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CIRCUIT STABILITY

Stability is a property of well-behaved circuits and systems.
Typically, stability is discussed in terms of feedback systems.
Well-established techniques, such as Nyquist plots, Bode dia-
grams, and root locus plots are available for studying the sta-
bility of feedback systems. Electric circuits can be represented
as feedback systems. Nyquist plots, Bode diagrams, and root
locus plots can then be used to study the stability of electric
circuits.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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FEEDBACK SYSTEMS AND STABILITY

Consider a feedback system such as the one shown in Fig. 1.
This feedback system consists of three parts: a forward block,
sometimes called the ‘‘plant,’’ a feedback block, sometimes
called the ‘‘controller,’’ and a summer. The signals vi(t) and
vo(t) are the input and output of the feedback system. A(s) is
the transfer function of the forward block and B(s) is the
transfer function of the feedback block. The summer subtracts
the output of the feedback block from vi(t). The transfer func-

+vi(s) = 0

vR(s) = –A(s)B(s) vT(s) = 1

+ A(s)

Summer Foward block

Feedback block

B(s)

–

tion of the feedback system can be expressed in terms of A(s)
and B(s) as Figure 2. Measuring the return difference: The difference between

the test input signal, VT(s), and the test output signal, VR(s), is the
return difference.

T(s) = Vo(s)
Vi(s)

= A(s)
1 + A(s)B(s)

(1)

Suppose that the transfer functions A(s) and B(s) can each be
of the feedback system. Figure 2 shows how the return differ-expressed as ratios of polynomials in s. Then
ence can be measured. First, the input, vi(t), is set to zero.
Next, the forward path of the feedback system is broken.
Figure 2 shows how a test signal, VT(s) � 1, is applied andA(s) = NA(s)

DA(s)
and B(s) = NB(s)

DB(s)
(2)

the response, VR(s) � �A(s)B(s), is measured. The difference
between the test signal and its response is the return dif-

where NA(s), DA(s), NB(s), and DB(s) are polynomials in s. Sub- ference.
stituting these expressions into Eq. (1) gives The calculation

return difference = 1+A(s)B(s)=

1 + NA(s)
DA(s)

NB(s)
DB(s)

= DA(s)DB(s)+NA(s)NB(s)
DA(s)DB(s)

T(s) =
NA(s)
DA(s)

1 + NA(s)
DA(s)

NB(s)
DB(s)

= NA(s)DB(s)
DA(s)DB(s) + NA(s)NB(s)

= N(s)
D(s)

(3) shows that

where the numerator and denominator of T(s), N(s) and D(s), 1. The zeros of 1 � A(s)B(s) are equal to the poles of T(s).
are both polynomials in s. The values of s for which N(s) � 0

2. The poles of 1 � A(s)B(s) are equal to the poles ofare called the zeros of T(s) and the values of s that satisfy
A(s)B(s).D(s) � 0 are called the poles of T(s).

Stability is a property of well-behaved systems. For exam-
Consider a feedback system of the form shown in Fig. 1ple, a stable system will produce bounded outputs whenever

withits input is bounded. Stability can be determined from the
poles of a system. The values of the poles of a feedback system
will, in general, be complex numbers. A feedback system is A(s) = s + 5

s2 − 4s + 1
and B(s) = 3s

s + 3
(5)

stable when all of its poles have negative real parts.
The equation

The poles of the forward block are the values of s that satisfy
s2 � 4s � 1 � 0 (that is, s1 � 3.73 and s2 � 0.26). In this case,

1 + A(s)B(s) = 0 (4) both poles have real, rather than complex, values. The for-
ward block would be stable if both poles were negative. They

is called the characteristic equation of the feedback system. are not, so the forward block is itself an unstable system. To
The values of s that satisfy the characteristic equation are see that this unstable system is not well behaved, consider its
poles of the feedback system. The left-hand side of the charac- step response (1,2). The step response of a system is its zero
teristic equation, 1 � A(s)B(s), is called the return difference state response to a step input. In other words, suppose the

input to the forward block was zero for a very long time. At
some particular time, the value of input suddenly becomes
equal to 1 and remains equal to 1. The response of the system
is called the step response. The step response can be calcu-
lated by taking the inverse Laplace transform of A(s)/s. In
this example, the step response of the forward block is

step response = 5 + 0.675e3.73t − 5.675e0.27t

vi(t) vo(t)+
+

–

A(s)

