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BRIDGE CIRCUITS

Bridges are the most commonly used circuits in measurement
techniques. They enable accurate static measurements of re-
sistance, capacitance, or inductance. Measurement accuracy
is provided by the null-balance method of output indication,
and by the fact that the bridge circuit configuration allows
comparison of unknown components with precise standard
units. This resulted in development of bridge instruments as
complete units of laboratory equipment. The balance in
bridges is highly sensitive with respect to variations of the
bridge components, and this brought about the widespread
use of bridge configurations in transducer and sensor applica-
tions. In addition, the bridge circuits may be found as ‘‘work-
ing’’ circuitry in electric filters where they provide the flexi-
bility inachievable for other filter configurations, in radio
receivers and transmitters where the bridge approach is used
to design stable sinusoidal oscillators, and elsewhere in elec-
tronic hardware, where they are met in a wide variety of cir-
cuits used for determination of impedance, reactance, fre-
quency, and oscillation period. The number of circuits based
on the bridge configuration is increasing, and this article de-
scribes the elements of the general theory of bridge circuits,
and outlines some of their above-mentioned basic applications
with more stress on measurement and transducer ones.

The circuit [Fig. 1(a)] including four arms with imped-
ances, Z1, Z2, Z3, Z4, an element (in applications called ‘‘bal-
ance detector’’ or ‘‘balance indicator’’) with impedance Zo, and
a voltage source of value Eg and output impedance Zg is an
example of the so-called bridge circuit. Figure 1(b) shows the
equivalent ‘‘lattice’’ form of this circuit. This is the simplest
circuit, for which the currents in the impedances cannot be
found using the circuit reduction based on parallel or series
connection of two or more impedances. To find these currents,
one has to write, for example, a system of three loop equa-
tions. As a result, this circuit, which is not very complicated,
is frequently used for demonstration of general (1) (mesh,
loop, and nodal analysis) and special methods (2) (wye-delta
transformation) of circuit analysis. The calculation of the cur-
rent Io in the impedance Zo is a favorite example for demon-
stration of Thévenin and Norton theorems (1,3).

Most technical applications of this bridge circuit are based
on a simple relationship that exists among the circuit arm
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Figure 1. (a) Bridge circuit and (b) its lattice form.
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Figure 2. (a) Bridge circuit as a transmission
system; (b) two-ports with crossed input or output
wires; (c) two subcircuits in a bridge: (d) their par-
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allel-series connection is clearly seen.

impedances so that the current (or voltage) of the detector The terms a11, a12, a21, and a22, (called ‘‘chain parameters’’) are
the terms of a-parameter matrix. Equations (2) show that theimpedance has a zero value. One can easily see that in the

circuits of Fig. 1 the condition Io � 0 (or the ‘‘balance’’ condi- two-port does not transmit voltages and currents from left to
right if one of the following conditions is satisfied:tion) is achieved when

Z1Z3 = Z2Z4 (1) a11 = ∞ a12 = ∞ a21 = ∞ a22 = ∞ (3)

In measurements, this relationship allows one to calculate The investigation of the terms g-, y-, z-, and h-matrices (4)
one of the impedances if three others are known. In transduc- allows one to formulate other specific relationships pertaining
ers, it is used in inverse sense—that is, if Io � 0 then Eq. (1) to the balanced bridge circuits. In these circuits, correspond-
is violated as well. The deflection �Io of the current Io from ingly, the parameters of other two-port matrices have the val-
zero (the value and sign) is used to evaluate the deviation of ues
Z1, Z2, Z3, Z4 or their combinations from their nominal values
satisfying Eq. (1). If these impedances are dependent on some g21 = 0 y21 = 0 z21 = 0 h21 = 0 (4)
physical variables (which are called measurands), then �Io

provides information on these physical variables.
From the other side, the bridge is a reciprocal circuit, and ifThe simplicity of Eq. (1) and its independence of Zo and Zg
Eq. (2) is satisfied then the conditions(which in many applications are not well specified) make the

bridge measurements of physical variables reliable and sensi-
g12 = 0 y12 = 0 h12 = 0 z12 = 0 (5)tive. This feature brought about the widespread use of bridge

circuits in instrumentation and, recently, in microsensors.
are also, correspondingly, satisfied, and the circuit will notBy analogy, all circuits (of usually simple configurations)
transmit voltages and currents as well from right to left.where a certain relationship between the elements results in

In addition, for reciprocal circuits the following relation-a zero current in a given element, or zero voltage between a
ship exists among the chain parameters:given pair of nodes, are called bridge circuits here.

|a| = a11a22 − a12a21 = 1 (6)
BRIDGE CIRCUIT BALANCE CONDITIONS

Now let one consider the input and output impedancesLet us consider the bridge circuit as a passive two-port con-
nected between the impedances Zo and Zg [Fig. 2(a)] and as-
sume the balance conditions. Investigation of the systems of
parameters applied for two-port description (4) allows one to

Zin = a11Z0 + a12

a21Z0 + a22
Zout = a22Zg + a12

a21Zg + a11
(7)

formulate some specific relationships pertaining to bridge cir-
cuits. One easily finds that if Eqs. (6) is valid and one of the condi-

The four terminal quantities for this two-port are related tions of Eq. (3) is satisfied, these impedances are given by one
by the equations of the following expressions:

Zin = a11

a21
Zin = a12

a22
Zout = a22

a21
Zout = a12

a11
(8)

Vg = a11V0 − a12I0

Ig = a21V0 − a22I0
(2)
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Hence, the condition of balance indeed is independent of Zo port matrix terms. If the initial two-port is described by a z,
y, h, or g matrix, then only the diagonal terms of these matri-and Zg (they are ‘‘not seen’’ from the input and output termi-
ces should change their sign.nals) if the two-port is a linear one.

