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HARMONIC OSCILLATORS, CIRCUITS

In electronics a harmonic oscillator is an electronic circuit
that generates a sinusoidal signal. This signal can either be
a voltage, a current, or both. Harmonic oscillators are not re-
stricted to electronics. They can be found in many other disci-
plines. However, they always can be described by similar
mathematical equations. A very familiar harmonic oscillator
is the harmonic pendulum, which is found in many high
school physics textbooks. It is a mechanical system consisting
of a mass suspended by a fixed length thread. Figure 1 illus-
trates this. When mass m is slightly separated from its equi-
librium point (so that angle � in Fig. 1 is sufficiently small)
and set free, the earth’s gravitational force will make it move
toward its resting point. When the mass reaches the resting
point it has gained some speed that will make it keep running
toward the other side of the equilibrium point, until it stops
and comes back. And so it will oscillate from one side of the
equilibrium point to the other. What happens is that by ini-
tially departing the mass from its equilibrium point, an exter-
nal agent is increasing its potential energy. When it is set
free the action of the earth’s gravitational force, together with
the constraint imposed by the fixed length thread, will gradu-
ally change this initial increase of potential energy into ki-
netic energy. At the equilibrium point all potential energy
supplied initially by the external agent is in form of kinetic
energy and speed is maximum. At the points of maximum
elongation the kinetic energy (and speed) is zero and the orig-
inal potential energy is recovered. The pendulum oscillates at
constant frequency and, if there is no friction, it keeps oscil-
lating indefinitely with constant maximum elongation or am-
plitude. However, in practice friction cannot be completely
suppressed. Consequently, in order to have a pendulum oscil-
lating permanently there must be a way of supplying the en-
ergy lost by friction.

In an electronic oscillator there is also a mechanism by
which energy of one type is changed into another type (energy
can also be of the same type but interchanged between differ-

m

θ

Figure 1. The mechanical pendulum behaves as a harmonic oscilla-
tor in the limit of very small maximum angle deviations.
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The solution to this second order time domain differential
equation is

vC(t) = vC(0) cos(ωt) − iL(0)
√

L/C sin(ωt) (5)

where vC(0) is the capacitor voltage at time zero, iL(0) is the
inductor current at time zero and � is the angular frequency
of the resulting oscillation whose value is

vC
iL

–

+

Figure 2. An ideal capacitor connected in parallel with an ideal in- ω = 1√
LC

(6)
ductor form a harmonic oscillator.

Using Eqs. (3), (5), and (6) in Eq. (1) results in

ent devices). Figure 2 shows a capacitor connected in parallel iL(t) = iL(0) cos(ωt) + vC(0)
√

C/L sin(ωt) (7)
with an inductor. At equilibrium there is no voltage across
the capacitor and no current through the inductor. However, By means of basic trigonometric manipulations Eqs. (5) and
if by some means, an initial voltage (or equivalently, charge) (7) can be rewritten as
is supplied to the capacitor, its stored energy increases. The
inductor provides a path to discharge the capacitor so that a
current builds up through the inductor. However, by the time

vC(t) = Vmax cos(ωt + ϕ)

iL(t) = Vmax
√

C/L sin(ωt + ϕ)
(8)

the capacitor has zero charge the current flowing through the
inductor is maximum and the inductor stores all the original

where,capacitor energy in the form of magnetic flux energy. The con-
sequence is that the current keeps flowing through the induc-
tor, charging now the capacitor oppositely, until the current is
zero. If there are no resistive losses this process will continue
indefinitely: capacitor and inductor keep interchanging their

Vmax =
√

v2
C(0) + i2

L(0)L/C

ϕ = arctan
(

iL(0)

vC(0)

√
L/C

) (9)

stored energies. The voltage across the capacitor will be si-
nusoidal in time, and so will be the current through the in-

Equation (8) reveals that vC(t) and iL(t) have a phase shift ofductor. The amplitude (or maximum elongation) of the voltage
�/2 radians. This is usually referred to as vC(t) and iL(t) beingoscillations is equal to the initial voltage supplied to the ca-
in quadrature, and the resonator in Fig. 2 as being a quadra-pacitor. In practice both capacitor and inductor have resistive
ture resonator or oscillator. Note that the maximum oscilla-losses, so that in order to keep the system oscillating indefi-
tion amplitudes (Vmax or Vmax�C/L, respectively) depend onnitely there must be a way of supplying the energy being lost.
the initial conditions vC(0) and iL(0) � �C v̇C(0).

