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made, overwhelmingly complex systems: large international
airports, automated manufacturing plants, military logistic
systems, emergency hospital wards, offices, services and
spare parts operations of multinational companies, distrib-
uted computing systems, large communication and data net-
works, very large scale integrated circuits (VLSI), electronic
digital circuits and so on. Typical examples of events that can
trigger the response of a DES and the possible change of its
state are the arrival or the departure of a customer in a
queue, the arrival or the departure of a packet in the node of
a communication network, the completion of a task, the fail-
ure or the repair of a machine in a factory, the opening or the
closing of a switch in an electrical network, the pressing of a
key on the keyboard of a personal computer (PC), the ac-
cessing or the leaving of a resource, and so on.

System theory has traditionally been concerned with con-
tinuous variable dynamic systems (CVDSs) described by dif-
ferential equations, possibly including random elements. The
essential feature of CVDSs is that they are driven by time,
which governs their dynamics. The discrete-time systems, for
which the time instances are elements of a sequence, are de-
scribed by difference equations instead of differential equa-
tions, but they essentially belong to the CVDS approach as
long as their variables can take numerical values and are
time-driven. In most cases, the discrete-time systems can be
considered merely computational models, obtained by the
sampling of the continuous-time systems. The CVDS ap-
proach is a powerful paradigm in modeling real-world ‘‘natu-
ral’’ systems. Currently, CVDSs are the main objects of what
forms the core of our scientific and technical knowledge, rang-
ing from Galileo’s and Newton’s classical mechanics to rela-
tivist and quantum mechanics, thermodynamics, electrody-
namics and so on. CVDS models have also been highly
successful in most engineering fields to describe low- or me-
dium-complexity man-made systems and are still the main
objects of control theory.

With the continuous and rapid increase in complexity of
the systems to be modeled, analyzed, designed, and con-
trolled, especially of the human-made systems that include
computer and communication subsystems as essential compo-
nents, systems too complex to allow a classical CVDS descrip-

DISCRETE EVENT SYSTEMS tion have emerged. For such systems, the variables attached
to the states and to the processes can have not only numerical

A discrete event system (DES) can be defined as a dynamic values, but also symbolic or logical values. This motivates the
interest in DESs in domains as different as manufacturing,system for which the state changes in response to the occur-

rence of discrete events. The discrete events take place at pos- robotics, vehicular traffics, conveyance and storage of goods,
organization and delivery of services, and computer and com-sibly irregular or unknown points in time (i.e., asynchro-

nously and nondeterministically) but are the result of munication networks, with particular emphasis on database
management, computer operating systems, concurrent pro-interactions within the system itself. The acronym DES, or

frequently DEDS (for discrete event dynamic systems), has gramming, and distributed computing. In all these domains,
control is necessary to ensure the orderly flow of events inbeen used extensively in many different fields of mathematics

and applications to designate apparently widely different sys- highly complex systems. Significant efforts have been made in
the last two decades to develop a comprehensive framework totems. Nevertheless, all these systems have in common the

property of being driven by events, rather than by time. The handle DESs. The DES theory, even if still in its infancy
when compared to the differential/difference equations para-conceptual structure of a DES is deceptively simple. It is a

system composed of multitudes of ‘‘jobs’’ that require various digm underlying the CVDS theory, is fast growing at the con-
fluence of artificial intelligence, operations research, and con-services from a multitude of ‘‘resources.’’ The limited avail-

ability of the resources determines the interactions between trol system theory. Notable among the various approaches
that have been used to represent DESs are the state ma-the jobs, whereas the start and the completion of the jobs, as

well as the changes of the resources, generate the events that chines and formal languages models (1–19), Petri nets (20–
29), timed marked graphs (30–33), Markov chains (34,35),govern the dynamics of the system. But this conceptually sim-

ple model encompasses scores of event-driven, mostly human- and generalized semi-Marcov processes (GSMP) (36,37).
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These models allowed the analysis of DES qualitative proper- of the events is relevant for these models. The untimed DES
ties, the quantitative evaluation of DES performances by models have been used for the deterministic qualitative anal-
methods as perturbation analysis (38–40) and likelihood ratio ysis of control issues such as the reachability of states
method (41,42), as well as progress in the design and control (18,58,59) or deadlock avoidance (23,60). Finite-state machine
of DESs. Even if a general theory of DESs does not yet exist, and Petri nets are the formal mechanisms mostly used for the
the previously mentioned partial approaches have provided representation of untimed DESs. Other untimed frameworks,
valuable concepts and insights and have contributed to the such as the trace theory, have also been explored. Neverthe-
understanding of the fundamental issues involved in the less, finite-state machines and their associated state transi-
analysis, design, and control of DESs. Discrete system simu- tion graphs are still the most widely used models because of
lation methods, algorithms, and software are now commer- their inherent simplicity and because they can be described
cially available for both qualitative behavior analysis and adequately by finite automata and regular languages. The
quantitative performance evaluation (43–57). simplest untimed DES model is a deterministic state-machine

Because of the complexity and the heterogeneity of the do- or automaton, called generator, described by the 4-tuple
main, as well as its fast growth, only some of the very basic
aspects will be presented in the rest of this article. The main G = (Q,�, δ, s) (1)
attention is focused on the modeling of DESs, which allows
one to grasp the basic features and the behavior of DESs.

where Q is the (countable) set of states of the system, � is theSome elements of the control of DESs are presented, and
(countable) set of events, � : Q � � � Q � ��� is the transitionsome examples of DES application are given.
function, and s � q0 is the initial (start) state of the system.
By a reminiscence of the classical system theory, the set of

MODELS OF DISCRETE EVENT SYSTEMS states is sometimes called the state space, even if it does not
have the structure of a vector space, typical for the CVDSs.

The increased complexity of human-made systems, especially The function � describes the transition from a state q � Q to
as an effect of the widespread application of information tech- a new state q� � �(q, �), in response to the occurrence of an
nology, has made the development of more detailed formal event � � �. The symbol � denotes the null element, which
methods necessary to describe, analyze, and control processes is used to indicate that the transition is not defined for some
observed in environments such as digital communication net- pairs (q, �) � Q � �. For this reason, � : Q � � � Q is called
works and manufacturing plants. As opposed to the continu- a partial function. It is convenient to designate by �f(q) the
ous time-driven evolution of a CVDS [Fig. 1(a)], the evolution set of all feasible events for a given state q, i.e., �f(q) � �� �
of a DES is piecewise-constant and event-driven [Fig. 1(b)].

���(q, �) � ��. As usual in the regular expressions formalism,
The state variables of a DES may have not just numerical

we denote by �* the set of all finite strings of elements of �,values, but also symbolic or logical values, so that the set of
including the empty string �. A sample path (trajectory) of astates Q does not have the vector space structure typical for
DES, starting from the specified initial state q0 � s [see Fig.CVDS. The elements qj � Q, j � �, may be seen as labels
1(a)], is given by the state-(event-state) sequence q0�1q1�2,attached to the various distinct states of the DES. The state
. . ., �nqn. The set of all (physically) possible such sequencestransitions may occur in response to the occurrence of discrete
is called the behavior B(G) of the generator G:events �k, belonging to a set of events � and taking place at

discrete time instances tk. From the point of view of the tim-
ing information, DESs can be classified into two main catego- B(G) = {q0σ1q1σ2, . . ., σnqn|n ∈ N

∗ , 1 ≤ k ≤ n, qk = δ(qk−1, σk)}
(2)ries: (1) untimed (logical) and (2) timed.

Untimed Discrete Event Systems For a deterministic DES, the sample trajectory can be de-
scribed equivalently by the event string ��k�k�1,2,. . .,n, or by theUntimed or logical DES models ignore time as a variable that
state string �qk�k�0,1,2,. . .n. In the formalism of regular lan-specifies the moments when the events occur. Only the order
guages, an event string corresponding to a sample trajectory
is called a word w built with the symbols � taken from the
alphabet �. Correspondingly, the set of all the (physically)
possible words is called the language L(G) � �* generated by
G over the alphabet �. Sometimes, the language is also called
the behavior of the DES, or the behavior of its generator. In
the framework of automata theory, an automaton is described
by a 5-tuple, which includes as a fifth element a set of marker
states Qm � Q. A marker state usually represents the comple-
tion of a task. This is not essential in this context, so it is
deferred for the following section.

CVDS DES
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Example 1. Consider a DES generator G that models a sim-
ple generic machine. The state set Q � �I, W, D,� is composedFigure 1. Comparison of generic trajectories of continuous variable
of the states: I—Idle, W—Working, and D—Down, whereasdynamic systems and of discrete event systems: (a) Example of an
the event set � � �S, C, B, R� is composed of the events: S—illustrative one-dimensional CVDS trajectory. (b) Example of a DES

trajectory (�, �, �, � � �; a, b, c, d, s � Q). Start of a task, C—Completion of the task, B—Breaking
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Figure 2. The transition graph of a simple generic machine model.
The system can be in the states: I—Idle, W—Working, and D—Down,
and the transitions are induced by the events: S—Start of a task,
C—Completion of the task, B—Breaking down, and R—Repair.

down, and R—Repair. Figure 2 shows the transition function
of the system. The states are designated by nodes, and the
events by oriented arcs connecting the nodes. The initial state
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s � I is marked with an entering arrow. The language gener- Figure 4. The transition graph of a system made up of the two in-
ated by G, i.e., the set of all the (physically) possible se- stances of the simple machine model shown in Fig. 2, operating as
quences of events is elements of the system.