Many bridge circuits can be represented as a connection ofThe set of conditions of Eqs. (3) and (4) can be used, to some
two two-ports shown in Fig. 2(c), where the bridge outputextent, for synthesis of bridge circuits (5). A bridge circuit can
branch is a wire carrying the current Io. This connection canfrequently be represented as a regular connection (4) of k two-
be redrawn as shown in Fig. 2(d). Then the condition of bal-ports. Then the conditions of Eqs. (3) and (4) are modified into
ance (Io � 0) for this circuit can be written as g(a)

21 � g(b)
21 or as

a(a)
11 � a(b)

11.
The following three bridges serve as examples. The circuit

i=k∑
i=1

g(i)
21 = 0 or

i=k∑
i=1

1
a(k)

11

= 0 (9)

of the twin-T bridge [Fig. 3(a)] is a parallel connection of two
T circuits. The parameter y(i)

21 (i � 1, 2) for each of these cir-for parallel-series connection of these two-ports. They are
cuits can be easily calculated, and their sum y(1)

21 � y(2)
21, in ac-modified into

cordance with Eq. (10) gives the balance condition

Z1 + Z3 + Z1Z3

Z2
+ Z4 + Z6 + Z4Z6

Z5
= 0 (13)

i=k∑
i=1

y(i)
21 = 0 or

i=k∑
i=1

1
a(k)

12

= 0 (10)

The ordinary bridge can be represented as a series-parallelfor parallel connection of two-ports. Then they will give
connection of two simple two-ports [Fig. 3(b)]. Calculating the
a(i)

22 (i � 1, 2) parameters and using Eq. (11), one obtainsi=k∑
i=1

z(i)
21 = 0 or

i=k∑
i=1

1
a(k)

21

= 0 (11)
Z1

Z1 + Z2
= Z4

Z4 + Z3
(14)

for series connection of two-ports. Finally, the conditions of
from which Eq. (1) follows immediately.Eqs. (3) and (4) will be modified into

The double bridge [Fig. 3(c)] is easily recognized as the con-
nection of two two-ports shown in Fig. 2(c). Equating the pa-
rameters a(1)

11 (left part) and a(2)
11 (right part), one can find the

i=k∑
i=1

h(i)
21 = 0 or

i=k∑
i=1

1
a(k)

22

= 0 (12)

balance condition

for series-parallel connection of two-ports.
Some bridge circuits include a two-port with input or out-

Z6(Z5 + Z7) + (Z1 + Z4)(Z5 + Z6 + Z7)

Z6Z7 + Z4(Z5 + Z6 + Z7)
= Z2 + Z3

Z3
(15)

put crossed wires [Fig. 2(b)]. Such a two-port is described by
an a matrix with terms that are negatives of the initial two- for this bridge.

Figure 3. Examples of bridge circuits: (a) twin-T
bridge; (b) simple bridge redrawn as a series-parallel
connection of two two-ports; (c) double bridge.
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Figure 4. Calculation of sensitivity in a
simple bridge circuit: (a) initial circuit; (b)
circuit in balance; (c) introduction of com-
pensating source: (d) extraction of exter-
nal sources in autonomous two-port; (e)
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circuit for calculation of current variation.

SENSITIVITY can find that

An important parameter of the bridge circuit is sensitivity. It
is usually calculated for the balanced bridge condition. One

I10 = EgZ2

Zg(Z1 + Z2) + Z1(Z2 + Z3)
(20)

defines the sensitivity of the bridge output (or balanced) cur-
Let the element Z1 vary, and let its variation be �Z (Fig. 4c).rent as In accordance with the compensation theorem (2,5), the cur-
rent �Io occurring in the element Zo can be calculated if one
introduces in the branch with Z1 � �Z a compensating voltage
source I10�Z, as shown in Fig. 4(c), and consider a circuit (Fig.