Usually, differential equations like Eq. (4) are not solved
directly in the time domain but in the frequency domain. ForIDEAL RESONATOR MATHEMATICAL MODEL
this, let us take the Laplace transform of Eq. (4)

In Fig. 2 the capacitor voltage vC and its current iC are related
mathematically by the expression s2VC(s) − svC(0) − v̇C(0) + VC(s)

LC
= 0 (10)

where VC(s) is the Laplace transform of vC(t). Since iL(0) �iC = C
dvC

dt
(1)

�C v̇C(0), Eq. (10) can be rewritten as

where C is the capacitor’s capacitance. For the inductor, its
voltage vL and current iL are related by VC(s) = s

s2 + 1/LC
vC(0) − 1

s2 + 1/LC
iL(0)

C
(11)

Taking the inverse Laplace transform of Eq. (11) results invL = L
diL

dt
(2)

Eq. (5). Usually in circuits, the initial conditions involved in
the Laplace transform are ignored and Eq. (10) is simplified

where L is the inductor’s inductance. Besides this, the circuit to
of Fig. 2 imposes the following topological constraints

s2 + 1
LC

= 0 (12)vC = vL

iC = −iL
(3)

which has the following solutions
Solving Eqs. (1–3) yields

d2vC

dt2
+ 1

LC
vC = 0 (4)

s1 = jω, s2 = − jω

ω = 1√
LC

(13)
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Solutions s1 and s2 are called the poles of the system, and in is negligible and one can consider that the system has stopped
oscillating. Consequently, in practice, the circuit of Fig. 2 isthis case the two poles are complex conjugate and are purely

imaginary (their real part is zero). In circuits, people don’t not useful for building an oscillator.
Imagine that somehow we could make RL or RC (or both)take the inverse Laplace transform to know the solution.

They know that if a system has a pair of purely imaginary negative, so that b � 0. A negative resistance behaves as an
energy source that replaces the energy dissipated by positivepoles the signals have a sinusoidal steady state whose ampli-

tude depends on the initial conditions. resistances. In this case the poles would have a positive real
part and the amplitude of the oscillations

REAL RESONATOR MATHEMATICAL MODEL A(t) = Vmaxe−bt/2 (20)

As mentioned earlier, the circuit of Fig. 2 is ideal. In practice would increase exponentially in time, assuming Vmax � 0 (due
there will always be resistive losses in the capacitor, in the to noise Vmax cannot be exactly zero all the time). This would
inductor, or in both. Either introducing a small resistance RL yield an oscillator with initial startup but that would be un-
in series with the inductor, a large resistance RC in parallel stable, because its amplitude would be ‘‘out of control.’’ What
with the capacitor, or both can model this. Solving such a circuit designers do to build oscillators with stable amplitude
circuit yields the following time domain differential equation is to make the term b in Eq. (18) depend on the instantaneous

oscillation amplitude A(t),
d2vC(t)

dt2
+ b

dvC(t)
dt

+ ω2vC(t) = 0 (14)
b(t) = b(A(t)) (21)

with and in such a way that b increases with A, b is negative for
A � 0 (to ensure initial startup), and b becomes positive above
a certain amplitude. This is called amplitude control. For in-
stance, assume that by adding some special circuitry to Fig.
2 we are able to make

b = 1
RCC

+ RL

L

ω2 = 1 + RL/RC

LC

(15)

b(A) = −b0 + b1A (22)
The solution to Eq. (14) is

where b0 and b1 are positive constants (note that A is always
positive). Initially, if A � 0, b � �b0 is negative and the realvC(t) = Vmaxe−bt/2 cos(ωot + ρ) (16)
part of the poles is positive: amplitude A(t) increases exponen-
tially with time. As A(t) increases b will eventually becomewhere �2

o � �2 � (b/2)2. Parameters Vmax and 	 can be found
positive (poles with negative real part) and this will decreasefrom the initial conditions vC(0) and v̇C(0),
the amplitude A(t). The consequence of these two tendencies
is that a steady state will be reached for which b � 0 and the
amplitude is constant. Solving Eq. (22) for b � 0 yields the
value of the steady state oscillation amplitude Ao,

Vmax = vC(0)

cos ρ

ρ = − arctan


 v̇C(0) + b

2
vC(0)

ωovC(0)




(17)

Ao = b0

b1
(23)

However, circuit people prefer to solve Eq. (14) in the fre- Note that, as opposed to the ideal resonator, the steady state
quency domain by taking its Laplace transform, amplitude is independent of any initial conditions.

