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ELLIPTIC FILTERS

An electrical filter will be defined as an electrical system that
can process electrical signals on the basis of the frequencies
composing that signal. This signal processing can affect both
the magnitude and phase of each individual frequency compo-
nent of the signal. For example, the output signal of an an-
tenna may represent an electrical signal that requires magni-
tude processing. The output signal of the antenna has a fairly
wide spectrum of frequencies, and yet we would like only a
small range of these frequencies, such as those centered
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around our favorite radio station, for example, to be processed
for our listening pleasure. One solution is to use a band-pass
filter in one of the stages following the antenna. The circuit
would process that signal in such a way that the band of fre-
quencies containing the information from the station would
be passed, and the signals outside of that band would be re-
jected or would not pass through. Although this example is
very much simplified in comparison to what actually happens,
it nonetheless illustrates the general idea of filtering.

Because of a need to filter signals in a variety of ways,
several ‘‘standard’’ types of filters or signal processing
schemes have evolved. These are low-pass, high-pass, band-
pass, band-reject, and all-pass filters. Low-pass filters strive
to allow frequencies below some predetermined cutoff fre-
quency to pass, while rejecting those frequencies above the
cutoff frequency. High-pass filters strive to allow frequencies
above some predetermined cutoff frequency to pass, while re-
jecting those frequencies below the cutoff frequency. Band-
pass filters allow a band of frequencies to pass, while rejecting Frequency (radians/s)
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frequencies outside of that band. Band-reject filters reject a
Figure 1. The magnitude versus frequency plot of an ideal low-passband of frequencies, allowing frequencies outside that band to
filter transfer function shows that all frequencies of a signal below 1pass. The main objective of these four types of filters is to
rad/s are passed while those above 1 rad/s are rejected.process the signal’s magnitude as a function of frequency. The

all-pass filter lets all signals pass through, but selects a band
of frequencies for phase angle processing. The choice of filter

cessing, at the output of the filter at the same time. If the twodepends on the application.
input signals add together to create a distinct response in theFilter design can be broken down into two broad phases.
time domain at the input, it may be important that they re-The first phase is the selection of a transfer function pos-
construct together at the output to maintain the ‘‘shape’’ ofsessing the mathematical properties of filtering. A transfer
the input signal. Sometimes this is important, and sometimesfunction describes the relationship between the input signal
it is not. A deviation from the linear phase response resultsand the output signal. We will use it in the sense that for a
in phase distortion. The functions shown in Figs. 1 and 2 aregiven input signal, we will have a specific output signal. Since
normalized filters. That is, they have cutoff frequencies of 1filters process electrical signals according to the frequency
rad/s and maximum gains of 0 dB, or 1 V/V in the passband.content, the transfer function for a filter is a function of s �
It is conventional to begin a filter design with a normalizedj� � j2�f , where � is the frequency in radians/s and f is the
filter. This allows for a common starting point for all low-passfrequency in hertz.
filters, for example, and is also a convenient way of comparingThe second phase of filter synthesis is realization of a cir-
the characteristics of other different types of low-pass filtercuit that possesses the same transfer function as the mathe-

matical function selected to do the filtering. The circuit may
be an analog, digital, or a mixed analog–digital circuit de-
pending on the application.

THE APPROXIMATION PROBLEM

When filtering, engineers tend to think in terms of ideal fil-
ters. For example, when deciding to use a low-pass filter, the
engineer typically desires that all frequencies above a defined
cutoff frequency should be eliminated. An ideal low-pass
transfer function magnitude response with a cutoff frequency
of 1 rad/s is shown in Fig. 1, and the ideal low-pass transfer
function phase characteristics are shown in Fig. 2. For the
magnitude plot, all frequencies below 1 rad/s are passed, with
a gain of one, and all frequencies above 1 rad/s are rejected.
It is a ‘‘brick wall’’ function. It is intuitively obvious that this
is an ideal magnitude characteristic. The ideal phase charac-
teristic is not so intuitive. The important feature of the ideal
phase characteristics are not the values of the phase angle,
but that the phase response is linear. A transfer function that
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has linear phase characteristics means that separate signals
composed of two different frequencies applied at the same in- Figure 2. The ideal low-pass filter function phase characteristics

