
ASYNCHRONOUS SEQUENTIAL LOGIC

In sequential logic (see Sequential Circuits), output is a
function of current input and the state stored in the sys-
tem. In synchronous sequential logic circuits, time is quan-
tized, making all actions and state changes take place at
discrete intervals of time, determined by a regular source
of pulses called a clock. For the other more general class,
called asynchronous sequential circuits (ASCs), timing in-
formation is introduced without the use of a global clock;
thus, events in signals and changes in states take place at
any time. The use of ASCs may often bring some advan-
tages when implementing digital control and processing
structures. Such advantages come from the decentraliza-
tion of the timing control in the operation of the system,
with self-synchronization taking place at a local level.

This article introduces most of the fundamental issues
related to ASCs: comparison with synchronous circuits and
potential advantages of ASCs, major specification and de-
sign techniques, different implementation architectures,
and performance characteristics.

An ASC can be simply defined as a sequential circuit
whose internal states change only in response to changes
in its inputs, with no common timing reference (see Ref. 1
for a complete introduction). While the reader can easily
understand how a privileged signal—called the clock—can
control the change of the state in a synchronous sequential
circuit, the way to ensure correct operation in an ASC is not
so clear. Thus, it is necessary to establish more precisely
the operational procedure of the ASC, establishing suppo-
sitions about the delay models of components and inter-
connections in the system. Negligible, bounded, arbitrary,
or unbounded delay models in gates and interconnections
can be considered.

A simple ASC model is the Huffman circuit (Fig. 1),
which is basically composed of a combinatorial circuit and
a set of feedback lines, with a bounded (or zero) delay model
for interconnections. For a Huffman ASC to work properly
(hazard- and race-free operation), the input signals can
only change once the internal state has been correctly set-
tled (operation under fundamental mode and single-input
change). There are some other operation modes, such as
input–output, multiple, or unrestricted input change, with
different constrains. A special operation mode, called burst
mode operation, allows operation in the fundamental mode
but on bursts of inputs rather than single inputs. For ad-
ditional information, see Reading List.

Figure 1. Huffman Circuit. Delay elements can be explicitly
placed or being simply the delay in feedback lines.

More generally, an ASC is called speed-independent
when it operates correctly (hazard-free) for any finite delay
in gates. A subset of these circuits generates a completion
signal indicating that its operation has finished. For cor-
rect behavior, changes in input signals are only allowed
when a completion signal is activated. More restrictive is
the delay-insensitive ASC, which works correctly for any
finite delay in gates and interconnections. An intermedi-
ate category is the quasi-delay-insensitive ASC, which is
a delay-insensitive ASC that considers isochronic forks. In
this type of ASC, delay in interconnections is arbitrary ex-
cept in forks, where the two branches have similar delays.

SELF-TIMED APPROACH

A self-timed circuit, also called a handshake circuit, is
an ASC that is self-synchronized with its environment
through a handshaking protocol (see Ref. 2 for a complete
introduction). The behavior of components and elements in
a self-timed system is conducted by events in their termi-
nal ports: The beginning of the operation of the system is
caused by a specific event in an input signal (request), and
the end of the operation is indicated to the outside by an-
other event in an output signal (acknowledgment). Thus,
the time required to perform the computation or processing
is determined by internal delays of gates and interconnec-
tions inside the circuit, corresponding to the time elapsed
between the request and the acknowledgment events. A
precedence relation exists between such events, in that
initiation must take place prior to finishing, indicating a
sequence of events.

A self-timed system can be defined either as (1) a self-
timed circuit itself, or (2) a correct connection of self-timed
circuits. Such a correct connection incorporates the restric-
tions in the communication between such elements, im-
posed by the handshaking protocol. In a simplified model,
the handshaking protocol is verified by specific signals
called protocol signals. In such signals at least two events
are necessary to describe the self-timed operation (request
and acknowledgment), and these events must alternate.
Figure 2(a) shows a so-called two-phase, or no-return-to-
zero (NRZ), handshaking protocol characterized by the
events that occur at the edges of protocol signals. Thus,
logic circuits operating under this protocol should be edge-
triggered. On the other hand, Fig. 2(b) displays a so-called
four-phase, or return-to-zero (RZ), handshaking protocol,
which is level-sensitive. Systems incorporating such proto-
cols will present different performance:The two-phase pro-
tocol is faster and, since it has less transitions, consumes
less power. However, the four-phase protocol is easier to im-
plement because it operates with less-costly level-sensitive
hardware.

