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processing, where the signal is processed by a linear system
that changes the amplitudes and phases of these components,
but not their frequencies. In a simple form, this processing
can be used to let pass or to reject selected frequency bands,
ideally with no attenuation at the passbands and infinite at-
tenuation at the stopbands. This article discusses a class of
approximations to this kind of ideal filter, known as an Che-
byshev filter. It starts with a discussion on a technique for
the derivation of optimal magnitude filters, then discusses the
direct and inverse Chebyshev approximations for the ideal
filtering operator, ending with comments on extensions of the
technique. Tables with example filters are included.

The magnitude approximation problem in filter design con-
sists essentially of finding a convenient transfer function with
the magnitude satisfying given attenuation specifications.
Other restrictions can exist, such as structure for implemen-
tation, maximum order, and maximum Q of the poles, but
in most cases the problem can be reduced to the design of a
normalized continuous-time low-pass filter, which can be de-
scribed by a transfer function in Laplace transform. This filter
must present a given maximum passband attenuation (Amax),
between � � 0 and � � �p � 1 rad/s, and a given minimum
stopband attenuation (Amin) in frequencies above a given limit
�r rad/s. From this prototype filter, the final filter can be ob-
tained by frequency transformations and by continuous-time
to discrete-time transformations in the case of a digital fil-
ter (1).

A convenient procedure for the derivation of optimal mag-
nitude filters is to start with the transducer function H(s) and
the characteristic function K(s). H(s), which can also be called
the attenuation function, is the inverse of the filter transfer
function, scaled such that min �H( j�) � 1�. K(s)is related to
H(s) by the equation

|H( jω)|2 = 1 + |K( jω)|2 (1)

This greatly simplifies the problem, because K( j�) can be a
ratio of two real polynomials in �, both with roots located
symmetrically on both sides of the real axis, while H( j�) is a
complex function. K(s) is obtained by replacing � by s/j in
K( j�) and ignoring possible �j or �1 multiplying terms re-
sulting from the operation. The complex frequencies where
K(s) � 0 are the attenuation zeros, and where K(s) � � corre-
spond to the transmission zeros. If K(s) is a ratio of real poly-
nomials, K(s) � F(s)/P(s), H(s) is also a ratio of real polynomi-
als in s, with the same denominator, H(s) � E(s)/P(s), and
E(s) can be obtained by observing that for s � j� Eq. (1) is
equivalent to

H(s)H(−s) = 1 + K(s)K(−s) � E(s)E(−s)

= P(s)P(−s) + F(s)F(−s)
(2)

Because E(s) is the denominator of the filter transfer function,
which must be stable, E(s) is constructed from the roots of the
polynomial P(s)P(�s) 	 F(s)F(�s) with negative real parts.
The desired transfer function is then T(s) � P(s)/E(s).

CHEBYSHEV POLYNOMIALSCHEBYSHEV FILTERS

Two important classes of approximations, the direct and in-Any signal can be considered to be composed of several sinus-
oidal components with different frequencies, amplitudes, and verse Chebyshev approximations, can be derived from a class

of polynomials known as Chebyshev polynomials. These poly-phases. Filtering is one of the fundamental methods for signal
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Or, the attenuation in decibels is

A(ω) = 10 log{1 + [εCn(ω)]2} (9)

The parameter � controls the maximum passband attenua-
tion, or the passband ripple. Considering that when Cn(�) �
�1 the attenuation A(�) � Amax Eq. (9) gives

ε =
p

100.1Amax − 1 (10)

Figure 2 shows examples of the magnitude function �T( j�)� in
the passband and in the stopband obtained for some normal-
ized Chebyshev low-pass approximations, with Amax � 1 dB.
The magnitude of the Chebyshev approximations presents
uniform ripples in the passband, with the gain departing from

Table 1. Chebyshev Polynomials

n Polynomial

0 1
1 x
2 2x � 1
3 4x3 � 3x
4 8x4 � 8x2 	 1
5 16x5 � 20x3 	 5x
6 32x6 � 48x4 	 18x2 � 1
7 64x7 � 112x5 	 56x3 � 7x
8 128x8 � 256x6 	 160x4 � 32x2 	 1
9 256x9 � 576x7 	 432x5 � 120x3 	 9x

10 512x10 � 1280x8 	 1120x6 � 400x4 	 50x2 � 1
11 1024x11 � 2816x9 	 2816x7 � 1232x5 	 220x3 � 11x
12 2048x12 � 6144x10 	 6912x8 � 3584x6 	 840x4 � 72x2 	 1

0 dB at � � 0 for odd orders and from �Amax dB for even
orders.

