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CIRCUIT TUNING

Circuit tuning refers to the process of adjusting the values of
electronic components in a circuit to ensure that the fabri-
cated or manufactured circuit performs to specifications. In
digital circuits, where signals are switched functions in the
time domain and correct operation depends largely on the ac-
tive devices switching all the way between their ON and OFF
states, tuning in the sense discussed in this chapter is rarely
necessary. In analog continuous-time circuits, however, sig-
nals are continuous functions of time and frequency so that
circuit performance depends critically on the component val-
ues. Consequently, in all but the most undemanding applica-
tions with wide tolerances, correct circuit operation almost
always requires some form of tuning. Naturally, components
could be manufactured with very tight tolerances, but the re-
sulting fabrication costs would become prohibitive. In prac-
tice, therefore, electronic components used in circuit design
are never or only rarely available as accurately as the nomi-
nal design requires, so we must assume that they are affected
by fabrication and manufacturing tolerances. Furthermore,
regardless of whether a circuit is assembled in discrete form
with discrete components on a printed circuit board (as a hy-
brid circuit), or in integrated form on an integrated circuit
chip, the circuit will be affected by parasitic components and
changing operating conditions, all of which contribute to inac-
curate circuit performance. Consider, for example, the re-
quirement of implementing as a hybrid circuit a time of 1 s
for a timer circuit via an RC time constant � � RC with an
accuracy of 0.1%. Assume that R and C are selected to have
the nominal values R � 100 k� and C � 10 �F, that inexpen-
sive chip capacitors with �20% tolerances are used, and that
the desired fabrication process of thin-film resistors results in
components with �10% tolerances. The fabricated time con-
stant can therefore be expected to lie in the range

0.68 s ≤ τ = 100 k�(1 ± 0.1)10µF(1 ± 0.2) ≤ 1.32 s

In other words, the �-error must be expected to be �32%,
which is far above the specified 0.1%. Tuning is clearly neces-
sary. Because capacitors are difficult to adjust and accurate
capacitors are expensive, let us assume in this simple case
that the capacitor was measured with 0.05% accuracy as C �
11.125 �F (i.e., the measured error was �11.25%). We can
readily compute that the resistor should be adjusted
(trimmed) to the nominal value R � �/C � 1 s/11.125 �F �
89.888 k� within a tolerance of �45 � to yield the correctly
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implemented time constant of 1 s with �0.1% tolerances. Ob-
serve that tuning generally allows the designer to construct a
circuit with less expensive wide-tolerance parts because sub-
sequent tuning of these or other components permits the er-
rors to be corrected. Thus, C was fabricated with 20% toler-
ances but measured with a 0.05% error to permit the resistor
with fabrication tolerances of 10% to be trimmed to a 0.05%
accuracy. Note that implied in this process is the availability
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of measuring instruments with the necessary accuracy.
Tuning has two main purposes. Its most important func- Figure 2. Active RC bandpass filter.

tion is to correct errors in circuit performance caused by such
factors as fabrication tolerances such as in the preceding ex-
ample. Second, it permits a circuit’s function or parameters, ner (manually or electronically) by an amount sufficient to
such as the cut-off frequency of a given low-pass filter, to be overcome the consequences of fabrication tolerances, parasitic
changed to different values to make the circuit more useful or effects, or other such factors.
to be able to accommodate changing operating requirements. An example will help to illustrate the discussion and ter-
But even the best fabrication technology together with tuning minology. Consider the simple second-order active band-pass
will not normally result in a circuit operating with zero errors; circuit in Fig. 2. Its voltage transfer function, under the as-
rather, the aim of tuning is to trim the values of one or more, sumption of ideal operational amplifiers, can be derived to be
or in rare cases of all, components until the circuit’s response
is guaranteed to remain within a specified tolerance range
when the circuit is put into operation. Figure 1 illustrates the
idea for a low-pass filter. Examples are a gain error that is
specified to remain within �0.05 dB, the cut-off frequency f c

of a filter that must not deviate from the design value of, say,
f c � 10 kHz by more than 85 Hz, or the gain of an amplifier
that must settle to, say, 1% of its final value within less than
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1 �s. As these examples indicate, in general, a circuit’s opera-
We see that T(s) is a continuous function of the circuit compo-tion can be specified in the time domain, such as a transient
nents, as are all its coefficients that determine the circuit’sresponse with a certain highest permissible overshoot or a
behavior:maximal settling time, or in the frequency (s) domain through

an input-output transfer function with magnitude, phase, or
delay specifications and certain tolerances (see Fig. 1). This
article focuses on the tuning of filters, that is, of frequency-
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selective networks. Such circuits are continuous functions of
components, described by transfer functions in the s domain, Just as in the earlier example of the RC time constant, the

coefficients will not be implemented precisely if the compo-where tuning of design parameters (e.g., cut-off frequency,
bandwidth, quality factor, and gain), is particularly important nent values have fabrication tolerances. If these component

tolerances are ‘‘too large,’’ generally the coefficient errors willin practice. The concepts discussed in connection with filters
apply equally to other analog circuits. Obviously, in order to become ‘‘too large’’ as well, and the circuit will not function

correctly. In that case, the circuit must be tuned. Further-tune (adjust) a circuit, that circuit must be tunable. That is,
its components must be capable of being varied in some man- more, circuits are generally affected by parasitic components.