Potential advantages in the use of the self-timed ap-
proach are based on its higher efficiency in computing data,
especially in those cases where processing time is strongly
data-dependent; self-timed ASCs operate on an average-
case basis, while synchronous circuits operate on a worst-
case basis.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.



2 Asynchronous Sequential Logic

Figure 2. Handshaking protocol: (a) 2-phase or edge-sensitive;
(b) 4-phase or level-sensitive.

GLOBALLY ASYNCHRONOUS LOCALLY
SYNCHRONOUS APPROACH

A promising method between pure synchronous and self-
timed circuits is the Globally Asynchronous Locally Syn-
chronous (GALS) approach. Although the background for
this technique was set in 1984 (3), recently has received
a lot of attention because it offers advantages from both
the synchronous and asynchronous domains. In GALS sys-
tems, the components are synchronous modules operating
at their own clock speed, which allows the proven syn-
chronous design methodologies to be used. The interface
between the synchronous components is made with self-
timed circuitry, generating the local clock signal under a
request-acknowledgement basis. The main advantages in
using the GALS technique are the elimination of problems
related to the usage of a global clock (see next section)
and the possibility of using classical synchronous cores,
methodologies and CAD tools. The main drawback is the
metastability problem when interacting synchronous and
asynchronous signals, being this problem faced with design
solutions (4).

LIMITATIONS OF SYNCHRONOUS CIRCUITS

Most of the problems and limitations of synchronous cir-
cuits stem from the existence of a global clock signal. The
main problems are crosstalk noise and, especially, clock-
skew and synchronization faults.

Clock-Skew Problems

In synchronous circuits, the clock signal must arrive
simultaneously at the memory elements to avoid race
problems. However, generating and distributing high-
frequency clocks inside very large-scale (VLSI) integrated
circuits (ICs) is a very difficult and expensive task, so that
eliminating clock skew often limits system performance (5–
7). Clock skew appears because the clock paths suffer dif-
ferent delays, causing synchronization failures in the sys-

tem. The nature of clock skew is unpredictable for two main
reasons: first, at a logic level, the designer cannot prevent
the placement of memory elements in the layout, and sec-
ond, the variations in the delays depend on various factors,
such as operation temperature and technological process
deviations. Thus, the designer cannot ensure clock-skew-
free operation.

Figure 3 shows an example of the pernicious effects of
clock skew. The correct operation requires that the first
bistable store its input datum D1, while the second bistable
stores Q1. However, if the delay in the clock signal is greater
than the delay in the datum line (�2 > �1 + propagation
delay of first bistable), D1 may be stored instead in the
second bistable, so that the Q1 value is lost.

This problem is nowadays aggravated because, with cur-
rent technologies, delays in interconnection paths are be-
coming comparable to delays in gates. Classical solutions
to this problem, such as (1) routing of clock signals in the
opposite direction to data flow and (2) use of nonoverlap-
ping clocks, limit the overall performance of the system.
The most effective solutions, such as identical buffering in
each clock path or routing clock signals through H-tree net-
works, are much more expensive in design time and cost
(5–7). Parameters that should be taken into account in gen-
erating and distributing clock signals are routing layers,
clock network shape, clock generators, rise and fall times,
and capacitive and resistive load in lines.

Synchronization Problems

Synchronization problems can have various causes, but
the primary cause is metastable operation in bistables.
The probability of failure increases with the complexity
and operation speed of the system. In synchronous op-
eration, some timing restrictions in bistables, concerning
hold time, setup time, and pulse width, must be observed.
Due to asynchronous interactions—a delay between data
and clock signals, for instance—that cause a violation in
such restrictions, a bistable may enter its metastable state,
showing in its output an undetermined logic state for an
indefinite time. If such output acts as the input of two par-
allel bistables, these may read different logic values upon
the arrival of the next clock edge. In such a case, a system
error occurs as a consequence of a synchronization fault.