L(G) = {ε, S, SD, SC, SCS, SCSD, SDR, SDRS, SDRSD, . . . }
(see Refs. 16–19,61,62) in the framework of untimed DESs.
The analysis of an untimed DES model typically proceeds aswhich can be written in the formalism of regular expressions
follows. By using some state transition structure (e.g., autom-as L(G) � (SC � SDR)*(� � S � SD).
ata or Petri nets), a set of algebraic equations, or a logical
calculus approach, one specifies the set of all admissible eventExample 2. Let us now consider the case of two machines of
trajectories, that is, enumerates all the sequences of eventsthe type given in Example 1 working in parallel. Each ma-
that do not contradict various physical restrictions inherentchine has a generator of the previously considered type. The
to the modeled system. On this basis, the behavior of the sys-transition graphs of the two machines working as indepen-
tem—usually expressed by the generated language L, that is,dent entities are represented in Fig. 3. The system composed
by the set of all the possible finite sequences of events thatof the two machines working in parallel, even without condi-
can occur in the system—is found as a strict subset of alltioning each other, has the state set Q � Q1 � Q2 � �(I1, I2),
event orderings �*. In the control context, one has to further(W1, I2), (D1, I2), . . ., (D1, D2)�, the set of events � � �1 �
restrict the language so that each system trajectory has some�2 � �S1, C1, B1, R1, S2, C2, B2, R2�, and the transition graph
desired property such as stability (e.g., state convergence),shown in Fig. 4. The combinatorial growth in complexity of a
correct use of resources (e.g., mutual exclusion), correct eventDES with the increase of the number of components is ob-
ordering (e.g., data base consistency), desirable dynamic be-vious.
havior (e.g., no deadlock/livelock), or the achievement of some
goal (e.g., distributed consensus).Since untimed models contain no quantitative timing in-

The difficulties in applying logical DES models to real-lifeformation, they cannot be used to obtain performance mea-
size problems are caused by the computational complexity.sures involving time, such as holding times or event occur-
Even if problems like establishing controllability or designingrence rates. Nevertheless, logical DES models have
a supervisor to control the behavior of a DES are polynomiallysuccessfully been used to represent and study qualitative as-
decidable or polynomially solvable in the number of states ofpects in areas such as concurrent program semantics, commu-
the DES, the number of states itself grows in a combinatorialnicating sequential processes, synchronization in operating
manner when a complex system is built from simpler compo-systems, supervisory control, communication protocols, logical
nent subsystems. As a consequence, the number of the statesanalysis of digital circuits, and fault-tolerant distributed com-
of a logical DES increases exponentially with respect to theputing and database protocols. The control theory of discrete
system size. This motivates the efforts to state/event formal-event systems has been initiated by Ramadge and Wonham
isms that have the capability to suppress the aspects of the
system description irrelevant in a given context. One mod-
ality is event internalization, or partial observation, which
leads to nondeterministic process behavior and, consequently,
to inadequacy of formal languages as models of behavior. The
complexity issues are also talked with by using modularity,
hierarchy, and recursivity when building the system descrip-
tions from the individual component features. Since all the
components of a complex process must interact and synchro-
nize when operating in parallel, a suitable mechanism for
communication and interaction between modules is an impor-
tant component of DES modeling.
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Markov Chain Model of an Untimed DES. One way of model-Figure 3. The transition graphs of two instances of the simple ma-
chine model in Fig. 2, operating independently. ing the random behavior of discrete event systems is by using
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the Markov chain formalism. As pointed out earlier, the non- tion and statistical analysis, which is computationally costly
and has little potential for real-time control. Both approachesdeterministic behavior of a system can be the result of its

incomplete (partial) description. Either some of the events are were used for the evaluation of performances related to re-
source contention and allocation, based on the oversimplifyingaggregated into complex events that can yield multiple out-

comes (event internalization) or the states of the system are assumption that a manufacturing process can be described
adequately by using only timing considerations. For instance,defined in a space of lower dimension than would be required

for their complete specification (hidden variables) so that the the problem of the yield percentage in semiconductor wafer
manufacturing is more closely related to the properties of thestates aggregate and actually correspond to classes of states.

Partial description can be necessary and desirable in order to materials and to the technological aspects than to resource
contention.reduce the computational difficulties—to make complex sys-

tems tractable—or can result from incomplete knowledge Another approach is based on the fact that sample paths
of parametric DESs contain a considerable amount of infor-about the modeled system. On the other hand, randomness

can be an irreducible feature of some of the processes in the mation that allows to predict the behavior of the system when
the values of the parameters are perturbed. Both infinitesi-system itself. The Quantum Mechanics approach is the first

example at hand. The problem of whether or not such built- mal perturbation analysis (IPA) and likelihood ratio (LR)
methodology have been used in conjunction with various gra-in randomness does exist is still open to philosophical debate.

From the engineering point of view, this is irrelevant because dient-based stochastic optimization schemes. These tech-
niques yielded significant results in problems like routing inthe behavior of the system is similar in both cases.

A Markov chain model of a nondeterministic DES is de- communication networks or load balancing in distributed pro-
cessing systems.fined by the set of states Q and the transition probability ma-

trix PS � [PS
ij], where In order to define a timed DES, a mechanism for generat-

ing the event time instance sequence �tk�k�N has to be added
to the untimed model. This mechanism should also take into1. PS

ij � P(qj�qi), for i � j, is the conditional probability that
account the randomness of the event lifetime 	�, � � �. Cas-the system passes into the state qj � Q, i.e., the proba-
sandras and Strickland (36) have introduced a model to studybility of occurrence of event �ij � (qi, qj), provided that
the properties of the sample paths of a timed DES. The gener-the current state is qi � Q.
ator2. PS

ij � 1 
 �j�i PS
ij is the probability of remaining in the

state qi, which is the probability of occurrence of event
G = {Q,�, δ, s, F} (3)

�ii � (qi, qi), if �ii � �f, or the probability that no event
occurs in the state qi, if �ii � �f.

contains, in addition to the components of an untimed DES
[Eq. (1)], the event lifetime generator:The probability that, starting from the initial state s �

q(0) � qi, the system arrives after n steps into the state F = {Fσ (·), σ ∈ �} (4)
q(n) � qj is denoted by PS

ij � P[q(n) � qj�q(0) � qi]. Thus, the
entries of the transition probability matrix give the probabili- which is a set of probability distribution functions (pdfs) asso-
ties of paths of length one: ciated with the events.

The basic simplifying hypothesis is that all events are gen-
erated through renewal processes, i.e., each pdf F�( � ) dependsP S

ij = P[q(n + 1) = qj |q(n) = qi]

only on the event �, not on other factors such as the states
Markov chains can be used to represent the ‘‘closed loop’’ be- before and after the event � occurs and the count of how many
havior of a controlled DES. In this case, the probabilities of events of type � have already occurred.
the enabled transitions (events) are strictly positive, whereas Figure 5 shows a typical sample path of a timed DES. In
the probabilities of the disabled transitions are zero. The con- the general case, the set of events � contains several types
trol of a DES modeled by a Markov chain consists thus in of events and it is possible that for some states q there are
changing the transition probabilities, according to the com- nonfeasible events �, i.e., � � �f(q). In the simplest case,
mands issued by the supervisor, to achieve a certain control- when there is only one type of event in � and this event is
ling task. feasible for all the states in the path, the kth lifetime 	k,i of

the event of type i characterized by the pdf Fi( � ) gives the
Timed DES Models interval between two successive occurrences of the event

tk�1 
 tk � 	k,i where k � 1,2,. . .. A certain time instant t inTimed DES models were developed primarily to allow the
quantitative evaluation of DESs by computing performance
measures like holding times or event occurrence rates, which
imply counting events in a given time interval or measuring
the time between two specific event occurrences and obtaining
the appropriate statistics. The timed event trajectory of a
DES is specified by the sequence ��k, tk�k�N*, whereas the timed
state trajectory is �qk, tk�k�N, where tk gives the moment of the

σk

τ k, j

σ2σ1 σk+1

t2 tk t tk+1

xk,i yk,i

t1

qk+1qk–1q2q1q0 qk

kth event occurrence. Significant analytical results have been
obtained in the special case of queuing theory. For the sys- Figure 5. Generic sample path of a timed DES with one event type.
tems that do not satisfy the specific hypotheses of the queuing The moment t divides the kth lifetime 	k,i of event of type i into the

age xk,i and the residual lifetime yk,i.theory, timed DES models have been studied by using simula-
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this interval, t � [tk, tk�1], divides it into two parts that define with x1,i � 0. The event time instances are given by the time
Eq. (7)the age xk,i � t 
 tk of the event i (the time elapsed since its

most recent occurrence), and the residual lifetime yk,i � tk�1 

t � 	k,i 
 xk,i of the event of type i (the time until its next tk+1,i = tk,i + min

j=� f (qk )

{τ j − xk, j} (11)

occurrence). When several types of events are possible, the
next event occurrence is determined by the currently feasible The model is similar to the one used by the min-plus dioid
event with the smallest residual lifetime �k�1 � arg min�i��

f(qk) algebra approach presented in a later section of this article.
�yk,i�, where yk,i is a random variable generated with
the pdf: Formal Languages and Automata DES Models

Formal Languages—Regular Expressions. Using the previous
notation, let the generator G of an untimed (logical) DES have
the finite state set Q, the finite set of events �, and the behav-
ior described by the set of all (physically) possible finite event

Hk,i(u, xk,i) = P[yk,i ≤ u|xk,i] = P[τk,i ≤ xk,i + u|τk,i > xk,i]

= Fi(xk,i + u) − Fi(xk,i)

1 − Fi(xk,i )

(5)

strings L(G) � �*, a proper subset of �*—the set of all finite
strings built with elements of the alphabet �, including theThe dynamic model of a timed DES, allowing the step-by-step
empty string �. In the formal language approach, let us con-construction of a sample path, is thus given by
sider that each event is a symbol, the event set � is an alpha-
bet, each sample event path w � �1�2 . . . �n of the DES is aqk = δ(qk−1, σk) (6)
word, and the (event) behavior L(G) is a language over �. The
length �w� of a word w (i.e., of a sample path) is the number
of symbols � from the alphabet � (i.e., events) it contains. The

tk+1 = tk + min
σ j ∈� f (qk )

{yk, j} (7)

length of � is zero.
Given two languages, L1 and L2, their union is defined by

σk+1 = arg min
σ j ∈� f (qk )