Parasitic components, or parasitics, are physical effects that
often can be modeled as ‘‘real components’’ affecting the cir-
cuit’s performance but that frequently are not specified with
sufficient accuracy and are not included in the nominal de-
sign. For instance, in the filter of Fig. 2, a parasitic capacitor
can be assumed to exist between any two nodes or between
any individual node and ground; also, real ‘‘wires’’ are not
ideal short circuit connections with zero resistance but are
resistive and, at high frequencies, even inductive. In the filter
of Fig. 2, a parasitic capacitor Cp between nodes n1 and n2

would let the resistor R2 look like the frequency-dependent
impedance Z2(s) � R2/(1 � sCpR2). Similarly, real resistive
wires would place small resistors rw in series with C1 and C2

and would make these capacitors appear lossy. That is, the
capacitors Ci, i � 1, 2, would present admittances of the form��
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Yi(s) � sCi/(1 � sCirw). Substituting Z2(s) and Yi(s) for R2 andFigure 1. The shaded area in the gain vs. frequency plot shows the
Ci, respectively, into Eq. (1) shows that, depending on the fre-operating region for a low-pass filter that must be expected based on
quency range of interest and the element values, the presenceraw (untuned) fabrication tolerances; the dotted region is the accept-
of these parasitics changes the coefficients of the transferable tolerance range that must be maintained in operation after the

filter is tuned. function, maybe even its type, and consequently the circuit’s
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performance. Similarly, when changes occur in environmental with C2 a free parameter. That there are more circuit compo-
nents than parameters is normal, so the additional ‘‘free’’ ele-operating conditions, such as bias voltages or temperature,

the performance of electronic devices is altered, and as a re- ments may be used at will, for example, to achieve practical
element values or element-value spreads (i.e., the differencesult the fabricated circuit may not perform as specified.

As discussed by Moschytz (1, Sec. 4.4, pp. 394–425), and between the maximum and minimum of a component type,
such as Rmax � Rmin). Technology or cost considerations mayBowron and Stevenson (2, Sec. 9.5, pp. 247–251), the opera-

tion of tuning can be classified into functional and determinis- place further constraints on tuning by removing some compo-
nents from the list of tunable ones. Thus, in hybrid circuitstic tuning. In functional tuning, the designed circuit is assem-

bled, and its performance is measured. By analyzing the with thin- or thick-film technology as in the preceding exam-
ple, the capacitors will likely be fixed; only the two resistorscircuit, we can identify which component affects the perfor-

mance parameter to be tuned. These predetermined compo- will be determined as in Eq. (5) from the prescribed circuit
parameters �0 and Q and the selected and measured capacitornents are then adjusted in situ (i.e., with the circuit in opera-

tion), until errors in performance parameters are reduced to values. This choice leaves the midband gain fixed at the
value K � Q/(�0C1R1). Precise deterministic tuning requiresacceptable tolerances. The process is complicated by the fact

that tuning is most often interactive, meaning that adjusting careful measurements and accurate models and design equa-
tions that, in contrast to the idealized expressions in Eq. (5),a given component will vary several circuit parameters; thus

iterative routines are normally called for. As an example, con- describe circuit behavior along with loss, parasitic, and envi-
ronmental effects. As we saw in Eq. (5), the equations thatsider again the active RC filter in Fig. 2. If its bandpass trans-

fer function, Eq. (1), is expressed in the measurable terms of must be solved are highly nonlinear and tend to be very com-
plex, particularly if parasitic components also are involved.center frequency �0, the pole quality factor Q � �0/��, the pa-

rameter that determines the filter’s bandwidth ��, and mid- Computer tools are almost always used to find the solution.
Typically, automatic laser trimming is employed to tune theband (at s � j�0) gain K as
resistors to the desired tolerances (e.g., 0.1%). A second tun-
ing iteration using functional tuning may be required because
the assembled circuit under power may still not meet the
specifications as a result of further parasitic or loading effects
that could not be accounted for in the initial deterministic
tuning step.

SENSITIVITY
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We mentioned earlier that a filter parameter P depends on
These parameters are expressed in terms of the circuit compo- the values ki of the components used to manufacture a cir-
nents and we arrive at the more meaningful and useful de- cuit, P � P(ki), and that real circuit components or parts can
sign equations be realized only to within some tolerances ��ki. That is, the

values of the parts used to assemble circuits are ki � �ki.
Clearly, the designer needs to know how much these toler-
ances will affect the circuit and whether the resulting errors
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can be corrected by adjusting (tuning) the circuit after fabri-
cation. Obviously, the parameter to be tuned and must de-instead of Eq. (2). It is clear that varying any of the passive
pend on the component to be varied. For example, Q in Eq.components will change all three filter parameters, so that
(4) is a function of the components R1, R2, C1, and C2, any oneexpensive and time-consuming iterative tuning is required.
of which can be adjusted to correct fabrication errors in Q. InHowever, functional tuning has the advantage that the ef-
general, the questions of how large the adjustment of afects of all component and layout parasitics, losses, loading,
component has to be, whether it should be increased orand other hard-to-model or hard-to-predict factors are ac-
decreased, and what the best tuning sequence is are an-counted for because the performance of the complete circuit
swered by considering the parameter’s sensitivity to compo-is measured under actual operating conditions. In general,
nent tolerances. How sensitive P is to the component-valuemore accurate results are obtained by basing functional
tolerances, that is how large the deviation �P of the param-tuning on measurements of phase rather than of magnitude
eter in question is, is computed for small changes via thebecause phase tends to be more sensitive to component
derivative of P(ki) with respect to ki, �P/�ki, at the nominalerrors.
value ki:Deterministic tuning refers to calculating the needed value

of a component from circuit equations and then adjusting the
component to that value. We determined the resistor R �
�/C � 89.888 k� to set a time constant of 1 s at the beginning

�P = ∂P(ki)

∂ki
�ki (6)

of this article in this manner. Similarly, from Eq. (4) we can
derive the three equations in the four unknowns R1, R2, C1, Typically, designers are less interested in the absolute toler-
and C2 ances than in the relative ones, that is,
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SP
ki

is the sensitivity, defined as ‘‘the relative change of the error. To illustrate the calculations, let us apply Eq. (11) to
�0 in Eq. (4). Using Eqs. (9) and (10), the result isparameter divided by the relative change of the component,’’

SP
ki

= �P/P
�ki/ki

(8)

A detailed discussion of sensitivity issues can be found in
many text books [see Schaumann, Ghausi, and Laker (3),
Chap. 3, pp. 124–196]. For example, the sensitivity of �0 in
Eq. (4) to changes in R1 is readily computed to be
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The last expression gives insight into whether and how �0 can
be tuned. Because the effects of the errors are additive, tun-
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ing just one component, say R1, will suffice for given toler-
ances of R2, C1, and C2 if �R1 can be large enough. If we haveS�0R1