Si = dI0

dZk
≈ δI0

δZk
(16)

4c) that is an active autonomous two-port (5) connected be-
tween the impedances Zg and Zo. Then, this active autono-where the derivative is determined at the point Io � 0, and
mous two-port can be represented by a passive two-port (ofthe sensitivity of the bridge balanced voltage as
the same structure, in this case) and two equivalent sources,
which appear at the two-port terminals. This step is simply a
generalization of the Thévenin-Norton theorem for two-ports.Sv = dV0

dZk
≈ δV0

δZk
(17)

If, for example, one decides to use e1 and e2 connected in series
with the two-port terminals [Fig. 4(d)], one can find that

with the derivative determined at Vo � 0. Here Zk is the ele-
ment of the bridge circuit that varies (it is frequently called a
‘‘tuning element’’). The right sides of Eqs. (16) and (17) show

e2 ≈ I10Z3δZ
Z2 + Z3

(21)

that variations are used for practical calculations of the sensi-
(in this calculation it is assumed Z1 � �Z � Z1, and Z1Z3 �tivities. In addition, �Vo � Zo�io so that
Z2Z4). As for e1, there is no need of calculating it, because the
bridge two-port in the circuit of Fig. 4(d) is nearly at the bal-

Sv = Z0Si (18) ance condition, and the contribution of e1 to the current in Zo

can be neglected. Simultaneously, for the same reason, the
and calculation of only one sensitivity suffices. source e2 does not produce any current in the impedance Zg.

The calculation of sensitivity requires a sequence of steps Hence, one can calculate the current in Zo using the ‘‘approxi-
that can be demonstrated (Fig. 4) using the bridge of Fig. 1(b). mate’’ circuit of Fig. 4(e). One obtains
Assume that it is required to find the sensitivity

δI0 ≈ EgZ2Z3δZ
[Zg(Z1 + Z2) + Z1(Z2 + Z3)][Z0(Z2 + Z3) + Z2(Z3 + Z4)]

(22)Si = dI0

dZ1
(19)

From Eq. (22) it immediately follows that
of this bridge with respect to variation of the element Z1 [Fig.
4(a)]. First, let us calculate the current I10 through this ele-
ment in the condition of balance, when Io � 0. In this calcula-
tion the element Zo can be disconnected [Fig. 4(b)] and one

Si ≈ EgZ2Z3

[Zg(Z1 + Z2) + Z1(Z2 + Z3)][Z0(Z2 + Z3) + Z2(Z3 + Z4)]
(23)
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Figure 5. Calculation of sensitivity in series connection of two two-ports: (a) initial circuit; (b)
circuit in balance; (c) current in tuning element; (d) introduction of compensating source; (e)
extraction of external sources in autonomous two-port and the circuit for calculation of current
variation.

This calculation of sensitivity may be formalized if the with corresponding inputs. The source e2 can be found as
bridge circuit represents a regular connection of two two-ports
(bridge circuits with more than two subcircuits are very rare). e2 = K2ec (27)
We assume that the tuning branch is located in the first
two-port. where K2 is another transfer coefficient. Consider that the

Let us consider as an example the series connection of two bridge circuit is nearly balanced, the current �I of the detector
two-ports [Fig. 5(a)]. As a first step we assume the condition may be found from the ‘‘approximate’’ circuit shown in Fig.
of balance and then disconnect the indicator branch [Fig. 5(b)] 5(e). The result will be
and calculate the input current I(1)

10. One can see that this cur-
rent is equal to

δI0 ≈ e2

Z0 + z(1)

22
+ z(2)

22

(28)

I(1)

10 = Eg

Zg + Z(1)

11
+ z(2)

11

(24)

Finally, one can find that

The current IT0 in the tuning branch, ZT, may be determined
by considering the first two-port only [Fig. 5(c)] with the out-
put open and the current I(1)

10 applied to its input. For a linear
Si ≈ K1K2Eg

(Zg + z(1)

11
+ z(2)

11
)(Z0 + z(1)

22
+ z(2)

22
)

(29)

two-port one can write that
The extension of this approach for other regular connections
of two two-ports does not present any difficulty (5).IT0 = K1I(1)

10 (25)

where K1 is a transfer coefficient. Using the compensation
APPLICATION OF BRIDGE CIRCUITS FORtheorem, one introduces in the tuning branch the compensat-
MEASUREMENT OF COMPONENT PARAMETERSing voltage

Bridges are commonly used circuits in measurements. Theyec = IT0δZ (26)
have high sensitivity and allow accurate measurements of re-
sistance, capacitance, and inductance. Measurement accuracy(other forms of the compensation theorem may also be used).

For exact calculation of �Io one has to preserve the variation is due to the null-balance method of output indication and to
the fact that the bridge circuit configuration conveniently�Z of the tuning impedance, as is shown in Fig. 5(d). Yet, to

simplify the results (and assuming that �Z is small), this vari- allows direct comparison of unknown components with pre-
cise standard units. Here we outline the basic ideas of suchation is usually omitted. The first two-port now becomes an

autonomous active two-port. It may be represented as a pas- measurements. They are useful in laboratory environments
and form the basis of commercial equipment designs (6).sive two-port having the sources e1 and e2 connected in series
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Dc Bridges the standard resistance R4 may seriously affect accuracy. The
double (Kelvin) bridge [Fig. 6(b)] is devised to circumvent this

The dc bridges are used for precise measurements of dc resis-
difficulty. In this circuit the resistor R6 represents the resis-

tance. The conventional Wheatstone bridge is shown in Fig.
tance of this connector, and R5 and R7 are small resistances

6(a). It consists of four arms R1 to R4, a zero-center galvanom-
of two additional arms. If one chooses

eter G, which serves as a balance detector, a protection shunt
Rp, a battery VB (1.5 to 9 V), and a set of switches S1 to S3.
We assume that the resistor R1 is a resistor whose value is

