DISCRETE TIME FILTERS

A signal is defined as any physical quantity that varies with
the changes of one or more independent variables. Even that
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independent variable can be any physical value, for example
distance, it is usually refered to as “time”. The independent
variable may be either continuous or discrete. If the indepen-
dent variable is continuous, the signal is called continuous-
time signal or analog signal. Most of the signals that we en-
counter in nature are analog signal, such as a speech signal.
The discrete-time signals are those for which the independent
variable is discrete. The amplitude of both the continuous-
and discrete-time signals may be continuous or discrete. Digi-
tal signals are those discrete-time signals for which the am-
plitude is discrete, and switched-capacitor signals are dis-
crete-time signals with continuous amplitude. Any operation
on a signal which is performed in order to obtain some more
desirable properties, such as less noise or distortion, is called
signal processing. A system which performs signal processing
is called a filter. Signal processing depends on used technol-
ogy and can be (1) analog signal processing (ASP) and (2) dis-
crete-time signal processing (DTSP). Prior to 1960, ASP was
mainly used; this means signals are processed using electrical
systems with active and passive circuit elements. ASP does
have some limitations such as (1) fluctuation of the compo-
nent values with temperature and aging, (2) nonflexibility, (3)
cost, and (4) large physical size. In order to overcome those
limitations, discrete-time technologies are introduced, such as
digital technology and switched-capacitor technologies. Digi-
tal technology, which gives many advantages over ASP [see
Kuc (1) for a more detailed analysis], needs to convert an ana-
log signal into a digital form. Processing the signal by digital
technology is called digital signal processing (DSP), and is a
special case of DTSP. In DSP, both amplitude and time are
discrete, unlike switched-capacitor processing where ampli-
tude is continuous.

DISCRETE-TIME SIGNALS AND SYSTEMS

A discrete-time signal (discrete signal) is defined as a function
of an independent variable n that is an integer. In many
cases, discrete signals are obtained by sampling an analog
signal (taking the values of the signal only in discrete values
of time). According to this, elements of the discrete signals
are often called samples. But this is not always the case.
Some discrete signals are not obtained from any analog signal
and they are naturally discrete-time signals. There are some
problems in finding a convenient notation in order to make
the difference between continuous-time and discrete-time sig-
nals, and various authors use different notations [see Rora-
baugh (2) for detailed analysis]. Recent practice, introduced
by Oppenheim and Schafer, 1989, (3) uses parantheses () for
analog signals and brackets [ ] for discrete signals. Following
this practice, we denote a discrete signal as {x[n]} or x[n].
Therefore x[n] represents a sequence of values, (some of
which can be zeros), for each value of integer n. Although the
x-axis is represented as the continuous line, it is important to
note that a discrete-time signal is not defined at instants be-
tween integers. Therefore, it is incorrect to think that x[n] is
zero at instants between integers.

Discrete signals can be classified in many different ways.
If the amplitude of the discrete signal can take any value in
the given continuous range, the discrete signal is continu-
ously in amplitude, or it is a nonquantized discrete-time sig-
nal. If the amplitude takes only a countable number of dis-
crete values, the signal is discrete in amplitude or a quantized
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discrete-time signal. This signal is also called a digital signal.
If the signal has a finite number of elements, it is finite; oth-
erwise, it is infinite. Therefore, the finite signal is defined for
a finite number of index values n. Unlike an infinite signal,
which is defined for an infinite number of index values n and
can be: (1) right-sided, (2) left-sided, and (3) two-sided. The
right-sided sequence is any infinite sequence that is zero for
all values of n less than some integer value N,. The left-sided
sequence is equal to zero for all n» more than some integer
value N,. The infinite sequence which is neither right-sided
nor left-sided is a two-sided sequence. According to their na-
ture, signals can be deterministic and random. The signals
where all values can be determined without any uncertainty
are deterministic. Otherwise, they are random and cannot be
described by explicit mathematical relationships but by using
the probability theory. We consider here deterministic signals
and systems. Schwartz and Shaw (4), Hayes (5), and Candy
(6) consider random discrete signals and systems. A discrete
signal is periodic if the values of the sequence are repeated
every N index values. The smallest value of NV is called the
period. A continuous periodic signal does not always result in
a periodic discrete signal.