� �0.5 means that the percentage error in the parameter
measured the R2 errors at �12%, and those of C1 and C2 at ��0 is one-half the size of the percentage error of R1 and oppo-
15% and �10%, respectively, Eq. (12) results insite in sign (i.e., if R1 increases, �0 decreases). A large number

of useful sensitivity relations that make sensitivity calcula-
tions easy can be derived [see, for example, Moschytz (1), Sec.
1.6, pp. 103–105, 1.5, pp. 71–102, and 4.3, pp. 371–393, or
Schaumann, Ghausi, and Laker (3), Chap. 3, pp. 124–196].
Of particular use for our discussion of tuning are
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indicating that R1 must be decreased by 13% to yield, within
the linearized approximations made, ��0 � 0. Inserting com-
ponents with these tolerances into Eq. (4) for �0 confirms the
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result obtained.
To expand these results and gain further insight into the

where � is a constant, independent of k. The last two of these effects of tolerances, as well as beneficial tuning strategies
equations are special cases of the first one for n � �1 and and their constraints, we remember that a transfer function
n � 1/2, respectively. The last equation generalizes the result generally depends on more than one parameter. Returning to
obtained in Eq. (9). Equations (7) and (8) indicate that, for the example of Fig. 2 described by the function T(s) in Eq. (3)
small differential changes, the parameter deviation caused by with the three parameters �0, Q, and K given in Eq. (4) and
a component error and, conversely from the point of view of applying Eq. (11) leads to
tuning, the change in component value necessary to achieve
a desired change in parameter can be computed if the sensi-
tivity is known.

In Eqs. (6) and (7) we purposely used partial derivatives,
�P/�ki, to indicate that circuit parameters normally depend
on more than one component [see Eq. (4)], all of which affect
the accuracy of the parameter. To get a more complete picture
of the combined effect of the tolerances and to gain insight
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into the operation of tuning involving several parameters, to-
tal derivatives need to be computed. Assuming P depends on These equations can be expressed in matrix form as follows:
n components, we find [see Schaumann, Ghausi, and Laker
(3), Chap. 3, pp. 124–196]
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The sensitivity matrix in Eq. (15) [see Moschytz (1), Sec. 4.3,
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pp. 376–393, or Schaumann, Ghausi, and Laker (3), Sec. 3.3,
pp. 161–188], a 3 � 4 matrix in this case, shows how theindicating that the sum of all relative component tolerances,

weighted by their sensitivities, contributes to the parameter tolerances of all the filter parameters depend on the compo-
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nent tolerances. We see that adjusting any one of the circuit As can be verified readily, each component affects only one
components will vary all filter parameters as long as all the circuit parameter. Again, sensitivities to C2 are irrelevant be-
sensitivities are nonzero, which is indeed the case for the cir- cause C2 is fixed, and the effects of its tolerances can be cor-
cuit in Fig. 2. Thus, noninteractive tuning is not possible. To rected by the remaining components.
illustrate the form of the sensitivity matrix, we calculate for An important observation on the effects of tolerances on
the circuit in Fig. 2 circuit parameters and the resultant need for tuning can

be made from Eq. (16). We see that the sensitivities of the
dimensionless parameters (parameters with no physical
unit) Q and K to the two resistors and similarly to the two
capacitors are equal in magnitude but opposite in sign.
Because dimensionless parameters are determined by ratios
of like components [see Eq. (4)], we obtain from Eq. (4)
with Eq. (10)
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Note that the first line of Eq. (16) is equal to the last part of
Thus, the tolerances of Q areEq. (12).

The tuning situation is simpler if the matrix elements
above the main diagonal are zero as was assumed for an arbi-
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trary different circuit in Eq. (17a):

with analogous expressions obtained for the gain K [see the
last line of Eq. (16)]. Thus, if the technology chosen to imple-
ment the filter permits ratios of resistors and capacitors to be
realized accurately (i.e., if all resistors have equal tolerances,
as do all capacitors), tuning of dimensionless parameters will
generally not be necessary. A prime example is integrated cir-
cuit technology, where absolute value tolerances of resistors
and capacitors may reach 20 to 50%, but ratios, depending
mainly on processing mask dimensions, are readily imple-
mented with tolerances of a fraction of 1%. As an example,
assume that the circuit in Fig. 2 was designed, as is often the
case, with two identical capacitors C1 � C2 � C with toler-
ances of 20% and that R1 and R2 have tolerances of 10% each,
that is,
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C1 = C2 = Cn + �C = Cn(1 + 0.2),

R1 = R1n + �R1 = R1n(1 + 0.1), and

R2 = R2n(1 + 0.1)

(20)

Here the sensitivities to C2 are irrelevant because C2 is a free
where the subscript n stands for the nominal values. Fromparameter and is assumed fixed so that the effects of C2 toler-
Eq. (19), we findances can be corrected by varying the remaining elements.

We see then that first �0 can be tuned by R1, next Q is tuned
by R2 without disturbing �0 because S�0R2

is zero, and finally K �Q = [SQ
R(0.1 − 0.1) + SQ

C
(0.2 − 0.2)]Q = 0

is tuned by C1 without disturbing the previous two adjust-
That is, the quality factor Q, depending only on ratios of likements. Thus a sensitivity matrix of the structure indicated in
components, is basically unaffected because all like compo-Eq. (17a) with elements above the main diagonal equal to zero
nents have equal fabrication tolerances. This result can bepermits sequential ‘‘noninteractive’’ tuning if the tuning order

is chosen correctly. Completely noninteractive tuning without confirmed directly from Eq. (4) where, for equal capacitors,
regard to the tuning order requires all elements in the sensi-
tivity matrix off the main diagnonal to be zero as indicated
for another circuit in Eq. (17b): Q = 1

2

√
R2

R1
= 1

2

√
R2n(1 + 0.1)

R1n(1 + 0.1)
≈ Qn (21)

Naturally, if R1 and R2 are selected from different manufac-
turing lots, or if R1 and R2 are from physically different fabri-
cation processes (such as a carbon and a metal-film resistor),
tolerances cannot be assumed to be equal, Q errors are not
zero, and tuning will be required.