R5

R7
= R2

R3
(31)

unknown, the resistor R4 is a standard resistor (usually a
variable decade box providing, for example, 1 � steps from 1

(this is easily done in practical designs; see Ref. 6), then, us-to 11,100 �), and the resistors R2 and R3 are ratio-arm resis-
ing Eq. (15), one can find that the relationship among R1 totors that serve to provide multiplication of the standard resis-
R4 given by Eq. (30) will be preserved.tance by convenient values, such as 100, 10, 1, 1/10, and

The Kelvin bridge allows one to measure the resistances in1/100.
the range 1 � to 10 � with accuracy better than 0.1%, and inThe goal of the operating procedures is to achieve balance,
the range 0.1 � to 1 � better than 1%.which is indicated by a zero reading of the galvanometer with

the switches S1 and S2 closed and the switch S3 open. In the
Ac Bridgesbeginning of the procedure, S3 is closed and S1 and S2 are

open. To avoid transient galvanometer overloading, S1 is The Wheatstone bridge circuit may also be used for imped-
closed first. Then S2 is closed, and an approximate balance is ance measurements at audio/radio frequencies. The battery is
achieved. Only then is switch S3 opened, and the final balance replaced by a generator of sinusoidal voltage, and a sensitive
is achieved. When balanced, the condition R1R3 � R2R4 is sat- headset or oscilloscope is used as the balance detector [Fig.
isfied, and the unknown resistor value can be found as 7(a)]. The arms now may include reactive components, and

when the condition of balance, as in Eq. (1), is satisfied, one
can find the component Z1 from the equalityR1 = R2

R3
R4 (30)

When the measurement procedure is finished the switches Z1 = Z2

Z3
Z4 (32)

are returned to their initial state in reverse order (i.e., S3 is
closed first, then S2 is opened, and, finally, S1 is opened).

Introducing Zi � Ri � Xi (i � 1, 2, 3, 4) in Eq. (32), one obtainsThe main sources of measurement errors are the variance
of ratio-arm resistors (the design characteristic), additional
resistance introduced by poor contacts, resistance in the re- R1 + jX1 = R2 + jX2

R3 + jX3
(R4 + jX4) = A + jB (33)

mote wiring of the unknown (the tactics used against these
sources of errors are discussed in Ref. 7), changes in resis-

Hence, to measure two quantities R1 and X1, one can use sixtance of arms due to self-heating, spurious voltages intro-
parameters to achieve the balance. This results in an enor-duced from the contact of dissimilar metals, and incorrect bal-
mous number of different bridges (8) adapted for particularance. The well-made bridge can be expected to measure from
circumstances.about 0.1 � to the low megohm range with approximately 1%

The selection of configurations to be used in a wider rangeaccuracy, and for the range 10 � to 1 M� accuracies of 0.05%
of applications (6) is dictated by two factors. First, in general,can be expected. A good practice is to make measurements on
attainment of balance is a progressive operation requiringa series of extremely accurate and known resistors and to use
back and forth in-turn improvements in resistive and reactivethe obtained errors as an error guide for measurements with
balances. For rapid balancing it is desirable that the adjust-the closest bridge constants. For measuring very high resis-
ment of resistive part A be independent of the adjustmenttances, the galvanometer should be replaced by a high-imped-
made in the reactance part jB. This cannot always be done.ance device. For measuring very low resistances, one has to

In the region of balance the detector voltage isuse the double bridge described later.
In measurements of very low resistances, the resistance of

δV0 = K(Z1Z3 − Z2Z4) (34)the connector (yoke) between the unknown resistance R1 and
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Figure 6. (a) Wheatstone and (b) Kelvin bridges.
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Figure 7. Ac bridges: (a) Wheatstone bridge; (b) ratio-arm
capacitive bridge; (c) Maxwell inductance bridge; (d) Hay
inductance bridge.

R1

D

R4

R2

R3

R1

D

R4

C4

C1

R2

R3

R2

R3

R1

L1

D

R4

R2

R3 C3

R1

L1

D

R4

C3

(a) (b)

(c) (d)

where K may be assumed constant (9). In general, the most desire to have a constant standard capacitor prevails, and
four basic configurations shown in Fig. 7 are used in general-rapid convergence to balance is obtained when the phase

angle between the selected pair of adjustable components in purpose universal impedance bridges (6).
It is impossible here to give even a brief survey of special-Eq. (34) is �/2 and least rapid when the angle tends to zero.