In view of these problems, it is of interest to consider the
design of ASCs, which provide solutions in that (1) ASCs do
not need a global clock to synchronize the operation of the
circuit, and (2) the handshaking protocol imposes restric-
tions on changes in the inputs of the memory elements.

DESCRIPTION AND REPRESENTATION TECHNIQUES
OF ASYNCHRONOUS SEQUENTIAL CIRCUITS

Flow diagram and tables are the classic ways of describing
ASC (1). States are stored in the feedback loops or in asyn-
chronous latches. Correct operation is ensured with the as-
sumption of operation in the fundamental mode and with
single-input change. Once the flow table has been gener-
ated or obtained, minimization and assignment processes
generate an asynchronous implementation, which should
be race- and hazard-free.



Asynchronous Sequential Logic 3

Figure 3. Illustrative example of neg-
ative effects of clock skew. Datum in Q1
can be lost if delay in clock line is higher
than delay in datum line plus propaga-
tion delay in first bistable.

Figure 4. State table (a) and STG (b) corresponding to an
asynchronous pipeline interface (c), working under a 4-phase
handshaking protocol, and implemented with two two-input C-
elements (d).

The characteristic of ASCs by which changes in inputs
directly bring about changes in states and outputs makes
graph-based descriptions suitable. Such representations
easily describe precedence relations between events in sig-
nals and allow for parallelism, decisions, and conflict be-
tween processes as well. An important, but not unique,
graph-based description is the signal transition graph
(STG), an interpreted Petri net. Basically, STGs are formed
by places—signal transitions, labeled + for rise transitions
and—for fall transitions—and by arcs connecting places. If
the STG satisfies some criteria of “good behavior” (liveness,
safety, persistence, semimodularity, etc.), it may represent
a hazard-freeASC (5). Other techniques based on Petri nets
are change diagrams and I nets.

Figure 4 shows the table- and graph-based description
and a possible implementation of a pipeline interface op-
erating under a four-phase handshaking protocol. Rin per-
forms a request from block A, acknowledged by Aout and
transmitted to block B through the Rout signal, depending
on the value of Ain , which indicates if B is ready to accept
data. All signals are considered active high.

Starting from an initial state (Rout Aout = 0 0) with no re-
quest stored, activation of a request (R+

in) leads the system

to the state (Rout Aout = 0 1), indicating that the request
has been acknowledged and considered. Only when Ain is
disabled (A−

in), indicating that the following cell is idle, does
the system go to the state (Rout Aout = 11), transferring the
request from the present to the next stage. Disabling the
input request (R−

in) forces the falling of the acknowledge
signal (A−

out), leading the system to the state (Rout Aout =
10), from which the system is returned to the initial state
by disabling Ain .

The proposed race-free implementation uses as a mem-
ory cell a C-Muller element: a bistable that stores its input
values when they are coincident. The characteristics of this
bistable (i.e., the fact that it performs the AND operation
on events) make it the recommended memory element for
self-timed implementations, as suggested by Meng (8) and
Martin (9).

Peculiarities of ASCs exclude classic synthesis tools
used for synchronous sequential circuits. Different
methodologies have been presented, which are focused on
graph- and state-based descriptions. Also, VLSI program-
ming and sintax-driven translation has recently received
attention (9–11).

Synthesis tools using state representation (flow dia-
grams and tables) are oriented toward the implementa-
tion of race-free tables by using techniques of state mini-
mization and efficient assignment. For instance, so-called
“single-transition table” (STT) state assignments provide
race-free VLSI circuits (see Reading List).

Synthesis tools using graph representations (STG or
Petri nets) utilize as input an original graph that contains
the desired behavior. This graph is transformed by using
different techniques in such a way that the transformed
graph verifies some properties of “good behavior,” such as
liveness, safety, or semimodularity. Some algorithms gen-
erate a state diagram and a hazard-free circuit is synthe-
sized. The transformation of the original graph into the
modified one takes place but adding arcs (causal relations)
and signals in such a way that the transformed graph ver-
ifies the above-mentioned properties, and the resulting cir-
cuit is hazard-free (see Reading List).

