
DIGITAL FILTERS

FILTERS, DIGITAL

DISCRETE-TIME FILTERS

Most phenomena in nature occur in continuous time, such
as temperature change, lifetime of a human being, wind
speed at a given location, and so on. As a result, if we intend
to design a system to interfere with or to measure a nat-
ural phenomenon, the system should be analog. A widely
used procedure to design systems with interaction with a
natural phenomenon is to convert some quantities from
the nature into electric signals. Electric signals, which are
represented by voltage or current, have a continuous-time
form. However, continuous-time signals are not suitable to
be processed using computer-type processors (digital ma-
chines), which are meant to deal with sequential computa-
tion involving numbers. Fortunately, many signals taken
from nature can be fully represented by their sampled ver-
sions, where the sampled signals coincide with the origi-
nal analog signals at predefined time instants. Let’s take
a real live example by supposing we are watching a movie
at home. If the movie is monotonous, we can pay atten-
tion to what is happening in the movie only from time to
time and still understand the story. On the other hand, if
the movie gives important information at short periods of
time, we can not miss it for a long time. In the latter case,
the director already made a tough sample of the story for
the viewer. In conclusion, if we know how fast the impor-
tant information changes, we can always sample and con-
vert the information in numbers for a fast enough digital
machine. Fortunately, the electronic technology is at our
side, by allowing very fast digital processors to be built at
a reasonable cost. This is one of the reasons the so called
digital filters, which are filters suitable to process sampled
signals implemented in digital machines, are replacing the
analog filters in a number of applications. Also, there are
a number of signals that are originally discrete-time, take
for example the stock-market daily financial indicators.

The rapid development of high-speed digital integrated
circuit technology in the last three decades has made dig-
ital signal processing not only a tool for the simulation of
analog systems but also a technique for the implementa-
tion of very complex systems. Digital signal processing has
found applications in many areas such as image processing,
multimedia systems, speech analysis and synthesis, mobile
radio, sonar, radar, biomedical engineering, seismology, and
modern communication systems.

The main advantages of digital systems relative to ana-
log systems are high reliability, ease of modifying the char-
acteristics of the filter, and low cost. These advantages mo-
tivated the digital implementation of many signal process-
ing systems, which were usually implemented with analog
circuit technology. In addition, a number of new applica-
tions became viable after the availability of the very-large-
scale integration (VLSI) technology. Usually in the VLSI
implementation of a digital signal processing system the

concern is in reducing power consumption or area, or in
increasing the circuits speed in order to meet the demands
of high-throughput applications.

The digital filter is in general the most important tool
in most digital signal processing systems. The digital fil-
ter processes signals that are discrete in time and in am-
plitude, that is, signals occurring at distinct and usually
equidistant times that can assume a discrete set of am-
plitude values. In this article, we are primarily concerned
with linear, shift-invariant digital filters implemented us-
ing finite-precision arithmetic.

In practice, a digital filter is implemented using soft-
ware on a general-purpose digital computer or a digital sig-
nal processor (DSP), or by using application-specific hard-
ware usually in the form of an integrated circuit. In any
type of implementation, quantization errors are inherent
due to finite-precision arithmetic. In implementations for
specific applications there are techniques such as algo-
rithms and topologies for digital filters that allow us to
meet low-power, low-area, and/or high-speed specifications.

The quantization errors can be classified as follows:

Roundoff errors resulting when the internal signals like
the output of multipliers are quantized before or after
additions

Errors in the magnitude and phase response of the filter
caused by the use of finite wordlength for the repre-
sentation of the multiplier coefficients

Errors due to the representation of the input signal with
a set of discrete levels

The quantization errors described depend on the type of
arithmetic used in the actual implementation. If the digi-
tal filter is implemented on a general-purpose processor or
a DSP, floating-point arithmetic is usually available; there-
fore this type of arithmetic is the choice. On the other hand,
if the digital filter is implemented by means of application-
specific hardware or lower cost DSPs, fixed-point arith-
metic is usually the best choice because of its low complex-
ity in terms of silicon area for the hardware. In this article,
only fixed-point arithmetic is addressed.

DIGITAL FILTERS

In a digital filter represented in the block diagram of Fig.
1, the input signal x(n) is a sequence of numbers, indexed
by the integer n, which can assume only a finite number
of amplitude values. Such input sequence comes, most of
the time, from an analog (or continuous-time) signal x(t) by
periodically sampling it at the time instants t = nT, where
T is called the sampling interval. The output sequence y(n)
is the response of the digital filter when excited by the in-
put x(n), with the relationship between x(n) and y(n) rep-
resented by the operator H as

The most important class of digital filters is composed
by linear, time-invariant (LTI) and causal filters. A linear
digital filter is one whose response to a weighted sum of
input signals is equal to the same weighted sum of the

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.

2 Discrete-Time Filters

Figure 1. Frequency response of the notch filter of Eq. (7) with r
= 0.9 and θ = π/4.

corresponding individual responses, that is,

for any sequences x1(n) and x2(n), and any arbitrary con-
stants α and β. A digital filter is said to be time invariant
when its response to an input sequence is always the same,
independent of the time instant when the input is applied
to the filter (assuming that the filter is always operating
under the same initial conditions); that is, if H[x (n)] = y(n),
then

for all integers n and n0. A causal digital filter is one whose
response does not depend on the future values of the exci-
tation signal. Therefore, for any two input sequences x1(n)
and x2(n) such that x1(n) = x2(n) for n ≤ n0, the correspond-
ing responses of the digital filter (with same initial condi-
tions) are identical, that is,

An LTI digital filter is completely characterized by its
response to the unit sample or impulse sequence δ(n) (as-
suming it is initially relaxed). The impulse sequence is de-
fined as

and the filter response when excited by such a sequence is
denoted by h(n) and it is referred to as impulse response of
the digital filter. Observe that if the digital filter is causal,
then h(n) = 0 for n < 0. An arbitrary input sequence can
be expressed as a sum of delayed and weighted impulse
sequences; that is,

and the response of an LTI digital filter to x(n) can then be
expressed by

The summation in the last line of the above expression,
called the convolution sum, relates the output sequence of
a digital filter to its impulse response h(n) and to the input
sequence x(n). The convolution operation is represented by

By applying a change of variables in the summation of Eq.
(7), one can verify that the convolution operation is com-
mutative; that is, the output of a digital filter with impulse
response h(n) and input x(n) is also given by

Defining the z transform of a sequence x(n) as

the transfer function of a digital filter is the ratio of the z
transform of the output sequence to the z transform of the
input signal; that is,

Taking the z transform of both sides of the convolution ex-
pression of Eq. (9), that is,

and substituting variables (m = n − k),

the following relation among the z transforms of the output
Y(z), of the input X(z) and of the impulse response H(z) of
a digital filter is obtained:

Hence, the transfer function of an LTI digital filter is the z
transform of its impulse response.