The stopband attenuation is the maximum possible amongnomials were first described by P. L. Chebyshev (2). The
filters derived from polynomial characteristic functions andChebyshev polynomial of order n can be obtained from the
with the same Amax and degree (4). This can be proved by as-expression
suming that there exists a polynomial Pn(x) that is also
bounded between �1 and 1 for �1 
 x 
 1, with Pn(x) �Cn(x) = cos(n cos−1 x) (3)
�Pn(�x) and Pn(	�) � 	�, which exceeds the value of Cn(x)
for some value of x � 1. An approximation using this polyno-It is simple to verify that this expression corresponds, for
mial instead of Cn(x) in Eq. (7) would be more selective. The�1 
 x 
 1, to a polynomial in x. Using the trigonometric
curves of Pn(x) and Cn(x) will always cross x times for �1 
identity cos(a 	 b) � cos a cos b � sin a sin b, we obtain
x 
 1, due to the maximum oscillations of Cn(x), but if Pn(x)
grows faster, they will cross another two times for x � 1 and
x 
 �1. This makes Pn(x) � Cn(x) a polynomial of degree n 	

Cn+1(x) = cos[(n + 1) cos−1 x]

= xCn(x) − sin(n cos−1 x) sin(cos−1 x)
(4)

2, because it has n 	 2 roots, which is impossible since both
are of degree n.Applying now the identity sin a sin b � ��[cos(a � b) �

The required approximation degree for given Amax and Amincos(a 	 b)] and rearranging, a recursion formula is obtained:
can be obtained by substituting Eq. (6) in Eq. (9), with
A(�r) � Amin and solving for n. The result, including a denor-Cn+1(x) = 2xCn(x) − Cn−1(x) (5)
malization for any �p, is

For n � 0 and n � 1, we have C0(x) � 1 and C1(x) � x. Using
Eq. (5), the series of Chebyshev polynomials shown in Table
1 is obtained. n ≥ cosh−1

γ

cosh−1
(ωr/ωp)

(11)

The values of these polynomials oscillate between �1 and
	1 for x between �1 and 	1, in a pattern identical to a sta- where we define the constant � as
tionary Lissajous figure (3). For x out of this range, cos�1 x �
j cosh�1 x, an imaginary value, but Eq. (3) is still real, in the
form γ =

�
100.1Amin − 1
100.1Amax − 1

(12)

Cn(x) = cos(n j cosh−1 x) = cosh(n cosh−1 x) (6)

For high values of x, looking at the polynomials in Table 1,
we see that Cn(x) � 2n�1xn and grows monotonically. The plots
of some Chebyshev polynomials for �1 
 x 
 1 are shown in
Fig. 1.

THE CHEBYSHEV LOW-PASS APPROXIMATION

This normalized Chebyshev low-pass approximation is ob-
tained by using

K( jω) = εCn(ω) (7)

The result is a transducer function with the magnitude given

C1 C2 C3

C4 C5 C6

by [from Eq. (1)]
Figure 1. Plots of the first six Chebyshev polynomials Cn(x). The
squares limit the region �1 
 x 
1, �1 
 Cn(x) 
 1, where the poly-
nomial value oscillates.|H( jω)| =

�
1 + [εCn(ω)]2 (8)
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The transfer functions for the normalized Chebyshev filters
can be obtained by solving Eq. (2). For a polynomial approxi-
mation, using P(s) � 1, from Eq. (7) it follows that

E(s)E(−s) = 1 +
[
εCn

� s
j

�]2

(13)

The roots of this polynomial are the solutions for s in

Cn

� s
j

�
= cos

�
n cos−1 s

j

�
= ± j

ε
(14)

Identifying

n cos−1 s
j

= a + jb (15)

it follows that �j/� � cos(a 	 jb)� cos a cos jb � sin a
sin jb � cos a cosh b � j sin a sinh b. Equating real and
imaginary parts, we have cos a cosh b � 0 and sin a sinh b �
�1/�. Since cosh x � 1, the equation of the real parts gives:

a = π

2
(1 + 2k), k = 0, 1, . . ., 2n − 1 (16)
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Figure 3. Localization of the poles in a normalized Chebyshev low-
pass approximation (seventh order, in this case). The pole locations
can be obtained as shown.

