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independent variable can be any physical value, for example
distance, it is usually refered to as ‘‘time’’. The independent
variable may be either continuous or discrete. If the indepen-
dent variable is continuous, the signal is called continuous-
time signal or analog signal. Most of the signals that we en-
counter in nature are analog signal, such as a speech signal.
The discrete-time signals are those for which the independent
variable is discrete. The amplitude of both the continuous-
and discrete-time signals may be continuous or discrete. Digi-
tal signals are those discrete-time signals for which the am-
plitude is discrete, and switched-capacitor signals are dis-
crete-time signals with continuous amplitude. Any operation
on a signal which is performed in order to obtain some more
desirable properties, such as less noise or distortion, is called
signal processing. A system which performs signal processing
is called a filter. Signal processing depends on used technol-
ogy and can be (1) analog signal processing (ASP) and (2) dis-
crete-time signal processing (DTSP). Prior to 1960, ASP was
mainly used; this means signals are processed using electrical
systems with active and passive circuit elements. ASP does
have some limitations such as (1) fluctuation of the compo-
nent values with temperature and aging, (2) nonflexibility, (3)
cost, and (4) large physical size. In order to overcome those
limitations, discrete-time technologies are introduced, such as
digital technology and switched-capacitor technologies. Digi-
tal technology, which gives many advantages over ASP [see
Kuc (1) for a more detailed analysis], needs to convert an ana-
log signal into a digital form. Processing the signal by digital
technology is called digital signal processing (DSP), and is a
special case of DTSP. In DSP, both amplitude and time are
discrete, unlike switched-capacitor processing where ampli-
tude is continuous.

DISCRETE-TIME SIGNALS AND SYSTEMS

A discrete-time signal (discrete signal) is defined as a function
of an independent variable n that is an integer. In many
cases, discrete signals are obtained by sampling an analog
signal (taking the values of the signal only in discrete values
of time). According to this, elements of the discrete signals
are often called samples. But this is not always the case.
Some discrete signals are not obtained from any analog signal
and they are naturally discrete-time signals. There are some
problems in finding a convenient notation in order to make
the difference between continuous-time and discrete-time sig-
nals, and various authors use different notations [see Rora-
baugh (2) for detailed analysis]. Recent practice, introduced
by Oppenheim and Schafer, 1989, (3) uses parantheses () for
analog signals and brackets [ ] for discrete signals. Following
this practice, we denote a discrete signal as �x[n]� or x[n].
Therefore x[n] represents a sequence of values, (some of
which can be zeros), for each value of integer n. Although the
x-axis is represented as the continuous line, it is important to
note that a discrete-time signal is not defined at instants be-
tween integers. Therefore, it is incorrect to think that x[n] is
zero at instants between integers.

Discrete signals can be classified in many different ways.
If the amplitude of the discrete signal can take any value in
the given continuous range, the discrete signal is continu-DISCRETE TIME FILTERS
ously in amplitude, or it is a nonquantized discrete-time sig-
nal. If the amplitude takes only a countable number of dis-A signal is defined as any physical quantity that varies with

the changes of one or more independent variables. Even that crete values, the signal is discrete in amplitude or a quantized
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discrete-time signal. This signal is also called a digital signal. that the frequency for the continuous signal has the dimen-
sion radians/sec. For this difference, several notations for theIf the signal has a finite number of elements, it is finite; oth-

erwise, it is infinite. Therefore, the finite signal is defined for frequency of the discrete signals and the continuous signals
are being used. The former is usually denoted as � and thea finite number of index values n. Unlike an infinite signal,

which is defined for an infinite number of index values n and latter as �. Let the time axis t is divided into intervals
of the length T: t � nT. The axes of the discrete time signalscan be: (1) right-sided, (2) left-sided, and (3) two-sided. The

right-sided sequence is any infinite sequence that is zero for can be understood as obtained from the axis t by dividing
with T: n � t/T. Because the frequency and the time are in-all values of n less than some integer value N1. The left-sided

sequence is equal to zero for all n more than some integer verse of each other, dividing in the time domain corresponds
to multiplying in the frequency domain. Therefore, the rela-value N2. The infinite sequence which is neither right-sided

nor left-sided is a two-sided sequence. According to their na- tion between continuous and discrete frequency is the
following:ture, signals can be deterministic and random. The signals

where all values can be determined without any uncertainty
are deterministic. Otherwise, they are random and cannot be ω = �T (6)
described by explicit mathematical relationships but by using

Due to the different units of those two values, there are somethe probability theory. We consider here deterministic signals
important distinctions between them. Continuous frequencyand systems. Schwartz and Shaw (4), Hayes (5), and Candy
has the values 
� � � � �, and � has only values from(6) consider random discrete signals and systems. A discrete
0 to 2�. All other values are repeated with the period 2�.signal is periodic if the values of the sequence are repeated
Usually, the discrete frequencies are represented in the inter-every N index values. The smallest value of N is called the
valperiod. A continuous periodic signal does not always result in

a periodic discrete signal.
−π ≤ ω ≤ π (7)There are some basic discrete signals which are used for

the description of more complicated signals. Such basic sig-
As � increases from 0 to �, oscillations become higher andnals are (1) unit sample, (2) unit step, and (3) complex expo-
have a maximum at � � �, and going from � to 2�, they be-nential sequences. Unit sample sequence is the finite se-
come slower. Therefore, � � � is the highest frequency, andquence which has only one nonzero element at the index
� � 0 and � � 2� are the lowest frequencies. Figure 1 showsn � 0,
how the sequence oscillates more rapidly with the increase of
the frequency from 0 to � and more slowly with the increase
of the frequency from � to 2�.δ[n] =

{
1 n = 0

0 otherwise
(1)

A discrete-time system (or discrete system) is defined as
the transformation that maps an input sequence x[n] into an

