
CASCADE NETWORKS

Cascade design refers to the procedure in which the de-
signer chooses to factor a complex circuit requirement of
order n ≥ 2 that is difficult or impossible to realize in its
given form into a number of simpler specifications that re-
sult in more practical circuits and are more readily imple-
mented. These are then connected in a chain, that is, in a
cascade circuit, to realize the specified requirements. Typ-
ically, one factors a required high-order transfer function

with n ≥ m and n > 1, into a number of lower-order func-
tions Tj(s). H(s) in Eq. (1) is a ratio of two polynomials N(s)
and D(s) of degrees 2m and 2n, respectively. We selected,
without loss of generality, the coefficient a2n = 1, because
numerator and denominator can always be divided by a2n .
The realization then connects the functions Tj(s) such that

that is, the total transfer function is obtained from the
product of lower-order functions. Examples of cascade syn-
thesis extend from the early days of electronics when
RLC circuits were isolated by vacuum-tube amplifiers
to the present-day discrete or fully integrated realiza-
tions of active filters (RC circuits augmented or isolated
by operational amplifiers) and switched-capacitor circuits
where resistors in active filters are replaced by periodically
switched capacitors. Cascade design is used widely not only
for the implementation of magnitude and phase responses
but also for group-delay equalizers. The goal is to realize
H(s) via simpler circuits in an efficient way with low sensi-
tivities to component tolerances. The sensitivity issue will
be addressed below.

In Eq. (1), we have labeled the degrees of the numera-
tor and denominator polynomials N(s) and D(s) as 2m and
2n, respectively, to emphasize the fact that we assume the
degrees to be even. Both N(s) and D(s) can therefore be
factored into the product of second-order pole-zero pairs,
as expressed in the following form:

The notation assumes that both N and D are of degree 2n;
if m < n, the numerator will contain 2(n − m) factors of
unity. If the degree of H(s) is odd, the function can always
be factored into the product of even terms as shown in Eq.
(3) and a first-order factor. First-order sections can easily
be realized by a passive RC network and can be appended

to the higher-order circuit as an additional term.

Example 1. We now illustrate the decomposition of a
higher-order transfer function into a product of lower-order
transfer functions. The transfer function of a sixth-order
filter, with a normalized frequency parameter, is

To realize this filter as a cascade circuit, the numerator
and denominator are factored by a suitable root-finding
algorithm as follows:

In this case, n = 3 and the numerator is odd, that is, N(s)
is factored into a product of two second-order factors and
a first-order factor, and the function is presented as the
product of three terms according to Eq. (2).

Example 2. This example illustrates how cascading of
lower-order sections enables the realization of an ampli-
fier with a large inverting gain, K = −1,000,000. The band-
width must be at least 5 kHz and the smallest resistor used
should be 1 k� to minimize currents and loading effects.

If one attempts to realize the amplifier in the usual way
with a 741-type operational amplifier as shown in Fig. 1(a),
a 1000 M� = 1 G� = 109 � resistor is required. This re-
sistor is too large to be realized; it is essentially an open
circuit and leaves the operational amplifier operating in
an open loop. The bandwidth would be less than 1 Hz.
Because of such processing or technology constraints, it
is convenient, even necessary, to partition the prescribed
gain into several factors, such as K = K1K2K3 = (−100) ×
(−100) × (−100), and connect the resulting circuits in cas-
cade [Fig. 1(b)]. In this configuration, the second amplifier
picks up the output of the first one with gain −100 and
multiplies it by a second factor −100, and so on, to realize
K = −1,000,000 as required. Of course, with this large am-
plification of the factor 106, the designer must pay careful
attention to avoid signal-level distortion.This issue will not
be addressed here. At the expense of additional circuitry,
cascade design enabled us to realize the specifications with
the required gain, bandwidth (it is larger than 8 kHz), and
practical component values. Without the cascade method,
the specifications placed such demands on the components
to render the circuit unrealizable.

