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to Eq. (1), ideally the differentiator is a linear system, map-
ping the input into the output linearly. If D is a constant,
then on taking the bilateral Laplace transform, L[ � ], of Eq.
(1) we obtain the system transfer function description,
H(s) � L[y]/L[u], in terms of the complex frequency variable
s � � � j�,

H(s) = Ds (2)

Evaluating this in terms of real frequency, �, we find that

H( jω) = jDω (3)

which shows that the differentiator introduces a constant
phase shift of 90� and amplifies the input proportionally to
the frequency. This illustrates the difficulty one runs into
when practically using a differentiator since high-frequency
signals, which are often noise components, get greatly ampli-
fied compared to low-frequency signals, which most often are
the ones carrying intelligence, according to �H( j�)� � D� (for
� � 0).

CIRCUIT IMPLEMENTATIONS

If the output is measured at the same terminals as the input,
then the device is a one-port differentiator; and in the case
where u is a voltage v and y is a current i, the differentiator
is equivalent to a capacitor so that the gain constant becomes
an equivalent capacitance, D � C, as illustrated in Fig. 1(a).

DIFFERENTIATING CIRCUITS Figure 1(b) shows the dual case of an inductor.
For voltage mode circuits, differentiators are customarily

Since the dynamics of systems comes through derivatives, two-port devices constructed from operational amplifiers ac-
electronic circuits that perform differentiation are important cording to the circuit of Fig. 2(a) (1, p. 10). In Fig. 2(a), u is a
components both in theory and in practice. In the following voltage, vin, as is y, vout, and the gain constant is D � �RC. If
article we define differentiators, giving their transfer func- an ideal op-amp is assumed, it is an infinite gain device with
tions from which some properties can be inferred. Highly ac- a virtual ground input. Thus,
curate voltage mode physical realizations in terms of op-amp
circuits, as well as current mode ones suitable for very large
scale integration (VLSI) realization, are given. Also included vout(t) = −RC

dvin(t)
dt

(4)
are approximate ones in terms of simple resistor-capacitor
(RC) circuits appropriate for many control system applica-
tions. Since differentiators are not represented in terms of It should be noted that achieving a gain D � �RC near unity
standard state variables, we conclude with a semistate repre- in magnitude usually requires a large resistor; for example, if
sentation. C � 1 �F, then R � 1 M�.

DEFINITION

Here a differentiating circuit, also known as a differentiator,
is defined as an electronic circuit satisfying the law

y(t) = D
du(t)

dt
(1)

y = i

u = v C

(a) (b)
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y = v

where u( � ) is the input to the circuit, y( � ) is the output, Figure 1. (a) Capacitor as a differentiator. Here the input u equals
and D is the differentiator gain, usually taken to be a real v and the output y equals i, which gives Y(s) � I(s) � CsV(s) in the
constant in time t. Because the differentiator is electronic, frequency domain. (b) Inductor as a differentiator. Here the input u
we take u and y to be voltages or currents, though at times equals i and the output y equals v, which gives Y(s) � V(s) � LsI(s)

in the frequency domain.one may wish to consider flux linkages or charge. According
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Figure 2. Op-amp differentiator.

For practical op-amps there are several points to consider.
One is that the op-amp gain is reasonably well approximated
by a one-pole model K(s) � K0/(s � p1) so that the differentia-
tor transfer function becomes
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Figure 4. Current mode differentiator.H(s) = −sRC�
1 − 1

K0

�
− s2RC

K0
+ s(1 + RCp1)

K0

(5)

from which we see that as the frequency gets large the gain
drops toward zero according to K0/s. Besides this sometimes

rating their transconductances, gm. Ignoring their source tofavorable behavior, there are also nonlinearities due to satu-
ration of the op-amp at the bias voltages and added noise due drain conductances, the analysis gives the small-signal trans-
to the transistors and resistors used in the construction of the fer function as [2, Eq. (6)]
op-amp.

In some cases, such as derivative control, it is more eco-
nomical to use the RC circuit of Fig. 3, which gives an approx-
imate differentiator having the transfer function H(s) = iout

iin
=
� −kC

gmp + gmn

��
s

1 + 2sC
gmp + gmn

�
(7)

H(s) = sC
1 + sRC

(6)

where k is the current gain of the output current mirror tran-
sistors and gmn and gmp are the transconductances of the nFor frequencies lower than �p � 1/RC, this circuit approxi-
channel metal oxide semiconductor (NMOS) and p channelmates a differentiator reasonably well, and its gain satu-
metal oxide semiconductor (PMOS) transistors. Conse-rates at higher frequencies so that noise is not unduly am-
quently, the circuit makes a reasonably good current-in cur-plified.
rent-out differentiator through the mid-megahertz frequencyIn terms of modern very large scale integration (VLSI) im-

plementations, it is most convenient to use current mode range. Note that since the transistor transconductances de-
structures. Figure 4 shows a current mode structure which pend on the bias point of the transistors, it is important to
differentiates the signal component of the input using comple- use a regulated voltage source to keep the direct current
mentary metal oxide semiconductor (CMOS) transistors (2). bias stable.
Here the input transistors M1 and M2 act as resistors to con-
vert the input current iin to a voltage which is applied to the
capacitor. The capacitor current, which is essentially the de-

NOISE AND SIGNAL SWING CONSIDERATIONSrivative of this voltage, is transferred through the output cur-
rent mirror transistors M5 and M6, which can give an added

When working with op-amp differentiators, it is important togain k. The analysis of the circuit proceeds by replacing all
consider noise behavior. For this the noise sources are nor-transistors by their small-signal equivalent circuits incorpo-
mally reflected into the input and then the output noise is
found by applying the equivalent noiseless amplifier to the
input noise sources with a good treatment given in Ref. 1, p.
141. Such an operation is automatically carried out in the
PSpice noise analysis. A typical frequency response example
circuit is shown in Fig. 5(a) with its noise input, Fig. 5(b, top)
and noise output, Fig. 5(b, middle), along with the output,
Fig. 5(b, bottom), for a 1 mV input plus noise. In this circuit
a 701 op-amp is used and a reasonably small resistor is in-
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serted in series with the differentiation capacitor to assist in
damping out the noise signal.Figure 3. RC ladder circuit.
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Figure 5. (a) PSpice circuit of a differenti-
ator using 701 op-amp. (b) Response and
noise behavior in the frequency domain.
The top curve represents the input noise,
the middle curve is the output noise, and
the bottom curve is the output response to
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an input voltage of 1 mV plus noise.

SEMISTATE EQUATIONS known to be less sensitive to noise compared to the conven-
tional op-amp differentiator.

Because the standard state-space equations do not exist for a
differentiator, we give a description of it in terms of semistate
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On choosing the semistate vector x � [x1, x2]T � [y, u]T, where ROBERT W. NEWCOMB
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dx
dt

=
[
0 D
0 0

]
dx
dt

=
[
1 0
0 1

]
x +

[
0

−1

]
u = Ax + Bu (11)

y = [1 0]x = Cu (12)
DIFFERENTIATION. See CALCULUS.

which gives DIFFRACTION. See BACKSCATTER; ELECTROMAGNETIC

WAVE SCATTERING.

H(s) = [1 0]
[−1 Ds

0 −1

]−1 [
0

−1

]
= Ds (13)

These semistate equations can be transformed via a linear
transformation into a form that is useful for circuit realiza-
tions based upon integrators (3). Op-amp integrators are