It plays the same role in the digital signal processing as the output sequence y[n]:
unit impulse (delta function) plays in continuous-time signal
processing so that the characteristic of a discrete system can y[n] = T{x[n]} (8)
be represented as the response to the unit sample sequence.
Any discrete signal can be presented as the sum of scaled where T� � presents transformations, or the set of rules for
delayed unit sample sequences, obtaining the output sequence from the given input one. De-

pending on transformation a discrete-time system may have
different properties. The most common properties are (1) lin-
earity, (2) time-invariance, (3) stability, (4) memoryless, and

x[n] =
∞∑

k=−∞
x[k] δ[n − k] (2)

(5) invertibilty. The system is linear if the response to a
Unit step sequence u[n] is the right-sided sequence which is scaled sum of the input sequences is equal to the sum of the
used to denote the start of any right-sided sequence and is responses to each of the scaled input:
defined as

T

{
N∑

i=1

aixi[n]

}
=

N∑
i=1

a1T{xi[n]} (9)
u[n] =

{
1 for n ≥ 0

0 otherwise
(3)

This relation is also known as the superposition principle.
Therefore, any sequence x[n], which is zero for n � N1, can be The system is time-invariant if the shift of the input sequence
written as causes the same shift of the output sequence. In other words,

the properties of the time-invariant system do not change the
time:x[n]u[n − N1] =

{
x[n] n ≥ N1

0 otherwise
(4)

T{x[n − n0]} = y[n − n0] (10)
A complex exponential sequence is defined as

The systems that are in the same time linear and time-invari-
ant are called linear time-invariant systems (LTI). The sys-e jnω = cos(nω) + j sin(nω) (5)
tem is causal if the values of the output sequence at any in-
dex n0 depend only on the values of the input sequence atBy analogy with the continuous-time case, the quantity � is

called frequency, and has a dimension in radians. We recall indexes n � n0. In other words, in a causal system the output
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Figure 1. The interpretation of high and low fre-
quencies for a dicrete-time sinusoisal signal. As �
increases from zero toward � the sequence oscillates
more and more rapidly and as � increases from �
toward 2�, the sequence oscillates more and more
slowly. Therefore the values of � in the neighbor-
hood of � � 0 are low frequencies (slow oscillations),
and those in the vicinity of � � � are high frequen-
cies (rapid oscillations). Due to the periodicity in
general the low frequencies are those in the vicinity
of � � 2�k, k � 0, 1, 2, . . . , and the high frequen-
cies are those in the vicinity of � � � � 2�k, k � 0,

x[n] x[n]

ω ω

x[n] x[n]
ω = πω ω= 3   /4;    = 5  /4π π

ω =   /4;    = 7  /4π πω = 0;    = 2π

ω ω

ωω

1, 2, . . . .

does not precede the input (i.e., it is not possible to get an output to any other input sequence may be related with the
unit sample response. In order to answer we use relation (2),output before an input is applied to the system). Noncausal

systems occur only in theory, and do not exist in this uni- and we obtain
verse. A causal system can be designed by introducing corre-
sponding amounts of delay. The system is stable if a limited
input always gives a limited output. If for a limited input, the y[n] = T{x[n]} = T

{ ∞∑
k=−∞

x[k] δ[n − k]

}
(13)

output is unlimited, the system is not stable. Therefore, the
output of an unstable system is infinite with nondecaying val-

If the system is linear, the superposition principle (9) can beues. The system is memoryless if the output y[n] depends only
used, and therefore, the Eq. (13) can be written ason the input at the same value n. The system is invertible if

the input sequence may be uniquely determined by observing
the output. y[n] =

∞∑
k=−∞

T{x[k] δ[n − k]} =
∞∑

k=−∞
x[k]T{δ[n − k]} (14)

Time-Domain Description
From here, we obtain the relation for the linear system:There are two main ways to describe discrete systems in the

time domain. The first one considers only the relation be-
tween the input and the output of the system and is generally
named the input-output analysis. The second one, besides the

y[n] =
∞∑

k=−∞
x[k]hk[n] (15)

relation of the input and the output gives also an internal
description of the system, and it is named as a state-space where hk[n] depends on both k and n:
analysis. Both descriptions are useful in practice and are used
depending on the problem under the consideration (see Ref. hk[n] = T{δ[n − k]} (16)
7). A convenient way to present the behavior of the discrete
system is to put the unit sample sequence at the input. If the This relation is called the convolutional relationship. This
system is relaxed initially, equation can be simplified for the time-invariant system, us-

ing Eq. (10),
y[0] = 0 (11)

the output y[n] would be the only characteristic of the system, y[n] =
∞∑

k=−∞
x[k]h[n − k] (17)

and it is called unit sample response or shortly impulse re-
sponse, and is denoted as h[n]:

This relation is called the convolution sum or convolution. It
completely describes the output of an LTI system for theh[n] = T{δ[n]} (12)
known input and for zero initial conditions. The operation
convolution between sequences has its own signs *. Therefore,A discrete system which has the finite impulse response is
the convolution (17) can be written ascalled a finite impulse response (FIR) filter, and one with the

infinite impulse response is known as an infinite impulse re-
y[n] = x[n] ∗ h[n] (18)sponse filter (IIR). The question which arises is whether the
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This operation is commutative and distributive [see Kuc (1)
for detailed analysis]. Proakis and Manolakis (7) explain the
computing of the convolution step by step. From the unit sam-
ple response, we may see some important characteristics of
the LTI system, such are stability and causality [see Orfan-
idis (8) for detailed analysis]. An LTI system is stable if and
only if this condition is satisfied:

S =
∞∑

n=−∞
|h[n]| < ∞ (19)

FIR filter has a finite length of impulse response, and the
condition (19) shall always be satisfied, which means that an

x[n]
b0

b1 –a1

–aNbNp

y[n]

z–1

Σ

z–1

Σ

z–1

z–1

FIR filter is always stable. An LTI system is causal if the next
Figure 2. Direct form I realization of the causal LTI filter followscondition is satisfied:
directly from the difference equation and shows explicitly the delayed
values of input and output. (z
1 is interpreted as one-sample delay.)h[n] = 0, for n < 0 (20)

