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IIR FILTERS

IIR or infinite-length impulse response digital filters have impulse responses of infinite length, which extend
over all time. FIR or finite-length impulse response filters do not. IIR filters are also called recursive filters,
or less frequently, ladder, lattice, wave digital, pole-zero, autoregression moving average (ARMA), and autore-
gression integrated moving average (ARIMA) filters. FIR filters are also called nonrecursive filters, as well as
moving average, delay line and tapped delay line, feedforward, all-zero, and transversal filters (1). From all
these names, we choose to classify digital filters as IIR or FIR.

Terms such as IIR are usually applied to digital filters rather than analog filters. Digital filters operate
in discrete time, and analog filters operate in continuous time (2). Digital filters are usually analyzed using
the z-transform (denoted Z[ ]), whereas analog filters are analyzed using the Laplace transform (denoted L[ ]).
There are very close analogies between the two filter types, and these are often exploited in design.

From a design standpoint, IIR and FIR filters compete with each other. IIR filters have many desirable
properties, which are listed in Table 1. Their design is easy if frequency transformations and other methods are
used. Well-known classical analog filters like Butterworth can be used. Low-order IIR filters can have gains
with sharp cut-off and high selectivity. IIR filters can be implemented using little storage, short delays, and a
small number of arithmetic computations.

IIR have several undesirable properties. They can be unstable. They are stable only if their poles lie inside
the unit circle (assuming causality). They can never have linear phase unlike FIR filters. They are generally
more difficult to design unless frequency transforms are used. Nevertheless, their desirable characteristics
generally far outweigh these undesirable properties, so IIR filters are the most widely used in industry.

IIR filters can be implemented using a variety of techniques. These are summarized in Table 2. The most
popular methods include numerical integration or digital transforms, several invariant time domain response
designs, and matched z-transform design. IIR filters can also be designed using FIR filter design techniques
(1).

Basic Description

A linear digital filter is characterized by its impulse response h(n). The impulse response relates the filter input
x(n) and output y(n) as

when the filter is time-invariant and ∗ represents the convolution operation. Taking the z-transform of both
sides gives
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If the filter is time-varying, then y(n) = h(n,m) ∗ x(m) and Y(z2) = H(z1,z2)X(z2). In this case, h(n,m) and
H(z1,z2) are two-dimensional functions. Such digital filters will not be considered, but their analysis and design
is a direct extension of what will be presented here (3). The general time domain form [Eq. (1)] and frequency
domain form [Eq. (2)] of the digital filter are shown in Fig. 1.

IIR filters have transfer functions that can be expressed in the product form

The values of z where H(z) = 0 are called the zeros zk of the filter. The values of z where 1/H(z) = 0 are called
the poles pk of the filter. Any common terms in numerator and denominator are usually canceled out. The IIR
filter gain can also be expressed in the polynomial form
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As mentioned before, based on the form of Eqs. (3) and (4), such digital filters are classified in two broad groups
as IIR when the denominator D(z) �= 1 and FIR when D(z) = 1.

Rearranging Eq. (4) as Y(z) = H(z)X(z), taking the inverse z-transforms of both sides, and solving for x(n)
gives

This is the time-domain equation used to generate the filter output y(n) from the input x(n). Because feedback
of the output (or so-called recursion) depends upon bk, Eq. (5) makes it clear that the digital filter is recursive
when bk �= 0 and nonrecursive when bk = 0. The characteristics of the digital filter are controlled by its gain
H(z) and impulse response h(n).

We first describe some of the overall filter properties based on H(z) and h(n). A digital filter is causal or
nonanticipatory if its impulse response is zero for negative time,
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Fig. 1. Block diagram of digital filter in (a) time domain form and (b) frequency domain form.

Most real-time filters are designed to be causal. Causality can also be tested using H(z) and the Paley-Wiener
criterion (1). Noncausal filters can often be made causal by delaying its impulse response and truncating its
negative time portion. This changes its gain H(z) very little if only a small portion is truncated.

Another important property is stability. A causal digital filter is stable if its impulse response decays to
zero as time approaches infinity,

Causality is easily tested by inspecting the poles of H(z). A causal digital filter is stable when all the poles
of H(z) lie inside the unit circle of the z-plane and any poles on the unit circle are simple or first-order. Most
digital filters are designed to be both causal and stable (4).

Digital filters are designed using frequency domain and time domain techniques. In the frequency domain
approach, an analog filter transfer function H(s) is directly converted into a digital filter transfer function H(z)
using some form of

g(z) is the desired digital transform. The resulting H(z) generally has frequency-domain and time-domain
responses that differ considerably from the analog filter responses from which they were derived.