Summer Foward block

Feedback block

Input
signal

Output
signal

B(s)

As time increases, the exponential terms of the step response
get very, very large. Theoretically, they increase withoutFigure 1. A feedback system.
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bound. In practice, they increase until the system saturates ber of encirclements of the point �1 � j0 by the curve in the
A(s)B(s)-plane. Letor breaks. This is typical of the undesirable behavior of an

unstable system.
According to Eq. (3), the transfer function of the whole

feedback system is

N = the number of encirclements, in the clockwise direction,
of −1 + j0 by the closed curve in the A(s)B(s)-plane

Z = The number of poles of T(s) in the right half of the s-
plane

P = The number of poles of A(s)B(s) in the right half of the
s-plane

The Nyquist stability criterion states that N, Z, and P are
related by

T(s) =
s + 5

s2 − 4s + 1

1 + s + 5
s2 − 4s + 1

× 3s
s + 3

= (s + 5)(s + 3)

(s2 − 4s + 1)(s + 3) + (s + 5)(3s)
= s2 + 8s + 15

s3 + 2s2 + 4s + 3
Z = P + N

The poles of the feedback system are the values of s that sat-
A stable feedback system will not have any poles in the rightisfy s3 � 2s2 � 4s � 3 � 0—that is, s1 � �1, s2 � �0.5 �
half of the s-plane so Z � 0 indicates a stable system.j1.66 and s3 � �0.5 � j1.66. The real part of each of these

For example, suppose the forward and feedback blocks ofthree poles is negative. Since all of the poles of the feedback
the feedback system shown in Fig. 1 have the transfer func-system have negative real parts, the feedback system is sta-
tions described by Eq. (5). Thenble. To see that this stable system is well behaved, consider

its step response. This step response can be calculated by tak-
ing the inverse Laplace transform of T(s)/s. In this example,
the step response of the feedback system is

A(s)B(s) = 3s2 + 15s
s3 − s2 − 11s + 3

= 3s2 + 15s
(s − 3.73)(s − 0.26)(s + 3)

(7)

Figure 3 shows the Nyquist plot for this feedback system.step response = 5 − 11.09e−t cos(
√

2t + 63◦)

This plot was obtained using the MATLAB commands
In contrast to the previous case, as time increases e�t becomes
zero so the second term of the step response dies out. This
stable system does not exhibit the undesirable behavior typi-
cal of unstable systems.

num=[0 3 15 0]; %Coefficients of the
numerator of A(s)B(s)

den=[1 -1 -11 3]; %Coefficients of the
denominator of A(s)B(s)

nyquist (num,den)

Since A(s)B(s) has two poles in the right half of the s-plane,STABILITY CRITERIA
P � 2. The Nyquist plot shows two counterclockwise encircle-
ments of �1 � j0 so N � �2. Then Z � P � N � 0, indicatingFrequently, the information about a feedback system that is
that the feedback system is stable.most readily available is the transfer functions of the forward

Feedback systems need to be stable in spite of variationsand feedback blocks, A(s) and B(s). Stability criteria are tools
in the transfer functions of the forward and feedback blocks.for determining if a feedback system is stable by examining
The gain and phase margins of a feedback system give anA(s) and B(s) directly, without first calculating T(s) and then
indication of how much A(s) and B(s) can change withoutcalculating its poles—that is, the roots of the denominator of
causing the system to become unstable. The gain and phaseT(s). Two stability criteria will be discussed here: the Nyquist

stability criteria and the use of Bode diagrams to determine
the gain and phase margin.