VLSI programming allows the description of typical
asynchronous VLSI processes such as concurrence and par-
allelism between processes. Synthesis tools based on VLSI
programming, as for instance TANGRAM (10), BALSA
(11) or the one used in (9), directly translate a high-level
description into hardware through connections between
handshake signals and circuits.



4 Asynchronous Sequential Logic

ARCHITECTURES OF ASYNCHRONOUS SEQUENTIAL
CIRCUITS

The main parameter that characterizes the architecture
of ASCs is the way that the self-synchronization is per-
formed. In self-timed ASCs, the timing control is carried
out by data themselves, assisted by specific protocol—
handshake—signals. The way that this information is in-
cluded depends on the data encoding and on the rela-
tionship between data and handshake signals. There are
two main data signaling schemes used in self-timed ASCs:
dual- and single-rail codification.

Dual-Rail Codification

Using dual-rail code, also called self-synchronizing or
delay-insensitive code, allows the inclusion of information
about the validity of data by including redundancy of in-
formation. A simple code uses two signal bits (xt and xf )
per data bit (x). Thus, we can express four possible values:
when both xt and xf are inactive (low level, for instance),
an “empty” or “spacer” state is defined, indicating that data
are not valid. When either xt or xf is active (high level, for
instance), the data are valid (true or false, respectively).
By definition, xt and xf cannot be simultaneously active.
Figure 5 presents a waveform diagram showing the syn-
chronization scheme using dual-rail data, working with a
four-phase handshaking protocol. Only one transition per
bit takes place per operation cycle, while valid data and
spacers are forced to alternate. Delay-insensitive operation
may be ensured, since delay in interconnections would only
bring about additional delays in transitions, but events oc-
cur in the right sequence.

Single-Rail Codification

This approach, also called bundled data, uses a specific
handshake signal to validate data, in such a way that only
one signal per data bit is needed. However, synchronization
between the validation signal and data signal is required
to ensure correct operation; thus, delay-insensitive opera-
tion is not guaranteed. To validate the output data of an
ASC, it is necessary to generate a completion signal once
the operation of the circuit is finished. This completion sig-
nal can be used as a request signal for other ASCs. The
two most widely accepted mechanisms for generating com-
pletion signals are based on the use of matched delays and
the use of differential circuits as computation or processing
elements.

Matched Delays. This technique (2, 12) generates a com-
pletion signal by using a delay element that matches the
worst-case delay of the combinational logic (Fig. 6). When
the request is activated, input data are valid. Since the
combinational logic takes less time to process data than
the propagation time of the delay element, once the com-
pletion signal is activated, the output data are necessarily
valid. This scheme has the advantage of simplicity, but its
operation is always performed considering the worst-case
delay. Furthermore, the correct calculation of propagation
delays and implementation of delay elements requires ex-
haustive timing simulations (see Delay circuits).

Differential Circuits. Using differential circuits as
computation or processing blocks provides an effi-
cient way of generating completion signals (8). These
circuits, which are well suited for complementary
metal–oxide–semiconductor (CMOS) implementations,
generate both the true and the complemented outputs.
However, dual-coded inputs are needed. Conversion of
single-rail to dual-rail data can be performed at a local
level. The generic schematic and waveform diagrams are
shown in Fig. 7. In the precharge phase, outputs take the
same value, while in the evaluation phase, the logic func-
tion is performed and the two outputs take complemented
values. A simple logic gate detecting the complemented
values can generate the completion signal. The main
advantage is the adaptability to new operation conditions,
but at the cost of expensive hardware resources.

Figure 8 shows an example of bundled-data architec-
ture using differential circuits to generate completion sig-
nals. Synchronous memory elements (D flip-flops) are lo-
cally clocked by protocol signals (not shown in the figure)
in such a way that data must be stored and stable while
they are being processed. Single- to dual-rail data conver-
sion takes place in the memory elements. Interconnection
circuits are implemented with two C elements, as we can
see in the ASC shown in Fig. 4. The Rout signal acts as a
request signal for the differential circuit, while the comple-
tion signal is the Rin signal for the following interconnec-
tion circuit.