{yk, j} (8)

L1 + L2 = L1 ∪ L2 = {w|w ∈ L1 or w ∈ L2} (12)

whereas their concatenation is
xk+1,i =




xk,i + min
σ j ∈� f (qk )

{yk, j}; if σi ∈ � f (qk), σi �= σk

0; otherwise
(9)

L1L2 = {w|w = w1w2, w ∈ L1 or w ∈ L2} (13)
for k � �* and for initial conditions specified by some given
s � qo and t1 � min�j��

f(q0) �y1, j�, �1 � arg min�j��
f(q0) �y1, j�, and The Kleene (iterative) closure of a language L is

x1,i � min�j��
f(q0) �y1, j�, where y1, j are random variables drawn

from Fj( � ) for all j. This stochastic dynamic model generates
a generalized semi-Markov process. For such processes, a

L∗ = {w|∃k ∈ N and w1, w2, . . ., wk ∈ L so that

w = w1w2 · · · wk}
(14)

state is actually defined by two components: the discrete state
qk � Q and the so-called supplementary variables xk,i (or, The union, concatenation, and Kleene closure are regular op-
equivalently, yk,i), for all i � �. A GSMP offers a convenient erators.
framework for representing timed DESs. The deterministic A string u is a prefix of w � �*, if there is some v � �* so
mechanism for the state transitions, defined here by the func- that w � uv. If w � L(G), then so are all its prefixes. A prefix
tion �(q, �), can also be replaced by a probabilistic state tran- is called proper if v � ��, w�.
sition structure. Even more than in the case of untimed The prefix closure of L � �* is
DESs, despite the conceptual simplicity of the dynamics, the
exhaustive analysis of a stochastic timed DES model can be L = {u|uv ∈ L for some v ∈ �∗} (15)
of prohibitive computational complexity, not only because of

A language L is prefix closed if L � L, i.e., if it contains thethe large number of states but also because of the nonlinear-
prefixes of all its words.ity of the equations and the age-dependent nature of the pdfs

The (event) behavior of a DES can be modeled as a prefixHk,i(u, xk,i). On the other hand, if the dynamic equations are
closed language L over the event alphabet �. In the following,seen as a sample path model, than the timed trajectories of
the main relevant propositions will be stated, but the proofsDES can be generated relatively simple when the lifetime dis-
will be omitted for briefness. We will write v*, u � v, and sotributions Fi( � ) are known for all i � �. This allows the use
on, instead of �v�*, �u� � �v�, when no confusion is possible.of techniques like perturbation analysis (38) or the likelihood

A regular expression in L1, L2, . . ., Lm � �* is any expres-ratio method (39,40) for performance evaluation, control, or
sion in L1, L2, . . ., Lm containing a finite number of regularoptimization purposes.
operators. A language is called regular if it can be defined byThe stochastic model can be reduced to a deterministic one
a regular expression in a finite set of symbols, i.e., events.if the lifetimes are considered to be constants for all i � �.

The set R of regular languages over an alphabet � is theThe residual lifetimes of events are determined by yk,i � 	i 

smallest set of languages satisfying:xk,i, for all i, k, whereas the event ages xk,i result from the state

equation
1. � � � � � R , ��� � R ,

2. {a} ∈ R, for ∀a ∈ �, (16)

3. 
A, B � R , A � B, AB, A* � R .

xk+1,i =



xk,i + min
j∈� f (qk )

{τ j − xk, j}; if i ∈ � f (qk)\{σk}

0; otherwise
(10)
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Regular expressions are notations for representing the regu- which is composed the words that start from the specified ini-
tial state s � q0, and lead to a marked state qn � Qm. Becauselar languages, constructed with these rules:
the marked language Lm(G) is a subset of the language L(G),
so is its prefix closure [see Eq. (15)] Lm(G) � L(G), i.e., every1. �, �, and the elements of the alphabet � are regular

expressions. prefix of Lm(G) is also an element of L(G). A generator G is
called nonblocking if the equality Lm(G) � L(G) holds, mean-2. If � and � are regular expressions, then � � �, ��, �*
ing that every word in L(G) is a prefix of a word in Lm(G). Inare also regular expressions.
this case, every sample path of events in L(G) can be extended
to include a marker state or—in other words—can be contin-Obviously, a regular expression can be considered itself a
ued to the completion of a task.word (a string of symbols) over the alphabet �� � � � �), (, �,

The links between the states q � Q and the words w ��, *, ��.
�* can be put on a more formal basis using the concept ofA language L(�), represented by a regular expression �, is
configuration. The configuration of a finite automaton is de-defined by
fined by the ordered pair (q, w) � Q � �*, which makes up a
state q and a word w applied in this state.1. L(�) � �, L(�) � ���,

A configuration (q�, w�) can be derived from a configura-2. L(a) � �a�, 
a � �,
tion (q, w) by the generator G, the relation of which is denoted
by (q, w) �*G (q�, w�), if there is a finite number k � 0 and a3. L(α ∪ β) = L(α) ∪ L(β), (17)
sequence �(qi, wi)�0 � i � k 
 1� so that (q, w) � (q0, w0), (q�,
w�) � (qk, wk), and (qi, wi), � (qi�1, wi�1), for every i, 0 � i �4. L(��) � L(�)L(�),
k, i.e., wi � �i�1 wi�1, qi�1 � �(qi, �i). Each word wi is composed

5. L(�*) � L(�)*. of the first symbol �i�1 and the remaining word wi�1, so that
the words in the sequence are related by

It can be shown that a language is regular if it is represented
by a regular expression. The set of all the words constructed
with the symbols from an alphabet � � ��1, �2, . . ., �n�, in-

w = w0 = σ1w1 = σ1σ2w2 = · · · = σ1σ2 · · · σkwk = σ1σ2 · · · σkw′

(22)
cluding the empty word �, is represented by the regular ex-
pression �* � ��1 � �2 � � � � � �n�*. The set of all the non-

The execution of an automaton on a word w is (s, w) � (q1,empty words constructed with symbols from � is given by the
w1) � � � � � (qn, �), withregular expression �� � ��*.

w = σ1w1 = σ1σ2w2 = · · · = σ1σ2 · · · σn (23)DES Deterministic Generators. Consider the generator of a
DES modeled by a finite deterministic state machine (automa-

For a deterministic automaton, each word w defines a uniqueton) defined now by the 5-tuple
execution, thus a unique trajectory of the system.

Using this formalism, a word w is accepted or marked byG = {Q,S, d, s, Qm} (18)
a generator (automaton) G if the execution of the automaton

where Q is a (finite) state set, � is the (finite) alphabet recog- on the given word leads to a marker state qn � Qm:
nized by G, �: Q � � � Q is the transition function, s � q0 is
the initial state, and Qm � Q is the set of marker states. For (q0, w)

∗	→	→
G

(qn, ε); qn ∈ Qm (24)
sake of simplicity, we considered here �f(q) � �, 
q � Q [see
comments on Eq. (1)]. As already mentioned, the marker

The language Lm(G) accepted or marked by the automaton Gstates have been introduced by Ramadge and Wonham (see
is the set of words accepted by G:Ref. 16) to represent the completed tasks of a DES by the

state trajectories that end in (or contain a) marker state.
Therefore, along with B(G), the previously defined Lm(G) = {w ∈ �∗|(q0, w)

∗	→	→
G

(qn, ε);qn ∈ Qm} (25)
unmarked behavior of a DES [Eq. (2)], we define the marked
behavior

DES Nondeterministic Generators. A finite nondeterministic
state machine (automaton) is the 5-tupleBm(G) = {q0σ1q1σ2, . . ., σnqn ∈ B(G)|qn ∈ Qm} (19)

which includes all the system trajectories that end in a G = {Q,�,�, s, Qm} (26)
marked state, i.e., result in the accomplishment of a certain
task. Correspondingly, in addition to the language generated where Q, �, s � q0, Qm retain the meanings defined for deter-
by G, the subset L(G) � �* of all the (physically) possible ministic generators [Eq. (18)], whereas the evolution law is
words generated by G over the alphabet �, given by the transition relation � � Q � � � Q, which gener-

alizes the previously defined transition function �. For a givenL(G) = {w = σ1σ2, . . ., σn ∈ �|q0σ1q1σ2, . . ., σnqn ∈ B(G)} (20)
state q � Q, an event � � � can induce a transition of the
system to a state p � Q, with (q, �, p) � �. The set of stateswe define the language marked or accepted by G, as the re-
reachable in one step from the state q, after a transition in-stricted subset Lm(G) � L(G)
duced by the event �, is

Q(q, σ ) = {p ∈ Q|(q, σ , p) ∈ �} (27)
Lm(G) = {w = σ1σ2, . . ., σn ∈ �∗|q0σ1q1σ2, . . ., σnqn ∈ Bm(G)}

(21)
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The set �f(q) of all feasible events for a given state q can be
expressed as

φ

Σ∈σ σ

Figure 6. Elementary automata that accept the languages corre-
� f (q) = {σ ∈ �|∃p ∈ Q, (q, σ , p) ∈ �} = {σ ∈ �|Q(q, σ ) �= �}

(28)
sponding to the basic regular expression �, �, and � � �.