In a similar manner, high-order active filters described
by a transfer function, H(s), are most frequently designed
as a cascade of low-order circuits. The method results in
filters that can be adjusted (or tuned) easily and have low
sensitivity to component tolerances Ref. 1. In addition, the
design method is completely general, in that transfer func-
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2 Cascade Networks

Figure 1. (a) Proposed operational amplifier circuit to realize K = −R2/R1 = −1,000,000. The
circuit is not practical because of the large resistor R2 and because the minimal feedback limits the
bandwidth to very low values; (b) practical realization as a cascade of three amplifiers with gain
Ki = −100.

tions of arbitrary form can be realized. Naturally, to keep
the circuits stable, that is, to prevent them from oscillating,
the poles, the roots of D(s), are restricted to the left half of
the complex s plane (α0j > 0, α1j > 0). The transmission
zeros, the roots of N(s), however, can be anywhere in the s
plane; their location depends only on the desired response.
An additional advantage is that in cascade design the de-
signer can focus on the low-order sections Tj(s) that are
generally simpler to implement than the high-order func-
tion H(s). The low-order sections are then simply connected
in a chain, or cascaded, as shown in Fig. 2. If Tj(s) is defined
as a voltage transfer function,

Tj(s) = Vo j

Vi j
(5)

the total transfer behavior realized by that circuit is de-
rived to be

H(s) = Vout

Vin
= Vo1

Vin

Vo2

Vo1

Vo3

Vo2
. . .

Vo(n−1)

Vo(n−2)

Vout

Vo(n−1)
= T1(s)T2(s) . . . Tn−1(s)Tn(s)

(6)

as required by Eq. (2). Equation (7) holds because the con-
nection guarantees that the input voltage of section j is
equal to the output voltage of section j − 1, Vij = Vo(j−1).

SENSITIVITY

The sensitivity of a cascade realization of a transfer func-
tion H(s, x) to a component x is calculated via derivatives,

where we assumed that the component x is located in sec-
tion j, and partial derivatives are used because H is a func-
tion of s and of all circuit components. Customarily, both
the transfer function deviation ∂H and the component de-
viation ∂x are normalized to H and x, respectively, so that
we obtain from Eq. (8) with Eq. (2)

These quantities are the classical sensitivities, defined as

Equation (6) can be rewritten in the form

which means that the percentage error in a function F(x)
caused by a component with tolerance ∂x is computed by
multiplying the percentage error of the component by the
sensitivity. From Eq. (9) we have the important result

which says that in a cascade circuit the sensitivity of the
total transfer function H to a component is equal to the
sensitivity of the section Tj that contains the component.
In contrast to noncascaded implementations, in which the
sensitivity to a component may depend on all poles and
zeros and may become very large Ref. 1, here it depends
only on the pole and zero in section j and is not affected by
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Figure 2. Cascade realization of a 2nth-order transfer function. The realized transfer function is
the product of the individual function realized by the blocks T1.

any of the other sections. Equation (12) verifies formally
the intuitive expectation that the cascade circuit with good
sensitivity behavior should be built from low-sensitivity
sections.

CASCADING CONDITION

A general condition that must be satisfied for Eq. (7) to
hold in the simple form shown is that the sections do not
load each other and do not otherwise interact. This condi-
tion requires that the output impedance Zout of any section
ideally is zero and its input impedance Zin infinite. Figure
3 illustrates this requirement for two sections T1 and T2,
defined as

T1(s) = Vn1

V1
and T2(s) = Vn2

Vi2

Vn1 and Vn2 are the voltages at the respective internal
nodes n1 and n2 in Fig. 3. The complete sections, realisti-
cally modeled to include a finite input impedance Zi(s) and
output impedance Zo(s), are contained in the dashed boxes.
Assuming that V1 is an ideal voltage source so that Zi1 has
no effect and that there is an open circuit at Vo2 so that no
current flows through Zo2, analysis of the configuration in
Fig. 3, starting from the output, yields