and as for these values of a, sin a � �1, the equation of the
imaginary parts gives

b = ∓ sinh−1 1
ε

(17)

By applying these results in Eq. (15), it follows that the roots
of E(s)E(�s) are

sk = σk + jωk k = 0, 1, . . ., 2n − 1

σk = sin
�

π

2
1 + 2k

n

�
sinh

�1
n

sinh−1 1
ε

�

ωk = cos
�

π

2
1 + 2k

n

�
cosh

�1
n

sinh−1 1
ε

� (18)

The roots sk with negative real parts (k � n) are the roots of
E(s). By the expressions in Eq. (18), it is easy to see that the
roots sk are located on an ellipse with vertical semi-axis cosh
(1/n sinh�1 1/�), horizontal semi-axis sinh (1/n sinh�1 1/�), and
foci at �j. The location of the roots can be best visualized with
the diagram shown in Fig. 3 (3).

REALIZATION OF CHEBYSHEV FILTERS

These approximations were originally developed for realiza-
tion in passive form, and the best realizations were obtained
as LC doubly terminated structures designed for maximum
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power transfer at the passband gain maxima. These struc-
tures are still important today as prototypes for active andFigure 2. Passband gain (a) and stopband gain (b) for the first nor-
digital realizations, due to the low sensitivity to errors in ele-malized Chebyshev approximations with 1 dB passband ripple. Ob-
ment values. At each attenuation zero, and the Chebyshevserve the uniform passband ripple and the monotonic stopband gain

decrease. approximations have the maximum possible number of them



270 CHEBYSHEV FILTERS

distributed in the passband, maximum power transfer occurs The selectivity of the inverse Chebyshev approximation is
the same as the corresponding Chebyshev approximation, forbetween the terminations. In this condition, errors in the ca-

pacitors and inductors can only decrease the gain (5). This the same Amax and Amin. This can be verified by calculating the
ratio �p/�r for both approximations. For the normalized Che-causes zeros in the derivative 
�T( j�)�/
L, C at all the attenu-

ation zeros, and keeps low the error in all the passband. Table byshev approximation, �p � 1, and �r occurs when �Cn(�r) �
�. For the normalized inverse Chebyshev approximation, �r �2 lists polynomials, poles, frequency, and Q of the poles, and

values for LC doubly terminated ladder structures, with the 1, and �p occurs when (��)/Cn(1/�p) � �. In both cases, the
resulting ratio is �r/�p � C�1

n (�). Equation (11) can be used tostructure shown in Fig. 4(a), for some normalized Chebyshev
low-pass filters. Note in the realizations that odd-order filters compute the required degree.

The transmission zero frequencies are the frequencies thathave identical terminations, but even-order filters require dif-
ferent terminations, because there is no maximum power make Eq. (19) infinite:
transfer at � � 0, since the gain is not maximum there. With
the impedance normalization shown, it is clear that the even-
order realizations have antimetrical structure (one side is the
dual of the other). The odd-order structures are symmetrical.

Cn(1/ωk) = cos(n cos−1(1/ωk)) = 0 �

ωk = 1

cos
�

π

2
1 + 2k

n

� , k = 0, 1, . . ., n − 1 (23)

THE INVERSE CHEBYSHEV LOW-PASS APPROXIMATION
The pole frequencies are found by solving Eq. (2) with F(s)

This normalized inverse Chebyshev approximation is the and P(s) given by Eq. (20):
most important member of the inverse polynomial class of ap-
proximations. It is conveniently obtained by using the charac-
teristic function obtained from E(s)E(−s) = (εγ )2

� s
j

�2n

+
� s

j

�2n

Cn

� j
s

�2

(24)

The roots of this equation are the solutions ofK( jω) = F( jω)

P( jω)
= εγ

Cn(1/ω)
= εγωn

ωnCn(1/ω)
(19)

where � and � are given by Eqs. (10) and (11). The polynomi- Cn

� j
s

�
= ± jεγ (25)

als F(s) and P(s) are then

By observing the similarity of this equation to Eq. (14), the
roots of E(s)E(�s) can be obtained as the complex inverses of