A natural question which may arise is if we can implement
A state-space approach considers that the output of thedigital filter by using the convolution. The answer depends on

system is the result of the actual input and the set of initialwhether the system is FIR or IIR. In the case of an FIR, the
conditions. This suggests that the system may be divided intoconvolution summation directly suggests how to implement
two parts. One part contains memory and describes past his-the filter. The problem arises for an IIR filter which has an
tory, and the second one describes the answer to the actualinfinite impulse response since it requires an infinite number
input. Following this approach, Antoniou (10) derived theof memory locations, additions, and multiplications. The solu-
state space equations for the system of an order N in the ma-tion is given by introducing the difference equations. Such a
trix-vector formdifference equation describes an LTI system having any ini-

tial conditions unlike the discrete convolution that describes
q[n + 1] = Aq[n] + Bx[n] (22)the system in which all inputs and output are initially zero

(the system is initially relaxed). The difference equation is y[n] = Cq[n] + Dx[n] (23)
often written in the form

where q[n] is the n-dimensional state vector at time n, and
x[n] and y[n] are the input and output sequences, respec-
tively. The matrices A, B, C, and D, correspond to a particu-y[n] =

Np∑
k=−Nf

bkx[n − k] −
N∑

k=1

aky[n − k] (21)

lar realization of the filter.

where bk and ak are constant coefficients and Nf and Np are Transform Domain Description
integer values. The first summation contains past, present,

Frequency Domain. The sinusoidal sequences are usuallyand future inputs, while the second one contains only past
used in frequency-domain description of discrete signals andoutputs. The difference equation for FIR filter contains only
systems because sinusoidal sequences have one useful charac-the first sum where we can recognize the convolution (17). If
teristic which is shown in Eq. (24):the system is casual, it does not depend on the future values

of the input, and the difference equation has Nf � 0. The part
of the right side of the difference equation which involves past y[n] = H(e jω )e jωn (24)

outputs is called the recoursive part, and the other part is the
Therefore, if the sinusoidal sequence is applied to the LTI sys-nonrecoursive one. The system which has only a nonrecour-
tem, the output is also a sinusoidal sequence with the samesive part is called the nonrecoursive filter. Otherwise, it is the
frequency, multiplied with the complex value:recoursive filter. In general, the computation of the output

y[n] at the index n of a recoursive filter needs previous out-
puts: y[n 
 1], y[n 
 2], . . ., y[0]. Therefore in this case, the
output must be computed in an order. As the difference, the

H(e jω ) =
∞∑

K=−∞
h[k]e− jωk (25)

output of the nonrecoursive filter can be computed in any or-
der. An implementation of the casual LTI filter based on the The sum in Eq. (25) presents Fourier transform of h[n] and is

named as frequency response, as it specifies response of thedifference equation (21) and which is called direct form I is
presented in the Fig. 2. We see that the filter consists of an system in the frequency domain. The frequency response, be-

ing the Fourier transform of the unit sample response, is ainterconnection of three basic elements: (1) unit delay, (2)
multiplier, and (3) adder. Direct form I is not optimal in the periodic function with the period 2�. Therefore, ‘‘low frequen-

cies’’ are those that are in the neighborhood of an even multi-sense that it uses a minimum number of delaying elements.
Proakis and Manolakis (7) describe different and more effi- ple of �, and the ‘‘high frequencies’’ are those that are close to

an odd multiple of �. Equation (24) has also an interpretationcient structures of discrete systems. Signal-flow graphs are
often used to describe the time-domain behavior of LTI sys- using the eigenvalue and eigenfunction. If an input signal

produces the same output signal but multiplied by a constant,tems [see Haykin (9) for a detailed analysis].



DISCRETE TIME FILTERS 635

this signal is called eigenfunction, and the constant is the ei- The output phase is equal to the sum of the input phase and
the phase response:genvalue of the system. Therefore, the complex sinusoidal se-

quence is the eigenfunction, and H(ej�w) is the corresponding
eigenvalue. Fourier transform of the unit sample response Arg{Y (e jω )} = Arg{X (e jω )} + Arg{H(e jω )} (34)
h[n] exists only if the sum [Eq. (25)] converges, that is if the
next condition is satisfied: Those changes can be either desirable or undesirable when

they are referred as to the magnitude and phase distortion.
Generally, we may view the LTI as a filter, passing some of
the frequencies of the input signal and suppressing the oth-

∞∑
k=−∞

|h[n]| < ∞ (26)

ers. Filters are usually classified according to what frequen-
cies pass and to what frequencies suppress as: (1) lowpass, (2)The magnitude of H(ej�), � H(ej�)�, is called magnitude re-
highpass, (3) bandpass, and (4) bandstop filters. The ideal fil-sponse, and the argument of H(ej�) is called phase response
ters have constant magnitude response (usually 1) in theand denoted as Arg�H(ej�)�. Therefore, we have
passband and zero magnitude characteristic in the stopband.
The magnitude characteristics of the different ideal filters areH(e jω ) = |H(e jω )|e jArg{H(e jω )} (27)
shown in Fig. 3. Ideal filters have the linear phase in the
passband which means that the output is equal to the scaled

Frequency response can be expressed by its real and imagi- and delayed input. Therefore, linear phase causes only de-
nary part: laying of the input sequence, what is not considered as the

distortion and the linearity of the phase is the desirable char-H(e jω ) = HR(e jω ) + jHI(e
jω ) (28)

acteristic. The group delay is introduced as the measure of
the linearity of the phase

From here, the magnitude response and phase response can
be expressed as follows:

τ (ω) = −d[Arg{H(e jω )}]
dω

(35)

|H(e jω )| =
p

H2
R + H2

I =
�

H(e jωH∗(e jω ) (29)
The group delay can be interpreted as the time delay of the
signal components of the frequency �, introduced by the filter.where H*(ej�) is the complex-conjugate of H(ej�).
Filters with symmetric impulse response have linear phase
[see Oppenheim and Schafer (3) for detailed analysis]. Ideal
filters are not physically realizable and serve as the mathe-Arg{H(e jω )} = arctg

[
HI (e

jω )

HR(e jω )

]
(30)

matical approximations of physically realizable filters. As an
example, we consider in Fig. 4 the magnitude characteristicInstead, the linear scale, magnitude characteristic is usually
of the physically realizable lowpass filter [see Ingle and Pro-plotted on the logarithmic scale.
akis (11) for a detailed analysis].

|H(e jω )|db = 10 log10 |H(e jω )|2 = 20 log10 |H(e jω )| (31)
Z-Domain. Z transform is a generalization of the Fourier

transform that allows us to use transform techniques for sig-In order to show better both the passband and the stop-
nals not having Fourier transform. It plays the same role inband characteristics, the log-magnitude response is plotted on
discrete-time signals and systems as the Laplace transformtwo different scales: one for the passband and the second one
does in continuous-time signals and systems. Z transform offor the stopband. For an LTI system with a real impulse re-
the unit sample sequence is called system function:sponse, the magnitude and phase responses have symmetry

properties from which follows that the magnitude response is
an even function of �, and the phase response is an odd func-
tion of �.

H(z) = Z{h[n]} =
∞∑

n=−∞
h[n]z−n (36)

Oppenheim and Schafer (3) show that the Fourier trans-
The concept of a Z transform is only useful for such valuesform of the output is the product of the Fourier transforms of
of z for which the sum [Eq. (36)] is finite. Therefore, for thethe input and the impulse response:
sequence h[n] it is necessary to define the set of z values for
whichY (e jω ) = H(e jω )X (e jω) (32)

This expression explains why Fourier transform is so useful
in the analysis of LTI. As this expression shows, the operation

∞∑
n=−∞

|h[n]z−n| < ∞ (37)

of convolution is replaced by a simpler operation of multiplica-
tion in the transform domain. This equation also shows that This set of z values is called the region of convergency (ROC).
the input spectrum is changed by the LTI system in both am- Many characteristics of a filter can be seen from ROC. For a
plitude and the phase. The output magnitude is obtained as FIR filter, the number of elements in the sum [Eq. (36)] is
the product of the input magnitude spectrum and the magni- finite and, therefore, the problem of the existence of the Z
tude response: transform does not exist, and the ROC is all z-plane, except

the origin. Proakis and Manolakis (7) show that ROC for the
right-sided sequence is given by �z� � R1, for the left-sided is|Y (e jω )| = |H(e jω )| |X (e jω )| (33)



636 DISCRETE TIME FILTERS

Figure 3. Magnitude characteristics of the differ-
ent ideal frequency-selective filters. The ideal filters
pass without any attenuation all frequencies in the
passband and completely attenuate all frequencies
in the stopband.
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given as �z� � R2, and for the two-sided sequence as R1 � Remember that Eq. (38) is valid for LTI systems. The system
function for an important class of LTI systems which are de-�z� � R2.

The operation of convolution in the time-domain reduces scribed by the constant coefficients difference equation can be
expressed as the rational function and is expressed as theto the most simple operation of multiplication in the

Z-domain: ratio of polynomials in z
1. By taking the Z transform of Eq.
(21) and using that the delay by k samples in the time-domain
corresponds to the multiplication by z
k, we have:Y (z) = Z{y[n]} = Z{x[n] ∗ h[n]} = X (z)H(z) (38)

where
H(z) = Y (z)

X (z)
=

∑Np
k=Nf

bkz−k

1 + ∑N
k=1 akz−k

(40)
X (z) = Z{x[n]}
Y (z) = Z{y[n]} (39)

[see Proakis and Manolakis (7) for detailed analysis]. The val-
ues of z for which H(z) become zero are called zeros, and the
values of z for which H(z) become infinity are called poles.
The zeros are roots of the numerator N(z), and the poles are
roots of the denominators D(z). Both poles and zeros are
named as the singularities of H(z). The plot of zeros and poles
in the z-plane is called a pole-zero pattern. Pole is usually
denoted by a cross � and the zero by a circle �. We can write
the system function H(z) in the factoring form:

H(z) = KzNf

∏Np+Nf
k=1

(1 − zkz−1)∏N
k=1(1 − pkz−1)

(41)

where zk and pk are the zeros and the poles, respectively, and
K is gain. Kuc (1) shows that each factor in the numerator of
Eq. (41) generates one zero at z � zk and one pole at z � 0;
each factor in the denominator generates one pole at z � pk

and one zero at z � 0; factor zNf generates Nf zeros at z � 0

1+  1

1

Passband

H(e j  )ω

Transition
band

p s πω ω

Stopband

δ

1+  1δ

2δ

ω

and Nf poles at z � �. For the system function, the total num-
Figure 4. Magnitude specification of the physically realizable low-

ber of poles is equal to the total number of zeros. If pole andpass filter. Instead of sharp transition between passband and stop-
zero are in the same location, they cancel each other. Complexband, the transition band is introduced, and instead of a flat charac-
singularities are always in the complex-conjugate pairs forteristic, a small amount of ripples is tolerable: In the passband: 1 

the system presented by the difference equations with the�1 � �H(ej�)� � 1 � �1, where �1 is the passband ripple. In the stop-

band: �H(ej�)� � �2, where �2 is the stopband ripple. real coefficients.
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Pole-zero pattern gives much useful information about the Ingle and Proakis (11) derive geometrical presentation of the
phase response asLTI system. From the pole–zero pattern, we can see whether