The deterministic generator can be seen as a special case of
the nondeterministic generator with the property that, for all

languages over some alphabets of events. The following prop-q � Q and � � �, there exist at most one state p � Q such
ositions express the fundamental links between regular lan-that (q, �, p) � �. In this case, a transition function �: Q � �
guages and finite automata:� Q � ��� can be defined such that �(q, �) � p � Q, when

(q, �, p) � �, and �(q, �) � �, when (q, �, p) � �, i.e., when �
• A language is regular if it is accepted by a finite automa-� �f(q).

ton.It is convenient to extend further the definition of the evo-
• If a language can be constructed by a regular expression,lution law to a relation �* � Q � �* � Q, by stating (q0, w,

then it is accepted by a finite nondeterministic automa-qn) � �* if there exist the sequences �qk�qk � Q, k � 0, 1, . . .,
ton.n� and w � ��k��k � �, k � 1, 2, . . ., n� � �*, such that

(qk
1, �k, qk) � �, for all k � 1, 2, . . ., n. • For each basic regular expression �, �, � � �, there is an
Using the relation �*, the language generated by G can be automaton that accepts the corresponding language as

expressed as shown in Fig. 6.
• For each composed regular expression �1�2, �1 � �2, �*1 ,L(G) = {w ∈ �∗|∃q ∈ Q: (q0, w, q) ∈ �∗} (29)

an automaton accepting the same language can be built
based on the automata A1 and A2 that accept the lan-

and the language accepted or marked by G as the restricted guages described by �1 and �2, respectively: �1 ⇔ A1 �
subset Lm(G) � L(G) �Q1, �, �*1 , q(1)

0 , Q(1)
m �, �2 ⇔ A2 � �Q2, �, �*2 , q(2)

0 , Q(2)
m �. For

instance, the automaton A corresponding to the regularLm(G) = {w ∈ �∗|∃qm ∈ Qm; (q0, w, qm) ∈ �∗} (30)
expression �1�2 is �1�2 ⇔ A � �Q, �, �*, q0, Qm�, where
Q � Q1 � Q2, � � �1 � �2 � �(q, �, q(2)

0 )�q � Q(1)
m �, q0 �A configuration (q�, w�) is derivable in one step from the con-

q(1)
0 , Qm � Q(2)

m .figuration (q, w) by the generator G, the relation of which is
denoted by (q, w) �G (q�, w�), if w � uw�, (i.e., the word w

Algorithm for Constructing the Marked Language of a Generatorbegins with a prefix u � �*) and (q, u, q�) � �*.
G. Consider again the generator of a DES G � �Q, �, �, s,A class of equivalent states is a set of states that have the
Qm�, with the finite set of states Q � �q1, q2, . . ., qn�, whereproperty that the system can pass from one state in the class
the order is arbitrary. Let us find the language Lm(G) markedto another without the occurrence of any event, i.e., by transi-
by G, i.e., the set of words over the alphabet � that end in ations on the empty word �. The equivalence class E(q) of a
marker state [see comments on Eq. (30)].state q is defined as an equivalence class comprising the

Let us denote by R(i, j, k) the partial language made up ofstate, q, i.e., the set of states reachable from the state q by
the set of words allowing the transition from the state qi totransitions on the empty word
the state qj, passing either directly, or only through states
with indices lower than k. ThenE(q) = {p ∈ Q|(q, w)

∗	→	→
G

(p, w)} = Q(q, ε) (31)

Two generators G1 and G2 are called equivalent if L(G1) �
L(G2).

R(i, j, 1) =
{

{w|(qi, w, qj ) ∈ �∗}, i �= j

{ε} ∪ {w|(qi, w, qj ) ∈ �∗}, i = j
(32)

For any nondeterministic finite generator G � �Q, �, �*,
and the following recurrence relation holds:q0, Qm�, it is possible to build formally an equivalent determin-

istic finite generator G� � �Q�, ��, ��, q�0, Q�m�, for which the
states are replaced with classes of equivalent states. Corre-
spondingly, the state set becomes the set of equivalence

R(i, j, k + 1) = R(i, j, k) ∪ R(i, k, k) ∪ R(k, k,k)∗R(k, j, k),

k = 1, 2, . . ., n (33)
classes Q� � 2Q (the set of the subsets of the state set Q), the

Choosing the initial state s � q1, the language Lm(G) markedinitial state is replaced by the set q�0 � E(q0) � Q(q0, �) of
by G results:states in which the generator can be before any event occurs,

the transition function is defined by ��(q, �) � �p�Q �E(p)��q
� q : (q, �, p) � �*�, and the set of marker equivalence classes
is Q�m � �q � Q��q � Qm � ��. The last equation shows that a

Lm(G) =
⋃

q j ∈Qm

R(1, j, n + 1) (34)

‘‘state’’ of G� is a marker state if it contains a marker state
Both the partial languages R and the language Lm(G) are reg-of G.
ular languages.

Regular Languages and Finite Automata Representation. As
stated earlier, regular expressions and finite automata are Example 3. Consider a simple DES, having the generator G

given by Eq. (26), with the state set Q � �q1, q2�, the event setformalisms adequate for representing regular languages, as
well as for representing the behaviors of DESs, which are � � �a, b�, the initial state s � q1, the set of marker states
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b ba

q1 q2a

Figure 7. Transition graph of a simple determinist generator. The
initial state s � q1 is marked with an entering arrow, whereas the
marker state q2 is represented with a double circle.

Aif

Ain

xixj

xn

k k+1

x1

Aj1

Qm � �q2�, and the transition relation � � �(q1, �, q1), (q1, a, Figure 8. Section of a timed event graph showing only the edges
q1), (q1, b, q2), (q2, a, q1), (q2, �, q2), (q2, b, q2)�, for which corre- coming into the node attached to event i. Input variables xj(k); j � 1,

. . ., n give the moments when events j occur at step k, and thesponds the transition graph in Fig. 7. Using the relations (32)
weights Aij; j � 1, . . ., n of the edges correspond to the delays pro-and (33), the partial languages R(i, j, k), i, j, k � 1, 2, of G
duced by the transport from j to i.listed in Table 1 can be computed successively. Thus, the lan-

guage accepted by G results:

Consider the section of a timed event graph represented in
Fig. 8. Each node corresponds to a certain activity, whereas
the arcs coming into a node represent the conditions required
to initiate the activity attached to the node. An event i (e.g.,

L ∗ G) = R(1, 2,3)

= [b ∪ (ε ∪ a)(ε ∪ a)∗b] ∪ [b ∪ (ε ∪ a)(ε ∪ a)∗b]

[ε ∪ b) ∪ a(ε ∪ a)∗b]∗[(ε ∪ b) ∪ a(ε ∪ a)∗b]
the start of a process) occurs at step k � 1 in the moment
xi(k � 1) when all the input events (e.g., the end of the prereq-
uisite processes) have occurred at step k in the respective mo-Max-Plus Algebra Representation of
ments xj(k); j � 1, . . ., n, and have propagated from j to iTimed Discrete Event Systems
with the transport delays Aij; j � 1, . . ., n. The corresponding

The max-plus (max, �) algebra deals with a subclass of the discrete-time dynamic system model is given by the equa-
timed Petri nets, namely the timed event graphs. Originally, tions:
Petri nets were introduced as nontimed logical models. Timed
Petri nets have been developed for modeling and performance
analysis, but were found less adequate for control purposes.

xi(k + 1) = max(Ai1 + x(k)

1 , . . ., Aij + x(k)

j , . . ., Ain + x(k)
n ),

i = 1, . . ., n
(35)

The theory of timed DES emerged from the combination of
the max-plus algebra framework with the system-theoretic The analysis of this model is significantly simplified by the
concepts. The trends of the research on the max-plus algebra max-plus algebra formalism.
approach to DESs can be found in Ref. 23. Max-plus algebra The max-plus algebra (�max, �, �) is a dioid over the set
is a convenient formalism for the systems in which synchroni- �max � � � �
��, where � is the set of real numbers.
zation is a key request for event occurrence, including both The additive operation � is the maximization
discrete events systems and continuous systems that involve
synchronization. Max-plus algebra adequately describes sys- x ⊕ y = max(x, y) (36)
tems for which the start of an activity requires the completion

and the multiplicative operation � is the usual additionof all the activities that provide the inputs needed to perform
the considered activity. In such cases, maximization is the

xy = x ⊕ y = x + y (37)basic operation. The complementary case is that of the sys-
tems in which an activity starts when at least one input be-

The neutral element e with respect to � (the ‘‘one’’ element ofcomes available. Minimization is the basic operation and the
the structure) is 0, whereas the neutral element � with re-min-plus algebra is the adequate algebraic structure. These
spect to � (the ‘‘zero’’ element of the structure) is 
�, whichtwo limit cases correspond to the AND and OR operators from
is also the absorbing element of the multiplicative operation:

the binary logic, respectively. In mixed systems, both types of
a � 
� � 
� � a � 
�, 
a � �max. This dioid is not a ring

conditions can be present, and other related (usually isomor- because, in general, an element of �max has no inverse with
phic) dioid algebraic structures must be used. In the following respect to �. One distinctive feature of this structure is the
we will refer only to the max-plus case. idempotency of the addition:

x ⊕ x = x, ∀x ∈ Rmax

The matrix product AB � A � B of two matrices of fitting
sizes (m � p) and (p � n) is defined by

(A ⊗ B)ij =
p⊕

k=1

Aik ⊗ Bk j = max
k=1,...,p

(Aik + Bk j ), i = 1, . . ., m;

j = 1, . . ., n
(38)

Table 1. Partial Languages of the Generator G in Example 1

R(i, j, k) k � 1 k � 2

R(1, 1, k) � � a (� � a) � (� � a)(� � a)*(� � a)
R(1, 2, k) b b � (� � a)(� � a)*b
R(2, 1, k) a a � a(� � a)*(� � a)
R(2, 2, k) � � b (� � b) � a(� � a)*b
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The matrix sum A � B of two matrices of the same size (m � a path for which the initial and the final node coincide. In
the following, we will consider only elementary circuits, i.e.,n) is defined by
circuits that do not pass twice through the same node. The
length of a path (circuit) is defined as the number of edges in
the path (circuit). The weight of a path (circuit) is defined as

(A ⊕ B)ij = Aij ⊗ Bij = max(Aij, Bij), i = 1, . . ., m; j = 1, . . ., n
(39)

the � multiplication (i.e., the conventional sum) of the
The multiplication by a scalar a of a matrix A is defined by weights of all the edges in the path (circuit): w(i1 � i2 � � � �

� ik) � Aikik
1
� � � � � Ai2i1

. The average weight of a path is
its weight divided (in the classical way) by its length. For a(a ⊗ A)ij = a ⊗ Aij = a + Aij (40)

circuit, the average weight is sometimes called the circuit
With the formalism of the max-plus algebra, the equations of mean.
a time event graph become

Example 5. Examples of paths in the graph in Fig. 9 are

1 � 2 (length � 1, weight � 1, average weight � 1),
xi(k + 1) =

n⊕
j=1

Aij x j (k) i = 1, . . ., n (41)

1 � 2 � 3 (l � 2, w � 3, aw � 1.5),
1 � 2 � 3 � 3 � 2 (l � 4, w � 12, aw � 3).or, in matrix form,

There are three (elementary) circuits in this graph:x(k + 1) = Ax(k) (42)

1 � 2 � 1 (l � 2, w � 4, circuit mean � 2),where x(k) � [x(k)
1 , . . ., x(k)

n ]T is the state vector at time k, and
A � [Aij, i, j � 1, . . ., n] is the (n � n) system matrix. 2 � 1 � 2 (l � 2, w � 8, cm � 4),

The weighted graph corresponding to a square (n � n) ma- 3 � 3 (l � 1, w � 3, cm � 3).
trix A is the triple G(A) � (N, E, �), where N is the set of n
nodes, E is the set of edges, each representing a nonzero entry A graph is strongly connected if there exists a path be-
of A, and � : E � N � N, with �(eij) � ( j, i), eij � E if and only tween any two nodes of the graph. The matrix corresponding
if Aij � �. The weight of the edge eij is Aij. In the following, to a strongly connected graph is called irreducible. For an ir-
only graphs for which there is at most one edge between any reducible matrix A, then is a permutation P such that PTA P
ordered pair of nodes, oriented from the first node to the sec- is an upper triangular matrix.
ond, will be considered.

Example 6. The graph in Fig. 9 is strongly connected.
Example 4. The graph in Fig. 9 corresponds to the system

The power of a square matrix Ak is defined recursively bymatrix

Ak = A ⊗ Ak−1, k ∈ N
∗ (43)

where A0 � I is the identity matrix, which has (A0)ij � e if
i � j, and (A0)ij � � if i � j. The entry (Ak)ij of the kth power

A =




ε 9 ε

1 ε 6
ε 2 3




of a square matrix A equals the maximum weight for all the
Considering the state at step k given by the vector x(k) � paths of length k from node j to node i.

[3, 2, 1]T, the vector at step (k � 1) is A square matrix is aperiodic if there exists k0 � �* such
that (Ak)ij � � for all k � k0. Aperiodicity implies irreducibility
because (Ak)ij � � means that there exists at least one path of
length k from node j to node i with weight (Ak)ij. The reverse
is not true.

Example 7. The matrix A corresponding to the graph in Fig.
9 is aperiodic with k0 � 4.

x(k + 1) = Ax(k) =




ε 9 ε

1 ε 6
ε 2 3







3
2
1




=




(9 ⊗ 2)

(1 ⊗ 3) ⊕ (6 ⊗ 1)

(2 ⊗ 2) ⊕ (3 ⊗ 1)


 =




11
7
4




As in conventional algebra, if for a square matrix A there
exist a vector v � [�, �, . . ., �]T and a scalar � such that

A path in a graph is a sequence of adjacent edges and nodes:
(i1, i2), (i2, i3), . . ., (ik
1, ik) � i1 � i2 � � � � � ik. In general, A ⊗ vvv = λ ⊗ vvv (44)
it is accepted that a path can pass twice through the same
node or through the same edge. A circuit is a closed path, i.e., then v is called an eigenvector of A, and � is the correspond-

ing eigenvalue.

Example 8. It is easy to check that

x1 x21 2 3

9

x3

6

Figure 9. Timed event graph corresponding to the system matrix in
Example 4.

A




7
3
e


 =




12
8
5


 = 5




7
3
e



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where A is the matrix corresponding to the graph in Fig. 9. state is reached within a finite number of steps. The periodic
regime is determined only by the length and the averageThe vector v � [7 3 e]T is an eigenvector of A for the eigen-

value � � 5. weight of the critical circuit, which is the slowest circuit in
the system. If A is irreducible and the corresponding graph

Some very important properties of the eigenvalues and ei- has a unique critical circuit of length m and average weight
genvectors of irreducible matrices are stated next without � (the eigenvalue of A), then A is asymptotically periodic with
proof. period m, i.e., there exists a kA � �* such that

• Every square matrix has at least one eigenvalue. Ak+m = λmAk, for all k ≥ kA (48)
• The eigenvalue is unique for an irreducible matrix.

Example 11. For the matrix A considered in Example 4, the• For an irreducible matrix, the eigenvalue equals the
length of the critical path m � 2, its average weight (the ei-maximum circuit mean taken over all circuits in the
genvalue of A) is � � 5, and kA � 4, so that A6 � 10 � A4.strongly connected graph corresponding to the matrix.
Indeed, in the max-plus algebra 10 �5 � 5 � 52.

Any circuit for which the circuit mean is maximum is called
The max-plus algebra can thus be used to evaluate the per-a critical circuit.

formance of timed discrete systems, in the asymptotic steady
state. For this purpose, the eigenvalue � is the key parameterExample 9. The critical circuit of the graph in Fig. 9 is 1 �
of a system described by an irreducible matrix because � de-2 � 1, which has the maximum average weight over all cir-
termines the speed in the periodic state. Usually, 1/� is re-cuits of the graph. This weight determines the eigenvalue
ferred to as the throughput of the system.� � 5 of the matrix A.

Petri Nets ModelsThe matrix A� is defined by

Petri nets theory has been developed as a formalism able to
describe in a unified way systems that included computers,
programs, and a certain environment. Previously, the various

A+ =
∞⊕

k=1

Ak (45)

components of such systems had to be described in different
Each entry (A�)ij of the matrix gives the maximum weight for and unrelated formalisms: automata theory for the computer
all paths of arbitrary length from node j to node i. The length hardware, code in a sequential programming language for the
increases unboundedly, so that the matrix A� diverges. For program, and narrative prose for the interaction of the pro-
an irreducible matrix A, with the eigenvalue �, a matrix A� is gram with the environment. From the three mentioned ele-
defined by ments, at most one—the program—is sequential so that the

capacity to deal with the characteristics of parallel systems
Aλ = λ−1A (46) was a basic request. The timed Petri nets have been intro-

duced in the late seventeen to quantitatively study the perfor-
meaning that (A�)ij � Aij 
 �. mances of parallel systems, especially referring to (1) concur-

The matrix A� has the remarkable property that rence, the possibility that events occur independently; (2)
synchronization, the necessity that some events wait for the
others before they can occur; and (3) conflicts, the mutual ex-A+

λ =
∞⊕

k=1

Ak
λ =

n⊕
k=1

Ak
λ (47)

clusion of some events. Petri nets have the advantage to have
a precise semantics and to allow the efficient use of algebraic

where n is the dimension of the square matrix A. As before, techniques. The event graphs, which are adequate for model-
(A�

� )ij is the maximum weight for all paths of arbitrary length ing collision-free synchronous systems, form a special class of
from node j to node i, in the directed graph corresponding to Petri nets and can be described by linear equations when us-
A�. The critical circuit in this graph has the weight e. A� has ing max-plus algebra. An overview of Petri nets and of the
the same eigenvectors as A, but for the eigenvalue e. For any concepts related to their properties can be found in the survey
node j in a critical circuit of A, the jth column of A�

� is an paper of Murata (26).
eigenvector of A (and of A�).

Untimed Petri Nets. An untimed Petri net is defined by (S,Example 10. For the matrix A considered earlier, the ma-
M0), where S describes the structure of the graph attached totrix A� diverges, but we can readily calculate A� and A�

� :
the net and M0 is the initial marking of the net.

The structural part is characterized by the 5-tuple

S = (P,T, F, r, s) (49)Aλ =




ε 4 ε

−4 ε 1
ε −3 −2


 , A+

λ =




e 4 5
−4 e 1
−7 −3 −2




with P the (finite) set of places and T the (finite) set of transi-
tions. The places P (customarily represented by circles) andThe first two columns of A�

� are eigenvectors of A for the ei-
the transitions T (drawn as bars) form the vertices of a graph.genvalue � � 5. It happens that the third column is also an ei-
The arcs of the graph are given by F � P � T � T � P. Thegenvector.
maps r : P � T � �* and s : T � P � �* give the (positive)
integer weights of the arcs going from the places toward theThe asymptotic behavior of the systems described by irre-

ducible matrices is periodic. Remarkably enough, the steady transitions, and from the transitions toward the places, re-
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set of markings reachable when starting from a marking M
and firing transitions is denoted by R(M). The rechability
problem—given M1 and M2, establish if M2 � R(M1)—is expo-
nentially decidable.