SAMPLING RATE

Most of the signals encountered in science, such as speech,
biological signals, seismic signals, radar, and sonar, are
analog. To process them by a digital filter, they need to be
sampled and converted to digital by an analog-to-digital
(A/D) converter.

Discrete-Time Filters 3

The sampling theorem states that a bandlimited analog
signal x(t) whose highest frequency component is at the fre-
quency fmax can be exactly recovered from its sample values
x(n) at the time instants t = nT, if the sampling frequency
fs = 1/T is larger than twice fmax. The sampling rate 2fmax is
called the Nyquist rate. The original continuous-time sig-
nal can be recovered from the sampled signal x(n) by the
interpolation formula

with �s = 2πfs.
The recovery of an analog signal from its samples by

the above interpolation formula is impractical, because it
involves the summation of infinite duration functions and
the knowledge of future samples of the signal x(t) involved
in the summation. Practical circuits which convert back the
filtered signal to analog form are called digital-to-analog
(D/A) converters.

In general, if an analog signal x(t) is sampled with a
sampling frequency fs smaller than twice its maximum fre-
quency fmax, then distinct frequency components of x(t) will
be mixed, causing an undesirable distortion in the recov-
ered continuous-time signal referred to as aliasing.

FREQUENCY RESPONSE

The response of an LTI digital filter to a complex exponen-
tial (or complex sinusoid) of radian frequency �, that is,
x(n) = ej�n for −∞ < n < ∞, is a complex exponential of
the same frequency � with a possible complex amplitude
modification. Such property can be verified from the con-
volution expression of Eq. (9), where the output of a digital
filter with impulse response h(n) and excited by the com-
plex exponential of frequency � is given by

In the above expression, H(ej�) describes the changes in
amplitude introduced by the digital filter to the complex
exponential input signal. Such function of � is called the
frequency response of the digital filter, and it corresponds
to the transfer function H(z) evaluated on the unit circle in
the z plane (|z| = |ej�| = 1).

Observe that if the complex sinusoidal sequence comes
from sampling an analog sinusoidal signal, the relation be-
tween the frequency of the discrete-time sinusoid � and the
frequency of the continuous-time analog sinusoid �a is ob-
tained by making t = nT in the analog signal and equating
both signals, resulting in � = �aT = �a/fs. Hence, the digital
frequency is equivalent to the analog frequency normalized
by the sampling frequency, and, therefore, is always be-
tween −π and π if the sampling theorem is satisfied. The
low frequencies are the frequencies � close to zero, whereas
the high frequencies are the frequencies close to π, with �

= π corresponding to the Nyquist frequency (�a = �s/2).

The frequency response H(ej�) is a periodic function of
� with period 2π; that is,

for any integer k. Thinking in terms of analog frequency
(for sampled analog signals), the function H(e j�aT) is pe-
riodic in �a with period 2π/T = �s. This periodicity is ex-
plained by observing that continuous-time sinusoidal sig-
nals of frequencies �a and �a + k�s result, when sampled,
in identical sequences. Therefore, both signals must pro-
duce the same output when processed by the same digital
filter.

In general, H(ej�) is a complex-valued function, which
can be expressed in polar form as

where |H(ej�)| and ∠H(ej�) are called the magnitude re-
sponse and phase response, respectively, of the digital filter.

A large class of sequences can be expressed in the form

where

X(ej�) is called the Fourier transform of the sequence x(n).
A sufficient but not necessary condition for the existence
of the Fourier transform X(ej�) is that the sequence x(n) is
absolutely summable, that is,

Using the above Fourier representation, the input se-
quence can be written as the sum of the complex exponen-
tials ej�n weighted by X(ej�)d�. From the superposition
property of linear systems, the output of the digital filter
with frequency response H(ej�) and with x(n) as input is
given by the corresponding sum of the responses to each
complex exponential, that is,

Hence, each frequency component of the input sequence
x(n) is modified by the frequency response of the digital
filter at the corresponding frequency.

From Eq. (22) and from the definition of the Fourier
transform in Eq. (20), the frequency response of a digital
filter is the Fourier transform of its impulse response. From
Eq. (22), the Fourier transform of the output of a digital
filter is given by the product of the Fourier transforms of
the input and of the impulse response, that is,

Filters that select the low-frequency components of the in-
put signal are called low-pass filters; those that select only
high-frequency components of the input are called high-
pass filters; bandpass and bandstop filters keep and reject,

4 Discrete-Time Filters

Figure 2. (a) Frequency response of highpass filter of Eq. (8); (b)
Frequency response of comb filter of Eq. (9).

respectively, components in a frequency band in the inter-
val 0 ≤ � < π. The ideal frequency responses of such filters
are illustrated in Fig. 2.

DIFFERENCE EQUATIONS

A large and important subclass of linear time-invariant
digital filters consists of the filters whose input and output
sequences satisfy an equation of the form

where ak and bm are constant coefficients. The above equa-
tion is referred to as an Nth order difference equation. For
a causal filter with input–output related by the above dif-
ference equation with coefficients scaled such that a0 = 1,
the present value of the output y(n) can be computed from
the N past output values and from the present and M past

input values by

In the particular case when ak = 0 for k = 1, . . . , N, the
digital filter implemented by the above equation is called
a nonrecursive filter, because there is no feedback from the
past output in the computation of its present value. When
there is feedback, that is, ak �= 0 for at least one k for k
= 1, . . . , N, the filter implementation given by the above
difference equation is called recursive.

The computation of each output value by Eq. (25) re-
quires the storage of past samples of the input and output
sequences, the multiplication of these samples by the corre-
sponding coefficients of the difference equation, and the ad-
dition of the results of such multiplications. Therefore, the
calculation of y(n) can be represented in a block diagram
through the interconnection of the three basic elements,
with symbols shown in Fig. 3: the unit delay, the multi-
plier, and the adder. The unit delay is represented by z−1,
which is the transfer function associated with it. The block
diagram corresponding to Eq. (25) when there is feedback
(recursive implementation) is given in Fig. 4. Such filter
implementation is called a direct form I structure. Another
implementation of recursive digital filters which satisfies
Eq. (24) is based on the following pair of equations

The block diagram of the resulting implementation is
shown in Fig. 5 and is called a direct form II structure.
The direct form II realization requires a number of unit
delays (or memory locations) equal to the maximum value
of M and N. This value is the minimum number of delays
needed to obtain the output of the filter satisfying Eq. (24),
and, therefore, the direct form II structure is said to be
canonic.

The block diagram corresponding to the nonrecursive
case is shown in Fig. 6, where there is no feedback of the
past output values.