The Nyquist stability criterion is based on a theorem in the
theory of functions of a complex variable (1,3,4). This stability
criterion requires a contour mapping of a closed curve in the
s-plane using the function A(s)B(s). The closed contour in the
s-plane must enclose the right half of the s-plane and must
not pass through any poles or zeros of A(s)B(s). The result of
this mapping is a closed contour in the A(s)B(s)-plane. Fortu-
nately, the computer program MATLAB (5,6) can be used to
generate an appropriate curve in the s-plane and do this
mapping.

Rewriting the characteristic equation, Eq. (4), as

A(s)B(s) = −1 (6)

suggests that the relationship of the closed contour in the
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A(s)B(s)-plane to the point �1 � j0 is important. Indeed, this
is the case. The Nyquist stability criterion involves the num- Figure 3. A Nyquist plot produced using MATLAB.
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margins can be determined using Bode diagrams. To obtain
the Bode diagrams, first let s � j� so that Eq. (6) becomes

A( jω)B( jω) = −1

The value of A( j�)B( j�) will, in general, be complex.
Two Bode diagrams are used to determine the gain and
phase margins. The magnitude Bode diagram is a plot

vi(t) vo(t)RL
+
–

+

–

A circuit consisting of
resistors, capacitors, and

op amps

of 20 log[�A( j�)B( j�)�] versus �. The units of Figure 5. A circuit that is to be represented as a feedback system.
20 log[�A( j�)B( j�)�] are decibels. The abbreviation for decibel
is dB. The magnitude Bode diagram is sometimes referred to
as a plot of the magnitude of A( j�)B( j�), in dB, versus �. The

The gain margin of the feedback system isphase Bode diagram is a plot of the angle of A( j�)B( j�) ver-
sus �.

It is necessary to identify two frequencies: �g, the gain gain margin = 1
A( jωp) B( jωp)

(12)
crossover frequency, and �p, the phase crossover frequency.
To do so, first take the magnitude of both sides of Eq. (7) to

The phase margin isobtain

phase margin = 180◦ − (�A( jωg) +�B( jωg)) (13)A( jω)B( jω) = 1 (8)

The gain and phase margins can be easily calculated usingConverting to decibels gives
MATLAB. For example, suppose the forward and feedback
blocks of the feedback system shown in Fig. 1 have the trans-20 log[ A( jω)B( jω) ] = 0 (9)
fer functions described by Eq. (3). Figure 4 shows the Bode
diagrams for this feedback system. These plots were obtainedEquation (8) or (9) is used to identify a frequency, �g, the gain
using the MATLAB commandscrossover frequency. That is, �g is the frequency at which

A( jωg) B( jωg) = 1

Next, take the angle of both sides of Eq. (4) to

num=[0 3 15 0]; %Coefficients of the
numerator of A(s)B(s)

den=[1 -1 -11 3]; %Coefficients of the
denominator of A(s)B(s)

margin (num,den)
�(A( jω)B( jω)) = 180◦ (10)

MATLAB has labeled the Bode diagrams in Fig. 4 to show the
gain and phase margins. The gain margin of �1.331 dB indi-Equation (10) is used to identify a frequency, �p, the gain
cates that a decrease in �A(s)B(s)� of 1.331 dB or, equivalently,crossover frequency. That is, �p is the frequency at which
a decrease in gain by a factor of 0.858, at the frequency �p �
1.378 rad/s, would bring the system the boundary of instabil-

�A( jωp) + �B( jωp) = 180◦ (11)
ity. Similarly, the phase margin of 11.6� indicates that an in-
crease in the angle of A(s)B(s) of 11.6�, at the frequency �g �
2.247 rad/s, would bring the system the boundary of insta-
bility.