A marking M is bounded if for any place p � P the number
of tokens is bounded, i.e., there is a constant integer b � �*

2 3
1

1 1
t

p3

p4

p5

p1

p2

2 3
1

1 1
t

(a) (b)

p3

p4

p5

p1

p2

such that M(p) � b, 
p � P. A Petri net is bounded for a
given initial marking M0 if it is uniformly bounded for anyFigure 10. Firing of a transition in a Petri net. (a) Transition t is
M � R(M0). A Petri net is safe if the bound is 1. A Petri netfireable because for 
p � *t � �p1, p2�, the markings exceed the
is structurally bounded if it is bounded for any initial mark-threshold: M(p1) � 2 � r(p1, t) � 2 and M(p2) � 2 � r(p2, t) � 1. (b)
ing M0. A Petri net is conservative if the number of tokens isAfter the firing, the markings are M�(p1) � M(p1) 
 r(p1, t) � 0,

M�(p2) � 1, M�(p3) � M(p3) � s(t, p3) � 1, M�(p4) � 4, M�(p5) � 2. constant during the evolution of the system:

spectively. It is customary to inscribe only the arcs with the

∑
p∈P

|M(p)| =
∑
p∈P

|M0(p)|,∀M ∈ R(M0)

weights exceeding one, whereas the arcs without any inscrip-
Example 13. The Petri net in Fig. 10 is not conservative.tion have unit weight by default. Sometimes, edges with a

larger weight are represented by the corresponding number A transition t in a Petri net is alive for a marking M �
of unit weight arcs in parallel. The places may contain zero R(M0), if there exists M� � R(M) such that t is fireble under
or more tokens, usually drawn as black circles. A marking or M�. A transition is structurally alive if it is alive for any ini-
‘‘state’’ of a Petri net is given by the distribution of the tokens tial marking. A Petri net is (structurally) alive if all its transi-
at a certain moment: M : P � �, where M(p) gives the number tions are (structurally) alive.
of tokens in the place p � P. The initial marking is given The incidence matrix of a Petri net is the �T� � �P� matrix
by M0. A with the elements

Given a transition t � T, the input place set of t is defined
by Aij = s(i, j) − r( j, i) (55)

The evolution vector uk at step k is a unipolar binary vector∗t = {p ∈ P : (p, t) ∈ F} (50)
of size �T�

and the output place set, by:
uuuk = (1,0, 1, . . ., 0, 0)T (56)

t∗ = {p ∈ P : (t, p) ∈ F} (51)
which has the entries one for the transitions that fire at step

Similarly, for a place p � P, the input transition sets of p is: k and zero for the others.
The net marking at step k can be described by a vector

Mk for which the evolution law is
∗ p = {t ∈ T : (t, p) ∈ F} (52)

whereas the output transition set is MMMk = MMMk−1 + AAATuuuk; k ∈ N
∗ (57)

A firing sequence �uk�k � 1, 2, . . ., d� is globally character-p∗ = {t ∈ T : (p, t) ∈ F} (53)
ized by the firing vector

The dynamics of the Petri net is determined by the marking
M. A transition t is enabled on a marking M, if the number
of tokens in each place p from which there is an arc toward x =

d∑
k=1

uk

the transition t exceeds or at least equals the weight of the
arc, i.e., if M(p) � r(p, t) for all p � *t. An enabled transition whereas the final marking is given by
may fire. When a transition t fires, the number of tokens in
the places p � *t � t* � P changes. The number of tokens is M f = M0 + ATx (58)

decreased for each input place p � *t with r(p, t) pieces and
where M0 is the initial marking, and Mf is the final marking.increased with each output place p � t* with s(t, p) pieces.

Consequently, the marking of the network places p � P Example 14. Untimed Petri nets have been used for the vali-
changes from M(p) to M�(p), according to the rule dation of communication protocols. The Petri net in Fig. 11

M′(p) =




M(p) − r(p, t), p ∈∗ t

M(p) + s(t, p), p ∈ t∗

M(p), otherwise

(54)

Example 12. Figure 10(a) represents a transition for which
the firing conditions are fulfilled. Figure 10(b) gives the mark-
ing resulted after the fire.

Write
message

Read
acknowledgment

Read
message

Write
acknowledgment

Send message

Receive
acknowledge

Receive message

Send
acknowledge

A marking M2 is reachable from a marking M1 if a se- Figure 11. Untimed Petri net model of a communication protocol
with acknowledge of reception.quence of transition firings leading from M1 to M2 exists. The
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shows such a protocol with acknowledge of reception. The sys-
tem comprises cycles on the emitting and receiving parts. The
position of the tokens gives the state of the system, whereas
the actions are represented by the transitions. The sending
side waits for confirmation from the receiving part before pro-
ceeding to the transmission of the next message. The receiv-
ing side is ready for a new message only after having sent out
the acknowledgment for the preceding one. The arrival of the
next message can then trigger a new cycle for sending out
the confirmation.

Timed Petri Nets. Timed Petri nets offer a general formal-
ism adequate for including a measure of time in the descrip-
tion of a DES. Petri nets are especially adequate to model
concurrent or parallel discrete systems. A First In–First Out

p p′ p′′

p(n)

tp

σ p′(n) = 0σ

tp(n) =  p(n)

(a)

σ σ
p′′(n) = 0σ

t t′ t′′

t(n)

pt

ϕ t′(n) = 0ϕ

pt(n) =   t(n)

(b)

σ ϕ
t′′(n) = 0ϕ

(FIFO) discipline is usually adopted for all the places and all
the transitions. Time-related parameters are attached Figure 12. (a) Petri net comprising only timed transitions where the
to each process taking place in the net. If the nth token enters rest time of place p has been assigned as the duration of the equiva-
a place p at the moment u, it becomes ‘‘visible’’ for the transi- lent transition tp. (b) Dual case of a net comprising only timed places

where transition t has been replaced with place pt.tions in p* only after the moment u � �p(n), where �p(n) is
the rest time of the nth token in place p. An initial latency
time is also ascribed to each initial token in a place p. If
M0(p) � n, the nth token existing in place p at the initial
moment becomes available for the transitions in p* starting t � T; vp(n), wp(n) is the entering and the release mo-
from a moment �p(n). The initial latency time is a special case ments, respectively, of the nth token in the place p � P,
of the rest time and allows modeling the peculiarities of the

• The counters: xt(u), yt(u) is the number of times the tran-initial phase, whenever necessary. Similarly, the nth fire of a
sition t � T has started and ended, respectively, the firetransition t started at a moment u, ends at moment u �
at moment u; vp(u), wp(u) is the number of tokens enter-

�t(n), where �t(n), is the duration of the nth firing of the tran-
ing and leaving, respectively, place p at moment u.sition t. The tokens are taken from the input places of the

transition t and moved to the output places at the moment
u � �t(n). The following conventions are commonly accepted:

The time parameters have to satisfy certain natural re-
strictions:

• xt(0) � yt(0) � vp(0) � wp(0) � 
�,

• All the rest times and transition durations must be non- • xt(n) � yt(n) � vp(n) � wp(n) � �, if the transition t never
negative �p(n) � 0, �t(n) � 0 for all p � P, t � T, and fires n times, or the place p never receives n tokens,
n � N*. • xt(u) � yt(u) � wp(u) � 0 and vp(u) � M0(p) for u � 0.

• The initial latency times can be both positive and nega-
tive, but they are restricted by the weak compatibility

For any transition t � T, where n � N*conditions that require that for each place p: (1) there
exists no transition before the initial moment t � 0 so
that M0(p) retains its meaning of initial marking, (2) the yt(n) = xt(n) + ϕt (n) (60)
initial tokens in a place p are taken by the output transi-
tions in p* before the tokens supplied to p by the input The FIFO rule requires
transitions in *p.

wp(n) ≥ vp(n) + σp(n) for ∀p ∈ P,∀n ∈ N∗ (61)A timed Petri net is thus defined by the n-tuple

meaning that the order of the tokens are not changed at anyTPN(S, M0, �,φ,�) (59)
of the places, and

where S is the structural part, M0 is the initial marking, � �
��p(n); n � N*�p � P� is the set of rest times, � � ��t(n); n �

yt [yt(n)] = xt [xt(n)] for ∀t ∈ T, ∀n ∈ N∗ (62)N*�t � T� is the set of transition durations, and � � ��p(n);
n � N*�p � P� is the set of initial latencies.

Equivalent Petri nets having only timed transitions or only meaning that a transition cannot start its (n � 1)th fire before
ending the nth one.timed places can be built, as shown in Fig. 12 (a, b).

The following state variables are defined to describe the A Petri net is called FIFO if all its places and transitions
observe the FIFO discipline. Usually, the stronger conditionstime evolution of a Petri net:
of constant rest times and constant transition durations are
used. The FIFO constrained can result from the structure of• The schedulers: xt(n), yt(n) is the beginning and the end

moments, respectively, of the nth fire of the transition network, without any hypothesis on the net temporizations.
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Figure 13. Cyclic transition with structurally restricted FIFO be-
havior.

tij

thj

ti

th

tj

(a) (b)

pj

pi

ph

pij

phj

Example 15. The Petri net in Fig. 13 contains a cyclic transi- Figure 15. Special cases of Petri nets: (a) model of a state machine,
(b) model of an event graph.tion which behaves FIFO for any sequencing of the firing.

Timed Petri nets can be used for quantitative performance
parameters like throughput of a transition or average numberevaluation, e.g., when studying various queuing types. Most
of tokens in a place. Petri nets include as special cases otherclassical networks like Jackson single classes, fork-join
frequently used models like state machines, event graphs,queues, and token rings can be modeled with Petri nets,
and free-choice nets. The following structural conditions de-whereas others like multiclass networks, Kelly networks, and
fine the mentioned special cases:processor-sharing systems cannot.

• A state machine is a Petri net for whichExample 16. Figure 14 represents the Petri net models of
some classic types of queues. The Kendall notation is used to
describe a queue. The simplest queue, with any input process |∗t| = |t∗| = 1; ∀t ∈ T (63)

(.), any distribution of the timings of the server (.), one server
i.e., each transition has exactly one input place and one(1) and an unlimited buffer (�) is designated by ././1/�.
output place. As a consequence, between any two places
pi and pj there is at most one transition that would bePetri nets allow a unified treatment of a large class of sys-
denoted by tij, with �pi� � *tij, �pj� � tij*, �tij� � pi*�*pj, astems, avoiding the usual case-by-case performance evalua-
shown in Fig. 15(a).tion. It has been shown that Petri nets with inhibitor edges

• An event graph is a Petri net with(i.e., with a special kind of edges from places to transitions,
which trigger the transitions only when the place is empty)
have the computing power of a Turing machine. |∗ p| = |p∗| = 1; ∀p ∈ P (64)

The Petri nets can be characterized both by basic qualita-
i.e., each place has exactly one input transition and onetive properties like stability, existence of a stationary state,
output transition. Correspondingly, between any twoand the duration of the transient state and by performance
transitions ti and tj, there is at most one place pij, with
�ti� � *pij, �tj� � pij*, �pij� � ti*�*tj, as shown in Fig. 15(b).