The transfer function of a system with input and output
related by a difference equation can be obtained by taking
the z transform of both sides of Eq. (24), that is,

where we have used the linearity property of the z trans-
form and the fact that the z transform of a delayed sequence
x(n − nd) is given by z−nd X(z), where X(z) is the z transform
of x(n). Thus, from the above equation,

Therefore, the transfer function of a digital filter that satis-
fies Eq. (24) is a rational function of z; that is, it is given by a
ratio of polynomials in z, with the coefficients of such poly-

Discrete-Time Filters 5

Figure 3. Frequency responses of a fourth-order elliptic filter
realized with the normalized lattice structure, with coefficients
quantized to 12, 8 and 6 bits.

nomials equal to the coefficients of the difference equation.
The values of z for which H(z) = 0 are called the zeros of the
transfer function of the digital filter, and are the roots of
the numerator polynomial of H(z). The roots of the denom-
inator polynomial of H(z) are called the poles of the digital
filter’s transfer function, and are the values of z for which
H(z) is infinite. The transfer function H(z) can be written
in terms of its poles pk and zeros zm as

The above factored form of H(z) can be useful for estimating
the frequency response of a digital filter from its zeros and
poles. From Eq. (16), the frequency response of a digital
filter is equal to its transfer function evaluated on the unit
circle in the z plane, that is, at z = ej�. Representing the
differences (z − zm) for z = ej� in the z plane by the vectors
Cm and the differences (z − pk) for z = ej� by the vectors Dk ,
we can express the magnitude and phase of the frequency
response by

and

where |Cm | and |Dk | represent the magnitudes of the vec-
tors Cm and Dk , and ∠Cm and ∠Dk represent the angles of
the vectors Cm and Dk as related to the real axis measured
counterclockwise, respectively.

Figure 7 illustrates the pole–zero diagram as well as
the vectors defined above for the second-order digital filter

Figure 4. Recursive implementation of a digital filter obtained
from the difference equation given in Eq. (25) (direct form I struc-
ture).

with transfer function

One can observe that for frequencies � near the zeros,
|H(ej�)| will be very small since the zeros are close to
the unit circle and the vectors from the zeros to ej� will
have small magnitudes. The phase response, ∠H(ej�), will

6 Discrete-Time Filters

Figure 5. Canionic recursive implementation obtained from the
pair of difference equations given in Eq. (26) (direct form II struc-
ture).

Figure 6. Nonrecursive implementation of a digital filter from
the difference equation given in Eq. (25) with ak = 0 for k = 1, . . . ,
N.

Figure 7. Geometric frequency response evaluation from the
poles and zeros of the transfer function H(z) of Eq. (32).

change by almost π rad near the zeros frequencies. For fre-
quencies close to the poles, there will be a peak in |H(ej�)|,
and ∠H(ej�) will change by almost −π rad. Such frequency
response estimation can be verified in the plots of the mag-
nitude and phase responses shown in Fig. 8.

Figure 8. Frequency response of the digital filter with transfer
function H(z) given in Eq. (32).

FINITE IMPULSE RESPONSE FILTERS

A digital filter whose impulse response is of finite dura-
tion (i.e., it is zero outside a finite interval) is called a finite
impulse response (FIR) filter. From the convolution expres-
sion of Eq. (9), the output of a causal FIR filter with h(n) =
0 for n < 0 and for n > M is given by

Comparing the above expression with the output of the dif-
ference equation given in Eq. (25), we can observe that the
output of an FIR filter can be obtained by the nonrecursive
implementation of Fig. 4 with the multipliers bm equal to
the impulse response samples h(m). Usually FIR filters are
implemented nonrecursively, even though recursive imple-
mentations of FIR filters are also possible resulting in a
reduction in the number of multipliers in some cases.

The transfer function of an FIR filter has the form

which has all of its M poles at z = 0. Hence, an FIR filter
is characterized by the locations of the zeros of its transfer
function.

A simple example of an FIR filter is the moving average
filter, whose output is the average of the present and the

Discrete-Time Filters 7

last M samples of the input sequence; that is,

The impulse response of this system is

and its transfer function is given by

The zeros of H(z) are at zm = ej [2πm/(M+1)] for m = 1, . . . , M.
From the first line of the above equation, the output of this
system can be obtained by the nonrecursive implementa-
tion of Fig. 6 with coefficients bm = 1/(M + 1), for m = 0,
. . . , M. The second line of the above expression suggests a
recursive implementation such as that of Fig. 4, with the
nonzero coefficients given by a1 = −1, b0 = 1, and bM+1 =
−1.

FIR filters are specially useful for implementing linear-
phase transfer functions, that is, transfer functions H(z)
such that

The response of a linear-phase digital filter to a complex
sinusoid of frequency � is given by

which for α integer is

Hence, the phase modification introduced by the linear
phase filter in the sinusoidal input signal corresponds to a
constant delay that is independent of �. From the super-
position property of LTI systems, an arbitrary signal x(n)
filtered by a linear phase filter will have all its frequency
components delayed by the same amount α. Defining the
group delay of a filter as

a linear phase filter with phase response as in Eq. (38) has
a constant group delay α.

An FIR filter with linear phase response can be easily
obtained by imposing one of the symmetry conditions below
on the impulse response of the filter:

or

The transfer function of an FIR filter satisfying one of the
above conditions with M even is

and with M odd is

where the ± signs in the above equations represent the +
sign for symmetric impulse responses satisfying Eq. (42)
and − for antisymmetric impulse responses as in Eq. (43).
The frequency responses corresponding to the above trans-
fer functions with z = ej� can be written in the form

for symmetric impulse responses, and

for antisymmetric impulse responses, with R(�) being a
real-valued function of �. For M even, the corresponding
group delay M/2 is an integer, and R(�) is given by

for a symmetric impulse response, and

for an antisymmetric impulse response, where h(M/2) = 0
in the latter case. For M odd, M/2 is not an integer, resulting
in a group delay that does not correspond to an integer
number of sampling periods. R(�) is given by

for a symmetric impulse response, and

for an antisymmetric impulse response.
An FIR filter with antisymmetric impulse response

presents a zero at z = 1 for M even or odd, and a zero
at z = −1 for M even, as can be seen from Eqs. (44) and
(45). Therefore, FIR filters with antisymmetric impulse re-
sponses cannot implement lowpass filters. Also, such fil-
ters cannot implement highpass filters when M is even.
An FIR filter with symmetric impulse responses and M odd
presents a zero at z = −1 and, therefore, cannot implement
highpass filters. The other zeros of a linear-phase FIR filter
H(z) are such that if zm is a zero of H(z), so is 1/z∗

m .
An FIR filter can be designed truncating the infinite im-

pulse response of an ideal filter hideal(n) through the multi-
plication of hideal(n) by a finite length sequence w(n) called

8 Discrete-Time Filters

window. Other FIR filter design methods are based on op-
timization techniques, such as the Remez exchange algo-
rithm, which minimizes the maximum deviation of the fre-
quency response of the filter from a prescribed specifica-
tion. Such design methods can be found elsewhere (1).