A time-domain approach preserves a particular temporal response of the analog filter used to form the
digital filter as

where x(n) and y(n) are the sampled input and output, respectively, of the analog filter. Equivalently, H(z)
is the z-transform of h(n). When the sampling frequency f s = 1/T Hz is sufficiently high compared with the
stopband frequency of the analog filter, the frequency response characteristics are preserved. Otherwise, there
is noticeable aliasing distortion.

We should note a convention that is standard. The samples are taken at time t = nT. The input x(t) is
sampled to produce x(nT). To simplify notation, this is written in shorthand as x(n). This is true for all analog
filter variables when they are converted into digital filter variables.
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Frequency-Domain Algorithms

Digital transforms directly convert an analog transfer function H(s) into a digital transfer function H(z) using

g(z) is the desired digital or discrete transform. The resulting H(z) generally has frequency-domain and time-
domain responses that differ considerably from those of the analog filter from which they were derived.
Only s-to-z mappings that map the imaginary axis of the s-plane onto the unit circle of the z-plane preserve
certain frequency-domain characteristics like the passband and stopband magnitude response ripples and
phase variations. Delay and time-domain responses are distorted.

Numerical Integration Transform Design. One especially simple way to obtain digital transforms
is to approximate continuous integrators by discrete integrators (5). Equating the continuous time transfer
function H(s) = 1/s to the discrete time equivalent H(z) = 1/g(z) results in s = g(z), which is the digital transform.
The digital transfer function Hdmn(z) of the discrete integrator is chosen to equal

d is the number of zeros at the origin, m is the number of finite zeros including those at the origin, and n is the
number of finite poles in the z− 1 plane. The ak and bk are selected so that Hdmn well approximates the transfer
function of an analog integrator H(s) = 1/s when z = e− sT =�∞

k = 0(sT)k/k!. This method generates an infinite
number of digital transforms (1).

Some of them and others are listed in Table 3. We have selected the backward and forward Euler, bilinear,
modified bilinear, lossless, and optimum transforms. These transforms involve a constant C, which is adjusted
so that the analog frequency ω = 1 rad/s maps into any desired digital filter frequency B rad/s, and normalized
frequency BT radians or 360◦ f /f s degrees. The bilinear transform, denoted as H011, is perhaps the most popular
and widely used where

and C = tan(BT/2). This transformation maps the imaginary axis of the s-plane describing the analog filter unto
the unit circle of the z-plane describing the digital filter. Therefore, except for frequency warping, the magnitude
and phase characteristics of the analog filter are preserved exactly. The delay, which is the derivative of the
phase, changes as does the step response. Of the many transforms available, the bilinear transform is the most
widely used because it has the desirable mapping property just mentioned.

An important comment should be made. Causal and stable analog filters are not always mapped into
causal and stable digital filters using these transforms. The backward Euler, bilinear, and optimum transforms
do produce causal and stable filters, but the forward Euler and lossless transforms do not (1). When using
general transforms, the poles of H(z) should always be verified to be inside or on the unit circle (assuming
causality).

Other Filter Types. The transforms of Table 3 are usually used to map analog filter transfer functions
into digital filter transfer functions. If the analog filter is lowpass, these transforms produce a digital highpass
filter. If the analog filter is bandpass, the transforms produce a digital bandpass filter.
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However, they can also be used to convert analog lowpass filters to the other types directly. If the reciprocals
of s are used in Table 3, digital highpass filters are produced. If the transforms in Table 4 are used, digital
bandpass filters are produced directly. If the reciprocals of s are used in Table 4, then digital bandstop filters
are produced directly. Thus analog lowpass filters can be converted directly into any of these other filter types
by using Tables 3 and 4.

These other filters can be obtained by a simpler and more direct scheme. After a lowpass digital filter H(z)
is obtained, it can be converted into a highpass filter using H(−z) = H(zejπ). It can be converted to a single-
sideband bandpass filter using H(zejω0T). Therefore, by simply rotating the pole-zero pattern of the lowpass
H(z) by θ degrees in the z-plane, other filter types can be obtained. These filters have the same arithmetic shape
but have different geometric shapes, the proper bandwidths, etc. The proper shape is always maintained by
using the transforms in Tables 3 and 4.
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Time-Domain Algorithms

Time-domain algorithms preserve a particular temporal response of the analog filter used to form the digital
filter. Mathematically, the invariant time-domain transform uses

where h(n) is the sampled impulse response of the analog filter. Equivalently, H(z) is the z-transform of h(n)
(6). When the sampling frequency f s = 1/T Hz is sufficiently high compared with the stopband frequency of the
analog filter, the frequency response characteristics are preserved, and there is noticeable aliasing distortion.