There are some basic discrete signals which are used for
the description of more complicated signals. Such basic sig-
nals are (1) unit sample, (2) unit step, and (3) complex expo-
nential sequences. Unit sample sequence is the finite se-
quence which has only one nonzero element at the index
n=0,

1 n=0
S[n]l = . (D
0 otherwise

It plays the same role in the digital signal processing as the
unit impulse (delta function) plays in continuous-time signal
processing so that the characteristic of a discrete system can
be represented as the response to the unit sample sequence.
Any discrete signal can be presented as the sum of scaled
delayed unit sample sequences,

o]

xlnl= )" «lklsln — k] @)

k=—00

Unit step sequence u[n] is the right-sided sequence which is
used to denote the start of any right-sided sequence and is
defined as

1 forn>0

ulnl = ) 3)
0 otherwise

Therefore, any sequence x[n], which is zero for n < Nj, can be

written as

x[n] n>N;
x[nluln —N;1 = 4)

0 otherwise

A complex exponential sequence is defined as

e/ = cos(nw) + jsin(nw) (5)
By analogy with the continuous-time case, the quantity o is

called frequency, and has a dimension in radians. We recall

that the frequency for the continuous signal has the dimen-
sion radians/sec. For this difference, several notations for the
frequency of the discrete signals and the continuous signals
are being used. The former is usually denoted as w and the
latter as . Let the time axis ¢ is divided into intervals
of the length T: ¢ = nT. The axes of the discrete time signals
can be understood as obtained from the axis ¢ by dividing
with T: n = ¢/T. Because the frequency and the time are in-
verse of each other, dividing in the time domain corresponds
to multiplying in the frequency domain. Therefore, the rela-
tion between continuous and discrete frequency is the
following:

w=QT (6)

Due to the different units of those two values, there are some
important distinctions between them. Continuous frequency
has the values —» < () < «, and » has only values from
0 to 27. All other values are repeated with the period 2.
Usually, the discrete frequencies are represented in the inter-
val

—T<w<mw (7)

As o increases from 0 to w, oscillations become higher and
have a maximum at o = 7, and going from 7 to 27, they be-
come slower. Therefore, ® = 7 is the highest frequency, and
o = 0 and o = 27 are the lowest frequencies. Figure 1 shows
how the sequence oscillates more rapidly with the increase of
the frequency from 0 to 7 and more slowly with the increase
of the frequency from 7 to 27.

A discrete-time system (or discrete system) is defined as
the transformation that maps an input sequence x[n] into an
output sequence y[nl]:

ylnl = T{x[nl} (8)

where T{} presents transformations, or the set of rules for
obtaining the output sequence from the given input one. De-
pending on transformation a discrete-time system may have
different properties. The most common properties are (1) lin-
earity, (2) time-invariance, (3) stability, (4) memoryless, and
(5) invertibilty. The system is linear if the response to a
scaled sum of the input sequences is equal to the sum of the
responses to each of the scaled input:

N N
T {Zaixi[n]} =Y a;T{x[nl) 9)
i=1 i=1

This relation is also known as the superposition principle.
The system is time-invariant if the shift of the input sequence
causes the same shift of the output sequence. In other words,
the properties of the time-invariant system do not change the
time:

T{x[n — nyl} = yln — nyl (10)
The systems that are in the same time linear and time-invari-
ant are called linear time-invariant systems (LTI). The sys-
tem is causal if the values of the output sequence at any in-
dex n, depend only on the values of the input sequence at
indexes n = ny. In other words, in a causal system the output
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Figure 1. The interpretation of high and low fre-
quencies for a dicrete-time sinusoisal signal. As o
increases from zero toward 7 the sequence oscillates
more and more rapidly and as o increases from 7
toward 27, the sequence oscillates more and more
slowly. Therefore the values of w in the neighbor-
hood of w = 0 are low frequencies (slow oscillations),
and those in the vicinity of @ = 7 are high frequen-

does not precede the input (i.e., it is not possible to get an
output before an input is applied to the system). Noncausal
systems occur only in theory, and do not exist in this uni-
verse. A causal system can be designed by introducing corre-
sponding amounts of delay. The system is stable if a limited
input always gives a limited output. If for a limited input, the
output is unlimited, the system is not stable. Therefore, the
output of an unstable system is infinite with nondecaying val-
ues. The system is memoryless if the output y[n] depends only
on the input at the same value n. The system is invertible if
the input sequence may be uniquely determined by observing
the output.