INFINITE IMPULSE RESPONSE FILTERS

Filters with infinite-length impulse responses are called in-
finite impulse response (IIR) filters. The output of an IIR fil-
ter is obtained by a recursive implementation, such as the
direct-form structures shown in Figs. 4 and 5. The direct-
form structures have high sensitivity to coefficient vari-
ations, especially when implementing transfer functions
with poles clustered close to the unit circle.

Other IIR filter structures, which present lower sensi-
tivity than the direct form, are based on the implemen-
tations of the filter transfer function H(z) in a factored
form. In the cascade structure, H(z) is factored as a prod-
uct of first- and/or second-order transfer functions, which
are implemented separately by either one of the direct-
form structures of Figs. 4 and 5 and connected in cascade.
The parallel structure is based on the implementation of
H(z) when expressed as a sum of first- and/or second-order
transfer functions, obtained by partial fraction expansion
of H(z). The wave and lattice realizations, both presenting
low sensitivities, will be introduced in this article.

As opposed to FIR filters, IIR filters have poles in lo-
cations other than the origin of the z plane. To guarantee
stability of an IIR filter, that is, that an input of bounded
amplitude results in a bounded output sequence when pro-
cessed by the filter, the poles of H(z) must lie inside the unit
circle in the z plane (1). The design of an IIR filter consists
of finding the coefficients or the poles and zeros of the trans-
fer function, such that the frequency response of the filter
satisfies a given specification. Some IIR filter design tech-
niques use established analog filter approximation meth-
ods with the application of a transformation technique to
the analog transfer function or impulse response to obtain
the digital transfer function. One of such transformations
is the bilinear transformation, where the variable s in the
transfer function of the analog filter is replaced by

Other design techniques for IIR filters are based on opti-
mization methods, such as the quasi-Newton method de-
scribed elsewhere (1).

Examples of first-order IIR low-pass and high-pass fil-
ters are, respectively,

HLP (z) = k
1 + z−1

1 − αz−1
(1)

and

HHP (z) = k
1 − z−1

1 − αz−1
(2)

with |α| < 1 for stability. The constant k determines the
filter gain, while the parameter α controls the passband
width. Examples of second-order IIR bandpass and band-

stop filters are, respectively,

HBP (z) = k
1 − z−2

1 − 2r cos θz−1 + r2z−2
(3)

and

HBS(z) = k
1 − 2 cos θz−1 + z−2

1 − r2z−2
(4)

with |r| < 1 for stability. The parameters r and θ determine,
respectively, the passband width and the center frequency
of the passband/stopband.

Some special IIR filters are allpass, notch, and comb fil-
ters. The allpass filters are useful for phase equalization,
and are characterized by having unity magnitude response
for all frequencies, i.e.,

|HAP (e jω)| = 1, for all ω (5)

The transfer function of an N-th order allpass filter is of
the form:

HAP (z) = ±
∑N

k=0 akz
−N+k

∑N

k=0 akz−k
= ±z−N A(z−1)

A(z)
(6)

Observe that if z0 = re jφ is a pole of HAP (z), z−1
0 = 1

r
e− jφ

will be a zero of HAP (z).
The notch filters are bandstop filters with very narrow

rejection band. They are useful in eliminating narrowband
noise, such as the 60-Hz power-line interference. A typi-
cal second-order notch transfer function has zeros over the
unity circle and poles close to it, with same angles ± θ, i.e.,

HN (z) = 1 − 2 cos θz−1 + z−2

1 − 2r cos θz−1 + r2z−2
(7)

with |r| < 1. Figure 1 shows the frequency response of the

notch filter of Eq. (7) with r = 0.9 and θ = π

4
.

Comb filters find application in pitch detection of speech
signals and cancellation of periodic interferences, among
others. Their frequency responses are periodic with period
2π

M
, where M is a positive integer. The transfer function of a

comb filter can be obtained from a single passband trans-
fer function H(z) by substituting zM for z, that is, HC (z)
= H(zM). For example, the high-pass filter with transfer
function given by

HHP (z) = 0.25
1 − z−1

1 + 0.5z−1
(8)

and frequency response illustrated in Fig. 2(a), generates
the 8-band comb filter with transfer function

HC(z) = HHP (z8) = 0.25
1 − z−8

1 + 0.5z−8
(9)

Its frequency response is shown in Fig. 2(b).

WAVE DIGITAL FILTERS

The designer of filters, regardless of the implementation
technology, is usually interested in finding structures with
low sensitivity to coefficient variations. In digital filter de-
sign the low sensitivity implies small effect on the over-
all transfer function when the values of the coefficients

Discrete-Time Filters 9

deviate from their ideal values. As a result, the coeffi-
cients of a low-sensitivity digital filter can be implemented
with short wordlengths without violating the prescribed
specifications. Also, coefficients with short wordlengths are
cheaper, faster, and simpler to implement. It is possible to
show that low-sensitivity realizations usually generate low
roundoff noise.

It is well known from classical analog circuit theory
that doubly terminated lossless filters have zero sensitiv-
ities of the transfer function with respect to the lossless
components at frequencies at which the maximal power
is transferred to the filter load. For filter approximations
with equiripple characteristics in the passband, such as
Chebyshev and elliptic filters, there are several frequen-
cies in which maximal power transfers to the load. Because
the ripple values are small in the passband, the sensitiv-
ities remain small over the frequency range consisting of
the passband. As a result, several methods have been pro-
posed attempting to imitate the behavior of the doubly ter-
minated lossless filters.

The simplest and most widely used method of transfor-
mation of a transfer function from the Laplace (s-domain)
to the z-transform domain is the bilinear transformation
[see Eq. (52)]. This transformation is the one used to estab-
lish the correspondence between the analog prototype and
the wave digital filter. The bilinear transformation keeps a
frequency domain correspondence between the analog and
digital filters. The direct simulation of the internal quanti-
ties, such as voltages and currents, of the analog prototype
in the digital domain leads to delay-free loops. A delay-free
loop does not contain any delay, and as such cannot be com-
puted sequentially since all node values in the loop are ini-
tially unknown (1). The values of the previous nodes must
be known before we start computing any value in the loop.
Alternative transformations can be tried; however, practice
has shown that it is desirable to use the bilinear transfor-
mation. As a solution a linear combination of voltage and
current are used in the transformation from continuous to
the discrete-time domain.