For example, for the bridge of Fig. 7(b) the balance equations ized bridges; yet four configurations deserve to be mentioned.
Figure 8(a) shows the bridge with the voltage source and de-are
tector interchanged. This allows one to apply a polarizing
voltage and measure the parameters of electrolytic capacitors.
The battery that supplies this voltage must be shunted by a

R1 = R2

R3
R4 C1 = R3

R2
C4 (35)

bypass capacitor, CB. Figure 8(b) shows a configuration (the
If R4 and C4 can be adjusted, rapid balancing is obtained. If Owen bridge) adapted for incremental inductance measure-
R4 and R2 are chosen for adjustment, the convergence can be ments. A filter reactor LRF inserted in the bridge measure-
very slow (9). ment circuit minimizes the effect of core-induced harmonics

The second important factor is that a standard capacitance in determining the balance point (R2 and C3 are used for
more nearly approaches the ideal no-loss reactance than does balance).
the best wire-wound coil type of inductance. Hence, it is desir- Figure 8(c) shows the Shering bridge, which is also used
able to measure an inductance in terms of capacitance. This for measuring the capacitance and dissipation factor of the
can be obtained in the Maxwell bridge [Fig. 7(c)]. The balance capacitors—especially at high voltages. The lower part of this
equations for the Maxwell bridge are bridge (resistors R4 and R3 and capacitor C3) may be main-

tained at a relatively low potential, and the adjustment to the
variable elements can therefore be made safely. The balance
equations are

L1 = R2R4C3 R1 = R2

R3
R4 (36)

The Maxwell bridge is mainly applied for measuring coils of
low Q-factors. Indeed, Q1 � �L1/R1 � �C3R3, and a coil with

C1 = C2
R3

R4
R1 = R4

C3

C2
(38)

Q1 � 10 may require very high values of R3. This limitation
is removed in the Hay bridge [Fig. 7(d)]. The balance equa- Other useful configurations of ac bridges with a wide range

of application (bridges for measuring mutual inductances) cantions for the Hay bridge are
be found in Refs. 6 and 9. Some improvements of the measur-
ing techniques (the Wagner ground) are described well in
Ref. 9.

R1 = R2

R3
R4

1
Q2

1 + 1
L1 = R2R4C3

1
Q2

1 + 1
(37)

As a consequence in the development of transformers with
very tight magnetic coupling, the ratio arms of some bridgeswhere Q1 � �L1/R1 � 1/(�C3R3).

One can see that a disadvantage of the last two circuits is may be replaced by transformer coils. A transformer can also
be used as a current comparator. An example of a circuit us-the interaction between reactive and resistive balance, yet the
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ing these two properties of transformers is shown in Fig. 8(d) tutional methods of measurement. In these methods, the
bridge is first balanced with the unknown impedance con-(9). Here the generator is connected to the primary winding
nected in series or in parallel with a standard component inof voltage transformer T1, and the secondary windings of T1

one of the bridge arms and then rebalanced with the un-are tapped to provide adjustable sections of N1 and N2 turns,
known either short- or open-circuited. The unknown can thenrespectively. The primary windings of the current trans-
be determined in terms of the changes made in the adjustableformer T2 are also tapped to provide sections with adjustable
elements, and the accuracy depends on the difference betweenturns n1 and n2. The secondary of T2 is connected to a detector.
the two sets of balance values obtained. Residual errors, suchLet Y1 � G1 � jB1 be the unknown admittance, and Y2 �
as stray capacitance and stray magnetic coupling, and anyG2 � jB2 be a suitable comparison standard. Balance may be
uncertainty in the absolute values of the fixed bridge compo-achieved by any suitable combination of adjustments of Y2
nents are virtually eliminated. These effects are nearly theand tap positions. The balanced condition corresponds to zero
same whether or not the unknown is in the circuit.net flux in the primary of T2. Hence, the condition of balance

is
APPLICATION OF BRIDGE CIRCUITS IN TRANSDUCERS

n1I1 = n2I2 (39)
Bridge circuits are frequently used to configure transducers—

If the resistance and the flux leakage in the primary windings that is, the circuits providing information about physical vari-
of T2 can be neglected and the core flux is zero, the external ables (temperature, force, pressure, etc.) capable of changing

the value of one or more components of the bridge. In trans-ends of the current transformer have the same potential as
ducers, one measures the voltage occurring at the detector (orthe ground line. The voltages V1 and V2 then appear across
a current through the detector). The problems that occur inY1 and Y2, respectively, so that I1 � Y1V1 and I2 � Y2V2. In
this case can be demonstrated using the circuit shown inaddition, the ratio of the induced voltages in the secondary of
Fig. 9(a).T1 is V2/V1 � N2/N1. Substituting these simple relationships

In this circuit the resistors R1, R2, R3 are constant and thein Eq. (39) and separating real and imaginary parts, one ob-
resistor R3 � R0(1 � x) is a linear function of a dimensionlesstains
variable x. One can assume that the detector resistance R0 is
very high, and then find the voltage V0 at the detector termi-
nals. One then hasG1 = n2N2

n1N1
G2 B1 = n2N2

n1N1
B2 (40)

Hence, using suitable combinations of the tappings, a wide V0 = V
px + (p − mn)

(n + p)(m + 1 + x)
(41)

range of multiplying factors are available. For a given set of
standards, this provides a much wider range of measure- where m � R2/R0, n � R4/R0. When the variable x � 0, the
ments than does the conventional ac Wheatstone bridge. This circuit should be balanced; this requires that the condition
bridge also allows independent balancing of the conductive p � mn be satisfied. The voltage at the detector then becomes
and susceptive components (9).