In general, a harmonic oscillator does not have to be a sec-
s2 + bs + ω2 = 0 (18) ond order system like the case of Eq. (14) or Eq. (18). It can

have any order. What is important is that it has a pair of
The solution to this equation provides the following poles complex conjugate poles whose real part can be controlled by

the oscillation amplitude (so that the real part becomes zero
in the steady state), and that the rest of the poles (either com-
plex conjugate or not) have negative real parts. The way b
depends on A does not have to be like in Eq. (22). Strictly
speaking, the conditions are

s1 = −b
2

+ jω

√
1 −

(
b

2ω

)2

= −b
2

+ jωo

s2 = −b
2

− jω

√
1 −

(
b

2ω

)2

= −b
2

− jωo

(19)

which are two complex conjugate poles with a negative real
part. Circuit people know that when a system has a pair of
complex conjugate poles with a negative real part, the system

b(A = 0) = −b0 < 0 for initial startup
b > 0 for some A

db(A)

dA
> 0 for stable amplitude control

(24)

oscillates in a sinusoidal fashion with an amplitude that van-
ishes after some time. This is what Eq. (16) shows. The ampli- This will ensure stable oscillator operation. In what follows

we will concentrate on second order systems and will providetude of the oscillations A(t) � Vmaxe�bt/2 decreases exponen-
tially with time. After a few time constants 2/b the amplitude two different ways of performing amplitude control.
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AMPLITUDE CONTROL BY LIMITATION

A very widely used method for oscillator amplitude control is
by limitation. This method usually is simple to implement, so
simple that many times it is implicit in the components used
to build the resonator with initial startup. This makes practi-
cal circuits easy to build, although many times people don’t
understand the underlying amplitude control mechanism.

Let us consider the ideal resonator of Fig. 2 with an addi-

Rn

(a)

Vin

x 2

Iin

tional resistor Rp in parallel to make it real. In order to assure
initial startup, let us put a negative resistor in parallel also.
Figure 3(a) shows a very simple way to implement one using
a real (positive) resistor and a voltage amplifier of gain larger
than one (for example, two). Current Iin will be

Iin = −Vin

Rn
(25)

and the structure Resistor–Amplifier behaves as a grounded

R
R

(b)

Vo = 2 × Vin

Vin

–

+

negative resistor of value �Rn. Figure 3(b) shows how to build
the amplifier using an operational amplifier and resistors.
Connecting this negative resistor in parallel with a positive
one of value Rp � Rn � R� (with R� � Rn), the equivalent paral-
lel resistance would be

Req = −R2
n

Rε

(26)

which is a very high but negative resistance. Connecting this
equivalent resistor in parallel with the ideal resonator of Fig.
2 provides an oscillator with initial startup. This is shown in

–

+

C L
R

R

(c)

Rn

Rn-R

Fig. 3(c).
Due to the fact that the operational amplifier’s output volt-

age cannot go above its positive power supply VDD or below its
negative one VSS, the negative resistance emulator circuit just
described works as long as the amplifier output is below VDD

and above VSS, or equivalently voltage Vin is between VDD/2
and VSS/2. It is easy to compute the current through Req as a
function of Vin taking into account this saturation effect. Fig-
ure 3(d) shows the resulting curve. If VSS/2 � Vin � VDD/2 re-
sistor Req behaves as a negative resistance of high value, but
if Vin is outside this range the slope of Iin versus Vin is that of
a positive resistance with much smaller value. In order to an-

Iin

Vin
VDD /2

VSS /2
Rn

2

Rn

2
2Rn

R
–

(d)
alyze what happens to the circuit of Fig. 3(c) when the oscil-

Figure 3. A real harmonic oscillator can be made by adding a nega-lating amplitude increases beyond VDD/2 or VSS/2 (whichever
tive resistor to a real resonator. (a) A negative resistor can be emu-is smaller) the concept of describing function can be used.
lated using a resistor and a voltage amplifier of gain greater than
unity. (b) Implementation of negative resistor using an operational
amplifier and resistors. (c) Oscillator composed of capacitor inductorDescribing Function
and negative resistor. (d) Transfer characteristics of the negative re-

Figure 4 shows a sinusoidal signal x(t) applied to a nonlinear sistor implementation of (b).
element f (x) that outputs a distorted signal y(t). Signal y(t) is
no longer sinusoidal, but it is periodic. Consequently, a Fou-
rier series can describe it. The first (or fundamental) har- the first or fundamental harmonic only,
monic has the same frequency as the input sinusoid, while
the others have frequencies which are integer multiples of the
first one. If the block of Fig. 4 is used in a system such that
the end signals will be approximately sinusoidal (like in a
harmonic oscillator) then one can neglect all higher harmon-
ics of the Fourier expansion of y(t) and approximate it using

y(t) ≈ N(A)x(t)

x(t) = A sin(ωt)

N(A) = ω

πA

∫ 2π/ω

0
f (x(t)) sin(ωt) dt

(27)
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where N(A) � �R�/R2
n for A � VDD/2 and N(A) tends towards