F(s) = εγ (s/ j)n

P(s) = (s/ j)nCn( j/s)
(20)

the values given by Eq. (18), with � replaced by 1/(��). They
lie on a curve that is not an ellipse. E(s) is constructed fromIgnoring �j or �1 multiplying factors in Eq. (20) and renor-
the roots with negative real parts, which are distributed inmalizations, F(s) reduces to �� sn, and P(s) to a Chebyshev
a pattern that resembles a circle shifted to the left side ofpolynomial with all the terms positive and the coefficients in
the origin.reverse order. The magnitude characteristic of this approxi-

The similarity of the passband response to the Butter-mation is maximally flat at � � 0, due to the n attenuation
worth response makes the phase characteristics of the inversezeros at s � 0, and so is similar in the passband to a Butter-
Chebyshev filters much closer to linear than those of theworth approximation. In the stopband, it presents a series of
Chebyshev filters. The Qs of the poles are also significantlytransmission zeros at frequencies that are the inverse of the
lower for the same gain specifications.roots of the corresponding Chebyshev polynomial. Between

adjacent transmission zeros, there are gain maxima reaching
the magnitude of �Amin dB. Without a renormalization, the

REALIZATION OF INVERSE CHEBYSHEV FILTERSstopband starts at 1 rad/s, and the passband ends where the
magnitude of the characteristic function, Eq. (19), reaches �:

The realization based on LC doubly terminated ladder struc-
tures is also convenient for inverse Chebyshev filters for the
same reasons mentioned for the direct approximation. In thisωp = 1

C−1
n (γ )

= 1

cosh
�

1
n cosh−1

γ
� (21)

case, the passband sensitivities are low due to the nth-order
attenuation zero at s � 0, which results in nullification of the

Odd-order filters present a single transmission zero at first n derivatives of the filter gain in relation to all the reac-
infinity, and even-order filters end up with a constant gain tive elements at s � 0 and keeps the gain errors small in
�Amin at � � �. From Eqs. (1) and (19), the attenuation in all the passband. Stopband errors are also small, because the
decibels for a normalized inverse Chebyshev approximation is transmission zero frequencies depend only on simple LC se-

ries or parallel resonant circuits. The usual structures used
are shown in Fig. 4(b).

Those realizations are possible only for the odd-order
A(ω) = 10 log

{
1 +

[
εγ

Cn(1/ω)

]2
}

(22)

cases, because those structures cannot realize the constant
gain at infinity that occurs in the even-order approximationsThe gains for some normalized inverse Chebyshev approxima-

tions are plotted in Fig. 5. A frequency scaling by the inverse (realizations with transformers or with negative elements are
possible). Even-order modified approximations can be ob-of the factor given by Eq. (21) was applied to make the pass-

band end at � � 1. tained by using, instead of the Chebyshev polynomials, poly-
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Table 2. Normalized Chebyshev Filters with Amax � 1 dB

Polynomials E(s)
n a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

1 1.96523 1.00000
2 1.10251 1.09773 1.00000
3 0.49131 1.23841 0.98834 1.00000
4 0.27563 0.74262 1.45392 0.95281 1.00000
5 0.12283 0.58053 0.97440 1.68882 0.93682 1.00000
6 0.06891 0.30708 0.93935 1.20214 1.93082 0.92825 1.00000
7 0.03071 0.21367 0.54862 1.35754 1.42879 2.17608 0.92312 1.00000
8 0.01723 0.10734 0.44783 0.84682 1.83690 1.65516 2.42303 0.91981 1.00000
9 0.00768 0.07060 0.24419 0.78631 1.20161 2.37812 1.88148 2.67095 0.91755 1.00000

10 0.00431 0.03450 0.18245 0.45539 1.24449 1.61299 2.98151 2.10785 2.91947 0.91593 1.00000
Poles
n re/im 1 �/Q 1 re/im 2 �/Q 2 re/im 3 �/Q 3 re/im 4 �/Q 4 re/im 5 �/Q 5
1 �1.96523
2 �0.54887 1.05000

0.89513 0.95652
3 �0.24709 0.99710 �0.49417

0.96600 2.01772
4 �0.13954 0.99323 �0.33687 0.52858

0.98338 3.55904 0.40733 0.78455
5 �0.08946 0.99414 �0.23421 0.65521 �0.28949

0.99011 5.55644 0.61192 1.39879
6 �0.06218 0.99536 �0.16988 0.74681 �0.23206 0.35314