Time-Domain Description

There are two main ways to describe discrete systems in the
time domain. The first one considers only the relation be-
tween the input and the output of the system and is generally
named the input-output analysis. The second one, besides the
relation of the input and the output gives also an internal
description of the system, and it is named as a state-space
analysis. Both descriptions are useful in practice and are used
depending on the problem under the consideration (see Ref.
7). A convenient way to present the behavior of the discrete
system 1is to put the unit sample sequence at the input. If the
system is relaxed initially,
y[0]=0 1y
the output y[n] would be the only characteristic of the system,
and it is called unit sample response or shortly impulse re-
sponse, and is denoted as h[n]:
hln] = T{é[nl} (12)
A discrete system which has the finite impulse response is
called a finite impulse response (FIR) filter, and one with the
infinite impulse response is known as an infinite impulse re-
sponse filter (ITR). The question which arises is whether the

® cies (rapid oscillations). Due to the periodicity in
general the low frequencies are those in the vicinity
of w=2mk, k =0,1,2,. .., and the high frequen-
cies are those in the vicinity of ® = 7 + 27k, £ = 0,
1,2,. ...

output to any other input sequence may be related with the
unit sample response. In order to answer we use relation (2),
and we obtain

ynl=Txnl} =T { (13)

> alklsln — k]}

k=—00

If the system is linear, the superposition principle (9) can be
used, and therefore, the Eq. (13) can be written as

ylnl= i T{xlk]éln — k]} = i x[R]T{8[n — 1} (14)
k=—o0 k=—o0
From here, we obtain the relation for the linear system:
ylnl= i x[klh,[n] (15)
k=—o0
where h,[n] depends on both & and n:
h,[n]l=T{8[n —k]} (16)

This relation is called the convolutional relationship. This
equation can be simplified for the time-invariant system, us-
ing Eq. (10),

o0

yinl= Y «lklhln — kI

k=—00

17

This relation is called the convolution sum or convolution. It
completely describes the output of an LTI system for the
known input and for zero initial conditions. The operation
convolution between sequences has its own signs *. Therefore,
the convolution (17) can be written as

ylnl =x[n] x hln] (18)
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This operation is commutative and distributive [see Kuc (1)
for detailed analysis]. Proakis and Manolakis (7) explain the
computing of the convolution step by step. From the unit sam-
ple response, we may see some important characteristics of
the LTI system, such are stability and causality [see Orfan-
idis (8) for detailed analysis]. An LTI system is stable if and
only if this condition is satisfied:

S= )" |hln]l < oo (19)

n=-—0oo

FIR filter has a finite length of impulse response, and the
condition (19) shall always be satisfied, which means that an
FIR filter is always stable. An LTI system is causal if the next
condition is satisfied:

hlnl1=0, forn<0 (20)
A natural question which may arise is if we can implement
digital filter by using the convolution. The answer depends on
whether the system is FIR or IIR. In the case of an FIR, the
convolution summation directly suggests how to implement
the filter. The problem arises for an IIR filter which has an
infinite impulse response since it requires an infinite number
of memory locations, additions, and multiplications. The solu-
tion is given by introducing the difference equations. Such a
difference equation describes an LTI system having any ini-
tial conditions unlike the discrete convolution that describes
the system in which all inputs and output are initially zero
(the system is initially relaxed). The difference equation is
often written in the form

NP
yinl= )"

k=—N;