Vo2 = T2(s)Vi2 = T2(s)
Zi2(s)

Zi2(s) + Zo1(s)
Vn1

= T2(s)
Zi2(s)

Zi2(s) + Zo1(s)
T1(s)V1

(12)

Thus, the transfer function of the two-section cascade is

H(s) = Vo2

V1
= T1(s)T2(s)

Zi2(s)
Zi2(s) + Zo1(s)

(13)

rather than the simple product T1T2 intended. The problem
is that the current through Zo1 is not zero, that is, section
1 is loaded by section 2. Equation (15) indicates that the
desired result is achieved provided that

|Zi2( jω)| � |Zo1( jω)| (14)

Ideally, Zi2 = ∞ and Zo1 = 0. Condition (14) is satisfied in
the circuit in Fig. 1(b) because the operational amplifier
circuits with feedback and a gain of 100 have very small
output resistance (Rout < 50 �) compared to the input re-
sistance of the following stage (Rin = 1 k�). The condition
to permit cascading is, therefore, that the input impedance
of the loading section must be much larger than the output
impedance of the driving section so that the voltage divider
factor that multiplies the ideal product T1T2 in Eq. (15) is
as close to unity as possible. The voltage divider ratio is
written on purpose in terms of impedances as functions of
s or jω to emphasize that, in practice, the designer needs to

contend with more than a resistor ratio that would multi-
ply T1T2 simply by a frequency-independent constant.

To illustrate this point consider the example of a second-
order low-pass filter being built by cascading two identical
first-order sections as in Fig. 4. The sections have the trans-
fer function,

The intent is to multiply the transfer functions T1 and T2

so that

H(s) = Vo2

V1
= T1(s)T2(s) = 1

sCR + 1
1

sCR + 1

= 1
(sCR)2 + 2sCR + 1

(16)

However, because of the finite impedances identified in the
figure,

Zi2 = R + 1
sC

and Zo1 = 1
sC + 1/R

by Eq. (15) the proposed circuit in Fig. 4 realizes the trans-
fer function

H(s) = Vo2

V1
= (

1
sCR + 1

)2
R + 1

sC

(R + 1
sC

) + (
R

sCR + 1
)

= 1
(sCR + 1)2

(sCR + 1)2

(sCR)2 + 3sCR + 1
= 1

(sCR)2 + 3sCR + 2

(17)

The desired performance is completely altered as can be
confirmed by direct analysis. It is seen that the finite
frequency-dependent input and output impedances sub-
stantially change the desired transfer function. If cascad-
ing must be used but Eq. (16) is not satisfied, buffering us-
ing a voltage follower can be employed as in Fig. 5 so that
no current is drawn from the first section and the second
section is driven by a nearly ideal voltage source.

To repeat the important condition that must be satisfied
if two circuits are to be connected in cascade: the trailing
section must not load the leading section. The circuits to be
cascaded can be of low order, high order, active, passive, or
any desired combination; the loading restriction does not
change. For designing high-order active filters, the cascade
connection normally consists of first- and second-order ac-
tive building blocks because they can be cascaded directly
with no need of buffering: since active circuits usually have
an operational amplifier output as their output terminal,
unbuffered cascading is possible because the operational
amplifier output resistance in a feedback network is very
small (see Example 2). On the other hand, as in the ex-
ample of Fig. 4, it can be expected intuitively that passive
circuits can generally not be connected in cascade without
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Figure 3. Two-section cascade with finite input and output impedances. The second section loads
the first one unless its input impedance, Zi2, is much larger than the output impedance, Zo1, of the
first section.

Figure 4. Cascade connection of two first-order passive low-
pass sections with finite input and output impedances. The two
modules interact so that the realized transfer function is not
equal to the product of the two first-order functions. Isolating
the sections is required as shown in Fig. 5.