the filter is casual or not. For the casual filter, Nf � 0 and
therefore there are no poles in the infinity. Besides causality,
the type of the filter can also be seen from the pole–zero pat-
tern. For an FIR filter, all singularities are only zeros (except
poles at the origin and possibly in the infinity). Unlike a FIR
filter, an IIR filter has zeros and poles or only poles. (Zeros

arg{H(e jω0 )} = C + ((Np + Nf) − N)ω0 +
Np+Nf∑

k=1

arg{(zk, z0)}

−
N∑

k=1

arg{(pk, z0)}
(44)

are in the origin.) As the system function becomes infinity in
the poles, all poles must be outside the ROC. However, for where C is equal 0 or �, depending if the real frequency re-
a casual right-sided sequence, ROC must be outside of the sponse is negative or not. This expression can be interpreted
outermost pole (the pole having the largest absolute value). as the sum of the constant linear with � term and the nonlin-
Another useful characteristic about LTI which can be seen ear term. We notice that the singularities in the origin do not
from the pole–zero pattern is the stability. The problem of affect the magnitude response but affect the phase response.
stability is only addressed to the IIRs and, therefore, is con- As shown in Eq. (43), the magnitude response will be equal
nected only with the position of poles. Kuc (1) shows that for to zero at the points corresponding to the zeros on the unit
a causal IIR filter, all poles must be inside the unit circle. If circle. Similarly, the poles that are close to the unit circle (re-
the pole is on the unit circle, the system is not stable. membering that these cannot be on the unit circle for a stable

Oppenheim and Shafer (3) shows that Z transform is equal LTI) give the peak value to the magnitude response. There-
to the Fourier transform on the unit circle: fore, the singularities that are close to the unit circle domi-

nate the magnitude response, and they are called the domi-
nant singularities.H(e jω ) = H(z)

z=e jω (42)

In this order, the frequency response belongs to the system s-PLANE TO z-PLANE TRANSFORM
function evaluated on the unit circle. The magnitude response
at � � �0 can be presented geometrically as the ratio of the The s-plane to z-plane transform depends on the characteris-
distances between the zeros and the point z0 � ej�0 on the unit tic of the filter we want to preserve in the process of trans-
circle and the distances between poles and the point z0 � ej�0, forming an analog to a digital filter. The most used trans-
as it is shown in Fig. 5: forms are impulse invariance transformation, where the

impulse response is preserved, and bilinear transform, where
the system function is preserved.|H(e jω0 )| = K

∏Np+Nf
k=1

|(zk, z0)|∏N
k=1 |(pk, z0)|

(43)

Impulse Invariance Transformation

The unit sample response of a digital filter is obtained by
sampling the impulse response of the analog filter:

h[n] = hA(nT ) (45)

where T is the sampling interval. Using Eq. (6) between the
discrete and analog frequency, knowing that the frequency
points in s-plane are

s = jωT (46)

and that those in the z-plane are

z = e jω (47)

we obtain the relation:

Re

Im Z-plane

Unit circle

ωo

pk

zk

e j   o = zo
ω

Figure 5. Geometric presentation of the Fourier transform in Z- z = esT (48)
plane along the unit circle. The magnitude response at � � �0 can be
presented geometrically as the ratio of the distances between the From Eqs. (46)–(48), it follows that the part of the frequency
zeros zk and the point z0 � ej�

0 on the unit circle and the distances axis in the s-plane from 0 to �/T is mapped to the frequency
between poles pk and the point z0 � ej�

0. If the singularity is close to points on the unit circle from � � 0 to � in the z-plane. In a
the unit circle it is called dominant singularity, because the distances similar way, the frequency points from 0 to 
�/T are mapped
from it to the neighborhood points on the unit circle are very small. to the points on the unit circle from � � 0 to 
�. Expressing
Therefore the dominant zero decreases and the dominant pole in-

the complex value z in the polar formcreases the magnitude characteristic at the corresponding frequency.
For every dominant zero on the unit circle, the magnitude character-
istic is equal to the zero at the corresponding frequency. z = re jω (49)
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and the complex variable s, with real value � and imaginary
value �

s = σ + j� (50)

we have the relation between r and the real value �

inν inν
o

Rf
Cf

Ci

+
–

+
–

Ri

(a) (b)

ν oν

r = eσ T (51)
Figure 6. Continuous-time amplifiers: (a) resistor based and (b) ca-
pacitor based. The small signal voltage gain for the resistor and theWe have the next observations: (1) the transform from contin-
capacitor based amplifiers is 
Rf/Ri and 
Ci/Cf, respectively.uous-time domain to the discrete-time domain is linear, (2)

the mapping is not one-to-one, but many-to-one and (3) the
frequency interval 0 to 2�/T maps into the unit circle, and the

rely on the precision of the absolute value of both resistorsstrips in the left side of the s plane of width 2�/T are mapped
and capacitors. In integrated circuits, the tolerances of RCinside the unit circle. The entire left side of the s-plane maps
products can be as high as �30%. In the past, to overcomeinto the unit circle, which means that the stable analog filter
this drawback, the resistors were adjusted by using laserwill result in a stable digital one. Due to the many-to-one
trimming techniques; this approach, however, increases themapping, the aliasing effect is present, and this is the main
cost of the system. In order to increase the precision of thedisadvantage of the impulse invariance transform.
filters, several techniques have been aroused; the main idea
is to replace the resistor by another device like a switched-

Bilinear Transform capacitor or a switched-current. Switched-capacitor tech-
niques are discussed in this chapter.To overcome the aliasing limitation, the bilinear transform

could be used, as it presents a one-to-one mapping. The sys-
Basic Components of Continuous-Time Filterstem function H(z) is obtained from HA(s) by replacing the s by

Resistors, capacitors, and inductors are the main passive ele-
ments of continuous-time filters. The operational amplifierss = 2