When the transfer functions A(s) and B(s) have no poles or
zeros in the right half of the s-plane, then the gain and phase
margins must both be positive in order for the system to be

vi(t) vo(t)RL
+
–

+

–

an op amp

NB

+

–The rest of
the circuit
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Figure 4. Bode plot used to determine the phase and gain margins. Figure 6. Identifying the subcircuit NB by separating an op amp
from the rest of the circuit.The plots were produced using MATLAB.
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model of the op amp indicates that the op amp input and out-
put voltages are related by

VB(s) = K(s)VA(s) (14)

The network NB can be represented by the equation

�
Vo(s)
VA(s)

�
=
�

T11(s) T12(s)
T21(s) T22(s)

��
Vi(s)
VB(s)

�
(15)

Combining Eqs. (14) and (15) yields the transfer function of
the circuit

vi(s)

vA(s) vB(s) = K(s) vA(s)

vo(s)RL
+
–

+

–

+

–

NB

+
–

T(s) = Vo(s)
Vi(s)

= T11(s) + T12(s)K(s)T21(s)
1 − K(s)T22(s)

(16)

Figure 7. Replacing the op amp with a model of the op amp.

or

stable. As a rule of thumb (7), the gain margin should be
greater than 6 dB and the phase margin should be between T(s) = Vo(s)

Vi(s)
= T11(s)(1 + K(s)T22(s)) + T12(s)K(s)T21(s)

1 + K(s)T22(s)
30 and 60�. These gain and phase margins provide some pro-
tection against changes in A(s) or B(s). Equation (15) suggests a procedure that can be used to

measure or calculate the transfer functions T11(s), T12(s),
T21(s, and T22(s). For example, Eq. (15) says that when Vi(s) �STABILITY OF LINEAR CIRCUITS
1 and VB(s) � 0, then Vo(s) � T11(s) and VA(s) � T21(s). Figure
8 illustrates this procedure for determining T11(s) and T21(s).The Nyquist criterion and the gain and phase margin can be
A short circuit is used to make VB(s) � 0 and the voltageused to investigate the stability of linear circuits. To do so
source voltage is set to 1 so that Vi(s) � 1. Under these condi-requires that the parts of the circuit corresponding to the for-
tions the voltages Vo(s) and VA(s) will be equal to the transferward block and to the feedback block be identified. After this
functions T11(s) and T21(s). Similarly, when Vi(s) � 0 andidentification is made, the transfer functions A(s) and B(s) can
VB(s) � 1, then Vo(s) � T12(s) and VA(s) � T22(s). Figure 9 illus-be calculated.
trates the procedure for determining T12(s) and T22(s). A shortFigures 5–8 illustrate a procedure for finding A(s) and
circuit is used to make Vi(s) � 0 and the voltage source volt-B(s) (8). For concreteness, consider a circuit consisting of re-
age is set to 1 so that VB1(s) � 1. Under these conditions thesistors, capacitors, and op amps. Suppose further that the in-
voltages Vo(s) and VA(s) will be equal to the transfer functionsput and outputs of this circuit are voltages. Such a circuit is
T11(s) and T21(s).shown in Fig. 5. In Fig. 6 one of the op amps has been sepa-

Next, consider the feedback system shown in Fig. 10. (Therated from the rest of the circuit. This is done to identify the
feedback system shown in Fig. 1 is part, but not all, of thesubcircuit NB. The op amp will correspond to the forward
feedback system shown in Fig. 10. When D(s) � 0, C1(s) � 1block of the feedback system while NB will contain the feed-
and C2(s) � 1; then Fig. 10 reduces to Fig. 1. Considering theback block. NB will be used to calculate B(s). In Fig. 7, the op
system shown in Fig. 10, rather than the system shown inamp has been replaced by a model of the op amp (2). This

Vi(s) = 1

VA(s) = T21(s) VB(s) = 0

Vo(s) =
T11(s)RL

+
–

+

–

+

–

NB
Vi(s) = 0

VA(s) = T22(s) VB(s) = 1

Vo(s) =
T12(s)RL

+
–

+

–

+

–

NB

Figure 9. The subcircuit NB is used to calculate T11(s) and T21(s).Figure 8. The subcircuit NB is used to calculate T12(s) and T22(s).
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Figure 10. A feedback system that corresponds to

+
+

–

+
+

vo(t)vi(t) C1(s) A(s)

D(s)

B(s)

C2(s)

+

a linear system.