Figure 5. Two low-pass modules isolated by an operational amplifier. The unity-gain voltage fol-
lower isolates the sections’ performance so that the total transfer function is the product of the two
first-order modules.

buffering because the condition in Eq. (16) will rarely be
satisfied.

THE DESIGN APPROACH AND TRADE-OFFS

The problem to be addressed is how the transfer function
of Eq. (1) can be realized in an efficient way with simple
low-order circuits and low sensitivities to component toler-
ances. As was mentioned, the sensitivity behavior of high-
order filter realizations shows Ref. 1 that, in general, it is
not advisable to realize the transfer function H(s) of Eq. (1)
in the so-called direct form, using only one or maybe two
operational amplifiers embedded in a high-order passive
RC network. Although it is possible in principle to realize
Eq. (1) in direct form, the resulting circuits are normally
so sensitive to component tolerances that reliable perfor-
mance cannot be expected in practice. A further disadvan-
tage of the direct synthesis method is the use of a very
large number of passive components to realize a function
of given order.

In the cascade approach, the high-order function H(s)
is factored into functions of second order as indicated in
Eq. (3). The resulting biquadratic functions are realized by
the methods discussed elsewhere in this encyclopedia and
connected in cascade such that their product implements
the prescribed function H(s). The cascade method is used

widely in industry because it is applicable generally, is well
understood, very easy to implement, and efficient in its use
of active devices (as few as one operational amplifier per
pole pair). It uses a modular approach and results in fil-
ters that for the most part show satisfactory performance
in practice. One of the main advantages of cascade filters
is that they are very easy to tune because each biquadratic
section, referred to as biquad in the literature, is responsi-
ble for the realization of only one pole pair and zero pair:
the realizations of the individual critical frequencies of the
filter are decoupled from each other. The disadvantage of
this decoupling is that for filters of high order, say larger
than order eight (n > 4), with stringent requirements and
tight tolerances, cascade designs are often found to be still
too sensitive to component variations in the passband. In
these cases, ladder simulations may lead to more reliable
circuits Ref. 1.

As shown in Eq. (3), the high-order transfer function
H(s) is factored into a product of second-order blocks,

where the denominator is expressed in terms of the usual
filter parameters, the quality factor Q and the pole fre-
quency ω0. We have also introduced a suitably defined gain
constant, kj, for example such that the leading coefficient in
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the numerator of the gain-scaled transfer function tj(s) is
unity or such that |tj(jω0j )| = 1. The sections Tj(s) are quite
arbitrary; for example, they can realize a low-pass function
(β2j = β1j = 0), a bandpass function (β2j = β0j = 0), a high-
pass function (β1j = β0j = 0), or a pair of finite transmission
zeros on the jω axis (β1j = 0), as the process does not change.
Because second-order filter sections can be built to realize
arbitrary functions of the form of Eq. (21), cascade design
is very general in permitting the realization of any type of
stable transmission requirement. If we then may assume
that the output impedances of the biquadratic functions
are sufficiently small (compared to the input impedances),
all second-order blocks can be connected in cascade, Fig.
2, without causing mutual interactions due to loading, and
the product of the biquadratic functions is realized as re-
quired by Eq. (7).

Although this simple process leads in a straightforward
way to a possible cascade design, it leaves several questions
unanswered:

1. Which zero should be assigned to which pole in Eq.
(3) when the biquadratic functions Tj(s) are formed?
Since we have n pole pairs and n zero pairs (counting
zeros at 0 and at ∞) we can select from n factorial, n!
= 1 × 2 × 3 × · · · × n, possible pole–zero pairings.

2. In which order should the biquadratic sections in Eq.
(7) be cascaded? Does the cascading sequence make
a difference? For n biquadratic sections, we have n!
possible sequences.

3. How should the gain constants kj in Eq. (21) be cho-
sen to determine the signal level for each biquad? In
other words, what is the optimum gain distribution?

