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brating at 494 Hz corresponds to the note B); (2) Ears are
sensitive to certain frequencies and completely deaf to others;
(3) Ears can discriminate between sounds regardless of their
relative loudness; that is, they can differentiate between the
A note played by a violin and the same note played by a trum-
pet, even if one is significantly louder than the other. The last
characteristic is an instance of frequency-selective processing.
Both instruments create a sound that is not a pure vibration
at 440 Hz, but has components that vibrate at frequencies
that are characteristic of each instrument. The vibration at
440 Hz is by far the strongest, allowing the ear to recognize
the note while the vibrations at other frequencies create an
aural perception unique to the instrument. The fact that loud-
ness is not significant indicates that the relative strength of
the vibrations is more important than the actual intensity.

Any sound can be viewed as a combination of basic sound
waves, each of a unique frequency and strength. The relative
strength becomes a signature that permits the identification
of a sound regardless of its level. One can characterize classes
of sounds by the form in which their strength is concentrated
at the various frequencies; and more significantly, one can
create or enhance sounds by adjusting the signal energy at
the various frequencies.

Frequency-Selective Enhancement

Frequency-domain analysis is a generalization of the repre-
sentation of sound waves as combinations of basic vibrations.
The Fourier transform is the mathematical tool used to deter-
mine how the energy of the signal is distributed at different
frequencies. Devices that have a frequency-selective behavior
are mathematically described by their frequency response. TheDIGITAL FILTER SYNTHESIS
class of devices considered in this article are said to be linear
and time-invariant (1, pp. 46–54). For these systems the fre-OVERVIEW OF THE PROBLEM
quency response is a complex-valued function which deter-
mines how the device responds to any linear combination ofDirect digital synthesis is applied to problems in signal en-
sinusoids.hancing, such as the following case study: Assume that a

The statement that a continuous time system, also re-faulty tape recorder is used to record a critical message. Due
ferred to as a filter, has a frequency response, H(2�f ), conveysto all the hissing noises created by the tape and recording
the following information: (a) The variable, f , corresponds tosystems, the message is unintelligible. In order to know the
the frequency in cycles per second (Hz), which is related tomessage, it is imperative to improve the quality of the audio
the frequency measured in radians per second by the relation-signal. All the actions performed to attain that goal are said
ship � � 2�f . (b) H(2�f ) is a complex number with magnitudeto be intended to enhance the signal.
�H(2�f )� and argument �(2�f ) � �H. (c) If one applies as inputBy extension, any effect that tends to reduce the quality of
to this system the signal u(t) � cos 2�ft, the output of thedata is called noise, and data are said to be corrupted by noise.
system will be the sinusoid, y(t) � �H(2�f )� cos[2�ft �Data signals may originate not only from voice or audio, but
�(2�f )]. In an extreme case, if for some frequency, f 0, one hasfrom many other sources such as radio and television, indus-
�H(2�f 0)� � 0, then that particular frequency is completelytrial and medical instrumentation, statistical sampling, and
eliminated from the output of the system.so on. In general, one strives to manipulate the corrupted sig-

There are many practical signal-enhancing applicationsnal and recreate the original data.
which use frequency-selective processing based on an idealA significant feature of signal-enhancing problems is that
band-pass behavior. With the specified frequency range f l �neither the desired data nor the corrupting noise can be
f � fh, the ideal device is given byknown exactly. In the example of the recorded message, one

must enhance the signal to get the message; the noise, in gen-
eral, is caused by random effects. At best, one may be able to
identify the signals as members of certain classes. Hbp(2π f ) =

{
1; fl ≤ | f | ≤ fh

0; elsewhere
The enhancing considered in this article is based on the

concept of frequency-selective response and listening is an ex-
Standard variations of this ideal behavior are: ideal low-passample of this type of processing. The human (animal) ears are
filter ( fl � 0), high-pass filter ( fh � �), and a stop-band filterfrequency-selective in the following essential ways: (1) Sounds
(1 � Hbp(2�f )). All ideal filters are unrealizable since, in the-of different frequencies are recognized as being different (e.g.,

a sound wave vibrating at 440 Hz is the note A, and one vi- ory, they require complete knowledge of past, present, and
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future values of the input signal in order to operate. Creating constructed enhanced signal, yr(t) (4, pp. 91–99). An ideal, and
hence unrealizable, reconstruction uses the formularealizable filters which ‘‘approximate’’ the behavior of ideal

ones is still a very active research area.
In the early days of radio, telephony, and industrial instru-

mentation, all signals were converted into voltages or cur-
yr(t) =

∞∑
k=−∞

yd[k]
sin(π(t − nT )/T )

