp =

(
s

(ωph − ωpl)
+ ωplωph/(ωph − ωpl)

s

)−1

can be found in the related articles in this encyclopedia and
in Refs. 20–24.

Because of the similarity between the bandpass and band-
stop transformations, the properties discussed above for the RC-Active Ladder Filters Based on Simulating Inductors
band-pass transformation can be easily rewritten for the

The RC-active filters in this category can be readily obtainedband-stop transformation.
by replacing inductors with selected active circuits. Three ba-
sic types of active circuits are employed and discussed in theOther Frequency Transformations. The frequency transfor-
following.mations discussed so far are reactance transformations; that

is, they transform a reactance into another reactance.
Whereas reactance transformations are very useful, nonre- Gyrators. A classical approach to the replacement of induc-

tors with active circuits is to use a two-port gyrator termi-actance transformations are often required to transform a
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or

Zin2 = Z2Z4

Z1Z3
Zld1 (11b)

Therefore, choosing

Z1 = R1, Z2 = R2, Z3 = R3, Z4 = 1/sC4, and Zld1 = R5
(12)

leads to a simulated grounded inductance at port 1 with L �
R1R3C4R5/R2.

According to Eq. (11a), Z2 could be chosen as a capacitor
instead of Z4. However, for practical reasons the choice in Eq.
(12) has a better performance at high frequencies.

In general, we can define a conversion factor K(s) �
Z1(s)Z3(s)/Z2(s)Z4(s), where Zi(s) can be any impedance func-
tions. Thus, the GIC can perform more general impedance

L L

Gyrator

R

C

(a)

L R1 R2

C

(b)
conversion than the inductance simulation. In particular, if

Figure 4. (a) Grounded-inductor simulation as may be used in high- port 1 is terminated in a capacitor Cld1, the input impedance
pass filters. (b) Floating-inductor simulation as may be used in low-

at port 2 is given bypass filters. Both inductor simulations use a gyrator, which is realized
by an active circuit.

Zin2 = R2

R1R3C4Cld1s2

nated at one end with a capacitor C as shown in Fig. 4(a). In which is a so-called frequency-dependent negative resistance
general, the relationship between the input impedance at (FDNR). Applications of FDNRs are discussed in the next
port 1, Zin, and the terminating impedance, Zld, at port 2 of a subsection.
gyrator is given by The GIC is used in a very similar way to that of a gyrator.

In particular, the gyrator simulating a grounded inductor, as
shown in Fig. 4(a), can be replaced with a GIC given by Eq.Zin = R2/Zld
(12). The GICs can also be used to simulate floating inductors
as shown in Fig. 5(b), which was first proposed by Gorski-where R is the gyration resistance inherent to the gyrator
Popiel. It is noted that, unlike the gyrator, the GICs with thecircuit. Therefore, the inductance seen from port 1 is given by

L � R2C.
There are two types of topological situations involving the

use of inductors, namely grounded inductors and floating in-
ductors, as shown in Figs. 4(a) and 4(b), respectively. To sim-
ulate a grounded inductor, a one-port grounded gyrator may
be employed; and to simulate a floating inductor, a two-port
grounded gyrator is needed. Note that because the active gy-
rator circuits involve complicated active circuitry, minimum
inductor implementations should be chosen in order to mini-
mize the number of required gyrators.

In general, passive implementations of gyrators are not
available for many applications. In the RC-active filter appli-
cation, small-signal active implementations of gyrators have
been specifically designed for converting a capacitor to an in-
ductor (25–27). When the gyrator is used as an impedance
converter, it may be considered as a special case of the gener-
alized impedance converter (GIC), which is discussed in the
following.

Generalized Impedance Converters. The GIC is a two-port
circuit, usually employing two op-amps as shown in Fig. 5(a),
where the impedances Zi are usually either a resistor or a
capacitor. The impedance relations between the input and

(a)

K(s)

K(s) = Z1 Z3 /Z2 Z4

Z1 Z2

Z3 Z4

– +

–+

1 2

L

(b)

k⋅sk⋅s R = L /k

terminating impedances of a GIC are given by
Figure 5. (a) Active implementation of GIC and its corresponding
symbol. K(s) is the conversion factor. (b) Floating-inductor simulation
using GIC. This simulation uses a resistor connecting two GICs. The
required capacitors are hidden in the GICs.

Zin1 = Z1Z3

Z2Z4
Zld2 (11a)
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and a capacitor according to

Vout = 1
sC

Iin

so that all the reactive components are represented as inte-
grators within the SFG. The terminating resistors are repre-
sented by constant-valued analog multipliers within the SFG.