Because the total transfer function is the product of the
biquadratic sections, the selections in steps 1–3 are quite
arbitrary as far as H(s) is concerned. However, they do de-
termine significantly the dynamic range, that is, the dis-
tance between the maximum possible undistorted signal
and the noise floor: the maximum and minimum signal lev-
els throughout the cascade filter can be shown to depend on
the choices in steps 1–3. Although the sensitivities to com-
ponent tolerances are functions of pole–zero pairing, the
effect usually is not very strong. For a detailed treatment
see Refs. 2 and 3. Also, the selection of pole–zero pairing
for best sensitivity can be shown to conflict often with the
choice necessary for best dynamic range. Since the imple-
mentation of the blocks Tj(s) normally makes use of active
devices, such as operational amplifiers, depending on the
operating frequency, the maximum undistorted signal volt-
age that a filter can process is limited either by the power
supply or by the slew rate of the operational amplifiers.

The optimal cascading routine to be discussed
(pole–zero pairing, section ordering) and gain assignment,
is entirely general and does not depend on the transfer
function or its type. It is independent of the actual im-
plementation of the second-order building blocks. The de-
signer may choose any convenient technology and the cir-
cuit architecture that seems preferable from the point of
view of sensitivity, numbers and kinds of elements, values
and element value spreads, power consumption, or other

practical considerations.

DYNAMIC RANGE

Since it is the dominant effect of pole–zero pairing, section
ordering, and gain assignment, we will be concerned here
only with dynamic range issues. To help tackle the problem,
let us label the maximum signal level that can be handled
with no distortion as Vo,max. We assume that it is measured
at the output of the biquadratic sections. This assumption
will always be correct in single-amplifier biquadratic sec-
tions for which section output and operational amplifier
output are the same. In multiamplifier biquadratic sec-
tions, each operational amplifier output must be evaluated
and the maximum operational amplifier output voltage in
the biquadratic section must be determined. To avoid over-
driving any operational amplifier sooner than any other
one inside a biquadratic section, it is intuitively reason-
able that any available design freedom in the biquadratic
sections should be chosen such that all operational ampli-
fiers “see” the same signal level. If this is not possible, that
is, if the undistorted output voltage Voi of section i is only
a fraction 1/qi of the maximum internal voltage, with qi >

1, Voi in the following equations must be replaced by qiVoi .
For simplicity, we shall assume in our discussion that the
sections can be designed such that qi = 1.

We must ensure then that the signal level at any section
output, |Voi (jω)|, satisfies

max|Voi( jω)| < Vo,max, 0 ≤ ω ≤ ∞, i = 1, . . . n (19)

Note that this condition must indeed be satisfied for all
frequencies and not only in the passband because large
signals even outside the passband must not be allowed
to overload and saturate the operational amplifiers: when
operational amplifiers are overdriven, their operation be-
comes nonlinear. The circuit, however, may still act as a
filter and remove the higher harmonics that are generated
by the nonlinear operational amplifier operation. The prob-
lem that arises when saturating the operational amplifiers
is, therefore, not so much harmonic distortion of the signal
but changed operating points, intermodulation distortion,
and deviations of the magnitude response Ref. 1.

The lower limit of the useful signal range is set by the
noise floor. If in the passband of a cascade filter the signal at
an internal stage becomes very small, it must be amplified
again to the prescribed output level. From any point in the
cascade of filter stages, say at the output of stage i, signal
and noise are amplified by the same amount, namely,