N
bxln —kl1 =) ayln — k] 2D
k=1

where b, and ay are constant coefficients and N; and N, are
integer values. The first summation contains past, present,
and future inputs, while the second one contains only past
outputs. The difference equation for FIR filter contains only
the first sum where we can recognize the convolution (17). If
the system is casual, it does not depend on the future values
of the input, and the difference equation has N; = 0. The part
of the right side of the difference equation which involves past
outputs is called the recoursive part, and the other part is the
nonrecoursive one. The system which has only a nonrecour-
sive part is called the nonrecoursive filter. Otherwise, it is the
recoursive filter. In general, the computation of the output
y[n] at the index n of a recoursive filter needs previous out-
puts: y[n — 1], y[n — 2], . . ., y[0]. Therefore in this case, the
output must be computed in an order. As the difference, the
output of the nonrecoursive filter can be computed in any or-
der. An implementation of the casual LTI filter based on the
difference equation (21) and which is called direct form I is
presented in the Fig. 2. We see that the filter consists of an
interconnection of three basic elements: (1) unit delay, (2)
multiplier, and (3) adder. Direct form I is not optimal in the
sense that it uses a minimum number of delaying elements.
Proakis and Manolakis (7) describe different and more effi-
cient structures of discrete systems. Signal-flow graphs are
often used to describe the time-domain behavior of LTI sys-
tems [see Haykin (9) for a detailed analysis].

Figure 2. Direct form I realization of the causal LTI filter follows
directly from the difference equation and shows explicitly the delayed
values of input and output. (z! is interpreted as one-sample delay.)

A state-space approach considers that the output of the
system is the result of the actual input and the set of initial
conditions. This suggests that the system may be divided into
two parts. One part contains memory and describes past his-
tory, and the second one describes the answer to the actual
input. Following this approach, Antoniou (10) derived the
state space equations for the system of an order N in the ma-
trix-vector form

(22)
(23)

qln + 1] = Aq[n] + Bx[n]
yln]l = Cq[n] + Dx[n]

where q[n] is the n-dimensional state vector at time n, and
x[n] and y[n] are the input and output sequences, respec-
tively. The matrices A, B, C, and D, correspond to a particu-
lar realization of the filter.

Transform Domain Description

Frequency Domain. The sinusoidal sequences are usually
used in frequency-domain description of discrete signals and
systems because sinusoidal sequences have one useful charac-
teristic which is shown in Eq. (24):

yln] = H(e/?)e/" (24)
Therefore, if the sinusoidal sequence is applied to the LTI sys-
tem, the output is also a sinusoidal sequence with the same
frequency, multiplied with the complex value:

H(e)= Y hlkle/** (25)

K=—x

The sum in Eq. (25) presents Fourier transform of A[n] and is
named as frequency response, as it specifies response of the
system in the frequency domain. The frequency response, be-
ing the Fourier transform of the unit sample response, is a
periodic function with the period 27. Therefore, “low frequen-
cies” are those that are in the neighborhood of an even multi-
ple of 7, and the “high frequencies” are those that are close to
an odd multiple of 7. Equation (24) has also an interpretation
using the eigenvalue and eigenfunction. If an input signal
produces the same output signal but multiplied by a constant,



this signal is called eigenfunction, and the constant is the ei-
genvalue of the system. Therefore, the complex sinusoidal se-
quence is the eigenfunction, and H(e*®v) is the corresponding
eigenvalue. Fourier transform of the unit sample response
h[n] exists only if the sum [Eq. (25)] converges, that is if the
next condition is satisfied:

Y Ihlnll < oo (26)

k=—00

The magnitude of H(e®), | H(¢)|, is called magnitude re-
sponse, and the argument of H(e) is called phase response
and denoted as Arg{H(e*)}. Therefore, we have
H(ejm) — |H(ejm)|ejArg{H(ej“’)) 27
Frequency response can be expressed by its real and imagi-
nary part:
H(e/”) = Hy(e’”) + jH;(e’®) (28)

From here, the magnitude response and phase response can
be expressed as follows:

\H(e’*)| = VHE + Hf = VH(e/”H" () (29)
where H*(e/®) is the complex-conjugate of H(e™).
; H;(e)”)
Joyy — I
Arg{H (e'”)} = arctg [ H, (eiw)} (30)

Instead, the linear scale, magnitude characteristic is usually
plotted on the logarithmic scale.
|H (e’”)|q = 10 logy, |H(ejw)|2 = 20logy, |H (e’”)] (31)

In order to show better both the passband and the stop-
band characteristics, the log-magnitude response is plotted on
two different scales: one for the passband and the second one
for the stopband. For an LTI system with a real impulse re-
sponse, the magnitude and phase responses have symmetry
properties from which follows that the magnitude response is
an even function of w, and the phase response is an odd func-
tion of w.