The degree of accuracy obtained in bridge impedance mea-
surements can be considerably enhanced by adopting substi-

V0 = V
mx

(m + 1)(m + 1 + x)
(42)

Figure 8. Some special ac bridges: (a) electrolytic capac-
itor bridge; (b) Owen increment inductance bridge; (d)
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Figure 9. Resistive transducer bridges: (a) with
one variable resistor; (b) with two variable resis-
tors; (c) with push-pull variable resistors; (d) with
four variable resistors.
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One can see that V0 is a nonlinear function of x. The desired However, this situation is not always inevitable. If the cur-
rent I in the circuit of Fig. 9(a) is constant the detector voltageideal response would be
will be

V0i = V
mx

(m + 1)2 (43)

The relative error due to nonlinearity, �n, may be calculated
as

V0 = IR0
mnx

(m + 1)(n + 1) + x

≈ IR0
mnx

(m + 1)(n + 1)

[
1 − x

(m + 1)(n + 1)

] (47)

The nonlinearity error isεn = V0i − V0

V0i
= x

m + 1 + x
≈ x

m + 1
(44)

εn = x
(m + 1)(n + 1)

(48)
The reduction of �n is a frequent requirement in transducer
applications. In the case being considered this can be

This error is decreasing for increasing m and n. The sensitiv-achieved by increasing m and restricting the range of x. This
ity in this case ismeans that one is trying to establish a constant current

through R3 (assuming that the voltage V is constant) and is
using the bridge measurements for reasonably small x. Sv = I

mnx
(m + 1)(n + 1) + x

(49)

Another important parameter of the circuit of Fig. 9(a) is
its sensitivity. Resistor R3 may be considered as the ‘‘tuning’’ and its maximum value, achievable for m � �, n � �, is
element of the bridge; in this case its variation for small x is
� x � R0 x, and in the vicinity of balance one can take �V0 � Svmax = I (50)
V0. Then the voltage sensitivity is

Hence, in this case there is no contradiction between optimi-
zation of sensitivity and reduction of nonlinearity. In the pas-
sive circuit, though, the condition of constant current I can be

Sv = V0

R0x
= V

R0

m
(m + 1)(m + 1 + x)

(45)

achieved only approximately.
The results of analysis for the bridge with one variable re-Its maximum value

sistor may be represented by Table 1. It allows one to con-
clude (7) that—to reduce the nonlinearity error—one has to
restrict the measuring range, work with reduced sensitivity,

Svmax = V
R0

1
(m + 1)2 (46)

or consider current source realization in order to use it as a
power supply for the bridge or the variable resistor.is achieved when m � 1. This result shows that in this partic-

ular case the condition of maximum sensitivity conflicts with An increase of sensitivity with a simultaneous decrease of
nonlinearity can also be achieved by using two variable resis-minimization of nonlinearity error.
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Table 1. Properties of the Bridge with One Variable Resistor

Supply Nonlinear Maximal Parameters Approximate
Condition Sensitivity Error, �n Sensitivity Required Conditions

Sv �
Vo

xR0

V
R0

m
(m � 1)(m � 1 � x)

x
m � 1

V
R0

1
(m � 1)2V constant m2 � 1 � x, q � � R2 � R3

m � �, n � �, q �I
mn

mn � m � n � 1 � x
x

mn � m � n � 1
I constant I R2 � R0 , R4 � R0�

I3
m

m � 1
I3 constant absent I3 m � �, q � � R2 � R0

Si �
Io

xR0

q � m2(q � 1), n � 0V
R2

0

m
(m � 1)� � (m2 � �)x

x(m2 � �)
�(m � 1)

V
R0

(1 � m)
(1 � m)

V constant R4 � R0small x

q � n2 � 1, m � �I
R0

mn
(n � 1)� � [m(n � 1) � q]x

x[m(n � 1) � q]
(n � 1)�

I
R0

1
(n � 1)

I constant R2 � R0small x

m � �I
R0

m
(m � 1)q

I3 constant absent R2 � R0 , Rm � R0
I3

R0

1
q large q

Note: m � R2/R0 , n � R4/R0 , p � R1/R0 , q � Ro/R0 ; R3 � R0(1 � x); � � q(m � 1) � m(n � 1); balance requirement p � mn.

tors in opposite arms [Fig. 9(b)] or by using resistors undergo- can be considered as one alternative. The circuit of Fig. 10(b)
ing opposite variations in adjacent arms [Fig. 9(c)] or by using requires the bridge to have five accessible terminals. The cir-
variable resistors in all four arms [Fig. 9(d)]. Table 2 (7) sum- cuit of Fig. 10(c), with two operational amplifiers, can also be
marizes and compares the results for the output voltage in all considered. It provides a linearly dependent output voltage
such bridges for the case in which all resistors have the same
initial value of R0. Again, one can see that the bridges pow-
ered by a current source (which leads to active circuits) have V0 = V