It is well known that any analog n-port network can
be characterized by using the concepts of incident and re-
flected waves quantities known from scattering parameter
theory (5). Through the application of wave characteriza-
tion, and the use of the bilinear transformation, digital fil-
ter realizations can be obtained from passive and active
filters as first proposed by Fettweis (6, 7). By this means,
analog filters can be converted in digital filter structures
that are free from delay-free loops. The name wave dig-
ital filter derives from the fact that wave quantities are
used to represent the internal analog circuit signals in the
simulation in the digital domain. The possible wave quan-
tities are voltage, current or power quantities. The choice of
power waves leads to more complicated digital realizations,
whereas the choice between voltage and current waves is
irrelevant. Traditionally, voltage wave quantities are the
choice in the open literature.

Another advantage of the wave digital filters imitating
doubly terminated lossless filters is their inherent stability
under linear conditions (i.e., infinite precision arithmetic)
as well as in the nonlinear case where the signals are sub-
jected to quantization. In the real-life nonlinear case, if

Figure 9. General representation of a generic one-port network.

magnitude truncation is applied to quantize suitable sig-
nals inside the wave digital filter structure, no zero-input
limit cycles can be sustained. Also, as will be discussed in
the section on quantization effects, the wave digital filters
are free of overflow limit cycles when simple overflow non-
linearities are employed such as saturation arithmetic.

The wave digital filters are also adequate to analog sys-
tems simulation, such as power systems, due to their topo-
logical equivalence with their analog counterparts.

An analog one-port network, see Fig. 9, can be described
in terms of wave characterization as

where a and b are the incident and reflected voltage wave
quantities, respectively, and R is the port resistance as-
signed to the one-port network. The value of the port re-
sistor is chosen appropriately to simplify the one-port re-
alization. In the frequency domain the wave quantities are
A and B which are given by

In the equations above, we notice that the voltage waves
consist of a linear combination of the voltage and current
of the one-port network.

Consider now the case where the one-port impedance
consists of a single element. That is, Z(s) = csl , where l = 0
for a resistor, l = 1 for an inductor, l = −1 for a capacitor,
and c is a positive constant. Since

from Eq. (54), one can easily deduce the ratio between the
reflected and incident voltage waves as follows:

By applying the bilinear transformation, that is, by substi-
tuting

the digital realization of the one-port network is obtained.
However, the choice of the port resistance is crucial to ob-
tain a simple realization, where in the present case the
choice is

For the capacitor, the port resistor is chosen as R = T/2C,
where T is the sample period and C is the value of the
capacitor, leading to a digital realization of the wave ratio

10 Discrete-Time Filters

Figure 10. Wave digital realization of the main one port ele-
ments.

as B/A = z−1. For the resistor the choice is R = R, where R

is the resistor value and the resulting digital realization is
B/A = 0. Finally, the inductor is simulated by B/A = −z−1 if
R = 2L/T, where L is the inductor value. Figure 10 depicts
the realization of some important one-port elements.

Similarly an analog N-port network can be described in
terms of wave characterization as

for i = 1, . . . , N, where the parameters Ai and Bi are the in-
cident and reflected voltage wave quantities, respectively,
and Ri is the resistance of port i.

The main multiport elements required in the wave digi-
tal filter realization are the adaptors. The adaptors guaran-
tee that the current and voltage Kirchoff laws are satisfied
at the series and parallel interconnections of ports with
different port resistances.

Consider the interconnection of two elements with port
resistances given by R1 and R2, respectively, as shown in
Fig. 11(a). The wave equations in this case are given by

Figure 11. (a) Parallel connection of two ports. (b) Realization of
two-port adaptor.

Because V1 = V2 and I1 = −I2, we have that

If we eliminate V1 and I1 in the above equations we have

where α = (R1 − R2)/(R1 + R2). A realization for the two-
port adaptor is depicted in Fig. 11(b). It should be noted
that there are other realizations for the two-port adaptor.

The same approach can be extended to derive the three-
port series and parallel adaptors. The parallel interconnec-
tion of three ports is shown in Fig. 12(a), where we have
V1 = V2 = V3, I1 + I2 + I3 = 0, and Gi = 1/Ri . The digital
realization of the parallel adaptor has internal multipliers
whose coefficients are given by

Because α1 + α2 + α3 =2, one of the required multiplier
coefficients can be eliminated. With the definition above,
after a few manipulations one can show that a possible set
of relations between the incident and reflected waves is
given by

The realization corresponding to these equations is shown
in Fig. 12(b).

Discrete-Time Filters 11

Figure 12. (a) Parallel connection of three ports. (b) A possible
realization of a three-port parallel adaptor. (c) Interconnection be-
tween two adaptors. (d) Realization of a reflection-free three-port
parallel adaptor α2 = 1 − α1.

If two adaptors are connected directly, a delay-free loop
appears between the adaptors as shown in Fig. 12(c). A so-
lution to this problem is to constrain one of the coefficients
of the adaptor to be equal to one, for example α3 = 1. In this
case, the adaptor equations are given by

where since α1 + α2 = 1, one of the required multiplier
coefficients can also be eliminated. The realization of the
reflection-free is depicted in Fig. 12(d), where it can be ver-
ified that there is no direct path between A3 and B3. As
a consequence, the reflection-free property of port three is
key to allow the connection between adaptors.

Figure 13. (a) Series connection of three ports. (b) A possible
realization of a three-port parallel adaptor. (c) Realization of a
reflection-free three-port series adaptor.

The series interconnection of three ports is shown in
Fig. 13(a), where we have V1 + V2 + V3 = 0 and I1 = I2 = I3.
The equations related to the series adaptor are derived by
following the same procedure used for the parallel adaptor.
The resulting equations are

where

for i = 1, 2, 3. The realization corresponding to these equa-
tions is shown in Fig. 13(b). The reflection-free series adap-
tor can be generated by considering β3 = 1.

As an illustration, consider the third-order elliptic low-
pass analog filter depicted in Fig. 14(a). The corresponding
wave-digital realization is shown in Fig. 14(b), where the
multiplier coefficients of the adaptors are calculated as fol-

12 Discrete-Time Filters

Figure 14. (a) LC doubly-terminated ladder; element values: C1
= C3 = 0.968F, C2 = 0.085F, L = 1.058H, R1 = R2 = 1 �. (b) A possible
wave digital realization. Notice that there are other choices for the
position of the reflection-free ports. The sampling period is T = 1⁄4
s.

lows:

because

following similar procedure for the remaining elements we
have

LATTICE FILTERS

The general transfer function we aim to realize using the
lattice structure is described by

In the lattice construction, we first concentrate in the re-
alization of the denominator polynomial through an order-

reduction strategy. Define the polynomial

We calculate a reduced order polynomial as

where

Note that the first and last coefficients of DN (z) are 1 and
aN,N , whereas the first and last elements of the polynomial
zBN (z) are aN,N and 1, respectively. This strategy to achieve
the order reduction turns the polynomial DN−1(z) monic
(i.e., with the leading coefficient equal to one).