2/Rn as it increases beyond VDD/2. Since N(A) is continuous
and monotonic, there will be a value of A (and only one) for
which N(A) � 0. Let us call this value Ao. Note that Ao de-
pends only on the shape of the nonlinear function f ( � ) of Fig.
3(d). Equation (29) is the equation of a resistor of value
Req � 1/N(A). For small values of A, Req � �R2

n/R� (high resis-
tance but negative) and the oscillator possesses exponentially
increasing amplitude. When A increases beyond VDD/2, Req

will become more and more negative until N(A) � 0. At this
point A � Ao, Req � � and we have the ideal resonator. If A
increases further, Req becomes positive and the oscillator pre-
sents exponentially decreasing amplitude. This represents a
stable amplitude control mechanism such that in the steady
state A � Ao and Req � �.

General Formulation

In general, the block diagram of Fig. 5 describes a harmonic
oscillator with amplitude control by limitation, where H(s) is
a linear block (or filter) and f (x) is the nonlinear element re-
sponsible for the amplitude control. Applying the describing
function method to the nonlinear block results in

y(t) = N(A)x(t) (31)

for a time domain description. For a frequency domain de-
scription it would be

x(t)

t

y(t)

x(t)

t

me

mc

me

y(t)

y

x

Y (s) = N(A)X (s) (32)
Figure 4. A sinusoidal signal applied to a nonlinear element results,

On the other hand, input and output of the linear block orin general, in a distorted output signal.
filter are related in the frequency domain by

X (s) = H(s)Y (s) (33)
Note that this approximation makes y(t) to be linear with

Equation (32) and (33) result inx(t) so that the nonlinear block in Fig. 4 can be modeled by a
linear amplifier of gain N(A). Function N(A) is called the de-

H(s)N(A) = 1 (34)scribing function of the nonlinear element f ( � ).
This approach is valid for any nonlinear function f ( � ), but If H(s) is a second order block it can be described by

let us consider only piece-wise linear functions, like in Figs. 3
and 4, with three pieces: a central linear piece of slope mc and
two external linear pieces of slope me. When amplitude A is H(s) = a1s2 + a2s + a3

s2 + a4s + a5
(35)

small enough so that x(t) is always within the central piece
then N(A) � mc. When A increases beyond the central piece which together with Eq. (34) yields an equation of the form
N(A) will change gradually towards value me. In the limit of
A � � the describing function will be N(A) � me. Computing
the first Fourier term provides the exact expression (let us
assume VSS � �VDD for simplicity). If A 
 VDD/2

s2 + sb + ω2 = 0

b = a1 − a2N(A)

1 − a1N(A)

ω2 = a5 − a3N(A)

1 − a1N(A)

(36)

N(A) = me − 2
me − mc

π


sin−1

(
VDD

2A

)
+ VDD

2A

√
1 −

(
VDD

2A

)2



(28)

and if A � VDD/2

N(A) = mc (29)

Applying the describing function method to the nonlinearity
f(x)

H(s)

Y(s) y(t) x(t) X(s)

of Fig. 3(d) results in
Figure 5. A general block diagram of an oscillator with amplitude
control by limitation consists of a linear filter and a nonlinear ampli-
tude controlling element connected in a loop.Iin = N(A)Vin (30)
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For small amplitudes N(A) is equal to some constant (for ex-
ample n0) and Eq. (36) is called the characteristics equation.
It must be assured that b(A � 0) � 0. This is usually referred
to as the oscillation condition. For stable amplitude control it
should be

db(A)

dA
> 0 (37)

and �2 must be kept always positive for all possible values of
A. In practice, it is desirable to make in Eq. (35) a1 � a3 � 0,

v2v1

R1

R2

C1

C2

k0

(a)
which will make �2 and b not be coupled through a common
parameter. This way the oscillation amplitude and frequency
can be controlled independently.

A Practical Example: the Wien-Bridge Oscillator

In a practical circuit it is not convenient to rely on inductors
because of their limited range of inductance values, high
price, and, in VLSI (very large scale integration) design, they
are not available unless one operates in the GHz frequency
range. But it is possible to implement the filter function of
Fig. 5 without inductors. The Wien-Bridge oscillator of Fig. 6
is such an example. Figure 6(a) shows its components: two
resistors, two capacitors, and a voltage amplifier of gain k0.
Figure 6(b) illustrates an implementation using an opamp
and resistors for the voltage amplifier, and Fig. 6(c) shows its
piece-wise linear transfer characteristics. Using the describ-