RG

R0
x (52)

more choices for linearization.
The realization (10) of the current source for the powering

and amplifies the bridge output signal.bridge usually involves [Fig. 10(a)] a second voltage source
Capacitive and inductive transducers can be used in a vari-(denoted here as Zener diode voltage, VR) and an operational

ety of ac bridge circuits. Here we discuss only the so-calledamplifier. The bridge current is I � VR/RR.
Blumlein bridge circuit. It has particular advantages for useSwitching to active circuits, some other alternatives should
with variable capacitive transducers (11) and is used fre-be considered. The circuit of Fig. 10(b), which provides a lin-
quently with inductive transducers as well. The circuit isearly dependent output voltage
shown in Fig. 11(a). Let the detector impedance be Z0 � �.
Two variable impedances (sensor arms), Z � �Z and Z � �Z,
operate in a push-pull fashion. The ratio arms represent a

V0 = −V
x
2

(51)

Table 2. Output Voltage for Bridges with Variable Resistors and Supplied by a Constant Voltage or Current

R1 R2 R3 R4 Constant V Constant I

V
x

2(2 � x)
IR0

x
4 � x

R0 R0 R0(1 � x) R0

V
x

(2 � x)
IR0

x
2

R0(1 � x) R0 R0(1 � x) R0

V
2x

4 � x2 IR0
x
2

R0 R0 R0(1 � x) R0(1 � x)

V
x
2

IR0
x
2

R0 R0(1 � x) R0(1 � x) R0

�V
x2

4 � x2 �IR0
x2

2
R0(1 � x) R0 R0(1 � x) R0

R0(1 � x) R0(1 � x) R0(1 � x) R0(1 � x) Vx IR0x
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Figure 10. (a) Current source for bridge powering
and linearized active bridge circuits: (b) with one am-
plifier and (c) with two amplifiers.
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Figure 11. (a) Blumlein bridge and (b) the circuits for cal-
culation of branch currents and (c) current variations; (d)
pseudobridge circuit.
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transformer with two tightly coupled coils (i.e., L � M ). The transfer function of this system is
bridge is fed by a sinusoidal voltage V.

Analysis of steady state can be done in two stages. When
the sensor arms have equal impedances Z [Fig. 11(b)], one

T(s) = V0

Eg
= z21Z0

ZgZ0 + Zgz22 + Z0z11 + |z| (59)

finds that

where
I1 = I2 = I = V

Z
(53)

Indeed, in this condition the magnetic flux in the transformer
is zero and the detector voltage and the voltage at each trans-
former coil are zero. The variations of the impedances may be

z11 = (Z1 + Z4)(Z2 + Z3)

Z1 + Z2 + Z3 + Z4
z22 = (Z1 + Z2)(Z3 + Z4)

Z1 + Z2 + Z3 + Z4

z12 = z21 = Z2Z4 − Z1Z3

Z1 + Z2 + Z3 + Z4
|z| = z11z22 − z2

12

represented, in accordance with the compensation theorem
(see the first section of this article), by two voltage sources. One of the main problems of network synthesis is the real-
The circuit [Fig. 11(c)] that includes only these two sources ization of a transfer function with prescribed zeros. The zeros
can be used for calculation of current variations. Writing two of transmission (which are the zeros of the transfer function)
loop equations for this circuit, one finds that can now be interpreted as the frequencies at which the bridge

is balanced. This result, obtained for the simple bridge, is
valid for all bridge configurations. Hence, the synthesis of
simple rejection filters (such as the twin-T bridge, or T

δI1 = δI2 = δI = IδZ
Z + 2 jωL

(54)

bridge), the transfer function of which includes two complex-
The variation of the detector voltage is conjugate zeros, can be simplified if the balance condition is

used directly for the choice of filter elements.
The control of transmission zeros location becomes espe-

cially simple if the lattice is symmetric. For Z2 � Z4 � Za and
δV0 = 2IδZ − 2ZδI = 2V

δZ
Z

� 2 jωL
Z + 2 jωL

�
(55)

Z1 � Z3 � Zb, the transmission zeros occur at those values of
This result can be used for evaluation of the Blumlein bridge s for which the two branch impedances have equal values.
sensitivity. For a capacitive sensor, Z � 1/i�C. Then �Z/Z � This can be arranged to occur for any value of s; hence, the
��C/C, and one obtains locations of the transmission zeros of a lattice are un-

restricted and may occur anywhere in the s-plane. For exam-
ple, if Z1 � Z3 � R0 and Z2 � Z4 � R � Ls � 1/Cs, the trans-
mission zeros are given by the zeros of a polynomial

δV0 = 2V
δC
C

�
2ω2LC

1 − 2ω2LC

�
(56)

Hence, the sensitivity of the Blumlein bridge with capacitive LCs2 + (R − R0)Cs + 1 = 0 (60)
sensor arms is a function of frequency. For a stable result one
must choose the parameters so that 2�2CL � 1. and are located in the left-half s-plane for R � R0, on the j�-

For an inductive sensor Z � i�l. Then �Z/Z � �l/l and axis for R � R0, and in the right-half s-plane for R 	 R0. If
L � 0, one can obtain a zero on the positive real axis.

It can be proved (13) that every symmetric, passive, recip-δV0 = 2V
δl
l

� 2L
1 + 2L

�
(57)

rocal, lumped, and time-invariant two-port has a physically
realizable lattice equivalent. Thus, the lattice is the ‘‘most

This analysis demonstrates that in the Blumlein bridge general’’ symmetric two-port. The lattice has an important
one essentially has comparison of currents at zero potential role in the modern network synthesis (15) and, in the past,
of the transformer arms. Hence, the capacitive parasitics at was a useful tool in the general image parameter theory of
the detector terminals are not important. Using a third out- filter design (16).
put transformer coil (as was the case for the transformer
bridge), one can realize a very sensitive capacitive sensor.