By induction, this procedure can be repeated as de-
scribed in the following equations:

for j = N, N − 1, . . . , 0, where zB0(z) = D0(z) = 1.
The pair of equations above leads to a convenient rela-

tion given by:

Assuming that we can implement the desired denomi-
nator using the recursion above, it is required that we im-
plement the numerator polynomial as well. The convenient
way to form the desired numerator is to apply weights to
the polynomials zBj (z) such that:

where the tap-coefficients are calculated through the fol-
lowing order-reduction recursion:

for j = M, M − 1, . . . , 1, and v0 = b0,0.
The overall transfer function of the lattice structure is

The recursive lattice realization derives from Eqs. (75) and
(78) in a simple way. Let us consider that the relations
represented in Eq. (75) divided by DN (z) (due to the re-
cursive structure) is implemented through a two-port net-
work. Starting with zB0(z)/DN (z) = D0(z)/DN (z) = 1/DN (z),
the structure of Fig. 15(a) results. Figure 15(b) depicts a
realization for the two-port network.

There are some properties related to the lattice realiza-
tion that are worth mentioning. If DN (z) has all the roots

Discrete-Time Filters 13

Figure 15. (a) General lattice digital filter structure. (b) The two-multiplier realization of the two-
port network. (c)The single-multiplier realization of the two-port network.The plus and minus signs
indicates that two different realizations are possible. The choice of these signs can vary from section
to section aiming the reduction of the quantization noise at the filter output. (d) The normalized
section for the lattice structure.

inside the unit circle the lattice structure will have all coef-
ficients aj,j with magnitude less than one. Otherwise H(z)
represents an unstable system. The straightforward sta-
bility test turns the lattice realization useful to implement
time-varying filters. Also in the lattice realization, the poly-
nomials zBj (z) for j = 0, . . . , M, form an orthogonal set; this
feature justifies the choice of these polynomials to form the
desired numerator polynomial NM (z).

The overall transfer function of the lattice realization
will not change if any kind of internal scaling is applied to
the internal signals in the following way:

where the numerator coefficients have to be scaled accord-
ing to v̄j = vj /kj , with k̄j = kjkj−1 ··· k1. Each coefficient ki is
the individual scaling factor applied to the lattice section i.
With this possibility, we can derive a more economical two-
port network using a single multiplier as shown in Fig.
15(c).

Another important realization for the two-port network
results when the scaling parameters ki are chosen such
that the polynomials zB̄j (z) become orthonormal. The ap-
propriate scaling can be easily derived by induction if we
recall that zB0(z) = A0(z) = 1. Since

a polynomial with unit norm results [i.e., zB̄1(z)] if we mul-
tiply zB1(z) by k1 = 1/

√
1 − a2

1,1. Identically, we can easily
show that

Because zB̄1(z) has unit norm, zB2(z) will have unit norm if
we choose k2 = 1/

√
1 − a2

2,2. Following a similar procedure,
we can show that the appropriate value for the scaling fac-

tor j is kj = 1/
√

1 − a
j

1, j. After a few manipulations of Eqs.

(76) and (80), we can show that the two-port section of the
normalized lattice is as depicted in Fig. 15(d). The most
important feature of the normalized lattice realization is
that all its internal nodes have unit energy leading to an
automatic scaling in the L2 norm sense. This explains the
low roundoff noise generated by the normalized lattice re-
alization as compared with the other forms of the lattice
realization.

QUANTIZATION EFFECTS IN DIGITAL FILTERS

The choice of a digital filter structure for a given application
is based on evaluating the performance of known struc-
tures and choosing the most suitable one. The effects of
quantization are important factors to be considered when
assessing the performance of digital filter structures.

14 Discrete-Time Filters

Figure 16. Model for the noise generated after a multiplication.

Quantization Noise

A number with modulus less than one can be represented
in fixed-point arithmetic as follows:

where b0 is the sign bit and b1b2b3 ··· bb represents the mod-
ulus of the number using a binary code. The most widely
used binary code is the two’s-complement representation
where for positive numbers b0 = 0 and for negative num-
bers b0 = 1. The fractionary part of the number, called x2

here, is represented as

In floating-point a number is represented as

where xm is the mantissa and c is the number exponent,
with ½ ≤ |xm | < 1. In floating-point arithmetic, the man-
tissa must be quantized after every multiplication and ad-
dition, whereas in fixed-point arithmetic quantization is
required only after multiplications. The main advantage
of the floating-point representation is the large dynamic
range, while fixed-point representations are easier to im-
plement. Our discussion from now on concentrates in the
fixed-point implementation.

A finite-wordlength multiplier can be modeled in terms
of an ideal multiplier followed by a single noise source e(n)
as shown in Fig. 16. If the product quantization is per-
formed by rounding and the signal levels throughout the
filter are much larger than the quantization step q = 2−b , it
can be shown that the power spectral density of the noise
source ei (n) is given by

which means that ei (n) represents a zero mean white-noise
process. Also, we can consider that in practice ei (n) and ej (n
+ l) are statistically independent for any value of n or l (for
i�= j). As a consequence the contributions of different noise
sources can be accounted for separately using the principle
of superposition.

In a fixed-point digital-filter implementation, the power
spectral density of the output noise is given by

where Pe (ej�) = σ2
e , Gi (z) are the transfer functions from

each multiplier output [gi (n)] to the output of the filter as
shown in Fig. 17. The wordlength, including sign, is b + 1
bits and K is the number of multipliers of the filter.

Figure 17. Digital filter including scaling and the relevant trans-
fer functions for scaling, noise analysis and sensitivity calculation.

A figure of merit usually employed in evaluating the
performance of digital filters is the relative power spectral
density (RSPD) of the output noise in decibels given by

The RPSD eliminates the dependence of the output noise
on the wordlength. Hence the RPSD is a measure of the
extent to which the output noise depends upon the internal
structure of the filter.

Another useful performance criterion to evaluate the
roundoff-noise generated in digital filters is the noise gain
or the relative noise variance (1, 2) given by

where we used the relation

The input signal quantization is similar to product
quantization and can be represented by including a noise
source at the input of the digital filter structure.

Granularity Limit Cycles

On many occasions, signal levels in a digital filter can be-
come constant or very low, at least for short periods of
time. Under such circumstances, the noise signals become
highly correlated from sample to sample and from source to
source. This correlation can cause autonomous oscillations
called granularity limit cycles.

Limit-cycles oscillations can occur in recursive digital
filters implemented with rounding, magnitude truncation
(where the magnitude of the number is reduced aiming the
decrease of its energy), and other types of quantization.
In many applications, the presence of limit cycles can be
a serious problem. Thus, it is desirable to eliminate limit
cycles or to keep their amplitude bounds low.