–

+ v2

v1

R1

R2

C1

C2
Rm

v–

v+

(k0–1) Rm

(b)ing function, the effective gain of the amplifier k(A) can be
expressed as a function of the sinusoidal amplitude A at
node v1,

k(A) = k0N(A) (38)

where k0N(A) is the describing function for the function in
Fig. 6(c) and is given by Eq. (28) with mc � k0, me � 0, and
the breakpoint changes from VDD/2 to VDD/k0. Consequently,
the frequency domain description of the circuit in Fig. 6(a) is

VDD

–VDD

v2

(c)

v1
k0

Figure 6. The Wien-Bridge oscillator is an example of an oscillator
that does not require an inductor. (a) It consists of two resistors, two
capacitors, and a voltage amplifier circuit. (b) The voltage amplifier

s2 + sb + ω2 = 0

b = 1
R2C2

+ 1
R1C1

− k0N(A) − 1
R1C2

ω2 = 1
R1C1

1
R2C2

(39)

can be assembled using an opamp and two resistors. (c) The resulting
voltage amplifier has nonlinear transfer characteristics.

For initial startup it must be b � 0 for A � 0. The final ampli-
tude A0 is obtained by solving b(A0) � 0, and the frequency of
the oscillation is � (in radians per second) or f � �/2� (in AMPLITUDE CONTROL BY AUTOMATIC GAIN CONTROL
hertz). Optionally, the diodes in Fig. 6(b), connected to voltage
sources v� and v�, can be added to control the oscillation am- Let us illustrate the amplitude control by AGC (automatic
plitude. These diodes change the saturation voltage VDD of gain control) using an OTA-C oscillator. An OTA (operational
Fig. 6(c), and hence will modify the describing function N(A). transconductance amplifier) is a device that delivers an out-

In general, when using amplitude control by limitation, a put current I0 proportional to its differential input voltage
practical advice is to make �b0 as close as possible to zero but Vin. Figure 7(a) shows its symbol and Fig. 7(b) its transfer
without endangering its sign. This way the nonlinear element characteristics. The gain (slope gm in Fig. 7(b)) is called the
will distort very little the final sinusoid, because it needs to transconductance. This gain is electronically tunable through
use only a small portion of its nonlinear nature to make b(A) voltage Vbias (depending on the technology and the design, the
become zero. If �b0 is too large the resulting waveform will tuning signal can also be a current). Using these devices, the
probably look more like a triangular signal than a sinuoidal self-starting oscillator of Fig. 7(c) can be assembled. Note

that gm1, gm2, and C1 emulate an inductance of value L �one.
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To assure initial startup Vb3 and Vb4 must be such that gm3 �
gm4. By making gm3 (or gm4) depend on the oscillation ampli-
tude A, an AGC for amplitude control can be realized. This is
illustrated in Fig. 7(d) where the box labeled oscillator is the
circuit in Fig. 7(c), the box labeled PD is a peak detector, the
large triangle represents a differential input integrator of
time constant �AGC, the small triangle is an amplifier of gain
m necessary for stability of the AGC loop, and the circle is a
summing circuit. The output of the peak detector Apd(t) follows

–

+ I0

Vbias

Vin

(a)

gm

(with a little delay) A(t), the amplitude of the sinusoid at V0.
The error signal resulting from subtracting Apd and Vref is in-
tegrated and used to control gm4. If Apd � Vref gain gm4 will
increase (making b positive, thus decreasing A), and if Apd �
Vref gain gm4 will decrease (making b negative, thus increas-
ing A). In the steady state A � Apd � Vref and gm4 will automat-
ically be adjusted to make b � 0. Note that Vref must be such
that the node voltages are kept within the linear range of
all OTAs, otherwise amplitude control by limitation may be

ISS

–ISS

I0

(b)

Vingm

taking place.
OTA-C oscillators are convenient for AGC because their

gain can be adjusted electronically. In order to do this for the
Wien-Bridge oscillator of Fig. 6, either a capacitor or a resis-
tor must be made electronically tunable (using a varicap or a
JFET). Also, OTA-C oscillators are interesting because they
do not need resistors, and this is very attractive for VLSI in
CMOS technology where resistors have very bad electrical
characteristics and a limited range of values.