Consequently, the signal-to-noise ratio will suffer if in the
cascade filter the signal suffers in-band attenuation, that
is, if it is permitted to become very small. The function
H+

i(s), defined in Eq. (23), is referred to as the noise gain
from the output of section i to the filter output. Thus, the
second condition to be satisfied by the output voltage of any
biquadratic section is

min|Voi( jω)| → max for ωL ≤ ω ≤ ωU, i = 1, . . . n (21)
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ωL and ωU are the lower and upper, respectively, corners of
the passband. In this case we are, of course, only concerned
with signal frequencies in the passband, because in the
stopband the signal-to-noise ratio is of no interest. Note,
however, that for a white noise input the output noise spec-
trum of a filter section has the same shape as the square
of the transfer function magnitude, which means that the
highest noise response occurs at the pole frequencies with
the highest Q values. Since these are mostly found just be-
yond the specified corners of the passband they would not
be included in the measurement defined in Eq. (24). There-
fore, to avoid decreased dynamic range caused by possibly
large noise peaks at the passband corners, it is advisable to
extend the frequency range beyond the specified passband
corners, ωL and ωU, into the transition band to cover the
pole frequencies with the highest Q values.

The steps of pole–zero pairing, section ordering, and
gain assignment will now be chosen such that the condi-
tions in Eqs. (22) and (24) are satisfied. It must be empha-
sized that these steps do not just amount to minor adjust-
ments when designing a cascade filter, but that the cascade
circuit will likely not perform to specifications in practice
unless these steps are taken at the design stage.

Pole-Zero Pairing

According to Eqs. (22) and (24), the pole–zero pairing
should be chosen such that, in a given section, Mi =
max|Voi (jω)| is minimized at all frequencies, and mi =
min|Voi (jω)| is maximized in the passband. In other words,
using Eq. (21), |ti(jω)| should be as flat as possible in the
frequency range of interest. Notice that Mi may lie outside
and mi at the edge of the passband, and that the actual
minimum of the magnitude |ti(jω)| lies in the stopband and
is of no concern. As the values of Mi and mi change when the
relative positions of the poles and the zeros of ti(s) are al-
tered, the pole–zero assignment must be chosen such that
the ratio Mi/mi is as close to unity as possible, which means
that for each biquadratic function the “measure of flatness”

should be minimized. The optimal pole–zero assignment
for the total 2nth-order cascade filter is then the one that
minimizes the maximum value of di:

Algorithms that accomplish this task are available in the
literature Refs. 4 to 7. Even in fairly simple low-order cases
the problem of pole–zero assignment can be quite compu-
tation intensive; it requires substantial software and com-
puter resources.

If the appropriate computing facilities are not available,
a simple solution that provides good suboptimal results is
simply to assign each zero or zero-pair to the closest pole
Refs. 4–8. On occasion, depending on system requirements,
we may also preassign some pole–zero pair(s) and leave
them out of the remaining pairing process. For instance, if
the numerator contains a term s2, we may prefer to factor it
into s × s instead of s2 × 1, that is, we may prefer to realize

two second-order bandpass sections instead of a high-pass
and a low-pass section.

Example 3. Determine the optimal pole-zero pairing for
the transfer function of Eq. (5) of Example 1. The transfer
function was

The zeros are located at z1 = 0 and z2 = ∞,z3,4 = ±j0.5,and at
z5,6 = ±j1.5, and the poles are at p1.2 = −0.045 ± j0.9099, p3,4

= −0.1 ± j1.0, and p5,6 = −0.05 ± j1.085. According to the
approximate assignment rule just stated, we should pair
(z1,2, p3,4), (z3,4, p1.2), and (z5,6, p5,6). This choice is indicated
in Eq. (28):

Section Ordering

After the pole-zero assignment has been solved, the optimal
ordering sequence must be determined out of the n! possi-
bilities in which the biquadratic sections can be connected
to form the cascade network. For example, for the sixth-
order network with three sections in Example 3, there ex-
ist six possible ways to cascade the biquadratic functions:

The best sequence is the one that finds the ordering that
maximizes the dynamic range. The procedure is completely
analogous to the earlier discussion where pole–zero pairs
were chosen to keep the transfer functions of the individual
sections as flat as possible. Now the cascade connection is
designed such that the transfer functions

from filter input to the output of the ith intermediate bi-
quadratic section are as flat as possible. Hn is, of course,
equal to the total transfer function H. This will help en-
sure that the maximum signal voltages do not overdrive
the operational amplifiers and that, over the passband,
the smallest signal stays well above the noise floor. Con-
sequently, the relationships in Eqs. (22) and (24) must be
satisfied,

min|Voi( jω)| < Vo,max 0 ≤ ω ≤ ∞ (26)

min|Voi( jω)| → max for ωL ≤ ω ≤ ωU (27)

where Voi (s) is now the output voltage of the cascade of the
first i sections when driven by an input signal Vin(s). With
Hi(s) given in Eq. (30), we define the two measures

Mi = max|Voi( jω)|
|Vin( jω)| = max| Voi( jω)

Vin( jω)
|

= max|Hi( jω)| for 0 ≤ ω ≤ ∞
(28)
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and

mi = min|Voi( jω)|
|Vin( jω)| = min| Voi( jω)

Vin( jω)
|

= min|Hi( jω)| for ωL ≤ ω ≤ ωU

(29)

and require again that the flatness criterion of Eq. (25)
be minimized, now, however, by choice of the cascading se-
quence,

The optimal sequence is the one that minimizes the max-
imum number di as prescribed in Eq. (26). Note that we
do not have to consider dn because, with all sections con-
nected in the cascade filter, dn is nothing but a measure
of the prescribed passband variations (the ripple). With
the problem identified, the optimum cascading sequence
can be found in principle by calculating di for all n! se-
quences and selecting the one that satisfies Eq. (35). As in
the pole–zero assignment problem, a brute-force optimiza-
tion approach involves a considerable amount of computa-
tion, and more efficient methods have been developed that
use linear programming techniques, such as the “branch
and bound” method of Refs. 5–7, or “back track program-
ming” Ref. 9. The necessary computer algorithms are de-
scribed in the literature.

If the required software routines are not available, the
designer must pick a cascading sequence that is based on
experience or intuition. A selection that is often very close
to the optimum is the one that chooses the section sequence
in the order of increasing values of Qi, that is,

so that the section with the flattest transfer function mag-
nitude (the lowest Q) comes first, the next flattest one sec-
ond, and so on. The possible choices are frequently further
limited by other considerations. For example, it is often de-
sirable to have as the first section in the cascade a low-pass
or a bandpass section so that high-frequency signal compo-
nents are kept from the amplifiers in the filter in order to
minimize slew-rate problems. Similarly, the designer may
wish to employ a high-pass or a bandpass section as the last
section in order to eliminate low-frequency noise, dc offset,
or power-supply ripple from the filter output. In such sit-
uations, the optimum sequencing is performed only on the
remaining sections.

The following example illustrates some of the steps dis-
cussed.

Example 4. Continue Example 3 to find the optimal cas-
cading sequence for the three second-order sections. Since
the coefficient of s in the denominators of the second-order
sections of Eq. (28) equals ω0i /Qi, and the constant coeffi-
cient equals ω2

0i , we have

Using Eq. (31) and using the section numbering in Eq. (28),
the optimal ordering is, therefore,T2T1T3. If instead the de-
sign were to emphasize the elimination of high-frequency
signals from the filter and low-frequency noise from the
output, the ordering T2T3T1,

would be preferred because the bandpass section, T2, has
the best high-frequency attenuation, and section T1 pro-
vides reasonable attenuation at low frequencies (0.25/0.83
= 0.3 ≈ −10.4 dB), whereas section T3 has a high-frequency
gain of 1 and amplifies low-frequency noise by more than
2.25/1.18 = 1.91 ≈ 5.6 dB. This suboptimal ordering gives
almost identical results to the optimal one,T2T1T3, because
Q1 ≈ Q3.