Oppenheim and Schafer (3) show that the Fourier trans-
form of the output is the product of the Fourier transforms of
the input and the impulse response:

Y (e/°) = H(e/*)X (/) (32)
This expression explains why Fourier transform is so useful
in the analysis of LTI. As this expression shows, the operation
of convolution is replaced by a simpler operation of multiplica-
tion in the transform domain. This equation also shows that
the input spectrum is changed by the LTI system in both am-
plitude and the phase. The output magnitude is obtained as
the product of the input magnitude spectrum and the magni-
tude response:

Y (/)| = |H ()| IX (/)] (33)

DISCRETE TIME FILTERS 635
The output phase is equal to the sum of the input phase and
the phase response:

Arg{Y (e/”)} = Arg{X (e/*)} + Arg{H (¢’*)} (34)
Those changes can be either desirable or undesirable when
they are referred as to the magnitude and phase distortion.
Generally, we may view the LTI as a filter, passing some of
the frequencies of the input signal and suppressing the oth-
ers. Filters are usually classified according to what frequen-
cies pass and to what frequencies suppress as: (1) lowpass, (2)
highpass, (3) bandpass, and (4) bandstop filters. The ideal fil-
ters have constant magnitude response (usually 1) in the
passband and zero magnitude characteristic in the stopband.
The magnitude characteristics of the different ideal filters are
shown in Fig. 3. Ideal filters have the linear phase in the
passband which means that the output is equal to the scaled
and delayed input. Therefore, linear phase causes only de-
laying of the input sequence, what is not considered as the
distortion and the linearity of the phase is the desirable char-
acteristic. The group delay is introduced as the measure of
the linearity of the phase

_ dlArg{H (e/)}]

do (35)

T(w) =

The group delay can be interpreted as the time delay of the
signal components of the frequency w, introduced by the filter.
Filters with symmetric impulse response have linear phase
[see Oppenheim and Schafer (3) for detailed analysis]. Ideal
filters are not physically realizable and serve as the mathe-
matical approximations of physically realizable filters. As an
example, we consider in Fig. 4 the magnitude characteristic
of the physically realizable lowpass filter [see Ingle and Pro-
akis (11) for a detailed analysis].

Z-Domain. Z transform is a generalization of the Fourier
transform that allows us to use transform techniques for sig-
nals not having Fourier transform. It plays the same role in
discrete-time signals and systems as the Laplace transform
does in continuous-time signals and systems. Z transform of
the unit sample sequence is called system function:

H(z) =Z{hInl}= ) hlnlz™

n=-—0oo

(36)

The concept of a Z transform is only useful for such values
of z for which the sum [Eq. (36)] is finite. Therefore, for the
sequence h[n] it is necessary to define the set of z values for
which

> Jhlnl " < o0 (37)

n=-—oo

This set of z values is called the region of convergency (ROC).
Many characteristics of a filter can be seen from ROC. For a
FIR filter, the number of elements in the sum [Eq. (36)] is
finite and, therefore, the problem of the existence of the Z
transform does not exist, and the ROC is all z-plane, except
the origin. Proakis and Manolakis (7) show that ROC for the
right-sided sequence is given by |z| > R,, for the left-sided is
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Stopband Stopband
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Figure 3. Magnitude characteristics of the differ- s
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passband and completely attenuate all frequencies
in the stopband.

given as [z| < R,, and for the two-sided sequence as R; <
lz| < R,.

The operation of convolution in the time-domain reduces
to the most simple operation of multiplication in the
Z-domain:

Y (2) = Z{ylnl} = Z{x[n]l x hn]} = X (2)H (z) (38)
where
X (2) = Z{x[nl}
Y (z) = Z{ylnl} (39)
| H(e®)|
Passband
1+51 ————————I
T S
1+51 I_ _______ I
|
|
|
|
I Transition
: band Stopband
62 ________ :_____T _____ ':
| I 1 ®
0, wg

Figure 4. Magnitude specification of the physically realizable low-
pass filter. Instead of sharp transition between passband and stop-
band, the transition band is introduced, and instead of a flat charac-
teristic, a small amount of ripples is tolerable: In the passband: 1 —
8 < |[H(”)| < 1 + 6, where 6, is the passband ripple. In the stop-
band: |H(e™)| < &, where &, is the stopband ripple.