Ld1

Ld2

R1/s

L1 L3 L5

R2/s

L2

FDNR
1/s2C2

E
+ L4

FDNR
1/s2C4

The physical interconnections of the LCR elements constrain
Figure 6. A fifth-order RC-active filter using FDNRs. The dashed the voltage and current signals to obey Kirchhoff ’s laws and
resistors Ld1 and Ld2 are the add-on discharging resistors. are represented in the SFG by appropriate combinations of

analog inverters and adders. An example of an SFG for the
third-order low-pass filter in Fig. 3 (where n � 3) is given in
Fig. 7(a), which is often referred to as the leapfrog structure.
It is noted that all inductors are simulated by noninvertingconversion factor k � s (k is a constant) convert a floating in-
integrators, and all capacitors are by inverting integrators soductor into a floating resistor whereas the required capacitors
that all signals entering an adder have the same positiveare embedded in the GICs.
sign. Furthermore, because all summations are performed im-
mediately prior to integration, summation can be easily

Frequency-Dependent Negative Resistors. All of the above achieved in the RC-active circuit by current-summing at the
RC-active filters use minimum inductor implementations. virtual ground input terminals of the integrator’s op-amps.
The minimum capacitor implementations can also be em- Thus, no dedicated summing devices are required. In Fig.
ployed in an effective way if the concept of the FDNR is used. 7(b), the complete circuit corresponding to the SFG in Fig.
The dimensionless filter transfer function of any LCR net- 7(a) is given for the selected type of integrator implementa-
work is unaltered if each branch is scaled by a uniform func- tions, where the circuit parameters can be determined by
tion. Thus, impedance scaling all branches by 1/s converts all
inductors to resistors, all resistors to capacitors, and all ca-
pacitors to FDNR elements. An example of a RC-active filter
using FDNRs is given in Fig. 6, where the dual network to
the fifth-order filter in Fig. 1(a) is 1/s impedance-scaled. The
resulting FDNRs can be implemented using GICs. It is noted
that the filter network in Fig. 6 is no longer resistively termi-
nated, which may cause a practical dc bias problem if the
source and/or load are not resistively coupled to ground. This
termination problem can be resolved by inserting two unity-
gain amplifiers between the source and the load, and the bias
current problem can be compensated for by connecting two
discharging resistors across the capacitors, as shown in Fig.
6. The values of these resistors are suggested to be chosen
such that the filter attenuation at the dc level remains equal
to unity, that is,

Ld2 = Ld1 + L1 + L2

and that the insertion of Ld1 and Ld2 introduces the least dis-
tortion of the filter frequency response.

RC-Active Filters Based on Simulating Ladder SFGs

The design and implementation of RC-active filters based on
simulating the voltage–current signal flow graphs (SFGs) of
LC ladder prototype structures was proposed by Girling and
Good. An SFG can be derived for any given LC ladder filter,
where for the purpose of implementing RC-active filters, the
SFG should be arranged in such a way that it consists only
of inverting/noninverting integrators, analog multipliers, and

E R/R1

R/R1

–1/sC1R

R/R2

V2

r1

e

r1
c1

r

r

r2 r5

r3 r4

r6

R/sL2

–1/sC3 R

V2

– + c3

c2

– +

– +

(a)

(b)

– +

adders. An inductor is represented in the SFG according to
Figure 7. (a) A third-order leapfrog SFG scaled by a constant R. (b)
The corresponding complete RC-active circuit, where c1r1 � C1R1,
c1r2c2r3 � C1L2, c2r5c3r4 � L2C3, c3r6 � C3R2. No dedicated summing
devices are needed.

Iout = 1
sL

Vin
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comparing the loop gains between the circuit representations tween the transfer functions of the continuous-time LC ladder
filter and its discrete-time SC counterpart. An example of SCin Figs. 7(a) and 7(b). Note that other types of integrator im-

plementations may be chosen, depending on the frequency resistor circuits is given in Fig. 8(a), which leads to the de-
sired frequency-domain relationship given by the bilinearrange within which the circuit is intended to operate.