T
z − 1
z + 1

(52)
are other important elements for the implementation of ac-
tive RC filters. For the resistor, the voltage to current rela-To find the mapping of the frequencies from � to �, we set
tionship is given bys � j� and use Eqs. (49) and (52)

i = 1
R

v (56)

For the inductor, this relationship is

z = e jω = 1 + j�T/2
1 − j�T/2

= 1 + (�t/2)2

1 + (�T/2)

e jarctg(�T/2)

e− jarctg(�T/2)

= e2 jarctg(�T/2)

(53)

From here follows i = 1
sL

v (57)

ω = 2arctg(�T/2) (54)
where s is the frequency variable j�. For the capacitor, the
voltage-current relationship is given byFor low frequencies, the transform is approximately linear,

and for higher frequencies, the transform is highly nonlinear,
and frequency compression or frequency warping occurs. The v = 1

sC
i (58)

effect of the frequency warping can be compensated for by
prescaling or prewarping the analog filter before transform,

In the design of complex transfer functions, a basic functionwhich means to scale the analog frequency as follows:
is the voltage amplification; two structures are depicted in
Fig. 6. The inband gain of the amplifiers is given by 
Rf /Ri

and 
Ci/Cf, respectively. While the resistor based amplifier is�′ = 2
T

tg
�

�T
2

�
(55)

stable, the circuit of Fig. 6(b) is quite sensitive to offset volt-
ages due to the lack of dc feedback. Active filters are based[See Kuc (1) for a detailed analysis.] The whole left side of the
on lossless integrators; the typical RC implementation of thiss-plane is mapped into the inside of the unit circle, and the
block is shown in Fig. 7.right side is mapped outside of the unit circle. Therefore, the

stable analog filter will result in the stable digital filter [see
Proakis and Manolakis (7) for detailed analysis].

DISCRETE-TIME ANALOG FILTERS

During the 1960s and 1970s the analog integrated filters were

inν

Cf

+
–

Ri

oν

implemented by circuits based on resistors, capacitors, and
operational amplifiers; these are denominated RC active fil- Figure 7. Continuous-time integrator. Note that the operational am-

plifier operates in open loop for dc signals.ters. The precision of RC filters depend on RC products which
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connected to a low impedance voltage source, and the other
one is connected to the input of an operational amplifier a
virtual ground. Hence, every clock period, in the case of the
inverting switched-capacitor resistor, the capacitor extract
charge equal to 
C(v1 
 v2) or the charge C(v1 
 v2) is injected
in the case of the non-inverting resistor. In average, the

φ1

φ2
φ2

(a) (b)

C C
ν1 ν2

φ1 φ1

φ2
φ1

ν1 ν2

φ2

switched-capacitor simulated resistors are transferringFigure 8. Switched-capacitor resistors: (a) series and (b) parallel.
charges proportional to the clock period leading to the follow-�1 and �2 are two nonoverlapping clock phases.
ing equivalent resistance

If the voltage gain of the operational amplifier, AV, is large Req ∼= 1
fckC

(62)
enough, the voltage at the inverting input, given by v0/AV, is
very small, and this terminal can be considered as a virtual

where f ck is the frequency of the clock. Switched-capacitorground; hence, the current flowing through the resistor is de-
based resistors are the key elements for the design oftermined by the value of both resistor and input voltage.
switched-capacitor filters; with these elements, voltage ampli-Since the input impedance of the operational amplifier is typi-
fiers, integrators, resonators, filters, and other type of func-cally very large, the resistor current is injected to the capaci-
tions can be implemented; more applications can be found intor, and the output voltage becomes
Refs. 13, 15, 19–20. The simplest voltage amplifier is the cir-
cuit of Fig. 6(b); other voltage amplifiers are shown in Fig. 9.
Observe that Cf and Ci are sharing several switches. In Fig.
9(a), during the clock phase �2, the operational amplifier is

vo(t) = vo(t0) − 1
RiCf

∫ t

t0

vi(t) dt (59)

shortcircuited, and the capacitors are discharged. During the
The minus sign appears because the current is injected from next clock period, the input capacitor is charged to Ci vin, and
the virtual ground to the output node. As we are interested the current needed for this charge flows through the feedback
in transfer functions, it is easier to manipulate the variables capacitor; therefore, the gain voltage becomes
in the frequency domain; therefore, the previous equation can
be expressed as follows vo

vin
= −Ci

Cf
(63)

Note that the amplifier is available during clock phase �1. The

vo

vi
= − 1

sRiCf
(60)

amplifier shown in Fig. 9(b) behaves as the previous one, but
The differentiator can be implemented by using inductors in- the input signal is sampled at the end of the clock phase �2,
stead of capacitors or exchanging the role of the resistor and and the charge is injected during the next clock period. Ob-
capacitor in Fig. 7. Nevertheless, these approaches are im- serve that the injected charge is inverted; hence, the voltage
practical in most of the cases; the inductors are typically im- gain is
plemented by using integrators as will be shown in the next
section. More details can be found in Refs. 12–15. vo

vin
= Ci

Cf
z−1/2 (64)

Building Blocks for Switched-Capacitor Filters
where: z
1/2 represents the half delay. Other voltage amplifi-Herein after, it is assumed that the non-overlapping clock
ers can be found in Refs. 13–15, 19–20.phases are defined as follows:

Switched-Capacitor Integrators

The parasitics-insensitive integrators allow the design of

φ1(t) ⇒ nT − T/2 < t ≤ nT

φ2(t) ⇒ nT − T < t ≤ nT − T/2
(61)

high-performance analog integrated circuits. Biquadratic
based filters, ladder filters, and other type of filters are basedIn switched-capacitor circuits, the resistors are implemented

by a capacitor, four switches and two non-overlapping clock on active integrators. Switched-capacitor filters have the ad-
vantage that arranging the clock phases inverting and non-frequencies; Fig. 8 shows the stray insensitive switched-ca-

pacitor simulated resistors. Typically, one of the terminals is inverting simulated resistors can be realized, as shown in Fig.