Bandpass filter Bandstop filter

Remember that Eq. (38) is valid for LTI systems. The system
function for an important class of LTI systems which are de-
scribed by the constant coefficients difference equation can be
expressed as the rational function and is expressed as the
ratio of polynomials in z1. By taking the Z transform of Eq.
(21) and using that the delay by £ samples in the time-domain

corresponds to the multiplication by z7*, we have:
N, —k
Hey - Y@ _ Zk:pr by
@) = N (40)
X@) 14+ azt

[see Proakis and Manolakis (7) for detailed analysis]. The val-
ues of z for which H(z) become zero are called zeros, and the
values of z for which H(z) become infinity are called poles.
The zeros are roots of the numerator N(z), and the poles are
roots of the denominators D(z). Both poles and zeros are
named as the singularities of H(z). The plot of zeros and poles
in the z-plane is called a pole-zero pattern. Pole is usually
denoted by a cross X and the zero by a circle 0. We can write
the system function H(z) in the factoring form:

Np+Ne 1 _ -1
]_[k:1 (1—2z,27")
N

H(z) = KzNt
[Te=1(X = ppz™)

(41)

where z;, and p, are the zeros and the poles, respectively, and
K is gain. Kuc (1) shows that each factor in the numerator of
Eq. (41) generates one zero at z = z, and one pole at z = 0;
each factor in the denominator generates one pole at z = p,
and one zero at z = 0; factor zVr generates N; zeros at z = 0
and N; poles at z = . For the system function, the total num-
ber of poles is equal to the total number of zeros. If pole and
zero are in the same location, they cancel each other. Complex
singularities are always in the complex-conjugate pairs for
the system presented by the difference equations with the
real coefficients.



Pole-zero pattern gives much useful information about the
LTI system. From the pole—zero pattern, we can see whether
the filter is casual or not. For the casual filter, N; = 0 and
therefore there are no poles in the infinity. Besides causality,
the type of the filter can also be seen from the pole—zero pat-
tern. For an FIR filter, all singularities are only zeros (except
poles at the origin and possibly in the infinity). Unlike a FIR
filter, an IIR filter has zeros and poles or only poles. (Zeros
are in the origin.) As the system function becomes infinity in
the poles, all poles must be outside the ROC. However, for
a casual right-sided sequence, ROC must be outside of the
outermost pole (the pole having the largest absolute value).
Another useful characteristic about LTI which can be seen
from the pole—zero pattern is the stability. The problem of
stability is only addressed to the IIRs and, therefore, is con-
nected only with the position of poles. Kuc (1) shows that for
a causal IIR filter, all poles must be inside the unit circle. If
the pole is on the unit circle, the system is not stable.

Oppenheim and Shafer (3) shows that Z transform is equal
to the Fourier transform on the unit circle:

He'”) = H(z)| (42)

z=el®

In this order, the frequency response belongs to the system
function evaluated on the unit circle. The magnitude response
at ® = w, can be presented geometrically as the ratio of the
distances between the zeros and the point z, = ¢/ on the unit
circle and the distances between poles and the point z, = e/,
as it is shown in Fig. 5:

Np+N,
TP |2y 20)]

|H(e/*0)| =K
H§\>,V=1 |(pk320)\

(43)

Im Z-plane

Unit circle

Figure 5. Geometric presentation of the Fourier transform in Z-
plane along the unit circle. The magnitude response at o = w, can be
presented geometrically as the ratio of the distances between the
zeros z, and the point z, = ¢ on the unit circle and the distances
between poles p and the point z, = ¢. If the singularity is close to
the unit circle it is called dominant singularity, because the distances
from it to the neighborhood points on the unit circle are very small.
Therefore the dominant zero decreases and the dominant pole in-
creases the magnitude characteristic at the corresponding frequency.
For every dominant zero on the unit circle, the magnitude character-
istic is equal to the zero at the corresponding frequency.
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Ingle and Proakis (11) derive geometrical presentation of the
phase response as