may be summarized as a linear phase response.stant of time at the input of the filter will arrive, after pro-
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band region located from �s to infinity. Lastly, the transition
region is composed of the range between �p and �s. Figure 3
should be interpreted as follows: Signals at or below �p will
have a gain of at least of G dB and at the most H dB, and
signals above �s will be attenuated by at least A dB or will
have a maximum gain of SBR dB. Note that (G–H) dB � PBR
in dB. Filter types other than low-pass filters have similar
specifications, and the reader is encouraged to investigate
these (1,2).

Past research in network theory has resulted in several
classic mathematical approximations to the ideal filter magni-
tude function. Each of these were designed to optimize a prop-
erty of the filter function. The low-pass filter approximations
are usually of the form

|H( jω)|2 = 1
1 + ε2T2(ω)

(1)

By replacing T(�) with different functions, different approxi-
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mations arise. The standard approximations to the ideal mag-
nitude response are the Butterworth Approximation, theFigure 3. PBR, SBR, A, passband, and stopband are ways of charac-

terizing an actual filter function’s magnitude versus frequency re- Chebychev Approximation, the Inverse-Chebychev Approxi-
sponse to that of an ideal response. For an ideal filter function, mation, and the Elliptic Approximation. Each has strong
PBR � SBR � 0 V/V and �s and �p are equal. points and weak points. A fifth classic approximation worth

mentioning is the Bessel function. This approximation will
not be discussed, because it strives to approximate the ideal
phase response. This article will focus on the Elliptic Approxi-functions with each other. Moreover, numerous tables exist
mation.that provide the coefficients or poles and zeros of filter trans-

fer functions. These tables provide information for normalized
filters. Since there is an infinite number of possibilities for THE ELLIPTIC APPROXIMATION
cutoff frequencies, it would be impractical, if not impossible,
to generate tables for all possible cases. Thus, the tables deal Before a mathematical discussion on the Elliptic Approxima-
only with the normalized case. It is trivial to scale a filter for tion is begun, it is useful to examine a plot of the magnitude
a desired cutoff frequency from the normalized frequency. of an elliptic filter function. A fifth order elliptic filter low-

The first step in low-pass filter design is to find a transfer pass transfer function magnitude response is depicted in Fig.
function of s having the same characteristics as the transfer 4. The passband exists for � � �p. The stopband exists for
function depicted in Fig. 1 and being realizable with a circuit. � � �s. The passband and stopband may be characterized as
Without having transfer function with an infinite number of equiripple. That is, the amplitude oscillates between a maxi-
terms, it is impossible to devise a transfer function with those
characteristics. Hence, from this simple example arises the
approximation problem. That is, may we find a transfer func-
tion magnitude response that approaches that shown in Fig.
1? In general, the higher the order of the filter, the closer the
transfer function magnitude response will approach the ideal
case. However, the higher the order of a filter, the more com-
plex the design and the more components that are needed to
realize the transfer function. Thus, the concept of trade-offs
and compromises arise. In general, a set of filter specifications
must be determined before selecting the transfer function.
The specifications may viewed as how far the actual filter re-
sponse may deviate from the ideal response.