The situation is quite different for any dimensioned circuit
parameter, that is, a parameter with a physical unit (e.g., a
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(17b)
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frequency or time constant, or a voltage or a current). Such TUNING DISCRETE CIRCUITS
parameters are determined by absolute values of components,

Whether implemented on a printed circuit board, with chipas seen for �0 in Eq. (4). Absolute values, depending on physi-
and thin- or thick-film components in hybrid form, by use ofcal process parameters e.g., resistivity, permittivity, or diffu-
wire-wrapping, or in any other technology, an advantage ofsion depth, are very difficult to control and will usually suffer
discrete circuits for the purpose of tuning is that circuit ele-from large process variations. Thus, for the component toler-
ments are accessible individually before or after assembly forances in Eq. (20), sensitivity calculations predict from Eqs.
deterministic or functional adjusting. Thus, after a circuit is(10) and (12) the realized center frequency error
assembled and found not to meet the design specifications,
the circuit components (most commonly the resistors or induc-
tors), can be varied until the performance is as required. All
the previous general discussion applies to the rest of the arti-
cle so we shall present only those special techniques and con-

�ω0 ≈ −1
2

(
�R1

R1
+ �R2

R2
+ �C1

C1
+ �C2

C2

)
ω0

= −1
2

(0.1 + 0.1 + 0.2 + 0.2) = −0.3ω0

(22a)

siderations that have been found particularly useful or impor-
tant for passive and active filters.

that is, all individual component tolerances add to a �30%
frequency error. Again, the validity of this sensitivity result Passive Filters
can be confirmed directly from Eq. (4):

Discrete passive filters are almost always implemented as
lossless ladder circuits, that is, the components are inductors
L and capacitors C as is illustrated in the typical circuit in
Fig. 3. These LC filters are designed such that the maximum
signal power is transmitted from a resistive source to a re-
sistive load in the frequency range of interest; a brief treat-
ment can be found in Schaumann, Ghausi, and Laker (3),
Chap. 2, pp. 71–123. As pointed out in our earlier discussion,
accurate filter behavior depends on precise element values so
that it is normally necessary to trim components. This tuning

ω0 = 1√
R1R2C1C2

= 1

C
√

R1R2

= 1

Cn(1 + 0.2)
√

R1nR2n(1 + 0.1 + 0.1 + 0.01)

≈ ω0n

(1 + .02)
√

1 + 0.2
≈ ω0n

(1 + 0.2)(1 + 0.1)

= ω0n

(1 + 0.32)
≈ ω0n(1 − 0.24)

(22b)

is almost always accomplished via variable inductors whose
values are changed by screwing a ferrite slug (the ‘‘trimmer’’)The difference between the exact result in Eq. (22b) and
into or out of the magnetic core of the inductive windings.the one obtained via the sensitivity approach in Eq. (22a)
Variable discrete capacitors are hard to construct, expensive,arises because the latter assumes incremental component
and rarely used.changes whereas the former assumed the relatively large

LC filters have the advantage of very low sensitivities tochanges of 10 and 20%. The center frequency �0 is approxi-
all their elements [see Schaumann, Ghausi, and Laker (3),mately 25–30% smaller than specified and must be corrected
Chaps. 2 and 3, pp. 71–196], which makes it possible to as-by tuning. This can be accomplished, for example, by trim-
semble the filter using less expensive wide-tolerance compo-ming the two resistors to be 27% smaller than their fabricated
nents. This property is further enhanced by the fact that loss-values, that is,
less ladders are very easy to tune so that large tolerances
of one component can be compensated by accurately tuning
another. For example, the resonant frequency f 0 � 1/�LC of
an LC resonance circuit has �15% tolerances if both L and C

R1 = R1n(1 + 0.1)(1 − 0.27) ≈ R1n(1 − 0.2),

R2 ≈ R2n(1 − 0.2)

have �15% tolerances; if then L is trimmed to �0.5% of its
correct value for the existing capacitor (with �15% toler-so that sensitivity calculations yield
ances), f 0 is accurate to within 0.25% without requiring any
narrower manufacturing tolerances. Without tuning, a 0.25%

�ω0 ≈ −0.5(−0.2 − 0.2 + 0.2 + 0.2) = 0
f 0 error would require the same narrow 0.25% tolerance in

More exact deterministic tuning requires the resistors to be
trimmed to 24.2% smaller than the fabricated value as shown
in Eq. (23):

ω0 ≈ 1

Cn(1 + 0.2)
√

R1nR2n(1 + 0.1)(1 − δ)
= ω0n

1.32(1 − δ)
⇒ ω0n

(23)

where � is the trimming change to be applied to the resistors
as fabricated. Equation (23) results in � � 0.242. Of course,

C3

C1

n2 A+ +

R1 L1 L2 L3

Vi Vo

C5C4

C2

R2

�0 tuning could have been accomplished by adjusting only one Figure 3. Sixth-order LC low-pass filter. The filter is to realize a
of the resistors by a larger amount; we trimmed both resistors maximally flat passband with a 2 dB bandwidth of f c � 6 kHz, mini-
by equal amounts to maintain the value of their ratio that mum stopband attenuation �s � 57.5 dB with transmission zeros at
determines Q according to Eq. (21), thereby avoiding the need 12 and 24 kHz. The nominal components are listed in Table 1. Note

that at dc the filter has �20 log[R2/(R1 � R2)] � 6.02 dB attenuation.to retune Q.
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Table 1. LC Low-pass Filter (elements in mH, nF, and k�)

Components L1 C1 L2 C2 L3 C3 C4 C5 R1 R2

Nominal values 27.00 6.490 46.65 0.943 12.67 6.977 45.55 33.90 1.00 1.00
Performance fc � 6.0 kHz @ �p � 8.03 dB; fz1 � 12.0 kHz, fz2 � 24.0 kHz, �s � 57.5 dB

15% tolerance 31 7.5 52 1.1 14 8 51 38 1.05 1.05
values

Performance fc � 5.36 kHz @ �p � 8.01 dB; fz1 � 10.3 kHz, fz2 � 20.7 kHz, �s � 56.7 dB
untuned

Tuned values 23.5 7.5 40 1.1 14 8 51 38 1.05 1.05
Performance fc � 6.07 kHz @ �p � 8.03 dB; fz1 � 12.0 kHz, fz2 � 24.0 kHz, �s � 57.8 dB

tuned

both components, which is likely more expensive than a sim- tant, the tolerances of the untuned capacitors must not be
too large. Finally, we observe that the tuning properties ofple tuning step.