MACROMODULE-BASED CIRCUITS

Most current handshake circuits combine some of the
above-mentioned characteristics: two- or four-phase hand-
shaking protocol, matched delays or differential circuits,
and single-rail or dual-rail codification. A common charac-
teristic is their modularity, in the sense that we can inter-
connect several modules that work under the same hand-
shaking protocol and codification schemes to build a com-
plex self-timed ASC. Thus, an efficient approach to the de-
velopment of handshake circuits is the use of a library of
macromodules that, correctly interconnected, can perform
any desired functionality.

With respect to interconnections between macromod-
ules, although they can be used to design delay-insensitive
control modules, their implementation is not delay-
insensitive or even speed-independent.

Micropipelines

A very important macromodule-based approach, called mi-
cropipelines, was presented by Sutherland (12). It uses a
two-phase handshaking protocol, single-rail codification,
and matched delays, and its basic architecture is shown in
Fig. 9. For the data path, it uses data pass–capture latches
to store data in events of protocol signals. For control, it
uses a library of event-sensitive macromodules, shown in
Fig. 10. The XOR gate and the C element perform the OR
and AND operation of events, respectively. The toggle cell
transfers an event from its input to its two outputs alter-
nately, starting with the dotted output. The select block
allows a Boolean to direct the input event to the true or



Asynchronous Sequential Logic 5

Figure 5. Speed-independent buffer as example of a dual-rail
scheme for data signaling. A 4-phase handshaking protocol has
been used. Empty (E) and Valid Data values are forced to alter-
nate.

Figure 6. Bundled-data scheme using matched delays to gen-
erate complete signal. �1 (�2) matches the worst case delay of
C1 (C2). Data signals must be validated by handshake signals.

Figure 7. (a) Logic schematic of a generic differential logic block.
LOAD block sets the precharge values and the differential tree
generates both the true and the complemented logic output. (b)
Waveform diagram showing how precharge and evaluation phases
alternate.

false output. The call block allows two independent, mu-
tually exclusive processes to share a common subprocess.
The arbiter cell grants a common resource to only one of
the elements that requested it. The mutually exclusive el-
ement (MUTEX) ensures that the resource can never be
used simultaneously by the two elements that requested
it.

Control and Data Handshake Circuits

One of the main approaches to the design of ASCs uses
VLSI programming for direct translation of high-level de-
scriptions into hardware (9–11). Control and data hand-
shake circuits are the result of compiling the behav-
ior description. A handshake circuit is a (quasi) delay-
insensitive network of components connected by commu-
nication channels. A control handshake circuit communi-
cates with other components through request/acknowledge
signaling through the channels. Data handshake circuits
also include data signaling. Following heuristic or system-
atic techniques, you can design more complex components
based on simple handshake circuits.

As an example of an ASC built with handshake circuits
(taken from Ref. 10), Fig. 11 shows the high-level descrip-
tion, symbol, and handshake-based implementation of one-
and two-stage first-in, first-out (FIFO) memories. There is
a direct translation from language (forever do) into a hand-
shake circuit (repeater block, marked with ∗; and with
a possible implementation is shown in Fig. 12). Blocks
marked “;” are sequencers, which complete handshaking
from the ASC’s input to its outputs alternatively. The T
and x blocks, called transferrers and handshake latches, re-
spectively, are data handshake blocks, capable of transfer-
ring and storing data signals according to the handshake
protocol. An open circle a block indicates that the request
acts as input and the acknowledge as output (passive port),
while a filled circle indicates an output request and input
acknowledge (active port).

For the one-stage FIFO in Fig. 11 (see Fig. 4 for the
same basic functionality), the statement (a?x0; b!x1) indi-
cates that input a is loaded in variable x, which can be read
through the b port. The action of the sequencer makes it
possible for data to be written before being read, verify-
ing the handshaking protocol. The two-stage FIFO is built



6 Asynchronous Sequential Logic

Figure 8. Example of bundled-data architecture using differential circuits as computation blocks.
The generation of complete signals is quite straightforward by using a logic gate. A 4-phase hand-
shaking protocol is used.