Fig. 1, avoids excluding circuits for which D(s) � 0, C1(s) � 1, As an example, consider the Sallen–Key bandpass filter (9)
shown in Fig. 11. The transfer function of this filter isor C2(s) � 1.) The transfer function of this feedback system is

T(s) = Vo(s)
Vi(s)

= 5460s
s2 + 199s + 4 × 106 (19)T(s) = Vo(s)

Vi(s)
= D(s) + C1(s)A(s)C2(s)

1 + A(s)B(s)
(17)

The first step toward identifying A(s) and B(s) is to separateor
the op amp from the rest of the circuit, as shown in Fig. 12.
Separating the op amp from the rest of the circuit identifies
the subcircuit NB. Next, NB is used to calculate the transferT(s) = Vo(s)

Vi(s)
= D(s)(1 + A(s)B(s)) + C1(s)A(s)C2(s)

1 + A(s)B(s)
functions T11(s), T12(s), T21(s), and T22(s). Figure 13 corresponds
to Fig. 8 and shows how T12(s) and T22(s) are calculated. Anal-

Comparing Eqs. (16) and (17) shows that ysis of the circuit shown in Fig. 13 gives

T12(s) = 1 and T22(s) = 0.259s2 + 51.6s + 1.04 × 106

s2 + 5660s + 4 × 106 (20)

(The computer program ELab, Ref. 10, provides an alterna-
tive to doing this analysis by hand. ELab will calculate the

A(s) = −K(s) (18a)

B(s) = T22(s) (18b)

C1(s) = T12(s)

C2(s) = T21(s)

D(s) = T11(s)
transfer function of a network in the form shown in Eq. (16)—
that is, as a symbolic function of s. ELab is free and can be

Finally, with Eqs. (18a) and (18b), the identification of A(s) downloaded from http://sunspot.ece.clarkson.edu:1050/
and B(s) is complete. In summary, 
svoboda/software.html on the World Wide Web.)

Figure 14 corresponds to Fig. 9 and shows how T11(s) and
1. The circuit is separated into two parts: an op amp and T21(s) are calculated. Analysis of the circuit shown in Fig. 14

NB, the rest of the circuit. gives
2. A(s) is open-loop gain of the op amp, as shown in Fig. 7.

3. B(s) is determined from the subcircuit NB, as shown in T11(s) = 0 and T21(s) = −1410s
s2 + 5660s + 4 × 106

(21)
Fig. 9.

+

+

––
vo(t)vi(t)

R1

C1

C2

R4

R3

R5

R2

–
+

–

+
–

vi(t)

Rb

C1

C2
R4

R3

R5

R1 ++

–
vo(t)

An op amp

R2

+
–

Figure 11. A Sallen-Key bandpass filter. R1 � R2 � R3 � R5 � 7.07
k�, R4 � 20.22 k�, and C1 � C2 � 0.1 �F. Figure 12. Identifying the subcircuit NB by separating an op amp

from the rest of the circuit.
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example, when the op amp is a �A741 op amp, then Ao �
200,000 and B � 2� � 106 rad/s, so

K(s) = −200,000
s + 31.4

Equation (18) indicates that A(s) � �K(s) and B(s) �
T22(s), so in this example

A(s) = 200,000
s + 31.4

and B(s) = 0.259
�

s2 + 51.6s + 1.04 × 106

s2 + 5600s + 4 × 106

�

To calculate the phase and gain margins of this filter, first
calculate

+

_

Vi(s) = 1

VA(s) = T21(s)

Vo(s) = T11(s)

VB(s) = 0

NB

C1

C2
R4

R3

R5

R1

R2

+

–

+
–

A(s)B(s) = 51,800(s2 + 51.6s + 1.04 × 106)

s3 + 5974s2 + 5777240s + 1246 × 106

Figure 13. The subcircuit NB1 is used to calculate T11(s) and T21(s).
Next, the MATLAB commands