Impulse-Invariant Transform Design. The impulse-invariant transform preserves the impulse re-
sponse h(t) of the analog filter (7). Setting the input to be an impulse as x(t) = U0(t) in Eq. (13) gives X(z) = 1/T
and

If the analog transfer function H(s) is band-limited to |ω| < ωs/2, then the digital filter has exactly the same
magnitude, phase, and delay responses of the analog filter for |ω| < ωs/2. Otherwise, the frequency responses
are not identical because aliasing occurs. Nevertheless, the impulse responses are identical at the sample
times.

Suppose that H(s) is causal. Its transfer function can be expanded as a partial fraction as

assuming N > M. The impulse response of the analog filter equals

Taking the z-transform of h(t) and multiplying by T gives the impulse-invariant digital filter gain as

Modified Impulse-Invariant Transform Design. An interesting alternative the impulse-invariant
transform is the modified impulse-invariant transform (8). For an analog transfer function H(s) = N(s)/D(s),
its poles were preserved but its zeros were not in Eq. (17). However, the zeros can also be preserved using the
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following method. Express two new transfer functions as

which are all-pole low-pass filters. Their impulse-invariant response versions equal

Forming the ratio of these two transfer functions produces the modified impulse-invariant transform as

This is the product of the matched-z transform of the next section and a N2(z)/N1(z) compensator.
Because this method relies on closely approximating the frequency responses of both the numerator N(s)

and denominator D(s) of H(z) regardless of their orders, H(z) well approximates H(s) in ac steady state.
Matched-z Transform Design. One of the simplest design methods is the matched-z transform. It

uses the z-transform z = esT to map every analog pole −pk and every analog zero −zk into their equivalent
digital pole zp = e− pkT and zero zz = e− zkT, respectively. Using this approach, Eq. (15) maps as

We see that its transfer function has a related form to Eqs. (17) and (20). The impulse-invariant transform
Eq. (17) has the same denominator but a different numerator. The modified impulse-invariant transform Eq.
(20) has the same denominator and numerator but is multiplied by a compensator. The matched-z transform
does not preserve frequency-domain characteristics such as magnitude ripple and delay, nor does it preserve
time-domain responses. Its major advantage is ease of application.

Complementary Design. On a related topic, a complementary digital filter Hc(z) can be obtained from
a digital filter H(z) using

The impulse responses of these two filters add to a step function U − 1(n) so the responses are said to be
complementary. Therefore, these two filters maintain their time domain impulse response characteristics such
as delay and rise (fall) times, overshoot (undershoot), etc. If one filter is low-pass, its complementary filter
is high-pass. If one filter is bandpass, its complementary filter is bandstop. This is an especially convenient
approach because it generates an additional filter with little additional computational cost (1).
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Fig. 2. Magnitude gain response specification of (a) digital filters and (b) analog filters.

Filter Orders

Digital filters generally have frequency-domain specifications like that drawn in Fig. 2 where
f p = maximum passband frequency (Hz) for Mp (dB) maximum ripple
f r = minimum stopband frequency (Hz) for Mr (dB) minimum rejection
f s = sampling frequency (Hz) = 1/T seconds

These are usually converted to the normalized frequency form as where
ωpT = 360◦f p/f s = maximum passband frequency in degrees
ωrT = 360◦f r/f s = minimum stopband frequency in degrees
�d = ωrT/ωpT = stopband/passband frequency ratio.

From such (Mp,Mr,�r) frequency specifications, the digital filter order n is determined from nomographs
using the following procedure. This can be easily done for classical analog filter transfer functions (like Butter-
worth and Chebyshev) combined with the digital transforms (like bilinear) discussed earlier (9).

Frequency Warping. Consider the bilinear transform of Table 3 and its associated frequency relation

where z = jω and s = jv (after some manipulation). The analog filter frequencies v = (0,1,∞) map into the digital
filter frequencies ωT = (0,BT,π). Therefore the bilinear transform compresses the high-frequency response of
the analog filter into frequencies approaching π radians in the digital filter. Thus the digital filter order will be
less than the analog filter order, or at most equal, using this transform.

Other transforms have other constants. For example, the Euler transforms have vT = sin(ωT) or ωT =
sin− 1(vT). These transforms expand rather than compress the higher-frequency filter response. The digital
filter orders will be no less, and often greater, than the analog filter orders using the Euler transforms.