Stability of Automatic Gain Control Loop

An AGC loop for amplitude control, like the one in Fig. 7(d),
presents a certain dynamic behavior which can be analyzed
in order to (1) make sure it is a stable control loop and (2)

–

+
V0Vbf

C1

Vb3

Vb4

(c)

gm3gm1

–

+
gm4

–

+
gm2

–

+

C2

optimize its time response.
In Fig. 7(d) the peak detector output Apd(s) can be modeled

as a delayed version of A(s),

Apd(s) = A(s)(1 − sτpd) (41)

where Apd(s) and A(s) are the Laplace transforms of the small
signal components of Apd(t) and A(t), respectively. Signal
Vb4(s) (the Laplace transform of small signal component of
Vb4(t)), according to Fig. 7(d) satisfies

Vb4(s) = 1
sτAGC

[
(1 + smτAGC)Apd(s) − Vref(s)

]
(42)

Vbf

Vb4

V0

PD

Oscillator

Apd

Vref

m

–

+

(d)

and controls parameter b in Eq. (40). Let us assume that b(t)Figure 7. An oscillator with amplitude control by AGC can be made
follows instantaneously Vb4(t) so thateasily with OTAs and capacitors (OTA-C). (a) An OTA delivers an

output current proportional to its differential input voltage. (b) It has
nonlinear transfer characteristics. (c) A self-starting OTA-C oscillator b(s) = αVb4(s) (43)
can be made with four OTAs and two capacitors. (d) The amplitude
control by AGC requires an additional peak detector and integrator. Now what is left in order to close the control loop is to know

how the amplitude A(t) (or A(s) in the frequency domain) at
C1/(gm1gm2), gm3 emulates a negative resistance of value R3 � node V0 depends on b.
�1/gm3, and gm4 emulates a positive one of value R4 � 1/gm4. This dependence can easily be obtained from the time-do-
The characteristics equation of the OTA-C oscillator is main differential equation (like Eq. (14)) in the following way:

assume b(t) is a time dependent signal that has small changes
around b � 0 and keeps A(t) approximately constant around
A0. Then the solution to V0(t) (or vC(t) in Eq. (14)) can be writ-
ten as

Vo(t) = A(t) cos(ωot + ϕ) (44)

s2 + bs + ω2 = 0

b = gm4 − gm3

C2

ω2 = gm1

C1

gm2

C2

(40)
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where A(t) � A0 � a(t) and �a(t)� � A0. Substituting Eq. (44)
into vC(t) of Eq. (14) yields the following coefficients for the
cos( � ) and sin( � ) terms, respectively, which must be identi-
cally zero [if Eq. (44) is indeed a solution for Eq. (14)],

s1

R2
Digital

bus
⋅ ⋅ ⋅

2r

s2

22r

sn

2nr 2nrd2A(t)
dt2 + b(t)

dA(t)
dt

+ b2(t)
A(t)

4
= 0

2
dA(t)

dt
+ A(t)b(t) = 0

(45)

Figure 8. The frequency of the Wien-Bridge oscillator can be digi-
tally controlled by replacing one of the resistors by a binarilyThe first equation is not of much use, but from the second it
weighted resistor array controlled through a digital data bus.follows that

A(t) = A(t0)e
− 1

2
∫ t
t0

b(t)dt
(46)

trolled capacitor (varicap) is needed. Digital control can easily
be implemented by using a binary weighted array of resistorsWhen the AGC loop is in its steady state A(t) � A0 � a(t) and
or capacitors that are switched in and out of the circuit bythe integral is a function that moves above and below zero
means of a digital bus. This is exemplified in Fig. 8 for resis-but is always close to zero. Consequently, the exponential can
tor R2. Signals si are either 0 when the switch is open or 1be approximated by its first order Taylor expansion resulting
when it is closed. This yieldsin

1
R2

= 1
r

[
1
2n

+
n∑

i=1

si

2i

]
= 1

r
dn (50)

where dn is a number that ranges from 1/2n to 1 in steps of
1/2n. Number dn is represented in binary format by the bits

A(t) ≈ A(t0)

[
1 − 1

2

∫ t

t0

b(t)dt

]

⇒ a(t) ≈ −A(t0)

2

∫ t

t0

b(t)dt ≈ −A0

2

∫ t

t0

b(t)dt

(47)

�snsn�1 . . . s2s1�.
In the frequency domain this is The OTA-C oscillator of Fig. 7 is much better suited for

analog or continuous control of frequency. If gm1 � gm2 and
C1 � C2, the frequency is equal to � � 2�f � gm1/C1. SinceA(s) ≈ −A0

2s
b(s) (48)

voltage Vbf in Fig. 7(d) controls simultaneously gm1 and gm2

(making them equal), this voltage can be used directly to con-
From Eqs. (41–43) and (48) a loop equation for the AGC con- trol the frequency of the VCO.
trol can be written Whether a VCO is made with OTAs and capacitors, or with

resistors, capacitors, and opamps, or uses some other tech-
nique, in general it turns out that the frequency does not have
a linear dependence on the control voltage. In practical cir-
cuits it also happens that if the control voltage is maintained
constant, the frequency may change over long periods of time
due to temperature changes which cause device and circuit

A(s) = Vref(s)
s2k1 + sk2 + 1

k1 = 2τAGC

αA0
− mτAGCτpd

k2 = mτAGC − τpd

(49)

parameters (such as transconductance and resistance) to
drift. Both problems can be overcome by introducing a fre-This equation represents a stable control system if the poles
quency control loop.have negative real part. This is achieved if k1 
 0 and k2 � 0.