Since it is impossible to come up with an ideal transfer
function that is practically realizable, several terms have
been defined and have been accepted as convention that
allows the description of the deviation of a practical filter
function from the ideal filter function. These terms are de-
picted in Fig. 3 and may be referred to as filter specifications.
The specifications are: the passband, the stopband, the pass-
band ripple (PBR), the stopband ripple (SBR), and the stop-
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band attenuation, A. PBR, SBR, and A are usually specified
in dB. There are three distinct regions. The passband is lo- Figure 4. The magnitude characteristics of a fifth-order elliptic filter

show an equiripple passband and stopband, and at zero at � � �.cated from 0 rad/s to �p rad/s. The second region is the stop-
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Table 1. Filter Comparisons

Filter Type Transition Region Linear Phase Properties

Butterworth Poor Good
Chebychev Good Poor
Elliptic Best Very poor

From this discussion, the main attribute of the elliptic filter
may be stated. That is, for a given filter order, it provides the
sharpest cutoff characteristics; and thus out of all three fil-
ters, it best approximates the ideal low-pass magnitude func-
tion in terms of a sharp transition region. This is very impor-
tant if filtering is required for frequencies near each other, if
we would like to pass one of these signals, and reject another.
The compromise in using the elliptic filter is its very poor
phase characteristics.

The theory behind the mathematics of the elliptic filter is
complicated and is not suitable for this publication. Interested
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readers may consult Refs. 2 and 3. A summary of the mathe-
Figure 5. The fifth-order elliptic function magnitude characteristics

matics is discussed in this article.show a much sharper transition from the passband to the stopband
The general form of the elliptic filter magnitude squaredthan the Butterworth and Chebychev function characteristics.

transfer function is given by Eq. (1). For the low-pass elliptic
filter function, T( j�) is replaced with Rn( j�). Rn( j�) has two

mum and minimum throughout a fraction of each band. If the different forms: one for an even-order function and one for an
order of the filter is even, there are n/2 peaks in the pass- odd-order function. Rn( j�) will be described for a normalized
band, and n/2 minimums or zeros in the stopband. If the or- low-pass filter. For the even-order case we have
der of the filter is odd, there are (n � 1)/2 peaks, plus one at
� � 0 in the passband. Also for the odd order case, there are
(n � 1)/2 minimums or zeros, plus one at � � �, in the Rn(ω) = M

n/2∏
i=1

ω2 − (ωs/ωi )
2

ω2 − ω2
i

(2)
stopband.

In discussing the properties of the elliptic filter, it is impor-
For the odd-order case we havetant to compare its characteristics with the other classic filter

types. A comparison of fifth-order, low-pass, normalized, But-
terworth, Chebychev, and elliptic filter magnitude functions
is given in Fig. 5, and comparison of the phases is shown in Rn(ω) = Nω

(n−1)/2∏
i=1

ω2 − (ωs/ωi)
2

ω2 − ω2
i

(3)

Fig. 6. From these comparisons, Table 1 may be generated.

M and N are normalization constants and are chosen so that
Rn(1) � 1. The �i are calculated for the even or odd case. For
the even case we have

ωi = ωs

sn


 (2i − 1)K

� 1
ωs

�

n




(4)

and for the odd case we obtain

ωi = ωs

sn


2iK

� 1
ωs

�

n




(5)

K(k) is the complete elliptic integral of the first kind and is
defined as
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K(x) =

∫ π/2

0
(1 − k2 sin2 x)−1/2 dx (6)

Figure 6. The fifth-order elliptic function phase characteristics devi-
ate much farther from the desired ideal linear phase characteristics
than the Butterworth and Chebychev function characteristics. and sn is the Jacobian elliptic sine function.
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The order of the filter function may be determined by of products of poles and zeros, depending on the type of real-
ization.rounding up n to the nearest integer in the expression

Because of the complexity of the calculations required to
find the transfer function, the usual method of finding H(s) is
usually either with a computer program or using one of the
numerous tables that have been generated and published
(2,5).

n =
K
� 1

ωs

�
K ′
� 1

L

�

K ′
� 1

ωs

�
K
� 1

L

� (7)

where L is defined as REALIZATIONS OF ELLIPTIC FILTERS

There are an infinite number of possible synthesis algorithms
that may be used. In this section we describe one.