• A free-choice net is a Petri net for which

∀p ∈ P, |p∗| > 1 ⇒ ∀t ∈ p∗, |∗t| = 1 (65)

meaning that if a place p has more than one output tran-
sition, than the place p is the only input place for each of
its output transitions. It results that a free-choice graph
contains substructures of the type shown in Fig. 16, so it
can model both synchronization [Fig. 16(a)] and choice
[Fig. 16(b)], but not both of them for the same process.
Free-choice machines include the state machines and the
event graphs, again as special cases. The event graphs
model only synchronization; they exclude choice. It has

(a) (b)

...
Que././1/•

(a)

...
Que././2/•

(c)

...

...

Que././1/k

k 2 1

(b)

Figure 14. Queue theory and Petri net models of some classic types Figure 16. Special cases of Petri nets—the free-choice nets: (a) sub-
structures modeling synchronization, (b) substructures modelingof queues: (a) Infinite buffer, single server; (b) Finite buffer, single

server; (c) Infinite buffer, double server. choice.
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been shown than an event graph is alive if each circuit
in the graph contains at least one token. In the opposite
case, the net will run into a dead lock after a finite num-
ber of firing instances. In a timed event graph, a place
containing k tokens can be replaced by k chained places,
each one containing exactly one token, interlaced with
k 
 1 transitions (Fig. 17). The rest time �p of the initial
place is attributed to one of the places in the chain, all
the other places and transitions having no delays.

Timed event graphs can be represented as linear systems
by using max-plus algebra. Because of the special structure
of a timed event graph, it is convenient to make the analysis
in terms of the transitions. Let us denote by xi(n) the start
moment of the nth firing instance of the transition ti, i � 1,
. . ., k; k � �T�, and by ●ti the set of the input transitions of
ti:

•ti = ∗(∗ti ) = {t j |t j ⊂ ∗ p,∀p ∈ ∗ti} ⊂ T (66)

p1

././1/•→././1/•

(a)

t1 p2 t2

p1

././1/•→././1/•

(b)

t1 p2

p5 p4

t2 p3 t3

Consider the nth firing of a transition ti � ●ti. Using the Figure 18. Chained queues: (a) no deadlocks, (b) after-service
equivalence in Fig. 16, the place pji � P contains at most one deadlock.
token. If M(pji) � 0, then the token enables the nth firing of
ti; else if M(pii) � 1, it enables the (n � 1)th firing of ti. This

The minimal solution of (71) is given by the linear recurrenceresults in the equation
relation

xj (n + 1) > max
j∈•ti

{xj[n + 1 − M(pji)] + ϕti
+ σp ji

} (67)
x(n + 1) = A∗

0 A1x(n) (73)

where x � xj[n � 1 
 M(pji)] is the start moment of the [n � Using the max-plus algebra framework, the equations of a
1 
 M(pji)]th firing of the transition tj, x � �tj

is the end mo- timed event graph become linear. As shown at Eq. (48), a re-
ment of this process, and xi � �tj

� �pji
is the moment the lation in the form of Eq. (73) determines a periodic stationary

transition ti is enabled by tj. solution. This means that event graphs have a cyclicity prop-
With the delay matrices A�, � � 0,1, defined by erty: after n firings of each transition, the marking returns

exactly to the initial marking. However, this is only a formal
result valid in the firing event ordering scale, not in the time
scale. The nth firing for different transitions occurs at differ-

(Aα)ij =
{

ϕti
+ σp ji

, if ti ∈ •ti and M(pji) = α

ε = −∞, otherwise
(68)

ent time moments xti
(n) so that there exists no time period

Eq. (67) can be written in the matrix form which after the marking is repeated.

Example 17. Figure 18 presents two examples of chainedx(n + 1) ≥ A0x(n + 1) ⊕ A1x(n) (69)

queues and their corresponding Petri net (event graph) mod-
With els. The systems contain each of two servers preceded by

queues. The example in Fig. 18(a), for which both queues
have infinite buffers, has no deadlocks. The example in Fig.
18(b), exhibits an after-service deadlock. A client leaving the

A∗
0 =

∞⊕
i=0

Ai =
k⊕

i=0

Ai = I + A+
0 (70)

first queue when the buffer of the second queue is full must
[see Eq. (45)], wait in place p2; consequently, the access of a new client to

the first service is denied.
A∗

0(I − A0) = A∗
0(I − A0) = I (71)

CONTROL OF DISCRETE EVENT SYSTEMSresults. Relation (69) becomes

One major goal in studying DESs has been to devise methodsx(n + 1) ≥ A∗
0 A1x(n) (72)

for controlling the trajectory of a system so as to reach a cer-
tain set of desired states, or to avoid some undesired states—
including deadlocks or traps. As pointed out in the work of
Ramadge and Wonham (16–18), DESs fully qualify as objects
for the control theory because they exhibit the fundamental
features of potentially controllable dynamic systems. Actu-

≡
σp

ϕ t1 ϕ t2ϕ t2

t1 t2
p

σp′ = 0 σp′′ = 0 σ p

ϕ t1 ϕ t′ = 0 ϕ t′′ = 0

t1 t′p′ t′′p′′ t2
p

ally, a large part of the work performed in the DES domain
has been motivated by the search for proper techniques toFigure 17. Equivalence of a place containing k tokens with k chained

places each one containing exactly one token. control event sequences and to select the ones that comply
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with various restrictions or optimization criteria. In the fol- A generator is called trim if it is both reachable and con-
trollable.lowing, we will explore the basics of DESs control within the

A generator is called deterministic [see Eq. (18)] if for allframework of state machines and formal languages, as initi-
q � Q and � � �, there exist at most one state q� � Q suchated by Ramadge and Wonham. The events are considered
that (q, �, q�) � �*. In this case, a transition (partial) functionspontaneous and process-generated. The control consists of
can be defined such that q� � �(q, �), as shown at Eq. (1) andforbidding the occurrence of some of the events so as to re-
discussed at Eq. (26).strict the behavior of a system to avoid undesirable trajector-

The control of a DES described by a generator G is pro-ies. Automatic control is performed by means of another sys-
vided through a control pattern � : � � �0, 1�, defined suchtem, which tests the controlled system and acts upon it
that for a state � � �c, �(�) � 1 if � is enabled and �(�) � 0according to the available information. Thus, the set of events
if � is disabled. For all � � �u, �(�) � 1 as these events can� can be partitioned into two disjoint subsets: �u, containing
not be disabled. The set of control patterns � is denoted by �the uncontrollable events, and �c, containing the controllable
� �0, 1��.ones. The control is provided by a supervisor or a discrete

For each control pattern, a new generator G(�) � (Q, �,event controller (DEC), which has the ability to influence the
��, s, Qm) is obtained, where the controlled evolution relationevolution of the system by enabling and disabling the control-
�� is defined bylable events, i.e., by allowing or prohibiting their occurrence,

so as to perform a certain control task. Various control tasks
can be defined: (1) control invariance requires that a specified
predicate remains invariantly satisfied whenever initially sat-

∀q,q′ ∈ Q,∀σ ∈ � :

(q, σ , q′) ∈ �γ ⇔ (q, σ , q′) ∈ � andγ (σ ) = 1 (74)
isfied, meaning that the behavior of the system remains con-

The set of enabled events, also called the control input, for afined within specified bounds, (2) region avoidance requires
control pattern � is given bythat the system does not satisfy undesirable predicates when

traversing the state space, and (3) convergence requires that
�e(γ ) = {σ ∈ �|γ (σ ) = 1} = �e

c (γ ) ∪ �u (75)the system to evolve toward a specified target predicate from
given initial conditions.

where the control pattern � plays the role of the characteristicThe main difficulty in modeling complex processes by
function of the set.considering all the states and all the events is the combina-

As mentioned earlier, �u � �e(�), for any control pattern �.torial explosion in the number of their states. A way to
The set of feasible events for a state q � Q of the genera-keep the complexity manageable is to use event internaliza-

tor G(�) is given by �f(q) � �e(�).
tion, or partial observation, which leads to nondeterministic The set of all control inputs is
process behavior. Markov chain representation, or GSMP
models, can be used to describe complex DESs in a formal-

�e(�) = {�e(γ )|γ ∈ �} ⊆ 2� (76)
ism that has the capability to relax the requirement that
all states and all event sequences be explicitly in the model. The control of G through � consists in choosing a specific �
Other approaches to achieve an effective modeling are when the system is in a certain state q � Q, after a certain
based on the concept of modularity and hierarchy that lead sequence of events w � L, according to the assumed control-
to structured models of lower complexity in comparison ling task.
with the case when all individual components are taken The choice of a particular control pattern � � � can be
directly into account. considered itself an event, so that a controlled discrete event

system (CDES) with the generator
Controllability and Reachability

G(�) = (Q,� × �,��, s, Qm) (77)
Consider a DES modeled by the generator G � (Q, �, �, s,
Qm), where Q is the state space (an arbitrary set), � is the can be defined where the evolution law given by
event set (or the alphabet, a finite set), � is the evolution law
[a relation on Q � � � Q, which generalizes the transition [q, (σ , γ ),q] ∈ �� ⇔ (q, σ ,q′) ∈ �γ (78)
function, see comments on Eq. (26)], s � q0 is the start (initial)
state, and Qm � Q is the set of marker states. As mentioned Example 18. For the single model of a machine shown in
before, the marker states were introduced by Ramadge and Fig. 2, the control could consist of honoring or turning down
Wonham to identify the ‘‘completed tasks.’’ The set of events requests to start a new task and passing from idle (I) to work-
� is partitioned into �c, the set of controllable events, and ing state (W), taking into account the history of machine evo-
�u, the set of uncontrollable events, with � � �c � �u, �c � lution.
�u � 0�.