Parameters k1 and k2 can also be optimized for optimum am-
plitude transient response (for example, after a step response FREQUENCY CONTROL LOOP
in Vref(t)).

Figure 9(a) shows the basic concept of a frequency control loop
for VCOs. It consists of a VCO (for example, the one in Fig.VOLTAGE CONTROLLED HARMONIC OSCILLATORS
7(d)), a differential input voltage integrator, and a frequency
to voltage converter (FVC) circuit. Voltage VCO is now the ex-An oscillator whose frequency can be electronically controlled
ternal control of the VCO frequency. The FVC circuit deliversis required in many applications. Such an oscillator is called
an output voltage VFVC that depends linearly on the frequencya voltage controlled oscillator or VCO, although sometimes
f of its input signal VOSC,the control parameter can also be a current.

In the case of the Wien-Bridge oscillator of Fig. 6 the fre-
quency of oscillation � is controlled by R1, R2, C1, and C2. VFVC = ρ f + VF0 (51)
Changing one or more of these parameters would enable ex-
ternal control of the frequency. In order to have an electronic Parameters 	 and VF0 must be constants and should not de-

pend on temperature or technological parameters that changecontrol there are two options: (1) continuous or analog control,
and (2) discrete or digital control. from one prototype to another. If such an FVC is available,

the circuit in Fig. 9(a) would stabilize at VFVC � VCO. AccordingFor analog control of the Wien-Bridge oscilator of Fig. 6
either a voltage controlled resistor (JFET) or a voltage con- to Eq. (51), this means that the resulting oscillation fre-
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Figure 9. A frequency control loop can provide a linear dependence between tuning
voltage and VCO frequency, and can also make this dependence temperature and pro-
totype independent. (a) It can be made by adding a FVC and an integrator to a VCO.
(b) The FVC can be made with a calibrated monostable, a reference voltage, a peak
detector, two OTAs, a capacitor, and a switch. (c) After a transient the FVC output
stabilizes to a steady state voltage which depends linearly on the input signal fre-
quency.

T

t0

t

(c)

v(t)
u(t)

quency f 0 depends on VCO as where u(t) is taken at one of the peaks: u(t) � vm and u(t �
T) � vm�1. Consequently,

fo = VCO − VF0

ρ
(52)

vm+1 = vm(C − g0t0) + Vrefg0t0

C + g0(T − t0)
(54)

which is linear and temperature independent. In the steady state of the FVC vm�1 � vm. Applying this condi-
A possible implementation with OTAs of the FVC is shown tion to Eq. (54) and calling VFVC the stabilized value of vm,

in Fig. 9(b). It uses two OTAs of transconductance g0, a capac- yields
itor C, a peak detector, a switch, a temperature independent
voltage reference Vref, and a monostable triggered by the oscil-
lating signal VOSC. During each period T � 1/f of signal VOSC

VFVC = Vreft0

T
= Vref t0 f (55)

the monostable delivers a pulse of constant width t0, which
must be temperature independent and well calibrated. Many Consequently, the circuit of Fig. 9(b) implements a FVC with
times it is convenient to add a sine-to-square wave converter 	 � Vreft0 and VF0 � 0, which both are temperature and proto-
(and even a frequency divider) between VOSC and the mono- type independent.
stable. The circuit of Fig. 9(b) uses three components that are
not temperature independent and may vary over time and

FURTHER CONSIDERATIONSfrom one prototype to another: the two OTAs and the capaci-
tor. However, provided that both OTAs have the same trans-

The different concepts and considerations mentioned so farconductance (which is a reasonable assumption for VLSI im-
have been illustrated with practical circuits using either re-

plementations), the resulting parameters 	 and VF0 do not sistors, capacitors, and opamps, or using OTAs and capaci-
depend on C nor g0. An example of the time waveforms of tors. There are many other circuit techniques available that
u(t) and v(t) of Fig. 9(b) is shown in Fig. 9(c). During each can be used to implement the different blocks and equations
period T of VOSC the monostable is triggered once, turning the needed for stable harmonic oscillator circuits. Some of these
switch ON during a time t0. While the switch is ON capacitor techniques could be continuous current mode, switched capac-
C is charged by a constant current g0(Vref � v(t)), and when itor, switched current, digital circuit techniques, or even any
the switch is OFF a constant current of value �g0v(t) dis- combination of these techniques.
charges it. The output of the FVC v(t) changes from cycle to Depending on the frequency range of the oscillator it may
cycle but is constant during each cycle. If vm is its value dur- be necessary to consider circuit parasitics that have not been
ing one cycle and vm�1 for the next one, it follows that mentioned so far. For example, opams and OTAs both have

nonideal input and output impedances, leakage currents, and
most importantly gains which are frequency dependent. All
these parasitics result in modified characteristics equations.