π(t − nT )/T
rents. All filtering was performed using analog components
such as resistors, inductors, and capacitors creating devices In practice, there are several efficient computational tech-
known as passive filters. With the advent of electronics—in niques to create reconstructed signals that satisfactorily ap-
particular, solid-state devices—it is now possible to emulate proximate this ideal behavior (see also Ref. 5, pp. 100–110;
and improve on the traditional passive filters. The new de- Ref. 2, pp. 763–774).
vices require an external power supply and are referred to as The goal of direct digital synthesis is to define the numeri-
active filters. cal processing that must be done to the samples so that the

There is a significant amount of literature dealing with the complete sequence sampling–digital filtering–signal recon-
design of the basic filters. The reader is referred to Ref. 2 struction creates desired enhancing effects on the signal.
(pp. 666–692) for designs based on analog filters, including Numerical algorithms designed to process the samples are
Butterworth, Tchebychev, elliptic, and Bessel filters. There considered discrete time systems (the independent variable is
are also well-established computer-aided tools that only re- integer-valued). Conceptually, one can apply as input a dis-
quire from the user the specification of the frequency range crete time sinusoid and characterize the frequency-selective
and the type of the filter desired, based on which, they deliver behavior using a discrete frequency response. In this case, the
a realizable filter which approximates the desired behavior frequency response is a 2� periodic function of the discrete
(3). frequency, �. The notation Hd(ej�) is used to emphasize the

fact that the function is periodic. Knowledge of the discrete
frequency response permits, ideally, the complete determina-DIRECT DIGITAL DESIGN
tion of the numerical algorithm that is required. Using the
exponential Fourier series expansion (see Ref. 4, pp. 39–51)Nowadays, it is possible to use computers to perform the re-
one can writecording and enhancing of signals. Figure 1 establishes basic

notation by showing a block diagram for filtering a signal us-
ing two techniques. In the figure, the continuous time signal,
x(t), is to be enhanced (e.g., the voltage from the audio ampli-
fier going to the speakers). The block Analog Filter repre-
sents the conventional processing producing an enhanced sig-

H(e jω ) =
∞∑

n=−∞
hne jnω

hn =
∫ π

−π

H(e jω )
dω

2π
nal, y(t). The block Sampling represents the physical process
of collecting the samples of the signal, x(t); the actual device The coefficients of the expansion, hn, define the impulse re-
is an analog-to-digital converter (ADC). The sequence of val- sponse of the discrete time system. The enhanced digital sig-
ues is modeled as a discrete time signal, xd[k]. If the sampling nal values are computed either by using directly the convolu-
process is ideal and the sampling period is T, then tion formula

xd[k] = x(kT )
yd[k] =

∞∑
n=−∞

hnxd[k − n] (1)

The block Digital Filter corresponds to the numerical process
that will be applied to the samples of the input signal to pro- or by using an equivalent efficient numerical algorithm. No-
duce samples of the enhanced signal, yd[k]. It is said to be a tice that when
realization of a discrete time system. The block Reconstruct
represents the process used by the computer to create an ana- hn = 0; ∀n < 0
log signal from a sequence of numerical values, yd[k]. The de-
vice is called a digital-to-analog converter (DAC). A sound the value of yd[k] depends only on input samples, xd[m], where

m � k. The algorithm is said to be causal and is suitable forcard (in a computer) or a CD player performs such a recon-
struction operation to produce sounds from the digits stored on-the-fly processing where the input samples arrive in real

time.in the computer or in the compact disc. The result is the re-

Figure 1. Analog and digital signal fil-
tering.
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If the number of nonzero coefficients is finite, one has a sage is the goal, one may recognize sentences even if all fre-
quencies above 2 kHz are eliminated. Bandlimiting is thus afinite impulse response (FIR); otherwise it is infinite impulse