Gain Assignment

The last step in the realization of a cascade filter is the
assignment of the gain constants. Generally, the selection
is again based on dynamic range concerns with the goal of
keeping the signals below amplifier saturation limits and
above the system noise floor. To get a handle on the pro-
cess, we note that the circuit is linear and all voltages rise
in proportion to Vin. It is clear then that the maximum
undistorted input signal can be processed if we choose the
gain constants such that all internal output voltages Voi , i
= 1, . . . , n − 1, are equal in magnitude to the presumably
prescribed magnitude of the output voltage, Von:

max|Voi( jω)| = max|Von( jω)| = max|Vout( jω)|,
i = 1 = 1, . . . n − 1

Assuming as before that the output voltage of the bi-
quadratic sections reaches the critical magnitude, this
choice ensures that for a given signal level none of the op-
erational amplifiers in the blocks of Fig. 2 is overdriven
sooner than any other one. Note, however, the earlier com-
ments about precautions necessary in multiamplifier bi-
quads.

For the analysis it is convenient to use the notation of
Eqs. (2), (21), and (30), that is,

and, for the intermediate transfer functions,

Furthermore, we introduce the constant

such that
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is the prescribed gain. Similar to the definition of Mn, let us
denote the maxima of the intermediate n − 1 gain-scaled
transfer functions by Mi, that is,

To make max|Vo1(jω)| = max|Vout(jω)|, we then obtain the
equation k1M1 = KMn, that is,

Similarly, k1k2M2 = KMn, that is, with Eq. (45),

results in max|Vo2(jω)| = max|Vout(jω)|. Proceeding in the
same manner yields

Choosing the gain constants as in Eqs. 45, 46, 47 guaran-
tees that all operational amplifiers “see” the same maxi-
mum voltage to ensure that the largest possible signal can
be processed without distortion. Note that changing the to-
tal gain of the n-section cascade filter affects only K, that
is, k1. The voltages in all other sections Ti(s), i = 2, . . . , n,
increase or decrease proportionally, but their relative mag-
nitudes stay the same, as determined by ki in Eq. (47).

Example 5. Continue Example 4 to find the optimal gain
constants for the three second-order sections so that their
maximum output levels are equalized. The specified mid-
band filter gain is 10 dB. Use the section ordering in Eq.
(38).

From Eq. (43), we find

corresponding to the prescribed gain of 10 dB. The maxima
Mi can be computed as

by evaluating the functions in Eqs. (43) and (44). With Mi

known, and using Eq. (48), Eqs. (45) and (47) give

that is

These values result in all section outputs being equal to
KM3 = 3.16 times the input voltage level for a uniform gain
of 10 dB. If the designer were to find out later that system
performance would improve for a different filter gain, say,

29 dB rather than 10 dB, it is necessary only to alter the
first section in the cascade from k1 = 3.16 to

to achieve the new circuit for which dynamic range is still
optimized.

To demonstrate that gain equalization is very important
in cascade realizations, consider the case where equaliza-
tion is not performed. Had the designer chosen all ki = 1
as in Eq. (38), the output levels would have been 13.9 dB
at Vo1, 31.9 dB at Vo2, and 41.3 dB at Vo3. Quite apart from
the specified gain of 10 dB not being realized, the differ-
ence of a factor of 41.3 dB − 13.9 dB = 27.4 dB = 23.4 in
operational amplifier output voltages would likely result
in gross distortions unless the input voltage is kept very
small.
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7. E. Lüder Optimization of the dynamic range and the noise dis-
tance of RC-active filters by dynamic programming, Int. J. Cir-
cuit Theory Appl., 3: 365–170, 1975.

8. A. S. Sedra P. O. Brackett Filter Theory and Design: Active and
Passive, Portland, OR: Matrix, 1978.

9. W. M. Snelgrove A. S. Sedra Optimization of dynamic range in
cascade active filters. In Proc. IEEE Int. Symp. Circuit Syst.,
1978, pp. 151–155.

ROLF SCHAUMANN

Portland State University,
Portland, OR