. Np+N;
arg(H(e/”0)} =C+ ((Ny +Np) —N)wy + Y arg{(z;. 2o)}
k=1
N (44)

- Z arg{(p;, zo)}

k=1

where C is equal 0 or 7, depending if the real frequency re-
sponse is negative or not. This expression can be interpreted
as the sum of the constant linear with o term and the nonlin-
ear term. We notice that the singularities in the origin do not
affect the magnitude response but affect the phase response.
As shown in Eq. (43), the magnitude response will be equal
to zero at the points corresponding to the zeros on the unit
circle. Similarly, the poles that are close to the unit circle (re-
membering that these cannot be on the unit circle for a stable
LTI) give the peak value to the magnitude response. There-
fore, the singularities that are close to the unit circle domi-
nate the magnitude response, and they are called the domi-
nant singularities.

s-PLANE TO z-PLANE TRANSFORM

The s-plane to z-plane transform depends on the characteris-
tic of the filter we want to preserve in the process of trans-
forming an analog to a digital filter. The most used trans-
forms are impulse invariance transformation, where the
impulse response is preserved, and bilinear transform, where
the system function is preserved.

Impulse Invariance Transformation

The unit sample response of a digital filter is obtained by
sampling the impulse response of the analog filter:

hln]=h,(nT) (45)
where T is the sampling interval. Using Eq. (6) between the

discrete and analog frequency, knowing that the frequency
points in s-plane are

s = joT (46)
and that those in the z-plane are

z=e" 47
we obtain the relation:

z=eT (48)

From Eqgs. (46)—(48), it follows that the part of the frequency
axis in the s-plane from 0 to 7/T is mapped to the frequency
points on the unit circle from @ = 0 to 7 in the z-plane. In a
similar way, the frequency points from 0 to —#/T are mapped
to the points on the unit circle from w = 0 to —7. Expressing
the complex value z in the polar form

(49)

z=re/*
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and the complex variable s, with real value ¢ and imaginary
value ()

s=0+jQ (50)
we have the relation between r and the real value o
r=e’T (1)

We have the next observations: (1) the transform from contin-
uous-time domain to the discrete-time domain is linear, (2)
the mapping is not one-to-one, but many-to-one and (3) the
frequency interval 0 to 27/T maps into the unit circle, and the
strips in the left side of the s plane of width 27/T are mapped
inside the unit circle. The entire left side of the s-plane maps
into the unit circle, which means that the stable analog filter
will result in a stable digital one. Due to the many-to-one
mapping, the aliasing effect is present, and this is the main
disadvantage of the impulse invariance transform.

Bilinear Transform

To overcome the aliasing limitation, the bilinear transform
could be used, as it presents a one-to-one mapping. The sys-
tem function H(z) is obtained from H,(s) by replacing the s by

_22—1

-2z - 2
s Tz+1 (52)

To find the mapping of the frequencies from () to w, we set
s = jQ and use Egs. (49) and (52)

_14jeT/2 1+ (Q2/2)2 elarcte@T/2)

2T T Iojar/2 T 1+ (QT/2) e aw@l®  (53)
— erarctg(QT/Z)
From here follows
w = 2arctg(QT/2) (54)

For low frequencies, the transform is approximately linear,
and for higher frequencies, the transform is highly nonlinear,
and frequency compression or frequency warping occurs. The
effect of the frequency warping can be compensated for by
prescaling or prewarping the analog filter before transform,
which means to scale the analog frequency as follows:

., 2 QT
Q = T tg( 5 ) (55)
[See Kuc (1) for a detailed analysis.] The whole left side of the
s-plane is mapped into the inside of the unit circle, and the
right side is mapped outside of the unit circle. Therefore, the
stable analog filter will result in the stable digital filter [see
Proakis and Manolakis (7) for detailed analysis].

DISCRETE-TIME ANALOG FILTERS

During the 1960s and 1970s the analog integrated filters were
implemented by circuits based on resistors, capacitors, and
operational amplifiers; these are denominated RC active fil-
ters. The precision of RC filters depend on RC products which
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Figure 6. Continuous-time amplifiers: (a) resistor based and (b) c