response (IIR). For this latter class of filters, the formula in viable technique to increase signal-to-noise ratio and would
be one of the techniques considered for recovering the mes-Eq. (1) is not an efficient algorithm and one must find an al-

ternative representation. A standard form suitable for real sage in the opening case study. As an example, assume that
the voice signal needs to be enhanced by eliminating all fre-time operation is the recursive expression
quency components below f l � 60 Hz and above fh � 12,000
Hz. The signal is sampled at a frequency of f s � 44.1 kHz, or
with a sampling period, T � 1/f s, which is the normal sam-

yd[k] + a1yd[k − 1] + · · · + amyd[k − m]

= b0xd[k] + · · · + bmxd[k − m] (2)
pling rate for storing music in compact discs.

An ideal analog filter to perform this operation is the filterHowever, it is known that some impulse responses, �hn�, do
not allow such a recursive representation, and there are no
general techniques to establish such a representation for a
given impulse response. The direct determination of a re- H(2π f ) =

{
1; fl < | f | < fh

0; elsewhere
cursive implementation with a desired frequency response is
still an open research problem. References 6 and 7 provide

To each of the frequencies, f l and fh, one associates the dis-partial results for the direct design of IIR filters.
crete frequencies, �l � 2�f lT, �h � 2�fhT. One period of the
ideal discrete frequency response will beRelating Continuous and Discrete Frequency Responses

It is possible to relate the continuous time frequency, f , to the
discrete time frequency, �. The procedure requires the devel-
opment of a continuous time model for discrete time signals

Hd(e jω ) =
{

1; ωl ≤ |ω| ≤ ωh

0; elsewhere in [−π π]

and leads to the equation
Once the desired ideal frequency response is defined, one can

2π fT = ω, −π ≤ ω ≤ π use the Fourier series expansion to determine the coeffi-
cients, hn, of the impulse response. The result in this case is

This equation highlights two important issues in digital sig-
nal processing: (1) Under the ideal reconstruction scheme, the
analog signal created from the samples cannot contain any
frequencies above the frequency fN � 1/2T; that is, it is ban-

hn =



1
πn

(sin nωh − sin nωl); n �= 0

0; n = 0dlimited. (2) If the original analog signal, x(t), contains fre-
quencies above the value 1/2T, it will not be possible to recre-

It is clear from this expression that there are infinitely manyate the analog signal from the samples; even the ideal
nonzero values of hn and the convolution representation inreconstruction will be different. This phenomenon is known
Eq. (1) is not efficient. Moreover, there are nonzero values ofas aliasing, and the frequency, fN, is called the Nyquist fre-
hn for negative values of n, showing that the system is non-quency in honor of H. Nyquist (8), who first stated the result
causal and cannot be implemented in real time. It is also ap-in his Sampling Theorem (2, pp. 21–33).
parent that the values of hn get smaller and smaller as n in-The relationship has also been used to define discrete time
creases. From a practical point of view, one could considerfrequency responses when the desired continuous time re-
that after a certain value N, they are zero. This effectivelysponse is known. In one approach (see Ref. 4, pp. 97–99), one
implies a truncation of the impulse response—that is, usingperiod of the discrete frequency response is defined as follows:
an FIR approximation. Once the response is truncated to a
finite number of terms, the problem of hn � 0 for n � 0, can
be solved by introducing a time delay in the computation of

Hd (e jω ) = H(2π f ), f = ω

2πT
|ω| ≤ π

the response (see Ref. 4, pp. 250–254).
This approach actually relates the discrete impulse response There are many situations where a simple truncation of
to samples of the continuous time frequency response. The the impulse response introduces a significant deterioration of
reader is referred to Ref. 4 (pp. 406–438) for techniques based performance (see Ref. 4, pp. 444–462). A simple and effective
on discretization of the transfer function. technique to overcome this is to perform the truncation by

In a simpler approach, the relationship between discrete- means of a smooth window function. The new coefficients of
and continuous-time frequency is used to define basic fre- the impulse response are given by
quency-selective responses for discrete-time systems. Differ-
ent techniques are used to determine a numerical processing ĥn = w(n)hnalgorithm which gives (approximately) the desired frequency
response.