For wave and lattice digital filters and some second-
order structures, the stability under finite precision arith-
metic can be proved by means of the second method of Lya-
punov. Magnitude truncation is applied to quantize suit-

Discrete-Time Filters 15

Figure 18. Digital filter including quantizers at the delay inputs.

able signals inside the structure such that a defined posi-
tive definite pseudoenergy function is proved to be a Lya-
punov function.

The concept of pseudoenergy function can be applied
to show how to eliminate zero-input limit cycles in some
digital filter structures, for example, in wave, lattice, and
state-space digital filter structures. The basic strategy is
to apply magnitude truncation to the state variables of the
digital filter, namely the delay inputs. An interesting result
(11) establishes how constant-input limit cycles can also be
eliminated in digital filters in which zero-input limit cycles
can be eliminated.

In a recursive filter implemented with fixed-point arith-
metic each internal loop contains a quantizer in order to
keep the wordlength limited. Assuming that the quantiz-
ers are placed at the delay input (i.e., at the state variables
as shown in Fig. 18), we can describe the digital filter, in-
cluding the quantizers, using the state–state formulation
as follows:

where [·]Q indicates the quantized value of [·],A is the state
matrix, b is the input vector, c is the output vector, and
d represents the direct connection between the input and
output of the filter.

Given that the digital filter has a state matrix with
eigenvalues inside the unit circle such that

where G is an N × N diagonal positive definite matrix, and
û is any N × 1 vector. Then, the granular zero-input limit
cycles can be eliminated if the quantization is performed
through magnitude truncation. In this case, the quadratic
energy function given by

is used as Lyapunov function.

Overflow Limit Cycles

Overflow limit cycles can occur when the magnitude of
the internal signals exceed the available register range.
To avoid the increase of the signal wordlength in recur-
sive digital filters, overflow nonlinearities must be applied
to the signal. Overflow nonlinearities influence the most
significant bits of the signal causing severe distortion. An

Figure 19. Regions allowed for the overflow nonlinearities in or-
der to guarantee freedom from overflow limit cycles.

Figure 20. A second-order digital filter including a granularity
and overflow quantizer.

overflow can give rise to self-sustained, high-amplitude os-
cillations known as overflow limit cycles.

A digital filter structure is considered as free of overflow
limit cycles or to have a stable forced response if the error,
which is introduced in the filter after an overflow, decreases
with time in such a way that the output of the nonlinear
filter (including the quantizers) converges to the output of
the ideal linear filter (10).

A digital filter that is free of zero-input limit cycles, ac-
cording to the condition of Eq. (92), is also forced-input sta-
ble if the overflow nonlinearities are in the shaded regions
of Fig. 19. Figure 20 illustrates a digital filter realization
incorporating a quantizer implementing rounding for the
granular quantization and saturation arithmetic for the
overflow nonlinearity.

In the presence of input signal, overflow can occur in any
digital filter structure. As a consequence, input signal scal-
ing is required to reduce the probability of overflow to an
acceptable level. Ideally, signal scaling should be applied
so as to ensure that the probability of overflow is the same
at each internal node of the digital filter, to maximize the
signal to noise ratio in fixed-point implementations.

The choice of two’s complement arithmetic leads to a
simplified scaling technique, where only the multiplier in-
puts require to be scaled. Specifically, in this type of num-
ber representation the addition of two or more numbers
will be correct independently of the order in which they
are added even if overflow occurs in a partial summation,
as long as the overall sum is within the available range of
representable numbers. In this scaling technique a scaling
multiplier is used at the input of the filter section as illus-
trated in Fig. 17. We know that the signal at the multiplier

16 Discrete-Time Filters

input is given by

where c is the convergence region common to Fi (z) and U(z).
The constant λ is usually chosen on the basis of the Lp

norm of the transfer function from the filter input to the
multiplier input Fi (z), depending on the known properties
of the input signal. The Lp norm of Fi (z) is defined as

for each p ≥ 1, such that
∫

2π
0|Fi (ej�)|p d� ≤ ∞. In general

the following expression is valid

for p, q = 1, 2 and ∞.
The scaling ensures that the amplitudes of multiplier

inputs are bounded by a number M when |u(n)| ≤ M. There-
fore, to ensure that all multiplier inputs are bounded by M,
we must choose λ as follows

which means that

where K is the number of multipliers in the filter section.
The norm p is usually chosen to be infinity or 2. The L∞

norm is used for input signals that have some dominating
frequency component, whereas the L2 norm is most com-
monly used for random input signal. Usually, the scaling
coefficients are powers of two, provided they satisfy the
overflow constraints. In this way, the scaling parameters
can be implemented by simple shift operations.

In case of modular realizations such as cascade or par-
allel realizations of digital filters, optimum scaling is ac-
complished by applying one scaling multiplier per section.

Coefficient Quantization

During the approximation step the coefficients of a digital
filter are calculated with high accuracy. If these coefficients
are quantized, the frequency response of the realized dig-
ital filter will deviate from the ideal response. In fact, the
quantized filter may even fail to meet the prescribed spec-
ifications. The sensitivity of the filter response to errors in
the coefficients is highly dependent on the type of structure.
This fact led to the development of low-sensitivity digital
filter realizations such as the wave and lattice.

Several sensitivity criteria exist to evaluate the effect of
the variation of a coefficient value on the digital filter trans-
fer function. In this article, the sensitivity of the transfer
function H(z) with respect to variations in the multiplier
constant mi is defined as

The variation in the magnitude response of the digital
filter due to the variations in the multiplier coefficients are
approximated by

where mi , i = 1, 2, . . . , K, are the multiplier coefficients of
the digital filter. If we consider that the multiplier coef-
ficients were rounded and that the errors introduced are
statistically independent, the variance of the error in each
coefficient is given by

where b is the number of fractionary bits.
With the assumptions above the variance of �|H(ej�)| is

given by

If we assume that �|H(ej�)| has a Gaussian distribution, it
is possible to estimate the probability of �|H(ej�)| as less
or equal to xσ�|H(e j�)|. The equation below estimates the
number of bits that are required in the fractionary part for
a given digital filter to meet a given modulus specification.

where ρ(�) is the tolerance on the magnitude response
given in the specifications Hd (ej�).

Example:
An elliptic bandpass filter was designed satisfying the

following prescribed specifications:

� Maximum ripple in the passband: 1 dB.
� Minimum attenuation in the stopband: 30 dB.
� Passband frequency range: 2880 to 3120 Hertz.
� Stopband frequency edges: 2450 and 3550 Hertz.
� Sampling frequency: 10000 Hertz.