The SFG simulation method is very straightforward and transformation.
In many SC filters, the ideal circuit capacitances are noteasy to use, especially when designing band-pass filters. How-

ever, it is noted that, when drawing the SFGs for LC ladder significantly larger than the parasitic capacitances. In fact,
the latter is around 20% of the former. Therefore, it is ex-network that contain a � circuit of capacitors or a T circuit of

inductors, difficulties arise because two adjacent SFG blocks tremely critical to only use those SC circuits that are not sen-
sitive to parasitic capacitances. An example of a so-calledhave ports with the same orientation facing or leaving each

other. This problem can be solved perfectly by using network stray-insensitive SC resistor circuits is given in Fig. 8(b). This
circuit yields a different frequency transformation than thetransformations involving Brune sections in the same way as

it has been done for LDI/LDD digital filters (28). By now, it bilinear transformation. In order to achieve the desired bilin-
ear transformation using simple SC ladder circuits, a so-is evident that the Brune section is a very useful building

block in RC-active and digital filter implementations, al- called predistortion technique may be used that adds a posi-
tive capacitance to one circuit component and subtracts anthough it is, strictly speaking, not a ladder component.
equal-valued negative capacitance from another circuit com-
ponent, along with an impedance-scaling technique (30). It is

DISCRETE-TIME SC AND DIGITAL IMPLEMENTATIONS noted that a similar technique is also used for LDI/LDD digi-
OF LC LADDER FILTERS tal filters.

Another alternative approach for designing SC filters is to
Both the SC filter and digital filter are sampled data (dis- directly simulate each inductor and each terminating resistor
crete-time) systems. The frequency response of a discrete- in the LC ladder filter. In this method, the interconnections
time system is adequately described in the z domain with of capacitors and simulated inductors/resistors are achieved
z � esT, where s is the complex frequency and T is the sam- by the so-called voltage inverter switchs (VIS), which contain
pling period. The frequency-domain design methods for SC active op-amps. This component simulation method guaran-
filters and for digital filters have many similarities and often tees the bilinear transformation between transfer functions of
have the same z-domain transfer functions, in spite of the fact the continuous-time LC ladder filter and its discrete-time SC
that SC filters are implemented as analog circuits whereas counterpart, which can be designed insensitive to parasitic
digital filters employ the digital arithmetic operations of addi- capacitances. Nevertheless, considerable design effort and/or
tion, multiplication, and delay and are implemented as com- complicated switching signals may be required to achieve the
puter programs or by dedicated hardware. low-sensitivity property.

The frequency-domain design of discrete-time SC and digi-
tal filters can be performed directly in the z domain. However, Digital Ladder Filters
high-performance discrete-time filters may be designed by

In a way that is similar to the SC simulation of LC laddersimulating continuous-time LC ladder filters as discrete-time
filters, there are two alternative approaches for the digitalfilters. This is achieved in a way such that all of the above-
simulation of LC ladder filters, namely the simulation of eachmentioned favorable stability and sensitivity properties of
LCR component and the simulation of the SFG represen-LC filters are preserved. The transfer functions of the contin-
tation.uous-time LC ladder filter and its discrete-time counterparts

The component simulation method is achieved using waveare related by the bilinear transformation
digital filters (WDF) (11), where the circuit components of the
LC ladder filter, such as inductors, capacitors and resistors,s = (z − 1)/(z + 1)

are directly simulated by corresponding digital domain com-
ponents, such as delay registers and inverters. The parallelIn the following, we briefly discuss methods for converting
and serial interconnections of these digital components arecontinuous-time LC ladder filters into their discrete-time
facilitated by so-called parallel and serial adapters that con-counterparts. The design details for SC and digital filter cir-
tain adders and multipliers. A distinguishable advantage ofcuit components and the treatment of parasitic and other

nonideal effects are not considered here. Reference material
on these topics can be found in the related articles in this
encyclopedia and in Refs. 11 and 28–32.

Switched Capacitor Filters

SC filters that are based on LC ladder filters can be derived
from RC-active filters that are themselves derived from LC
ladder filters, preferably using the SFG simulation technique.
In fact, the resistors in RC-active ladder filters can be simu-

ph0 ph1 ph0

ph1

(ph0)ph1

(ph1)ph0
ph0

(a) (b)

ph1

C C

lated by switched capacitors, leading directly to the SC filter.
There is a variety of different SC circuits for simulating the Figure 8. (a) Bilinear SC resistor circuit with two switching phases.
resistors in RC-active ladder filters. Different SC resistor cir- (b) Stray-insensitive SC resistor circuit which can be used to form
cuits, which are used to replace resistors in RC-active filters, inverting or noninverting (switching scheme in parentheses) inte-

grators.may result in different frequency-domain relationships be-
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