0.99341 8.00369 0.72723 2.19802 0.26618 0.76087
7 �0.04571 0.99633 �0.12807 0.80837 �0.18507 0.48005 �0.20541

0.99528 10.89866 0.79816 3.15586 0.44294 1.29693
8 �0.03501 0.99707 �0.09970 0.85061 �0.14920 0.58383 �0.17600 0.26507

0.99645 14.24045 0.84475 4.26608 0.56444 1.95649 0.19821 0.75304
9 �0.02767 0.99761 �0.07967 0.88056 �0.12205 0.66224 �0.14972 0.37731 �0.15933

0.99723 18.02865 0.87695 5.52663 0.65090 2.71289 0.34633 1.26004
10 �0.02241 0.99803 �0.06505 0.90245 �0.10132 0.72148 �0.12767 0.47606 �0.14152 0.21214

0.99778 22.26303 0.90011 6.93669 0.71433 3.56051 0.45863 1.86449 0.15803 0.74950
Polynomials P(s)
n Multiplier a0

1 1.96523 1.00000
2 0.98261 1.00000
3 0.49131 1.00000
4 0.24565 1.00000
5 0.12283 1.00000
6 0.06141 1.00000
7 0.03071 1.00000
8 0.01535 1.00000
9 0.00768 1.00000

10 0.00384 1.00000
Doubly terminated LC ladder realizations
n Rg/Rl L/C1 L/C2 L/C3 L/C4 L/C5 L/C6 L/C7 L/C8 L/C9 L/C10

1 1.00000
1.00000 1.01769

2 1.63087 1.11716
0.61317 1.11716

3 1.00000 0.99410
1.00000 2.02359 2.02359

4 1.63087 1.73596
0.61317 1.28708 1.73596 1.28708

5 1.00000 1.09111
1.00000 2.13488 3.00092 1.09111 2.13488

6 1.63087 1.80069 1.87840 1.32113
0.61317 1.32113 1.87840 1.80069

7 1.00000 1.11151 1.17352 1.11151
1.00000 2.16656 3.09364 3.09364 2.16656

8 1.63087 1.82022 1.93073 1.90742 1.33325
0.61317 1.33325 1.90742 1.93073 1.82022

9 1.00000 1.11918 1.18967 1.18967 1.11918
1.00000 2.17972 3.12143 3.17463 3.12143 2.17972

10 1.63087 1.82874 1.94609 1.95541 1.91837 1.33890
0.61317 1.33890 1.91837 1.95541 1.94609 1.82874
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nomials obtained by the application, to the Chebyshev polyno-
mials, of the Moebius transformation (4,6):

x2 → x2 − x2
z1

1 − x2
z1

; xz1 = cos
kmaxπ

2n
(26)

where kmax is the greatest odd integer that is less than the
filter order n. This transformation moves the pair of roots
closest to the origin of an even-order Chebyshev polynomial
to the origin. If the resulting polynomials are used to generate
polynomial approximations, starting from Eq. (7), the results
are filters with two attenuation zeros at the origin, which are
realizable as doubly terminated ladder filters with equal ter-
minations, a convenience in passive realizations. If the same
polynomials are used in inverse polynomial approximations,
starting from Eq. (19), the results are filters with two trans-
mission zeros at infinity, which now are realizable by doubly
terminated LC structures. The direct and inverse approxima-
tions obtained in this way have the same selectivity, slightly
smaller than in the original case.

Table 3 lists polynomials, poles, zeros, frequency and Q of
the poles, and LC doubly terminated realizations for some in-
verse Chebyshev filters. The filters were scaled in frequency
to make the passband end at 1 rad/s. The even-order realiza-
tions are obtained from modified approximations and are
listed separately in Table 4. The structures are a mix of the
two forms in Fig. 5(b). Note that some realizations are miss-
ing. These are cases where the zero-shifting technique for the
realization of LC doubly terminated ladder filters fails. For
inverse Chebyshev filters, and other inverse polynomial fil-
ters, there is a minimum value of Amin for each order that
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(b)
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makes the realization in this form possible (7).

Figure 5. Passband gain (a) and stopband gain (b) for the first nor-
malized inverse Chebyshev approximations with Amax � 1 dB and
Amin � 50 dB. Observe the maximally flat passband and the uniform
stopband ripple.