L =
�

100.1 PBR − 1
100.1 A − 1

(8)

The first step in elliptic filter design is to find a transfer
and PBR and A are in decibels. Lastly, function that will meet a set of specifications that have been

determined from the application. The design usually begins
with specifying the passband frequency �p, PBR, �s, and A. IfK ′(k) = K(

p
(1 − k2)) (9)

filter tables are to be used, the frequencies of the filter speci-
fications must first be normalized. This is achieved by divid-When Rn(�) is found, the substitution s � �/j is made, and
ing �s and �p by �p. Other normalizations are possible. ThisRn(�/j) may be inserted into Eq. (1). The poles of H(s)H(s*)
results in a normalized passband frequency of 1, and a nor-can be found. This is a standard synthesis technique (4). The
malized stopband frequency of �s/�p. If a highpass filter isleft half-plane poles and half of the zeros are selected and
desired, the specifications must be transformed further, by in-combined to give the final form of the elliptic filter transfer
verting �p to 1/�p. Once the desired transfer function is deter-function. For n even, we have
mined, a method of realization is selected. The realizations
may be analog or digital. The analog realizations may be
passive or active. The choice depends on many practical is-
sues (1).H(s) = H

n/2∏
i=1

(s2 + ω2
i )

a0 + a1s + · · · + an−1sn−1 + ansn (10)

Passive Realizations
For the case of n odd, we obtain

Passive realizations utilize capacitors, inductors, and resis-
tors. The source and load resistances are considered part of
the realization. Systematic procedures exist for the synthesis
of passive filters to realize elliptic transfer functions. More-
over, normalized passive filters are available as part of table

H(s) = H

n−1/2∏
i=1

(s2 + ω2
i )

a0 + a1s + · · · + an−1sn−1 + ansn (11)

look-up approaches (5). Examples of passive elliptic filters are
depicted in Fig. 7.Note that the even-order transfer function given by Eq. (10)

has no zeros at infinity while the odd-order transfer function Even-order passive realizations synthesized from Eq. (10)
will have negative elements because they do not have at leastof Eq. (11) has a single zero at infinity. It may be convenient

to have the denominator in the form of coefficients or in terms a zero at infinity. This problem can be solved by shifting the

Figure 7. Typical nth-order low-pass passive
elliptic filters are realized with inductors and
capacitors, and include the source and load re-
sistances. The circuit in (a) is for the odd-order
case and has n capacitors and (n–1)/2 induc-
tors. The circuit in (b) is for the even-order
case and has (n–1) capacitors and n/2 in-
ductors.
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Figure 8. A typical second-order stage used as
part of an active RC realization consists of an
operational amplifier, resistors, and capacitors
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and is basically an active RC notch filter.

highest frequency zero to infinity. The resulting elliptic func- Once second-order sections have been synthesized, they may
be cascaded together to form the entire circuit. If a first-ordertion filter function will have a double zero at infinity and the

passive filter realization will now have positive elements but stage is used for an odd-order filter, a simple RC filter may
be added on. The first-order stage may also include a voltageunequal terminating resistances. This even-order elliptic

transfer function is known as case B, while the original even- buffer. Active realizations may also be constructed using
switched-capacitor circuits.order transfer function given by Eq. (10) is called case A.

Equal terminating resistances can be obtained by shifting the Another popular method of elliptic filter synthesis is to
synthesize an active filter based on a passive realization. Gen-first maximum to the origin. The resulting even-order elliptic

transfer function is known as case C (2,5). The new filter func- erally, these types of filters replace inductors in the passive
circuit with simulated inductors. One type of simulated induc-tions will be of the forms given by Eq. (12) for case B and Eq.

(13) for case C. tor is composed of an active RC circuit configured so that the
impedance of the circuit takes the form of the input imped-
ance of an inductor. Active inductors may be also be realized
by transconductors and capacitors. Filters using this type of
active inductor are called gm–C filters. They represent theHB(s) = H

n/2∏
i=2

(s2 + ω2
Bi)

b0 + b1s + · · · + bn−1sn−1 + bnsn (12)
current state of the art in high-frequency active integrated
filter design using CMOS technology.