As the sampling frequency f s approaches infinity or the sampling interval T approaches zero, all properly
formulated discrete transforms produce digital filters whose transfer functions approach that of the analog
filter from which they were all derived. For example, the bilinear transform in Eq. (23) has frequencies that
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are related as

so that ωT ∼= vT at low frequencies. Therefore, the low-frequency responses of all the digital filters and the
analog filter must be identical. However, as T increases from zero, this is no longer true, and the frequencies
begin to warp or diverge. In addition, for most transforms the locus of z no longer remains on the unit circle
as s moves up the imaginary axis. The frequency responses cannot remain similar, and considerable distortion
begins to appear. This does not occur with the bilinear transform whose locus remains on the unit circle.

To make this important point, we refer to Table 5. The various transforms are listed with their frequency
mappings for small ωT. Across the top of the table are listed percentage errors in the ωT/vT ratios ranging from
1 to 20%. Also listed are the digital frequencies ωT required for the error to be below this limit. For the bilinear
transform, normalized frequencies less than 43◦ will be warped less than 5%. For the Euler transforms, this
normalized frequency is reduced to 32◦.

Analog Filter Nomographs. Analog filter nomographs are well-known and readily available (9).They
can be used directly to determine digital filter orders easily. The digital filter frequencies must be converted into
their equivalent or warped analog filter frequencies. The necessary frequency ratios listed in Table 6 must be
computed. These ratios are then entered onto the nomograph as shown in Fig. 3. The digital filter frequencies
�d are converted into their corresponding analog filter frequencies �a. These analog filter frequencies are then
transferred onto the nomograph as usual, and the analog filter order is determined.

Digital Filter Design Procedure. The design procedure for digital filters using discrete transform is
straightforward. It consists of the following steps (1):

• 1a.Select a suitable analog filter type (e.g., Butterworth, Chebyshev, elliptic).
• 1b.Choose a particular sn-to-z transform from Tables 3 and 4.
• 2.Determine the required analog filter order from the nomograph. Use Table 6.
• 3.Write the analog transfer function H(s) having unit bandwidth and the desired magnitude.
• 4.Compute the normalization constant and the discrete transform from Tables 3 and 4.
• 5.Compute the digital transfer function H(z) by substituting the sn-to-z transform of step 4 into the analog

transfer function H(s) of step 3.
• 6.Implement the transfer function using one of the realization techniques discussed later.
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Fig. 3. Use of analog filter nomograph for computing digital filter order.

Design Examples

Now that we have introduced and described IIR filters, presented their frequency- and time-domain algorithms,
and described their design procedure, we now will unify this using design examples. We will design a fourth-
order elliptic lowpass filter with 0.28 dB in-band ripple, a minimum of 40 dB stopband rejection, and a 1 kHz
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bandwidth using a 10 kHz sampling frequency. Using tables, the analog transfer function equals

The scaling constant 0.1363 is selected so that the dc gain H(0) is −0.28 dB. The maximum in-band gain is
then 0 dB. Most digital filters are designed following the procedure [or some modified version (10)] described in
the previous section. We have chosen both the analog filter type (i.e., elliptic) and order (i.e., 4). Now we choose
the design method and will now demonstrate each of them as discussed previously (1).

Bilinear Transfer Design Example. We choose the bilinear transform of Table 3. Because the desired
0.28 dB bandwidth is 1 kHz and the sampling frequency is 10 kHz, the normalized digital filter bandwidth is
360◦(1 kHz/10 kHz) = 36◦. The necessary constant then equals C = tan(36◦/2) = 0.3249 = 1/3.078. The bilinear
transform then equals
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Fig. 4. Multiple feedback (1F) realization of fourth-order elliptic digital filter.

Substituting this into the analog transfer function Eq. (25) produces the digital transfer function

The bilinear transform preserves the magnitude and phase response behavior of H(s) but with frequency
warping.

Impulse-Invariant Transform Design. The impulse-invariant transform preserves the impulse re-
sponse h(t) of the analog filter. Expressing the gain Eq. (25) as a partial fraction expansion gives

where sn = s/2π(1 kHz). Taking the inverse Laplace transform, sampling the resulting impulse response h(t)
at T = 1 ms, and z-transforming the result gives

This transform tends to maintain the frequency domain shaping of H(s) but with some aliasing.
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Fig. 5. Cascade (1F) realization of fourth-order elliptic digital filter.

Modified Impulse-Invariant Transform Design. We express the numerator and denominator of the
analog filter Eq. (25) as separate transfer functions where

We convert these using the impulse-invariant transform to

Forming the ratio H02/H01 gives the digital filter as
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Fig. 6. Parallel (1F) realization of fourth-order elliptic digital filter.

The modified impulse-invariant transform produces a digital filter that more closely approximates the magni-
tude response of the analog filter.