It is well known that lossless ladders can be tuned quite passive LC ladders translate directly to active simulations of
these filters via transconductance-C and gyrator-C circuits,accurately simply by adjusting the components to realize the

prescribed transmission zeros [see Heinlein and Holmes (4), which are widely used in high-frequency integrated circuits
for communications (see the following discussion).Sec. 12.3, pp. 591–604, and Christian (5), Chap. 8, pp. 167–

176]. Transmission zeros, frequencies where the attenuation
is infinite, usually depend on only two elements, a capacitor Active Filters
and an inductor in a parallel resonant ciruit (see Fig. 3) with

Several differences must be kept in mind when tuning activethe parallel tank circuits L1, C1 and L2, C2 in the series
filters as compared to passive lossless filters, particularly tobranches of the filter, or alternatively with series LC reso-
ladders:nance circuits in the shunt branches. The resonant frequen-

cies f zi � 1/�LiCi, i � 1, 2, of the LC tank circuits are not
1. Active filters are almost always more sensitive to com-affected by other elements in the filter, so that tuning is

ponent tolerances than LC ladders. Consequently, tun-largely noninteractive. As mentioned, the effect of the toler-
ing is always required in practice.ances of one component, say C, are corrected by tuning L. It

2. Tuning in active filters is almost always interactive;is performed by adjusting the inductors for maximum attenu-
that is, a filter parameter depends on many or all circuitation at the readily identified frequencies of zero transmission
components as discussed in connection with the circuitwhile observing the response of the complete manufactured
in Fig. 2 and the sensitivity discussion related to Eqs.filter on a network analyzer. Tuning accurancies of the trans-
(15) and (16). Consequently, tuning active filters usu-mission zeros of 0.05% or less should be aimed at. Such tun-
ally requires computer aids to solve the complicateding of the transmission zeros is almost always sufficient even
nonlinear tuning equations [see, for example, the rela-if the circuit elements have fairly large tolerances [see Hein-
tively simple case in Eq. (4)].lein and Holmes (4), Sec. 12.3, pp. 594–604]. If even better

3. The performance of the active devices, such as opera-accuracy is needed, adjustments of those inductors that do
tional amplifiers (op amps), and their often large toler-not cause finite transmission zeros, such as L3 in Fig. 3, may
ances almost always strongly affects the filter perfor-need to be performed [see Christian (5), Chap. 8, pp. 167–
mance and must be accounted for in design and in176]. For instance, consider the filter in Fig. 3 realized with
tuning. Because active-device behavior is often hard tounreasonably large tolerances of �15%, using the components
model or account for, functional tuning of the fabricatedshown in Table 1. This places the two resonant frequencies at
circuit is normally the only method to ensure accurate10.3 and 20.7 kHz, with the minimum stopband attenuation
circuit performance.equal to only 56.7 dB; the 2 dB passband corner is reduced to

5.36 kHz. If we next tune the transmission zero frequencies
In discrete active filters constructed with resistors, capaci-to 12 and 24 kHz by adjusting only the inductors L1 and L2 to

tors, and operational amplifiers on a circuit board or in thin-23.5 and 40 mH, respectively, the minimum stopband attenu-
or thick-film form, tuning is almost always performed by var-ation is increased to 57.8 dB, and the 2 dB bandwidth of the
ying the resistors. Variable resistors, potentiometers, arepassband is measured as f c � 6.07 kHz (refer to Table 1).
available in many forms, technologies, and sizes required toWe still note that when functional tuning is performed, the
make the necessary adjustments.filter must be operated with the correct terminations for

which it was designed [see Christian (5), Sec. 8.2, pp. 168–
173]. Large performance errors, not just at dc or low frequen- Second-Order Filters. The main building blocks of active

filters are second-order sections, such as the bandpass circuitcies, will result if the nominal terminations are severely al-
tered. For example, an LC filter designed for 600 � in Fig. 2. Many of the tuning strategies and concepts were

presented earlier in connection with that circuit and the dis-terminations cannot be correctly tuned by connecting it di-
rectly without terminations to a high-frequency network ana- cussion of sensitivity. An important consideration when tun-

ing an active filter is its dependence on the active devices aslyzer whose input and source impedances are 50 �. Also, if
maintaining an accurate narrow passband ripple is impor- mentioned previously in point 3. To illustrate the problem,
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consider again the bandpass filter in Fig. 2. The transfer func-
tion T(s) in Eq. (1) is independent of the frequency-dependent
gain A(s) of the op amp only because the analysis assumed
that the amplifier is ideal, that is, it has constant and very
large (ideally infinite) gain, A � �. In practice, T(s) is also a

V1 T1

   1, Q1, K1ω

T2

   2, Q2, K2ω

Tn

   n, Qn, Knω
...

function of A(s) as a more careful analysis shows:
Figure 4. Cascade realization of 2nth-order filter. The n second-or-
der sections do not interact with each other and can be tuned inde-
pendently, that is, each section Ti can be tuned to its nominal values
�i, Qi, and Hi, i � 1, 2, . . ., n, without being affected by the other sec-
tions.

tuning is a main advantage of cascade implementations be-
cause each section performs in isolation from the others so
that it can be tuned without interactions from the rest of the

T(s) = V2

V1

=−
1

R1C1
s

A(s)
1 + A(s)

s2 + 1
R2

{
1

C1
+ 1

C2
+ 1

R1C1[1+A(s)]