Another active filter based on a passive realization scales
the R’s, C’s, and L’s of a passive configuration by 1/s. TheHC(s) = H

n/2∏
i=2

(s2 + ω2
Ci)

c0 + c1s + · · · + cn−1sn−1 + cnsn (13)
resulting circuit contains capacitors, D elements, and resis-
tors. The D element is a two-terminal device with an imped-The magnitude response in the case B and case C filter func-
ance of K/s2. Although the device doesn’t exist as a passivetions are now slightly modified from the original type A.
element, active circuits may be synthesized that achieve anOne may ask if the passive realizations may utilize only
input impedance having this form.discrete elements. At the time of this writing, there is consid-

erable interest in fabricating on-chip or on-package inductors Digital Realizations
in integrated circuit (IC) design. If progress on these induc-

Many of the techniques of digital filter synthesis are analo-tors continues at today’s present rate, it is not inconceivable
gous to those used in analog filters. In particular, one of thethat passive synthesis could become commonplace in inte-
most systematic approaches to recursive digital filter designgrated filter design.
is to first find a transfer function that meets specifications in

Active Realizations the analog domain, and then port it over to the digital do-
main. The transformation takes the transfer function fromElliptic filters may be synthesized with active RC filters. A
the s domain into the z domain. The variable z plays the sametypical design procedure starts with dividing the elliptic filter
role in digital design that s plays in the analog domain. Often,function into second-order sections. If the order of the filter is
pre-distortion is applied, to account for errors the frequencyodd, there will be one first-order section as well. All second-
response that can occur in the transformation. The reader isorder sections consist of complex conjugate poles and a pair
encouraged to consult Ref. 6 for more information on digitalof zeros. An active filter stage may be used to create each
filtering.second-order stage. The active filter stages composing the sec-

ond-order stages are notch filters that allow for �z of the notch
to be different from �0 of the complex pole pair (not all notch FREQUENCY AND MAGNITUDE SCALING
filters do). Once the filter is chosen, coefficients of the filter
are equated with coefficients of the active filter second-order Frequently, a normalized design is the first step in filter real-

ization. A frequency-normalized filter is designed for a pass-section. An example of such a filter section is shown in Fig. 8.
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band frequency of 1 rad/s. A typical normalized realization frequency to the lower cutoff frequency is greater than one
octave, the filter is considered a wideband filter.has component values on the order of ohms, farads, and hen-

ries. The design is then frequency scaled so the frequency nor- Synthesis of wideband bandpass filters may be performed
by a cascade of a high-pass filter and a low-pass filter. Themalized response is shifted into place. That is, the passband

and stopband frequencies are transformed from normalized lower bound of the definition of wideband results in the sepa-
ration of the high-pass and low-pass filters being such thatvalues to the design values. The procedure is performed by

finding the scaling constant, �p, and replacing s with s/�p in there is minimal interaction between the filters. If the ratio
is smaller than one octave, the cutoff frequencies are too closethe circuit. This results in new values for the capacitances

and inductances, while the values for resistances remain un- together and the filters interact and must be treated as one
filter. Narrowband filters require different synthesis tech-changed. In circuit circumstances it may be desirable to fre-

quency scale the normalized transfer function first and then niques.
Like the high-pass filter functions, bandpass filter func-do the circuit synthesis.

Frequency scaling usually results in values for capacitors tions may be synthesized from low-pass filter functions. This
is done by performing the transformationand inductors that are close to practical, but still not practi-

cal. Moreover, the impedances of the resistors remain un-
changed. The next step in denormalizing a normalized real-
ization is to impedance scale. Impedance scaling amounts to

s = 1
BW

�
s2 + ω2

0

s

�
(14)

multiplying each impedance by a specified constant. The con-
stant is picked so after scaling, the components have reason- on a normalized low-pass filter function, where �0 is the cen-
able values. If all impedances are scaled by the same factor, ter frequency and BW is the bandwidth of the filter. This
voltage transfer function remains the same. With good selec- transform may also be used in the design of wideband band-
tion of the constant, practical values may be achieved. pass filters.