Substituting Eqs. (20) and (21) into Eq. (16) gives
num=20000*[0 0.259 51.6 1040000];

%Numerator Coefficients
den=[1 5974 5777240 1256*10^6];

%Denominator Coefficients
margin(num,den)

are used to produce the Bode diagram shown in Fig. 15. Fig-
ure 15 shows that the Sallen–Key filter will have an infinite

T(s) =
K(s)

� −1410s
s2 + 5660s + 4 × 106

�

1 − K(s)
�

0.259s2 + 51.6s + 1.04 × 106

s2 + 5660s + 4 × 106

� (22)

gain margin and a phase margin of 76.5� when a �A741 op
amp is used.When the op amp is modeled as an ideal op amp, K(s) � �

and Eq. (22) reduces to Eq. (19). This is reassuring but only
confirms what was already known. Suppose that a more accu-

OSCILLATORSrate model of the op amp is used. A frequently used op amp
model (2) represents the gain of the op amp as

Oscillators are circuits that are used to generate a sinusoidal
output voltage or current. Typically, oscillators have no input.
The sinusoidal output is generated by the circuit itself. This
section presents the requirements that a circuit must satisfy

K(s) = − Ao

s + B
Ao

(23)

if it is to function as an oscillator and shows how these re-
quirements can be used to design the oscillator.where Ao is the dc gain of the op amp and B is the gain-band-

To begin, recall that the characteristic equation of a circuitwidth product of the op amp (2). Both Ao and B are readily
isavailable from manufacturers specifications of op amps. For

1 + A(s)B(s) = 0

Suppose this equation is satisfied by a value of s of the form
s � 0 � j�o. Then

A( jωo)B( jωo) = −1 = 1e j180◦
(24)

In this case, the steady-state response of the circuit will con-
tain a sustained sinusoid at the frequency �o (11). In other
words, Eq. (24) indicates that the circuit will function as an
oscillator with frequency �o when A( j�o)B( j�o) has a magni-
tude equal to 1 and a phase angle of 180�.

As an example, consider using Eq. (24) to design the Wien-
bridge oscillator, shown in Fig. 16, to oscillate at �o � 1000
rad/s. The first step is to identify A(s) and B(s) using the pro-
cedure described in the previous section. In Fig. 17 the ampli-
fier is separated from the rest of the network to identify the
subcircuit NB. Also, from Eqs. (14) and (18),

R1 R3

R2

R4

R5C1

C2

Vi(s) = 0

NB

VA (s) = T22(s)
+

–

+
–

VB(s) = 1

+

Vo(s) = T12(s)

–

A(s) = −KFigure 14. The subcircuit NB is used to calculate T12(s) and T22(s).
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Figure 15. The Bode diagrams used to determine the
phase and gain margins of the Sallen–Key bandpass
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filter.

Next, the subcircuit NB is used to determine B(s) � T22(s), as
shown in Fig. 18. From Fig. 18 it is seen that

K

R C RL

R C

vo(t)

+

–

Figure 16. A Wien-bridge oscillator.
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1
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�

R + 1
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�

R + 1
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�
�

R + 1
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�
�

R ∗ 1
Cs

�

= 1
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�

R + 1
Cs

��
Cs + 1

R
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RCs

K

C

C

R

R
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+

–

VA(s) VB(s)
+

–
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–

NB

C

C

R

R

Vo(s) = T12(s)

+

–

VA(s) = T22(s)
VB(s)–

+
NB

–
+  = 1

Figure 18. The subcircuit NB is used to calculate B(s) � T22(s) forFigure 17. The amplifier is separated from the rest of the Wien-
bridge oscillator to identify the subcircuit NB. the Wien-bridge oscillator.
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so

A(s)B(s) = −K

3 + RCs + 1
RCs

Now let s � 0 � j�o to get

A( jωo)B( jωo) = −K

3 + jωoRC − j
1

ωoRC

(25)