}
s+ 1

R1R2C1C2

(24)
circuit. Remember, though, that each section by itself may

Evidently, for A � �, Eq. (24) reduces to Eq. (1), but finite require interactive tuning. Figure 4 shows the circuit struc-
and frequency-dependent gain can cause severe changes in ture where each of the blocks is a second-order section such
T(s) in all but the lowest-frequency applications. Consider the as the ones in Figs. 2 and 5. If the total filter order is odd,
often-used integrator model for the operational amplifier, one of the sections is, of course, of first order.
A(s) � �t/s, where �t is the unity gain frequency (or the gain- To illustrate this point, assume a fourth-order Chebyshev
bandwidth product) of the op amp with the typical value low-pass filter is to be realized with a 1 dB ripple passband
�t � 2� � f t � 2� � 1.5 MHz. Using this simple model, which in 0 � f � 28 kHz with passband gain equal to H � 20 dB. The
is valid for frequencies up to about 10 to 20% of f t, and assum- transfer function is found to be
ing �t � �, the transfer function becomes

T(s) = T1(s) × T2(s)

= 1.66ω2
0

s2 + 0.279ω0s + 0.987ω2
0

1.66ω2
0

s2 + 0.674ω0s + 0.279ω2
0

(26)

with �0 � 2� � 28,000 s�1 � 175.93 � 103 s�1 [see Schaumann,
Ghausi, and Laker (3), Sec. 1.6, pp. 36–64]. Let the function
be realized by two sections of the form shown in Figure 5.
Assuming that the op amps are ideal, the transfer function of

T(s) = V2

V1

≈ −
1

C1R1
s

s2

(
1 + 1

ωtC1R1

)
+ 1

R2

(
1

C1
+ 1

C2

)
s + 1

R1R2C1C2

(25)
the low-pass section is readily derived as

To get an estimate of the resulting error, let the circuit be
designed with C1 � C2 � C � 10 nF, R1 � 66.32 � and R2 �
9.55 k� to realize the nominal parameters f 0 � 20 kHz, Q �
6, and K � 72. Simulation (or measurement with a very fast
op amp) shows that the resulting circuit performance is as
desired. However, if the filter is implemented with a 741-type
op amp with f t � 1.5 MHz, the measured performance indi-
cates f 0 � 18.5 kHz, Q � 6.85, and K � 76.75. Because of the

V2

V1
= Kω2

0

s2 + s
ω0

Q
+ ω2

0

=
α1α2

1
C1R1C2R2

s2 + s
(

1
C1R1

+ 1 − α1α2

C2R2

)
+ 1

C1R1C2R2

(27)

complicated expressions involving a real op amp, it is appro-
If the op amp gain is modeled as A(s) � �t/s, �i is to be re-priate to use functional tuning with the help of a network

placed byanalyzer. Keeping C constant, the resulting resistor values,
R1 � 68.5 � and R2 � 8.00 k�, lead to f 0 � 20 kHz and Q �
6.06. The midband gain for these element values equals K � αi ⇒ αi

1 + αi/A(s)
≈ αi

1 + sαi/ωt
(28)

62.4 (remember from the earlier discussion that K for the
circuit in Fig. 2 cannot be separately adjusted if the capaci-
tors are predetermined).

High-Order Filters. The two main methods for realizing ac-
tive filters of order greater than two are active simulations
of lossless ladders and cascading second-order sections. We
mentioned in connection with the earlier discussion of LC lad-
ders that tuning of active ladder simulations is completely
analogous to that of the passive LC ladder: the electronic cir-
cuits that simulate the inductors are adjusted until the trans-
mission zeros are implemented correctly. It remains to dis-
cuss tuning for the most frequently used method of realizing

C2

C1

A
–

+ A

α

–

+

R1V1

V2

R2

R0
R0

R0(  2–1)
αR0(  1–1)

high-order filters, the cascading of first- and second-order sec-
tions. Apart from good sensitivity properties, relatively easy Figure 5. Two-amplifier active low-pass filter.
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We observe again that the circuit parameters �0, Q, and gain plementation method because fabrication tolerances and par-
asitic effects are generally too large for filters to work cor-K are functions of all the circuit elements so that design and

tuning of each section will require iterative procedures, al- rectly without adjustment. Understandably, tuning in the
traditional sense is impossible when the complete circuit isthough section 1 is independent of section 2 as just discussed.

Because there are six ‘‘components’’ (R1, R2, C1, C2, �1, and integrated on an IC because individual components are not
accessible and cannot be varied. To handle this problem, sev-�2) and only three parameters, some simplifying design

choices can be made. Choosing C1 � C2 � C, R1 � R, and eral techniques have been developed. They permit tuning the
circuits electronically by varying the bias voltages VB or biasR2 � k2R (and assuming ideal op amps), Eq. (27) leads to in

the expressions currents IB of the active electronic components (transconduc-
tors or amplifiers). In the usual approach, the performance of
the fabricated circuit is compared to a suitably chosen accu-
rate reference, such as an external precision resistor Re to set
the value of an electronic on-chip transconductance to gm �

ω0 = 1
kRC

, Q = 1

k + 1
k

(1 − K)

, and K = α1α2 (29)

1/Re, or to a reference frequency �r to set the time constant
The circuit is designed by first computing k from the given to C/gm � 1/�r. This approach is indeed used in practice,