The idea of current comparison is more directly used in BRIDGE CIRCUITS IN ELECTRONICS
the ‘‘pseudobridge’’ circuit [Fig. 11(d)], where the difference in
currents of the sensor arms is entering the virtual ground and In this section we describe oscillators, the operation of which
produces the output signal can only be fully understood if the bridge balanced condition

is considered.
Figure 12 shows the Wien bridge [Fig. 12(a)], twin-T bridgeδV0 ≈ 2V

Z1

Z
δZ
Z

(58)
[Fig. 12(b)], and Meachem bridge [Fig. 12(c)] sinusoidal oscil-
lators. The steady-state operation of all three oscillators re-

Pseudobridges are mostly used with capacitive sensors (12). quires that, at a certain frequency, the condition

BRIDGE CIRCUITS IN NETWORK SYNTHESIS ATB( jω) = 1 (61)

Let us return to the lattice form of the bridge [Fig. 1(b)] and be satisfied. Here, TB( j�) is the transfer function of the corre-
sponding bridge calculated at s � j�. The transfer functionsconsider the impedances Z1 to Z4 as a coupling two-port of the

transmission system [Fig. 2(b)]. One then finds that the of the Wien bridge and twin-T bridge should be designed so
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Figure 12. Sinusoidal oscillators: (a) Wien
bridge; (b) twin-T bridge; (c) Meachem
bridge; and pole-zero diagrams of bridge
transfer functions: (d) Wien and twin-T
bridge; (e) Meachem bridge.
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that A very important oscillator parameter (16) is the indirect
frequency stability, S�. It is calculated as

TB(s) = K
(s2 − α1s + ω2

0 )

(s + σ1)(s + σ2)
(62)

Sω = ω0
dφ

dω

∣∣∣∣
ω=ω0

(66)

has two complex-conjugate zeros located in the right half of
the s-plane in the vicinity of the points 
j�0 [the result of Eq.

In the vicinity of �0, only the nearest zeros and poles are im-(62) assumes that, for the twin-T bridge, the real zero and
portant, and this stability will bereal pole are cancelled]. For the Wien bridge, �0 �

�(R1C1R4C4), �1 � [(R2R4 � R1R3)/(R1R3R4C4)] � 1/(R1C3). For
the twin-T bridge the elements providing desirable zeros loca- Sω ≈ −2Qz (67)
tion should be chosen using the balance condition of Eq. (13).
The transfer function of the Meachem bridge should be

for the Wien-bridge and twin-T oscillators. Here Qz � �0/
(2�1). For the Meachem bridge oscillator, one has

TB(s) = K
(s2 − α1s + ω2

0 )

(s + α2s + ω2
0)

(63)

Sω ≈ −2Qz − 2Qp (68)

Here, �0 � �(L1C1), �1 � (R2R4 � R1R3)/(2L1R3), and �2 �
(R1 � R4)/(2L1). In all cases, �0 is the desirable oscillation fre- where Qp � �0/(2�2). One can see that the achieved indirect
quency. frequency stability is determined by the chosen bridge imbal-

In the vicinity of the points 
j�0, the transfer function of ance [the reactance branch in Meachem bridge oscillator is
the bridge will be usually a crystal, and the location of poles in TB(�) is deter-

mined by the crystal parameters]. The connection between
TB( jω0) = |TB( jω0)|eφ( jω0 ) (64) bridge imbalance and design for frequency stability is well

known for the Wien bridge and Meachem bridge oscillators
and the condition of Eq. (61) can be rewritten as (16), however, it is still not clearly understood in the twin-T

bridge oscillator design (17).
The application of the bridge circuits to design of nonsinu-A|TB( jω0)| = 1 φ( jω0) = 0 or 180◦ (65)

soidal oscillators is less known. Using switches in a two-oper-
ational amplifier multivibrator, one can obtain control of theThe first condition in Eq. (65) gives the required amplifier

gain, and the second condition gives the required sign of gain. oscillation frequency by detuning a resistive bridge (Fig. 13).
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anced. The oscillation frequency of this circuit is

I. M. FILANOVSKY

University of Alberta, Edmontonf0 = 1
2C

�
R2

R1
− R3

R4

�

(V+
CC − V −

CC)Rb

[Rb(R3 − R2)(V+
CC

− V −
CC

) + Ra(R2 + R3)(V +
0

− V −
0

)]
(69)

The use of a comparator allows one to eliminate the feedback
resistances of the Schmitt trigger [Fig. 13(b)]. For this circuit,
the oscillation frequency is

f0 = 1
4CR3

�
R2

R1
− R3

R4

�
(70)

Both circuits are used as bridge-to-frequency converters in
two-wire transducers (18).

CONCLUSION

Bridge circuits form a specialized, yet a wide-ranging, group
of circuits that find application in measurement techniques,
transducers, network synthesis, and electronics.
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