The resulting filter has order four.
In order to access the coefficient quantization effects of

a given realization, the fourth-order elliptic filter was im-
plemented utilizing a normalized lattice structure. The co-
efficients of the lattice are displayed in Table 1. These coef-
ficients are then quantized to 12, 8 and 6 bits, respectively.
The resulting transfer functions are depicted in Figure 3.
As can be observed the transfer functions for 8 and 6 bits
deviate substantially from the desired one, whereas 12 bits
leads to acceptable results.

A procedure widely used in practice to evaluate the de-
sign of digital filters with finite-coefficient wordlength is to
design the filters with tighter specifications than required,
quantize the coefficients, and check if the prescribed spec-
ifications are still met.

Discrete-Time Filters 17

Figure 21. (a) Full adder; (b) bit-parallel; (c) bit-serial adder; (d) serial/parallel multiplier.

Table 1. Normalized Lattice Coefficients

ajj vj

0 −0.31382198601433 0.01451571512296
1 −0.98733578085783 0.01127246045032
2 −0.30596231306686 −0.01164209398292
3 −0.85033475836150 −0.00464776905230
4 – 0.03432034632233

DIGITAL FILTER IMPLEMENTATION

Digital filters can be implemented by software in general-
purpose computers, in digital signal processor (DSP) chips,
or by hardware in special-purpose logic circuits. Although
software implementations allow rapid prototyping and
flexibility in testing and modifying the filter characteris-
tics, special-purpose hardware implementations allow for
higher-speed and lower-consumption performances.

A software implementation consists of generating the
program code corresponding to the digital filter structure
being implemented, in a high-level language or directly
in assembly language. A compiler then generates a set of
instructions to the processor from the code. Because, in
general-purpose computers the instructions are executed
sequentially, the speed of the digital filter becomes limited

by the execution time of each instruction. Digital signal
processor chips are specially designed to execute very effi-
ciently sum-of-product operations,which are the main com-
putations required in the implementation of digital filters
and of other digital processing algorithms, as can be seen
in Figs. 4, 5, 6, 14, and 15. The efficient implementation
of the multiply-and-accumulate operation, as well as the
high-degree of parallelism with which the instructions are
executed in a DSP, result in a relatively high input–output
throughput rate.

A hardware implementation consists in the design and
integration of a digital circuit, specified in terms of logical
gates. Advances as well as reduction in costs of integrated
circuit technologies have made special-purpose hardware
implementations of digital filters even more attractive
for high-speed real-time applications and/or for large pro-
duction quantities. Besides providing higher-speed and
lower-power consumption, hardware implementations us-
ing VLSI (very-large-scale integration) technologies per-
mit to include in a single chip not only a digital filter but
a whole signal processing system. Arithmetic operations
required in the implementation of digital filters can be
performed either in bit-serial or in bit-parallel form. The
bit-parallel implementation of arithmetic operations uses

18 Discrete-Time Filters

a basic element the full-adder shown in Fig. 21(a), which
adds the two input-bits a and b, and the carry-in bit c,
resulting in a sum bit and an output carry bit. The sum
of two (b + 1)-bit numbers, A and B, in bit-parallel arith-
metic can be implemented by connecting (b + 1) full-adders,
one for each bit, as shown in Fig. 21(b), where ai and bi

represent the ith bit of A and B, respectively, with ab and
bb corresponding to the least significant bits (LSB). A bit-
parallel implementation for the product of two numbers
A and B uses a full-adder for the partial sum of each bit
product aibk , requiring about b(b + 1) full-adders. Reduc-
tion in chip area can be achieved by using bit-serial arith-
metic. In such an implementation approach, the bits are
processed one at each clock period, with the LSB treated
first. A bit-serial adder is shown in Fig. 21(c), where D rep-
resents a one-bit delay (or a flip-flop) and CLR is set to zero
during the processing of the LSB. A serial/parallel imple-
mentation of a multiplier (for B > 0) is shown in Fig. 21(d),
where A is treated in bit-parallel form, whereas B is pro-
cessed in bit-serial form. More details and other implemen-
tations of bit-serial, bit-parallel, and serial/parallel arith-
metics can be found elsewhere (4). A different hardware im-
plementation approach of digital filters, called distributed
arithmetic, uses a look-up table to obtain partial results of
the required sum-of-products. Such approach uses memory
(corresponding to the look-up table) to replace most of the
circuitry required to implement the computations.

The execution speed of the operations as well as the
degree of parallelism associated to the digital filter im-
plementation determine the maximum sampling rate for
which the filter can operate. To increase this maximum
rate, block processing algorithms have been proposed,
where a block of output samples is calculated using a block
of input samples. There is a delay in the production of the
output samples in such algorithms, which might not be tol-
erable in some real-time applications. More details of block
processing algorithms are given elsewhere (2, 3).

BIBLIOGRAPHY

1. P. S. R. Diniz, E. A. B. da Silva, and S. L. Netto. Digital Sig-
nal Processing, System Analysis and Design. Cambridge, UK:
Cambridge, 2002.

2. A. Antoniou. Digital Signal Processing. New York, NY: Mc-
Graw Hill, 2006.

3. S. K. Mitra. Digital Signal Processing. New York, NY: McGraw
Hill, 3rd Edition, 2005.

4. L. Wanhammer. DSP Integrated Circuits. New York, NY: Aca-
demic Press, 1999.

5. V. Belevitch. Classical Network Theory. San Francisco, CA:
Holden-Day, 1968.

6. A. Fettweis. Digital filters structures related to classical filters
networks.Archiv. fur Elektronik und Ubertragungstechnik,25:
79–89, 1971.

7. A. Fettweis. Wave digital filters: theory and practice. Proc.
IEEE, 74: 270–327, 1986.

8. A. H. Gray, Jr. and J. D. Markel. Digital lattice and ladder filter
synthesis. IEEE Trans. Audio Electroacoust., AU-21: 491–500,
1973.

9. A. H. Gray, Jr. and J. D. Markel. A normalized digital filter
structure. IEEE Trans. Acoust. Speech Signal Process., ASSP-
23: 268–277, 1975.

10. T. A. C. M. Claasen,W. F. G. Mecklenbräuker, and J. B. H. Peek.
On the stability of the forced response of digital filters with
overflow nonlinearities. IEEE Trans. Circuits Syst., CAS-22:
692–696, 1975.

11. P. S. R. Diniz, and A. Antoniou. More economical state-space
digital filter structures which are free of constant-input limit
cycles. IEEE Trans. Acoust. Speech Signal Process., ASSP-34:
807–815, 1986.

PAULO S. R. DINIZ

MARIANE R. PETRAGLIA

Federal University of Rio de
Janeiro, Rio de Janeiro,
Brazil

Federal University of Rio de
Janeiro, Rio de Janeiro,
Brazil