An example of a window function is the generalized Hamming
window:Example 1. In theory, the human ear can perceive frequen-

cies up to 20 kHz. For simple voice applications, one can pre-
serve intelligibility with a much smaller bandwidth. The
smaller the bandwidth, the larger the amount of noise that is
eliminated. For most applications this increases signal-to-
noise ratio; but if the bandwidth is made too narrow, then the
message itself will be destroyed. If understanding the mes-

wH(n) =




α + (1 − α) cos
�2π

N

�
;

−
�N − 1

2

�
≤ n ≤ N − 1

2
, 0 ≤ α ≤ 1

0; elsewhere
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If � � 0.54, the window is called a Hamming window; and if It is significant that they cannot ensure that the best approxi-
mation is being used. Moreover, the techniques do not permit� � 0.5, it is called a Hanning window (see Ref. 9, pp. 92–93).

The computation of the impulse response coefficients can the design of special, or customized, frequency-selective char-
acteristics. This section presents an overview of the extensivebe simplified to a great extent if one resorts to the discrete

Fourier transform (DFT), H(k), given by literature on optimal digital filter design, which can be used
to define any type of filter. In this approach, the design is
transformed into a nonlinear optimization problem over a set
of parameters, or filter coefficients. The user must (a) specifyH(k) =

N−1∑
n=0

hne− j(2πnk/N ); k = 0, 1, . . . , N − 1 (3)

a merit index or cost function, which measures the quality of
a given solution and (b) specify possible constraints in theThe values, H(k), correspond to samples of the Fourier trans-
optimization process. The various methods differ in the choiceform for an N-periodic signal at the frequency points, �k �
of cost function and constraints.2�k/N, where k � 0, 1, . . ., N � 1. For direct digital filter

If the desired frequency behavior is IIR, the problem can-design, one would proceed as follows:
not be solved or implemented unless the filter can be put in
the form of a recursive equation such as Eq. (2). Even in this1. Define the discrete frequency selective behavior that is
case, the frequency response is a highly nonlinear function ofrequired.
the coefficients, (al, bl), and a general solution to even a simple2. Select the number, N, that determines the number of
optimization problem is not known. Several special casescoefficients, hn, to be used. This value is application de-
have been considered in the literature, and the readers arependent and can be as low as 4 and as high as 256 or
referred to Refs. 6, 7, and 9 (pp. 75–293). The FIR case hasmore.
received much more attention because the frequency response

3. Determine the values of the desired discrete frequency- is a linear function of the coefficients. Moreover, FIR filters
selective response, H(k), at the frequencies, �k � have good numerical properties and can be easily imple-
2�k/N, where k � 0, 1, . . ., N � 1. mented, even if the number of coefficients (taps) is large.

4. Use the definition of the DFT as a system of algebraic A causal FIR filter with N taps has a frequency response
equations and solve for the values, hn. This operation is
the computation of the inverse DFT. The computation is
performed with high numerical efficiency using a vari-
ety of fast Fourier transform (FFT) algorithms (see Ref.

H(e jω ) =
N−1∑
k=0

hke− jkω

10, pp. 114–152).
Let h � col�h0, h1, . . ., hN�1� be the vector of real-valued vari-

Remark 1. Using the DFT algorithm to determine the im- ables over which the optimization is performed. The desired
pulse response corresponding to a discrete frequency re- specification is given as an ideal, or desired, frequency re-
sponse, H(ej�), has the implicit assumption that the impulse sponse, Hd(ej�). A commonly used merit index is the Lp, 1 �
response is a periodic function. Therefore, there is an aliasing p � �, one which has the cost function of the form
effect in this approach. If hp(n) is the nth coefficient computed
using the DFT technique, its relationship to the exact coeffi-
cients, determined from the series expansion, is given by J(hhh) =

∫ π

−π

W (ω)|Hd(e jω ) − H(e jω )|p dω

2π
(4)