Figure 9. Switched-capacitor amplifiers available
during clock phase �1 (a) inverting and (b) nonin-
verting. Because the operational amplifier is short-
circuited during �2, the output is available only dur-

φ1

φ2
φ2

Cf

+
–

(a)

ν in νo

φ1

φ1

φ2

φ2 φ2

φ1
φ2

Cf

+
–

(b)

ν in νo

φ1

φ1

φ2

φ2

ing the clock phase �1.
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Figure 10. Switched-capacitor integrators: (a)
inverting and (b) noninverting. The inverting
and noninverting integrators employ the series
and parallel switched-capacitor resistors, re-
spectively.

inν
oν

1 1

2 2

φ φ

φ φ

 (a)

Ci

+

–

+

–

Cf

 (b)

inν
νo

2 1

1 2

φ φ

φ φ

Ci

Cf

8. As a result of this, the design of systems can be further A similar analysis for the non-inverting integrator leads to
the following transfer functions:simplified. The inverting and non-inverting integrators shown

in Fig. 10 are an example of this advantage. For the imple-
mentation of an RC noninverting integrator, an additional in-
verter is needed.

vo

vin

∣∣∣∣
φ2

= Ci

Cf

z−1/2

1 − z−1 (69)

The inverting integrator operates as follows. During the
clock phase �2, Ci is discharged while the output voltage re-
mains constant due to Cf; the output voltage is then charac-

vo

vin

∣∣∣∣
φ2

= Ci

Cf

z−1

1 − z−1 (70)

terized by the next equation

First-Order Filtersvo(t) = vo(nT − T ) (65)
The amplifiers and integrators can be easily implemented by

In the next clock period, Ci extracts a charge equal to Ci vin; using switched-capacitor circuits; a general first order filter is
therefore, the charge distribution can be described by the fol- shown in Fig. 11. By using adequate equations, we can see
lowing expression that the z-domain output-input relationship is described, dur-

ing the clock phase �1, by the following expression:
Cf vo(t) = Cf vo(nT − T/2) − Civin(t) (66)

If the output voltage is evaluated at the end of the clock
(1 − z−1)Cf vo = −(1 − z−1)Ci1vin − Ci2vin + z−1/2Ci3vin − Cf2vo

(71)
phase �1, and considering that v0(nT 
 T/2) is equal to
v0(nT 
 T), the z-domain transfer function will result in where the left hand side term represents the charge contribu-

tion of Cf. The first right hand side term is due to capacitor
Ci1. Note the term 1 
 z
1 present in the non-switched capaci-
tors; these terms appear as the injected or extracted charge

vo

vin

∣∣∣∣
φ1

= −Ci

Cf

1
1 − z−1 (67)

is the difference between the actual one minus the previous
clock period charge. The other terms represent the chargeNote that the output voltage can be sampled during the next
contribution of the Ci2, Ci3, and Cf2, respectively. In order toclock period; then the output voltage is delayed by a half pe-
facilitate the analysis of complex circuits, it is convenient toriod, leading to the following transfer function
represent the topologies with the help of flow diagrams; see,
for example, Ref. 20. Note that the output voltage is feedback
by the capacitor Cf2; this capacitor is considered in a similar

vo

vin

∣∣∣∣
φ2

= −Ci

Cf

z−1/2

1 − z−1 (68)
way as the other capacitors. Solving the circuit, or equiva-
lently, arranging Eq. (71), the z-domain transfer function can
be found as

v0

vin

∣∣∣∣
φ1

= −(1 − z−1)Ci1 − Ci2 + z−1/2Ci3

(Cf + Cf2)

�
1 − Cf

Cf + Cf2
z−1

� (72)

If the output voltage is sampled during �2 and assuming that
vin changes neither during the transition �1 
 �2 nor during
the clock phase �2, we can observe that the output of the first
order circuit becomes

v0|φ2
= z−1/2v0|φ1

(73)

inν
oν

1φ 1φ

2φ 2φ
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–

1φ

2φ 1φCi3 Cf2

2φ

Ci1

Cf

In the first-order filter of Fig. 11, we can note that all
switches connected to the inverting input of the operationalFigure 11. General first-order switched-capacitor filter. Ci1, Ci2, and
amplifier have been shared by several capacitors as all ofCi3 implement an amplifier, an inverting integrator, and a nonin-
them are connected to ground during �2 and to the opera-verting integrator, respectively. Cf2 implements a switched-capacitor

resistor in parallel with C. tional amplifier during clock phase �1.
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Figure 12. LC resonator: (a) passive and (b)
switched-capacitor implementation. The inductor
L is simulated by the switched-capacitor resistors,
the bottom operational amplifier and the bottom

νo

1φ φ1

2φ 2φ

 (b)
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–

C

C

2 1

1 2

φ φ

φ φ

CR

+

–

CR

 (a)

CL

νo

capacitor C.

Active Resonator to component tolerances in the passband; see Refs. 14–17. A
general biquadratic filter is shown in Fig. 13. The z-domain

Ladder filters are based on LC networks, series and parallel
transfer function of the topology is given by

connected. While the capacitors are easily implemented in
metal-oxide-semiconductor technologies, the inductor must be
simulated by integrators and resistors. The inductor’s cur-
rent-voltage relationship is given by Eq. (57). For a grounded
resonator as shown in Fig. 12(a), the conductor’s current can
be generated from the output node and an integrator. The

H(z) = − A2A5z + (z − 1)(A1A5 + A4z) + A3(z − 1)2

(1+ A8)

[
z2 −

�
2 − A5(A6 + A7)+ A8

1 + A8

�
z + 1 − A5A6

1 + A8

]

(76)
transfer function of an RC integrator is given by 
1/sRC; if

By using this structure, several transfer functions could bean integrator’s output is converted to current by a resistor,
implemented, namelyand the resulting current is fed back to the node v0, the re-

sulting current is then given by vo/sR2C. Hence, the simulated
inductance results in