Matched-z Transform Design. The analog filter poles and zeros of Eq. (25) are converted to digital
filter poles and zeros using the z-transform z = esT. Converting the poles and zeros gives
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Grouping these terms together, the digital filter transfer function equals

This method is simple and gives fairly good responses.

IIR Filter Realizations

To implement an IIR digital filter H(z) in either hardware or software, usually one of the structures listed
in Table 7 must be chosen. These structures are multiple feedback, cascade, parallel, lattice, ladder, analog
simulation, and wave. Because each form has many variations, a wide variety of implementations exist. To
conserve space, some of these implementation forms are now shown by examples but with no discussion. These
filter structures implement the fourth-order 0.28 dB elliptic digital filter whose H(z) is given by Eq. (25) as

The different realizations or structures result by expressing H(z) in different forms as will now be shown (1).
Multiple Feedback Structure. The multiple feedback structure uses H(z) in the summation form Eq.

(4) as

The constant 0.01201 can be included in the numerator as was done here or treated as an external multiplier.
(See Fig. 4.)

Cascade Structure. The cascade structure uses H(z) in the product form of Eq. (3) with biquads as

The poles and zeros are paired. Better performance is usually obtained by selecting pole-zero pairs separated
by a relatively constant distance. (See Fig. 5.)
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Fig. 7. Lattice realization of fourth-order elliptic digital filter.

Parallel Structure. The parallel structure uses H(z) in the partial fraction expanson form of Eq. (17)
with biquads as

Notice here the biquad does not use a z− 2 term but instead a 0.02864 constant. This reduces complexity. (See
Fig. 6.)

Lattice Structure. The lattice structure uses H(z) in a chain matrix product form. The process is
standard but lengthy and involves the simultaneous solution of equations. (See Fig. 7.)

Ladder Structure. The ladder structure uses H(z) in the continued fraction expansion or repeated long
division form as
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Fig. 8. (a) Cauer 1 and (b) Cauer 2 ladder realizations of fourth-order elliptic digital filter.

for Cauer 1 (see Fig. 8a) and

for Cauer 2 (see Fig. 8b). The // denotes the repeated long division operation.
Analog Simulation Structure. The analog simulation structure uses tabulated RLC analog filters

which implement standard H(s). This ladder is put into flow graph form in which the L and C terms involve
1/s. These analog integrator terms are replaced by digital transforms as found in Table 3. This produces H(z)
structures. (See Fig. 9.)

Wave Structure. The wave structure of H(z) is a more complicated form of tabulated H(s) RLC ladders
(1).

IIR Filter Properties

Some of the most important digital filter properties are (1):

(1) Complexity Related to the total number of delays, multipliers, and summers.
(2) Cost Proportional to complexity.
(3) Speed/sampling rate Related to complexity.
(4) Memory Determined by the total number of delay elements and filter coefficients.
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Fig. 9. Analog filter simulation realization of fourth-order elliptic filter showing (a) RLC analog filter, (b) block diagram
equivalent, and (c) digital filter.

(5) Sensitivity of pole/zero locations Controlled by word length and arithmetic used in computations (fixed- or
floating-point).

(6) Data quantization, coefficient truncation, and product roundoff noise Determined by word length.
(7) Limit cycles Low-level oscillation that continues indefinitely as a result of quantization effects.
(8) Dynamic range Determined by word length, arithmetic used, and filter structure.

A digital filter requires addition, multiplication, and delay z− 1 elements. The complexity depends directly
upon the number of elements required. They are listed in Table 7. Complexity depends indirectly upon filter
type (low-pass, high-pass, etc.), the filter gain characteristic (Butterworth, etc.), and the arithmetic used for
computations. Table 7 shows that multiple feedback structures are the simplest and wave structures are the
most complex. Cost in the general sense is proportional to complexity.

Speed is determined by the speed of the adders, multipliers, and delay (write/read) operations. If these
three digital filter elements have about the same speed, then speed is proportional to total complexity. Parallel
processing techniques can be used to increase speed.

The memory requirements are dictated by the number of delay elements required (data storage) and the
number of filter coefficients used (the ak and bk). Memory is minimized by using canonical forms having the
minimum number of z− 1 terms. Almost all the filter forms are canonical. The 3F and 4F multiple feedback
forms should be avoided because they require twice the number of delay elements.

The sensitivity of the pole–zero locations of the filter and its response depends upon the word length (i.e.,
finite word size and coefficient truncation) and the type of arithmetic used in the computations. Generally
floating-point arithmetic and long coefficient lengths produce the lowest sensitivity.
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