The phase angle of A( j�o)B( j�o) must be 180� if the circuit is
to function as an oscillator. That requires

jωoRC − j
1

ωoRC
= 0 ⇒ ωo = 1

RC
(26)
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Oscillation also requires that the magnitude of A( j�o)B( j�o) Figure 19. A root locus plot produced using MATLAB. The poles ofbe equal to 1. After substituting Eq. (26) into Eq. (25), this A(s) are marked by x’s and the zeros of A(s) are marked by o’s. As K
requirement reduces to increases from zero to infinity, the poles of T(s) migrate from the poles

of A(s) to the zeros of A(s) along the paths indicated by solid lines.
K = 3

That is, the amplifier gain must be set to 3. Design of the
oscillator is completed by picking values of R and C to make

pose that the forward and feedback blocks in Fig. 1 are de-�o � 1000 rad/s (e.g., R � 10 k� and C � 0.1 �F).
scribed by

THE ROOT LOCUS A(s)= s(s − 2)

(s + 1)(s + 2)(s + 3)
= s2 − 2s

s3 + 6s2 + 11s + 6
and B(s)= K

Frequently the performance of a feedback system is adjusted
by changing the value of a gain. For example, consider the The root locus plot for this system is obtained using the
feedback system shown in Fig. 1 when MATLAB (5,6) commands

A(s) = NA(s)
DA(s)

and B(s) = K (27)
num=([0 1 -2 0]);
den=([1 6 11 6]);
rlocus(num, den)

This root locus plot is shown in Fig. 19. After the root locusIn this case, A(s) is the ratio of two polynomials in s and
has been plotted, the MATLAB commandB(s) is the gain that is used to adjust the system. The transfer

function of the feedback system is
rlocfind(num, den)

can be used to find the value of the gain K corresponding to
any point on the root locus. For example, when this command

T(s) = NA(s)
DA(s) + KNA(s)

= N(s)
D(s)

(28)

is given and the cursor is placed on the point where the locus
crosses the positive imaginary axis, MATLAB indicates thatThe poles of feedback system are the roots of the polynomial

D(s) = DA(s) + KNA(s) (29)

Suppose that the gain K can be adjusted to any value between
0 and �. Consider the extreme values of K. When K� 0,
D(s) � DA(s) so the roots of D(s) are the same as the roots of
DA(s). When K � �, DA(s) is negligible compared to KNA(s).
Therefore D(s) � KNA(s) and the roots of D(s) are the same as
the roots of NA(s). Notice that the roots of DA(s) are the poles
of A(s) and the roots of NA(s) are the zeros of A(s). As K varies
from 0 and �, the poles of T(s) start at the poles of A(s) and
migrate to the zeros of A(s). The root locus is a plot of the
paths that the poles of T(s) take as they move across the s-

x

vi(t)

+

–

vo(t)
+
–

plane from the poles of A(s) to the zeros of A(s).
A set of rules for constructing root locus plots by hand are Figure 20. A single device is separated from the rest of the network.

available (1,4,7,13). Fortunately, computer software for con- The parameter associated with this device is called x. The transfer
function of the network will be a bilinear function of x.structing root locus plots is also available. For example, sup-
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then the transfer function of this Sallen–Key filter is

T(s) = K(1414s)
s2 + (4 − K)(1414s) + 4 × 106

= K(1414s)
(s2 + 5656s + 4 × 106) + K(−1414s)

(32)

As expected, this transfer function is a bilinear function the
gain K. Comparing Eqs. (30) and (32) shows that E(s) � 0,
F(s) � 1414s, G(s) � s2 � 5656s � 4 � 105, and H(s) �
�1414s. The root locus describing the poles of the filter is
obtained using the MATLAB commands

G=([1 5656 4*10^6]);
H=([0 -1414 0]);
rlocus(H,G)

Figure 21 shows the resulting root locus plot. The poles move
into the right half of the s-plane, and the filter becomes unsta-
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Figure 21. This root locus plot shows that the poles of the Sallen–
Key bandpass filter move into the right of the s-plane as the gain in-
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