L = R2C (74)

Figure 12(b) shows the switched-capacitor realization of the
resonator. For a high sampling rate ( f ck � frequency of opera-

A1 = A3 = A4 = 0 Low-pass filter (LDI)
4A2A5 = A3, A1 = A4 = 0 Low-pass filter (Bilinear)

A2 = A3 = A4 = 0 or
A1 = A3 = A4 = 0 Bandpass filter (LDI)
A2 = A3 = 0,A1A5 = A4 Bandpass filter (Bilinear)
A1 = A2 = A4 = 0 High-pass filtertion), the switched-capacitor resistors can be approximated by

R � 1/f ckCR; for details, the reader may refer to Refs. 12–15,
In order to illustrate the design procedure, consider a second19–20. According to Eq. (74), the simulated inductance is ap-
order bandpass filter with the following specifications:proximately given by

Center frequency 10 kHz
Bandwidth 1 kHzL = 1

f 2
ck

C
C2

R

(75)
Clock frequency 60 kHz

Observe that in the LC implementation, similar integrators
have been used.

HIGH-ORDER FILTERS

High-order filters can be synthesized by using several ap-
proaches; two of the most common are based on biquads and
the emulation of ladder filters. High-order filters based on bi-
quadratic sections are more versatile, but ladder filters pres-
ent low sensitivity to components’ tolerances in the passband.

Second-order Filters

Second order filters are often used for the implementation of

C2
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A3C2

A7C2

A4C2

+
–

A6C1
A3C2

A2C1

A1C1

A5C2

oν
inν

1 1

2

21

12

φ

φ

φφ

φφ

1

2 2

φφ

φ φ

+
–

high-order filters; these filters are versatile in the sense that
the filter parameters like center frequency, bandwidth, and Figure 13. General second-order switched-capacitor filter. By choos-
dc or peak gain are controlled independently. A drawback of ing appropriated coefficients either lowpass, bandpass, highpass, or

notch filters can be implemented.the biquadratic filters is that they present high sensitivity
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Figure 14. Passive sixth-order bandpass filter:
(a) detailed RLC prototype and (b) simplified sche-
matic. The element values can be obtained from
well-known tables; see, for example, Ref. 12. (a)

(b)

i1

Y1 Y3Z2 Z4

i3

C1
L1 L2

L2
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V2

C1
R1

R1
oνoν 2ννin

νin

i1 i3

The continuous-time bandpass filter has the following age and current Kirchhoff ’s laws. Although this topic is
treated in another chapter, here we consider an example toform:
illustrate the design procedure of switched-capacitor ladder
filters. Consider a third order, normalized, lowpass filter. For
the design of a bandpass filter, the low-pass to bandpass

H(s) = BWs
s2 + BWs + ω2

0

(77)

transformation must be used; this transformation has the
formwhere �0 is the center frequency, equal to 2�f 0, and BW the

filter bandwidth. In low Q applications, it is more precise to
prewarp the center frequency and the 
3 dB frequencies; this
prewarping scheme is discussed in (18). By using the bilinear

slp ⇒ sbp

BW
+ ω2

0

sbpBW
(79)

transform, the prewarped center frequency is f 0 � 11.0265
kHz, and the 
3 dB frequencies are mapped into 10.37 kHz where BW and �0 are the bandwidth and center frequency of
and 11.7 kHz. Applying the s-domain to z-domain bilinear the bandpass filter, respectively. Observe that the inductor is
transform to the continuous-time bandpass filter, the follow- mapped into a series of another inductor and a capacitor,
ing z-domain transfer function is obtained: while the capacitor is transformed into another capacitor in

parallel with an inductor. The bandpass filter prototype and
a simplified schematic are shown in Figs. 14(a) and 14(b), re-
spectively. The transformed elements are then given byH(z) =

BWT
2

1 + BWT
2

+
�

ω0T
2

�2

(z − 1)(z + 1)

z2 +




−2 + 2
�

ω0T
2

�2

1 + BWT
2

+
�

ω0T
2

�2


 z +

1 − BWT
2

+
�

ω0T
2

�2

1 + BWT
2

+
�

ω0T
2

�2

(78)

L1 = LLP

BW

C1 = BW
LLPω2

0

L2 = BW
CLPω2

0

C2 = CLP

BW

(80)

Using the prewarped values and equating the transfer func-
Current i1 could be generated by the active circuit of Fig. 15.tion of the bilinear bandpass filter, Eq. (72) with appropriated
By using circuit analysis, i1 could as well be obtained asconditions, and the previous equation, the capacitor ratios are

found: A1 � A4 � 0.04965, A5 � 1, A6 � 0.09931, A7 � 0.95034,
A8 � 0. i1 = 1

R2
QY11

(vin − v2) (81)

Ladder Filters
Equating i1 of the passive realization with the simulated cur-Active ladder filters are based on the simulation of the pas-
rent, the relationship between Y1 and Y11 can be determinedsive components of low-sensitive passive prototypes. The ac-

tive implementation of this type of filters is based on the volt-
Y1 = 1

Z1
= 1

R2
QY11

(82)

This expression means that the impedance Z1 is simulated by
the admittance Y11 multiplied by the factor R2

Q. For the band-
pass filter, Z1 is the series of a resistor, an inductor, and a
capacitor; this impedance can be simulated by the parallel of
similar elements. For grounded resonators, the capacitors are
connected to the operational amplifier, and the inductors are

ν2

in

−  2

ν

ν

Z22
Y11

RQ
RQ

RQ

i1

simulated by using integrators and resistors, as previously
discussed. In the implementation of the 6th order bandpassFigure 15. Active implementation of floating impedances. The ad-
filter, three resonators are being employed, one for each LCmittance Y11 is directly associated with the floating impedance Z1.

Resistors RQ are scaling factors. resonator.
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