values Q and K; next we choose a suitable capacitor value C where often the external parameters, Re or �e, are adjusted
and calculate R � 1/(k�0C). Finally, we determine the feed- manually to the required tolerances. Tuning can be handled
back resistors on the two op amps. Because only the pro- by connecting the circuit to be tuned into an on-chip control
duct �1�2 is relevant, we choose �1�2 � �2 � K (i.e., � � loop, which automatically adjusts bias voltages or currents
�K � �1.66 � 1.288). Working through the design equations until the errors are reduced to zero or an acceptable level [see
and choosing all capacitors equal to C � 150 pF (standard 5% Schaumann, Ghausi, and Laker (3), Sec. 7.3, pp. 418–446,
values) and R0 � 10 k�, results in (� � 1)R0 � 2.87 k� for and Johns and Martin (6), Sec. 15.7, pp. 626–635]. [A particu-
both sections: k � 0.965, R1 � 40.2 k�, R2 � 36.5 k� for sec- larly useful reference is Tsividis and Voorman (7); it contains
tion 1 and k � 1.671, R1 � 42.2 k�, R2 � 120.1 k� for section papers on all aspects of integrated filters, including tuning.]
2. All resistors have standard 1% tolerance values. Building Naturally, this process requires that the circuit is designed to
the circuit with 741-type op amps with f t � 1.5 MHz results be tunable, that is, that the components are variable over a
in a ripple width of almost 3 dB, the reduced cut-off frequency range sufficiently wide to permit errors caused by fabrication
of 27.2 kHz, and noticeable peaking at the band-edge. Thus, tolerances or temperature drifts to be recovered. We also
tuning is required. The errors can be attributed largely to the must pay attention to keeping the tuning circuitry relatively
5% capacitor errors and the transfer function changes as a simple because chip area and power consumption are at a pre-
result of the finite f t in Eq. (28). mium. Although digital tuning schemes are conceptually at-

To accomplish tuning in this case, deterministic tuning tractive, analog methods are often preferred. The reason is
may be employed if careful modeling of the op amp behavior, the need to minimize or eliminate generating digital (switch-
using Eq. (28), and of parasitic effects is used and if the un- ing) noise, which can enter the sensitive analog signal path
tuned components (the capacitors) are measured carefully through parasitic capacitive coupling or through the sub-
and accurately. Because of the many interacting effects in the strate, causing the dynamic range or the signal-to-noise ratio
second-order sections, using a computer program to solve the to deteriorate.
coupled nonlinear equations is unavoidable, and the resistors
are trimmed to their computed values. Functional tuning in Automatic Tuning
this case may be more convenient, as well as more reliable in

Let us illustrate the concepts and techniques with a simplepractice. For this purpose, the circuit is analyzed, and sensi-
second-order example. Higher-order filters are treated in antivities are computed to help understand which components
entirely analogous fashion; the principles do not change. Con-affect the circuit parameters most strongly. Because the sec-
sider the gm–C filter in Fig. 6, which realizes the transfertions do not interact, the high-order circuit is separated into
functionits sections, and each section’s functional performance is mea-

sured and adjusted on a network analyzer. After the perfor-
mance of all second-order blocks is found to lie within the
specified tolerances, the sections are reconnected in cascade. T(s) = V0

V1
=

αs2 + s
(

α
gm1

C1
− β

gm2

C2

)
+ gm0 gm2

C1C2

s2 + s
gm1

C1
+ gm1gm2

C1C2

(30)

TUNING INTEGRATED CIRCUITS

with pole frequency and pole Q equal toWith the increasing demand for fully integrated microelec-
tronic systems, naturally, analog circuits will have to be
placed on an integrated circuit (IC) along with digital ones.
Of considerable interest are communication circuits where

ω0 =
√

gm1gm2

C1C2
, Q = ω0C1

gm1
=

√
C1/C2

gm1/gm2
(31)

bandwidths may reach many megahertz. Numerous applica-
tions call for on-chip high-frequency analog filters. Their fre- Comparing Eq. (31) to Eq. (2) indicates that the filter parame-

ters for this technology are determined in fundamentally thequency parameters, which in discrete active filters are set by
RC time constants, are in integrated filters most often de- same way as for discrete active circuits: the frequency is de-

termined by time constants (Ci/gmi) and the quality factor, bysigned with voltage-to-current converters (transconductors),
Io � gmVi, and capacitors (i.e., as � � 1/� � gm/C). As discussed ratios of like components. Analogous statements are true for

the numerator coefficients of T(s). We can conclude then that,earlier, filter performance must be tuned regardless of the im-
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in principle, tuning can proceed in a manner quite similar to
the one discussed in the beginning of this article if we can
just develop a procedure for varying the on-chip components.
To gain an understanding of what needs to be tuned in an
integrated filter, let us introduce a more convenient notation
that uses the ratios of the components to some suitably cho-
sen unit values gm and C,

gmi = gigm,Ci = ciC, i = 1, 2, and ωu = gm

C
(32)

gm

+

–

gmc

PD
+

–

VR

VB

Ic

VC

C

Cc

PD

To the main filter’s
transconductors

where �u is a unit frequency parameter and gi and ci are the
dimensionless component ratios. With this notation, Eq. (30) Figure 7. Automatic control loop to set �u � gm/C via an applied ref-
becomes erence signal VR with frequency �R. The capacitor voltage equals

VC � VR(gm/j�RC), which makes the control current Ic � gmcVR(1 �

gm/j�RC). The operation is explained in the text.

ceptually, the block diagram in Fig. 7 shows the method (8).
T(s) = V0

V1
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αs2 + s
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α
g1

c1
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)
ωu + g0g2

c1c2
ω2

u

s2 + s
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c1
ωu + g1g2

c1c2
ω2

u

(33)

The control loop equates the inaccurate unit frequency �u �
gm/C to the accurate reference frequency �R in the following
way: �R is chosen in the vicinity of the most critical frequencyCasting the transfer function in the form shown in Eq. (33)
parameters of the filter (the band-edge for a low-pass, mid-makes clear that the coefficient of si is proportional to �n�i

u ,
band for a bandpass filter), where sensitivities are highest.where n is the order of the filter, n � 2 in Eq. (33); the con-
The transconductance gm to be tuned is assumed to be propor-stants of proportionality are determined by ratios of like com-
tional to the bias voltage VB, such that gm � kVB where k is aponents, which are very accurately designable with IC tech-
constant of proportionality with units of A/V2. gm generatesnology. The same is true for filters of arbitrary order. For
an output current I � gmVR, which results in the capacitorexample, the pole frequency for the circuit in Fig. 6 is deter-
voltage VC � gmVR/( j�RC). The two matched peak detectors PDmined as �u times a designable quantity, �0 � �u�g1g2/(c1c2). convert the two signals VR and VC to their dc peak values, soWe may conclude therefore that it is only necessary to tune
that any phase differences do not matter when comparing the�u � gm/C, which, as stated earlier, as a ratio of two electri-
signals at the input of gmc. The dc output current Ic �cally dissimilar components will have large fabrication toler-
gmcVR�1 � [gm/( j�RC)]� of the control-transconductance gmcances. In addition, the electronic circuit that implements the
charges the storage capacitor Cc to the required bias voltagetransconductance gm depends on temperature, bias, and other
VB for the transconductance gm. The values gmc and Cc deter-conditions, so that �u can be expected to drift during opera-
mine the loop gain; they influence the speed of conversion buttion. It can be seen from Eq. (33) that �u simply scales the
are otherwise not critical. If the value of gm gets too largefrequency, that is, the only effect of varying �u is a shift of
because of fabrication tolerances, temperature, or other ef-the filter’s transfer function along the frequency axis.
fects, Ic becomes negative, Cc discharges, and VB, that is gm �

We stated earlier that tuning a time constant, or, in the
kVB, is reduced. Conversely, if gm is too small, Ic becomes posi-

present case, the frequency parameter �u, is accomplished by tive and charges Cc, and the feedback loop acts to increase
equating it via a control loop to an external reference, in this VB and gm. The loop stabilizes when VC and VR are equal, that
case a reference frequency �R such as a clock frequency. Con- is, when gm(VB)/C is equal to the accurate reference frequency

�R. The gmc–Cc combination is, of course, an integrator with
ideally infinite dc gain to amplify the shrinking error signal
at the input of gmc. In practice, the open loop dc gain of a
transconductance of 35 to 50 dB is more than adequate. Note
that the loop sets the value of �u to �R regardless of the causes
of any errors: fabrication tolerances, parasitic effects, temper-
ature drifts, aging, or changes in dc bias.

We point out that although the scheme just discussed only
varies gm, it actually controls the time constant C/gm, that is,
errors in both gm and C are accounted for. If one wishes to
control only gm, the capacitor C in Fig. 7 is replaced by an
accurate resistor Re, and the feedback loop will converge to
gm � 1/Re.

Notice that the feedback loop in Fig. 7 controls directly

C1

gm0

–

+
gm1

–

+
gm2

–

+
gm3

–

+
V1

V2

β

C2α

(1–   )C1β (1–   )C2α

only the transconductance gm (as does the frequency control
circuit in Fig. 8) such that the unit frequency parameter �uFigure 6. A general second-order transconductance-C filter. The cir-
within the control circuit is realized correctly. The actual filtercuit realizes arbitrary zeros by feeding the input signal into portions

�C1 and �C2 of the capacitors C1 and C2. is not tuned. However, good matching and tracking can be
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Schaumann, Ghausi, and Laker (3), Chap. 7, pp. 410–486] to
small parasitic phase errors in the feedback loops of active
filters, so that Q errors may call for tuning as well, especially
as operating frequencies increase. The problem is handled in
much the same way as frequency tuning. One devises a model
(the Q-model in Fig. 8) that represents the Q errors to be
expected in the filter and encloses this model circuit in a con-
trol loop where feedback acts to reduce the error to zero. Fig-
ure 8 illustrates the principle. In the Q control loop, a Q-VCO
(tuned correctly by the applied frequency control signal Vf)
sends a test signal to the Q model that is designed to repre-
sent correctly the Q errors to be expected in the filter to be
tuned, and through a peak detector PD to an amplifier of gain
K. K is the gain of an accurately designable dc amplifier. Note
that the positions of PD and K could be interchanged in prin-
ciple, but a switch would require that K is the less well-con-

f-VCO f control

EXOR LPF 1 LPF 2
VR

Vf

VQQ-VCO Q model

Q control

PD K

PD

–

+

To main filter

trolled gain of a high-frequency amplifier. The output of the
Figure 8. Dual-control loop-tuning system for tuning frequency pa- Q model goes through a second (matched) peak detector.
rameters and quality factors of an integrated filter. Note that the

Rather than measuring Q directly, which is very difficult infrequency loop converges always, but for the Q loop to converge on
practice, because it would require accurate measurements ofthe correct Q value, the frequency must be correct. Details of the
two amplitudes and two frequencies, the operation relies onoperation are explained in the text.
the fact that Q errors are usually proportional to magnitude
errors. The diagram in Fig. 8 assumes that for correct Q the
output of the Q model is K times as large as its input so thatassumed across the IC because all gm cells are on the same

chip and subject to the same error-causing effects. This as- for correct Q the inputs of the comparator are equal. The dc
error signal VQ resulting from the comparison is fed back tosumes that the ratios gi defined in Eq. (32) are not so large

that matching problems will arise and that care is taken to the Q model circuit to adjust the bias voltages appropriately,
as well as to the filter. In these two interacting control loops,account for (model the effect of) filter parasitics in the control

circuit. The same is true for the unit capacitor C in the control the frequency loop will converge independently of the Q con-
trol loop, but to converge on the correct value of Q, the fre-loop and the filter capacitors (again, if the ratios ci are not too

large). Consequently, the control bias current IB can be sent quency must be accurate. Hence, the two loops must operate
together. The correct operation and convergence of the fre-to all the main filter’s transconductance cells as indicated in

Fig. 7 and thereby tune the filter. Clearly, this scheme de- quency and Q control scheme in Fig. 8 has been verified by
experiments [see Schaumann, Ghausi, and Laker (3), Chapterpends on good matching properties across the IC chip. Accu-

rate tuning cannot be performed if matching and tracking 7, pp. 410–486] but because of the increased noise, power con-
sumption, and chip area needed for the control circuitry, thecannot be relied upon or, in other words, if the gm–C circuit

in the control loop is not a good representative model of the method has not found its way into commercial applications.
filter cells.
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CIRCULAR BIREFRINGENCE. See CHIRALITY.
CIRCULAR DICHROISM, MAGNETIC. See MAGNETIC

STRUCTURE.
CIRCULATORS, NUMERICAL MODELING. See NU-

MERICAL MODELING OF CIRCULATORS.
CLEAR WRITING. See DOCUMENT AND INFORMATION

DESIGN.