OTHER SIMILAR APPROXIMATIONS

Different approximations with uniform passband or stopband
ripple, somewhat less selective, can be generated by reducing
the number or the amplitude of the oscillations in a Cheby-
shev-like polynomial and generating the approximations
starting from Eqs. (7) or (19) numerically (8).

A particularly interesting case results if the last oscilla-
tions of the polynomial value end in 0 instead of �1. This
creates double roots close to x � �1 in the polynomial. In
a polynomial approximation, the higher-frequency passband
minimum disappears, replaced by a second-order maximum
close to the passband border. In an LC doubly terminated re-
alization, the maximum power transfer at this frequency
causes the nullification of the first two derivatives of the gain
in relation to the reactive elements, substantially reducing
the gain error at the passband border. In an inverse polyno-

Rg

Rg

Rg

RlRl

Rl

Rl

C1 C3 Cn

CnC3C2C1

L2

L2

L1

L2

C2

L3 Ln

Ln

(a)

(b) mial approximation, this causes the joining of the first two
transmission zeros, as a double transmission zero, which in-Figure 4. LC doubly terminated ladder realizations for Chebyshev
creases the attenuation and reduces the error at the begin-filters, in the direct form (a), and in the inverse form (b). These classi-
ning of the stopband, allowing also symmetrical realizationscal realizations continue to be the best prototypes for active realiza-

tions, due to their low sensitivity to errors in element values. for orders 5 and 7.



CHEBYSHEV FILTERS 273

Table 3. Normalized Inverse Chebyshev Filters with Amax � 1 dB and Amin � 50 dB

Polynomials E(s)
n a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

1 1.96523 1.00000
2 1.96838 1.98099 1.00000
3 2.01667 3.14909 2.51015 1.00000
4 2.19786 4.52937 4.90289 3.13118 1.00000
5 2.60322 6.42983 8.61345 7.26320 3.81151 1.00000
6 3.35081 9.35051 14.61162 14.91369 10.30744 4.54023 1.00000
7 4.64002 14.09440 24.72451 29.03373 24.18372 14.09633 5.30979 1.00000
8 6.82650 22.03426 42.29782 55.31092 52.89124 37.20009 18.68307 6.11268 1.00000
9 10.54882 35.60372 73.49954 104.6829 111.4815 90.07839 54.81844 24.10445 6.94337 1.00000

10 16.95789 59.19226 129.8094 198.2422 230.3472 207.4480 145.4877 77.89699 30.39330 7.79647 1.00000
Poles
n re/im 1 �/Q 1 re/im 2 �/Q 2 re/im 3 �/Q 3 re/im 4 �/Q 4 re/im 5 �/Q 5
1 �1.96523

2 �0.99049 1.40299
0.99363 0.70823

3 �0.61468 1.25481 �1.28079
1.09395 1.02071

4 �0.42297 1.18385 �1.14262 1.25229
1.10571 1.39945 0.51249 0.54799

5 �0.30648 1.13993 �0.94418 1.23656 �1.31018
1.09795 1.85969 0.79849 0.65483

6 �0.23016 1.10962 �0.75398 1.21506 �1.28598 1.35770
1.08549 2.41056 0.95283 0.80576 0.43545 0.52789

7 �0.17794 1.08768 �0.59638 1.18959 �1.14085 1.36871 �1.47946
1.07303 3.05632 1.02930 0.99735 0.75619 0.59986

8 �0.47425 1.16431 �0.14101 1.07137 �0.95398 1.34983 �1.48710 1.55173
1.06334 1.22752 1.06205 3.79891 0.95496 0.70747 0.44316 0.52173

9 �0.38185 1.14152 �0.77805 1.31643 �0.11413 1.05899 �1.34453 1.56247 �1.70623
1.07575 1.49471 1.06189 0.84597 1.05282 4.63922 0.79596 0.58105

10 �0.63221 1.27960 �0.31203 1.12193 �0.09407 1.04944 �1.13939 1.53032 �1.72054 1.78611
1.11252 1.01201 1.07766 1.79777 1.04521 5.57772 1.02161 0.67155 0.47954 0.51906