A state q � Q is called reachable from the initial state The set � consist of two control patterns, namely �0, which
s � q0, if there exists a path (q0�1q1�2 . . . �nqn) � B(G), such disables the requests
that qn � q, i.e., if there exists w � �1�2 . . . �n � �*, such
that (q0, w, qn) � �*. γ0(S) = 0, γ0(C) = γ0(B) = γ0(R) = 1

A state q � Q is called controllable if there exists w � �*
and �1, which enables the requestsand qm � Qm, such that (q, w, qm) � �*.

Correspondingly, a generator is called reachable (controlla-
γ1(S) = γ1(C) = γ1(B) = γ1(R) = 1ble) if all the states q � Q are reachable (controllable).
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For the system in Fig. 4 comprising two simple machines, the
control of one of the machines can be made dependent of the
state of the other (e.g., the second machine accepts requests
only if the first one is down).

Supervision

In the standard control terminology, the generator G plays
the role of the plant, the object to be controlled. The agent
doing the controlling action will be called the supervisor. For-
mally, a supervisor over � is a pair

c2

m2

c3m2

m5

c1

c4

m1

m4

c6

1

m6

c5

c7

3

2

0

4
S = (T, ϕ) (79)

Figure 19. The cat-and-mouse maze. The cat starts from room 2; the
where T is a reachable deterministic generator T � (Q�, �, �, mouse starts from room 4. The cat and the mouse each use only the

passages labeled c and m, respectively. Control the system by (mini-s�0, Q�m) and � : Q� � � is the map that specifies, for each state
mally) forbidding some of the passages (except c7), to prevent the dan-q� � Q� reached by the generator of the supervisor, what con-
gerous encounter of the parties.trol pattern � � �(q�) must be applied to G(�).

If the behavior of G(�) is used to determine the state of T,
a supervised generator results

by the control are not included in the transition structure
(G, S) = [Q × Q′,�,�G,S, (s0, s′

0), Qm × Q′
m] (80) of S.

• If s � L(G, f ), s� � L(G) and � � f (s), then s� � L(S).
where This condition ensures that a transition possible in G

and allowed by the control is included in the transitive
structure of S.

An event � can occur in G � S and produce the transition

[(q1, q′
1), σ , (q2, q′

2)] ∈ �G,S

�
(q1, σ , q2) ∈ � and (q′

1, σ , q′
2) ∈ �′ andγ (σ ) = [ϕ(q2)](σ ) = 1

(81)

(q, x) � (q�, x�), only if � is possible in both G and S, and
produces the transitions q � q� and x � x�. This form of su-

The supervisor has authority only over controllable events.
pervision can be obtained from the state realization (S, �) by

The uncontrollable events �f(q) � �u that may occur in a state
trimming the transition structure of S (16).

q of the plant are called disturbances (disturbing events).
Consider a DES for which the unsupervised (open loop) be-

Again, in standard control theory terminology T is the ob-
havior is given by a language L. One of the key issues is to

server, while � implements the feedback, so that the super-
specify the properties of a sublanguage K � L that is achiev-

vised generator operates in closed loop. Various algorithms
able under supervision. Because the uncontrollable events

are given in the literature for the synthesis of supervisors
continue to occur even for the closed loop (supervised) system,

able to achieve different control tasks for deterministic or sto-
the prefix closure K of such a controlled language K has to be

chastic DESs.
invariant under the perturbation of the uncontrollable events.

The supervisor implements a map f : L(G) � �e specifying
On the other hand, as K is a restriction of L, not any words

for each observed string of events w � L(G) the control input
in �* containing uncontrollable events can occur, but only

�e(�) � f (w) that must be applied to G. When designing a
those that are also generated in the open loop conditions (i.e.,

supervisor, the objective is to obtain a CDES that obeys the
that belong to L). It results that every word that belongs to L

control constraints imposed by the considered control task.
and is composed by a prefix string w � K, followed by an

This means suppressing the undesirable sequences of events,
uncontrollable event � � �u (i.e., every word of the form

while restricting as little as possible the overall freedom of
w� � L), must also be a prefix string of K, i.e., w� � K.

the system.
The behavior of the supervised generator is described by

the language L(G, f ) defined by � � L(G, f ), w� � L(G, f ), if
and only if w � L(G, f ), � � f (w) and w� � L(G).

The marked language controlled by f in G is Lm(G, f ) �
Lm(G) � L(G, f ), i.e., the part of the original marked language
that is allowed under the supervision. If Qm represents com-
pleted tasks, the language Lm(G, f ) indicates the tasks that
will be completed under supervision.

The supervisor S can also be modeled as another DES
whose transition structure describes the control action on G.
The following requirements have to be satisfied:

c2

c5

c1

c4

c3

c6

c7

1

3

2

0

4

m2

m5

m3
m6

m1

m4

1

3

2

0

4

• If s � L(G, f ) then s � L(S), and s� � L(S) only if � � Figure 20. Generator models for the cat and for the mouse moving
independently in the maze of Fig. 19.f (s). This condition ensures that the transitions disabled
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door c7 is uncontrollable, �u � �c7�, whereas all the other doors
can be opened or closed to control the movement of the cat
and the mouse. As shown earlier (see Figs. 3 and 4 at Exam-
ple 2), the joint generator model when composing the genera-q′0 q′1c2, m4

c3, m5

c1, c4, c7, m6

tors of two subsystems has the state set Q � Q1 � Q2, and
Figure 21. The generator of the supervisor for the cat-and-mouse the event set � � �1 � �2. The problem is to find the control
problem. scheme that leaves the greatest freedom of movement to both

parties but that ensures that they (1) never occupy the same
room simultaneously and (2) can always return to their initial

Thus, a language K � L � �* is called controllable if state, i.e., the cat in room 2 and the mouse in room 4. The
first condition forbids the states (i, i), while the second sets

K�u ∩ L = K (82) the marker state set Qm � �(2, 4)�. To build the generator of
the controlled system, i.e., of the system obeying the con-Consider now a nonblocking DES with the behavior L(G) and
straints, the following pruning steps are performed on thethe marked behavior Lm(G). For any nonempty K � L, there
composed generator model for both the cat and the mouse:exists a supervisor f such that Lf � K if and only if K is a

prefix closed and controllable language. Similarly, for any
1. Delete the forbidden states �(i, i)�i � 0, 1, . . ., 4�, thatnonempty K � Lm, there exists a supervision f such that

correspond to the cat and the mouse being in the sameLmf � K and the closed loop behavior is not blocking
room.if and only if K is controllable and Lm is closed (i.e., K � Lm

� K). 2. Eliminate the edges of the composed graph ending in
Thus it is possible to find a supervisor f so that Lf � K the forbidden states, i.e.,

when K is prefix closed and controllable. The proof of this
proposition (18) provides an algorithm for constructing the
state realization (S, �) of the supervisor f from a generator
of the controllable language K. For an arbitrary K � �*,
the family of controllable sublanguages of K is nonempty
and closed under the set union and has a unique supremal
element K† under the partial order of subset inclusion. This
supremal sublanguage (which can be the empty language)

(2,0)
c3→ (0,0), (4,0)

c6→ (0,0), (0,1)
m3→ (0,0), (0,3)

m6→ (0,0), (0,1)
c1→ (1,1)(3,1)

c7→ (1,1), (1, 2)
m2→ (1,1), (1,2)

c2→ (2,2), (2,0)
m1→ (2,2), (0,3)

c4→ (3,3), (1,3)
c7→ (3,3), (3,4)

m5→ (3,3), (3,4)
c5→ (4,4), (4,0)

m4→ (4,4)

provides an optimal approximation of K by preserving the
restrictions imposed by K, but requiring a minimally re- 3. Discard the states reachable only from the previously
strictive control. Denote by P(�*) the set of all languages deleted states, i.e., the states (4, 3) and (2, 1).
over �* (the power set of �*), and define � : P(�*) � 4. Remove the states for which the output edges corre-
P(�*) by spond to uncontrollable events (�u � �c7�) and lead to

previously deleted states, i.e., the states (1, 3) and
�(J) = K ∩ sup[T : T ⊆ �∗, T = T, T�u ∩ L = J] (83)

(3, 1).
5. From the resulting graph retain only the trim part, con-The supremal sublanguage K† is the largest fixpoint of �, i.e.,

taining the reachable and controllable states.the largest language satisfying �(J) � J. The iterations

The supervisor can be further simplified by an aggregationKj+1 = �(Kj ), j = 0, 1, 2, . . ., with K0 = K (84)
of technique. The result is a supervisor S � (T, �), where T is
given in Fig. 21, and the map � is given in Table 2. The stateconverge to K† after at most mn steps, where m and n are the

number of states of the generators of L and K, respectively. set Q� of T is made up of only two states q�0, q�1. In the initial
state q�0—when the cat is in room 2 and the mouse in room
4—all the transitions are enabled; in the state q�1—when oneExample 19. Consider the famous cat-and-mouse maze (Fig.

19) introduced by Ramadge and Wonham (16), and used as a of the parties has left its initial room—the set of transitions
c3, c5, m1, and m5 are disabled. This actually isolates eithertypical example of untimed DES control ever since (e.g., see

the attractive Ref. 15). The cat uses only the doors labeled the mouse in room 4 (closing c5 and m5) when the cat is out of
room 2 or the cat in room 2 (closing c3 and m1) when thec1, . . ., c7, whereas the mouse uses only those labeled m1,

. . ., m6. The generator models for the cat and the mouse are mouse is out of room 4. It can be noticed that transitions c5,
c6, m1, m2, m3 can no longer occur for the controlled system,shown in Fig. 20. The state i for either of them corresponds

to the room it occupies, whereas the events correspond to the being either directly forbidden, or impossible because of the
restrictions.transitions i � j from one room to another. We assume that

Table 2. Mapping of Supervisor States to Control Patterns for the Cat-and-Mouse Maze Example

� c1 c2 c3 c4 c5 c6 c7 m1 m2 m3 m4 m5 m6

� (q�0) � �0 1 1 1 1 1 1 1 1 1 1 1 1 1
� (q�1) � �1 1 1 0 1 0 1 1 0 1 1 1 0 1
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