BANDREJECT ELLIPTIC FILTERS
HIGH-PASS ELLIPTIC FILTERS

Like bandpass filters, bandreject filters may also be classifiedThe discussions in the preceding sections treat low-pass ellip-
as wideband or narrowband. A wideband bandreject filtertic filters. There is little difference when discussing the prop-
seeks to block a wide range of frequencies while allowing fre-erties of the high-pass elliptic filter.
quencies outside that band to pass with ideally equal magni-The first step in high-pass filter design is to normalize
tude scaling. A narrowband bandreject filter seeks to blockthe high-pass parameters to the parameters that describe the
only one frequency or a very small band of frequencies. Likenormalized low-pass filter. The parameters that describe
the definition of narrowband versus wideband bandpass filterthe high-pass are identical to the low-pass filter. One differ-
definition, Ref. 1 gives a definition for narrowband versusence is that �s � �p. In general, a low-pass filter transfer func-
wideband bandreject filters. The definition is identical to thattion may be transformed into a high-pass transfer function by
of the bandpass filter.a s to 1/s transformation. This simply means that everywhere

Synthesis of wideband bandreject filters may be performeds appears in the transfer function, 1/s is substituted.
by a cascade of a high-pass filter and a low-pass filter. TheOnce the normalized low-pass elliptic transfer function has
lower bound of the definition of wideband results in the sepa-been determined and a normalized circuit has been synthe-
ration of the high-pass and low-pass filters being such thatsized, a low-pass to high-pass transformation is applied. This
there is minimal interaction between the filters. If the ratiomeans that everywhere in the circuit, s is replaced with 1/s.
is smaller than one octave, the cutoff frequencies are too closeThis results in capacitors becoming inductors, and inductors
together and the filters interact and must be treated as onebecoming capacitors. If, in an active RC circuit for example,
filter. Narrowband filters require different synthesis tech-inductors are not desired, the circuit may be magnitude
niques.scaled by 1/s. This results in the inductors becoming resistors

Bandreject filters may also be synthesized from normalizedand the resistors becoming capacitors.
low-pass filter functions by performing a transform ofAlternatively, if a normalized low-pass elliptic function has

been determined, it is possible to apply the s to 1/s transform
on the transfer function, resulting in a normalized high-pass s = BW

�
s

s2 + ω2
0

�
(15)

elliptic transfer function. It is now possible to synthesize a
circuit directly from this transfer function.

on a normalized low-pass filter, where �0 is the center fre-
quency and BW is the bandwidth of the filter. This transform
may also be used in the design of wideband bandpass filters.BANDPASS ELLIPTIC FILTERS

Bandpass filters may be classified as wideband or nar- SUMMARY
rowband. A wideband bandpass filter seeks to allow a wide
range of frequencies to pass with equal magnitude scaling, Elliptic filters are a class of filters used to shape the magni-

tude of an electric signal. They may be used in applicationsideally. A narrowband filter seeks to allow only one frequency,
or a very small band of frequencies, to pass. One definition of for any of the standard magnitude processing filters. In com-

parisons to other available filters, the elliptic filter providesnarrowband versus wideband filters is given by Ref. 1. This
particular definition states that if the ratio of the upper cutoff the sharpest transition from the passband to the stopband for
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a given order. The magnitude response is equiripple in the
passband and the stopband. The drawback of the elliptic fil-
ters is very poor phase characteristics in comparison to other
filter types. Furthermore, evaluation of elliptic filter parame-
ters is considerably more difficult than other filter approxima-
tion functions due to the use of elliptic sine functions and el-
liptic integrals.
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