u(t + T ) = u(t) + g0(Vref − vm)

C
to − govm+1

C
(T − t0) (53)
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A very sensitive parameter to parasitics is the oscillation con- tended frequency range, they will have a different impact on
the final oscillator performance. Consequently, for good oscil-dition �b0 required for initial startup. Since in practice it is

desirable to have �b0 very close to zero but still guarantee its lator design the dominant parasitics need to be well known
and taken into account.negative sign, it is apparent that parasitics can result in ei-

ther very negative (resulting in very distorted sinusoids) or Another interesting and advanced issue when designing
oscillators is distortion. Both amplitude control mechanisms,positive (resulting in no oscillation) values. Each circuit tech-

nique has its own parasitics, and depending upon the in- limitation and AGC, are nonlinear and will introduce some
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Figure 10. Possible implementations for a peak detector: (a) One phase based (or half wave
rectifier based), (b) Two phase based (or full wave rectifier based), and (c) Four phase based
peak detector.
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degree of distortion. Is there a way to predict how much dis- where,
tortion will render an oscillator?

Distortion for Amplitude Control by Automatic Gain Control

|xn| 
 |x1|
|yn| 
 |y1|

(60)

In an oscillator with AGC for amplitude control, like in Fig.
In general, this problem is solved numerically for a finite set7(d), the element that introduces most of the distortion is the
of harmonics. Let N be the highest harmonic to be computed.peak detector. Figure 10 shows examples of peak detectors
Since f (x(t)) is also periodic, computing its Fourier seriesbased on one-phase or half-wave [Fig. 10(a)], two-phase or
expansion yields that of y(t). Therefore, given a set of parame-full-wave [Fig. 10(b)], and four-phase [Fig. 10(c)] rectifying
ters for x(t) �x1, . . . xN, �2, . . . �N� the set of parameters �y1,principles. For the four-phase case, either the oscillator
. . . yN, �1, . . . �N� for y(t) can be obtained this way. Byshould provide two phases with �/2 shift, or an additional in-
applying each component of y(t) (characterized by yn and �n)tegrator is needed. Peak detectors with more phases can be
to filter H(s) yields the corresponding component for x(t),implemented by linearly combining previous phases. Increas-

ing the number of phases in the peak detector results in
faster response [delay �pd in Eq. (41) is smaller for more
phases] and less distortion. However, all phases have to pre-

xn = yn|H( jnω0)|
ϕn = φn + phase(H( jnω0))

(61)

sent the same amplitude, otherwise distortion will increase.
By iterating this procedure until all values xn, yn, �n, and �nIn practice, as the number of phases increases it becomes
converge, the distortion of x(t)more difficult (due to offsets and component mismatch) to

keep the amplitude of the phases sufficiently equal.
In the peak detectors of Fig. 10, whenever one of the

phases becomes larger than Apd it slightly turns ON its corre- THD(x) =
√

N∑
n=2

(
xn

x1

)2
(62)

sponding P transistor injecting a current into CPD until Apd

increases sufficiently to turn OFF the P transistor. The dis-
or y(t)

charge current ensures that Apd will follow the amplitude of
the oscillations if it decreases. Increasing Idischarge results in
faster response but higher distortion. Whatever peak detector
is used, waveform Apd(t) is not constant nor sinusoidal. It has

THD(y) =
√

N∑
n=2

(
yn

y1

)2
(63)

a shape similar to those shown in Fig. 10. Since Apd(t) is peri-
odic its Fourier series expansion can be computed, can be predicted.
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THD(V0) =
√

∞∑
n=2

(
A0n

A0

)2

(58)

Distortion for Amplitude Control by Limitation

HARMONICS. See POWER SYSTEM HARMONICS.This problem is computationally complicated but can be
solved by harmonic balance. Consider the general block dia-
gram of Fig. 5. In the steady state, periodic waveforms x(t)
and y(t) can be expressed by their respective Fourier series
expansions

x(t) = x1 cos(ω0t) +
∞∑

n=2

xn cos(nω0t + ϕn)

y(t) =
∞∑

n=1

yn cos(nω0t + φn)

(59)