Polynomials P(s)
n Multiplier a0 a2 a4 a6 a8 a10

1 1.96523 1.00000
2 0.00316 622.4562 1.00000
3 0.05144 39.20309 1.00000
4 0.00316 695.0228 74.56663 1.00000
5 0.03477 74.86195 19.34709 1.00000
6 0.00316 1059.620 494.9652 57.80151 1.00000
7 0.03463 133.9940 95.81988 19.57753 1.00000
8 0.00316 2158.727 2130.497 657.0734 64.84805 1.00000
9 0.03786 278.6600 354.3952 150.2380 23.58892 1.00000

10 0.00316 5362.556 8380.916 4584.365 1023.530 79.98165 1.00000
Zeros
n �1 �2 �3 �4 �5

1
2 24.94907
3 6.26124
4 7.97788 3.30455
5 3.74162 2.31245
6 6.92368 2.53424 1.85520
7 3.60546 2.00088 1.60458
8 7.29689 2.56233 1.71209 1.45144
9 3.88896 2.06927 1.53587 1.35062

10 8.08496 2.78589 1.78865 1.41948 1.28053
LC doubly terminated realizations
n Rg/Rl L/C 1 L/C 2 L/C 3 L/C 4 L/C 5 L/C 6 L/C 7 L/C 8 L/C 9 L/C 10
1 1.00000

1.00000 1.01769
3 1.00000 1.56153

1.00000 0.78077 0.01634 0.78077
5 1.00000 1.16364 1.30631

1.00000 0.37813 0.16071 1.62010 0.05468 0.47172
7 1.00000 0.72897 1.34370 0.96491

1.00000 0.09574 0.34265 1.32044 0.28905 1.32059 0.07972 0.30081
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Table 4. Normalized Even-order Modified Inverse Chebyshev Filters with
Two Transmission Zeros at Infinity, with Amax � 1 dB and Amin � 50 dB

Polynomials E(s)
n a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

2 1.96523 1.98254 1.00000
4 2.12934 4.47598 4.86847 3.12041 1.00000
6 3.14547 9.02141 14.23655 14.65051 10.18872 4.51414 1.00000
8 6.32795 20.98707 40.68275 53.69811 51.69862 36.58972 18.48009 6.07949 1.00000

10 15.69992 56.17036 124.1801 191.3464 223.6989 202.6490 142.8395 76.84994 30.12162 7.76165 1.00000
Poles
n re/im 1 �/Q 1 re/im 2 �/Q 2 re/im 3 �/Q 3 re/im 4 �/Q 4 re/im 5 �/Q 5
2 �0.99127 1.40187

0.99127 0.70711
4 �0.43134 1.18419 �1.12886 1.23225

1.10284 1.37268 0.49409 0.54580
6 �0.23626 1.11107 �0.76275 1.20632 �1.25806 1.32324

1.08566 2.35141 0.93457 0.79077 0.41016 0.52590
8 �0.14421 1.07247 �0.48399 1.16315 �0.96075 1.33672 �1.45079 1.50858

1.06273 3.71848 1.05767 1.20162 0.92940 0.69566 0.41357 0.51992
10 �0.64341 1.27784 �0.31781 1.12245 �0.09573 1.05011 �1.14584 1.51514 �1.67803 1.73625

1.10404 0.99303 1.07652 1.76590 1.04574 5.48452 0.99132 0.66115 0.44586 0.51735
Polynomials P(s)
n Multiplier a0 a2 a4 a6 a8

2 1.96523 1.00000
4 0.16412 12.97454 1.00000
6 0.11931 26.36278 10.89186 1.00000
8 0.13145 48.13911 44.73326 12.54437 1.00000

10 0.16119 97.39855 147.0191 76.50032 15.68797 1.00000
Zeros
n �1 �2 �3 �4

2
4 3.60202
6 2.69467 1.90542
8 2.71078 1.74464 1.46706

10 2.94484 1.82001 1.43081 1.28694
LC doubly terminated ladder realizations
n Rg/Rl L/C 1 L/C 2 L/C 3 L/C 4 L/C 5 L/C 6 L/C 7 L/C 8
2 1.00000 1.00881

1.00000 1.00881
4 1.00000 1.51207 0.05275 0.58997

1.00000 0.64094 1.46110
6 1.00000 0.87386 1.67233 0.13065 0.32187

1.00000 0.17880 0.31519 1.63514 1.05413
8 1.00000 0.67581 0.32023 1.34317 0.38303 1.12998 0.18178 0.16760

1.00000 0.32898 1.02594 1.21303 0.74862
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