The function W(�) is a weighting function used to assign dif-
hp(n) =

∑
m

h(n − mN)

ferent weights, corresponding to the relative importance of
different frequency ranges (e.g., zero on a frequency band ofThe values h(k) are the exact values of the impulse response
no importance to the designer). The value of the exponent, p,computed using the Fourier series expansion. In practice, by
has a definite effect on the solution. If p � 1, all errors haveusing a suitably large value of N, the aliasing effect can usu-
the same importance while p � 1 assigns increasingly moreally be neglected.
significance to larger errors. The most common constraint is
the requirement of linear phase, which can be easily incorpo-Remark 2. In principle, one can specify any frequency-selec-
rated as a symmetry condition in the coefficients, leading totive behavior which may lead to coefficients, hn, that are com-
standard canonical filter types (4, pp. 250–270).plex numbers. By placing constraints on the frequency re-

sponse, Hd(ej�), one can guarantee that the coefficients will be
real numbers. Also, it is known that if the argument of the Least-Squares Solution
discrete frequency response is a linear function of the discrete

The special case, p � 2, is called the least-squares method andfrequency over the interval [�� �]—linear-phase digital fil-
has a particularly simple analytical solution. Defineters—one can obtain performances closer to the ideal using

fewer terms than nonlinear-phase filters.

OPTIMAL DIGITAL FILTER DESIGN

�N = col{e− jkω; k = 0, 1, . . ., N − 1}

Q = 2Re
{∫ π

−π

W (ω)�N�N
T dω

2π

} (5)

The techniques described in the previous section are aimed
at determining a numerical algorithm that approximates the
behavior of an ideal frequency-selective processing algorithm.

u = Re
{∫ π

−π

W (ω)�N
dω

2π

}
(6)
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where Re� 	 � indicates the real part of � 	 �, and �T
N denotes the as the Parks–McClellan technique (see Refs. 16 and 17).

Kootsookos et al. (18), considered the case, W(�) � 1, and de-transposed (row) vector. The optimal solution is known to ex-
ist and is unique whenever the matrix, Q in Eq. (5) is nonsin- veloped an algorithm based on the solution of a number of

related extension (Nehari) problems. Their algorithm com-gular. The expression for the solution is
pares favorably with the exchange algorithm implemented by
Parks and McClellan, with the added advantages that linearhhh = Q−1u (7)
phase is not required and the algorithm is applicable to multi-
variable filters (filters which process several inputs at theThe matrix, Q, is nonsingular for most practical cases of the
same time).weighting function. For example, if W(�) is piecewise con-

stant, it is sufficient to require that it be nonzero over at least
one interval (i.e., nontrivial). The trivial case, W � 1, leads to Extensions and Further Readings
Q � I and h � u.

The optimal design of IIR filters is an active area of researchIn spite of the analytical solution, one normally uses nu-
with only partial results available. Least-squares techniquesmerical algorithms to compute the solution. A popular algo-
have been applied to special forms, such as all pole systemsrithm uses the conjugate gradient technique (11), which has
(see Ref. 4, pp. 701–725). Zhang and Ikawara (6) use thethe advantage of being relatively simple to implement and
worst-case criterion and reformulate the design problem as ahas a guaranteed convergence to the solution in a finite num-
generalized eigenvalue problem.ber of iterations.

Perhaps the strongest extension of the direct design of digi-A variation of the least-squares approach is presented in
tal filters has been motivated by problem in computer visionRef. 12. Here, instead of defining an ideal response, the au-
and image processing. For such application, the signals (im-thors constrain the filter at specific frequencies and convert
ages) are modeled as functions of two independent time vari-the minimization into an eigenvalue problem.
ables and are referred to as multidimensional signals. Least-The existence of a formula for the best filter makes the
squares design of FIR filters has been formulated and solvedleast-squares method very popular. However, it has recog-
(e.g., in Ref. 19). Theoretical results characterizing multidi-nized limitations: Because of the squaring operation, small
mensional equiripple solutions are not complete, but someerrors are given less importance and may exist over larger
practical results have been attained by using a modificationfrequency ranges than with other methods; and the merit in-
of Lawson’s algorithm (20).dex will accept large errors over small frequency ranges. As a

The technical literature on digital filtering is vast. Theresult, the approximations that are obtained may display
reader can find good lists of references in textbooks such aslarge peaks (overshoots) and less desirable soft transitions, as
Refs. 2 and 4 for conventional signals and Ref. 21 for multidi-opposed to the sharp transitions of ideal filters. The choice of
mensional signals.weighting function will have a significant effect on the final
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