Figure 9. Micropipelined single-rail data architecture. The data path is implemented with combi-
natory logic to perform the logic function and Pass–Capture latches to store data. Control manages
protocol signals and write/read operation in latches. Matched delays are used for completing hand-
shaking protocol (see reference 12 for more complex examples).

with two cascaded one-stage FIFOs operating in parallel; it
is marked with the symbol ‖ in the specification (Fig. 11).
The final circuit can be synthesized by substituting each
handshake component for its schematic and layout.

DISCUSSION OF CHARACTERISTICS AND
PERFORMANCES

Current state-of-the art ASCs are more complex and, in
general, more difficult to design than their synchronous
counterparts. Many advantages of ASCs over synchronous
circuits have been claimed, such as automatic adapta-
tion to physical properties, better accommodation to asyn-
chronous external inputs, better technology migration po-

tential, more timing reliability, lower noise and electro-
magnetic emission, and higher modularity. However, the
most prominent advantages of ASCs come from their spe-
cial ability to exploit data dependence in operation time
and their lower power consumption. Thus, there are some
applications where ASCs can be recommended, such as dig-
ital signal processing and low-power applications. Some
emergent applications are in the field of thermally-aware
circuits, secure systems as smart cards, and the implemen-
tation of bio-inspired artificial vision systems, based on
the asynchronous address-event-representation communi-
cation scheme. Advanced aspects, such as testability or ver-
ification, are still under development.



Asynchronous Sequential Logic 7

Figure 10. Event-sensitive macromodule library and a possible CMOS implementation of each cell.

Figure 11. High-level description, symbol and module imple-
mentation of 1-stage and 2-stage FIFO memories.

To show the data dependence, let us consider (Fig. 13)
a ripple carry adder (see Summing circuits), where the
time needed to perform the operation depends on the input
words (2). The best cases correspond to direct generation of
output carry of all cell bits, and this occurs when the added

bits have the same value (ai , bi , ci−1) = (1, 1, x) or (0, 0, x),
giving as output carry 1 and 0, respectively, regardless of
the value of the input carry. The worst case is given by the
propagation of carry throughout the whole chain, whereby
each cell needs the output carry of the previous cell to fin-



8 Asynchronous Sequential Logic

Figure 12. A possible implementation of a Repeater block. Its
functionality is summarized as follows: a requests b (a+

r ); b is indef-
initely executed (b+

r → b+
k

→ b−
r → b−

k
); a is released (a+

k
). A 4-phase

handshaking protocol is supposed.

Figure 13. Ripple carry adder as an example (taken from ref-
erence 2) showing the dependence of processing time with input
data. The operation performed by each full adder is ci = ai bi + ai
ci−1 + bi ci−1; si = ai xor bi xor ci−1. If an bn = 1 1, then cn = 1; if an
bn = 0 1, then cn = an−1 bn−1 + an−1 cn−1 + bn−1 cn−1, depending
recursively on the previous carry.

ish its processing. An input vector such as (ai , bi , ci−1) = (1,
0, x) will create such a situation. This example shows how
the data themselves lead to very different time process-
ing. While synchronous circuits must take into account the
worst-case operation,ASC can operate on the average case.

Operation Speed

At a circuit level, ASCs show more tolerance for physical
variations, such as deviation in the technological process
and variations in supply voltage and temperature. This is
mainly due to the action of the handshake and the gen-
eration of completion signals (indicating when the opera-
tion has been finished) and to their working at the max-
imum speed possible. At an algorithmic or architectural
level, ASCs’ ability to operate on an average case is help-
ful, especially when the worst and average cases are very
different; and they are not limited by the slowest process-
ing block (2, 8). However, verification of the handshaking
protocol requires two processes: (1) monitoring the state,
and (2) “wait or go” operation. Thus a tradeoff exists be-
tween the two approaches.

Power Consumption

In synchronous circuits, clock lines have to be toggled and
circuit nodes charged and discharged even in unused parts
or when the circuit is idle and there are no data to compute.
Also, the generation of “good” clock signals (vertical edges)
consumes a lot of power in each transition. Although ASCs
often require more signal transitions in a given computa-
tion than do synchronous circuits, these transitions usually

Figure 14. Representation of the power consumption vs opera-
tions performed. In the synchronous case, there is power consump-
tion even if there are no data to compute. In a self-timed ASC, for
relatively low input data rate, consumption is lower.

occur in areas involved in the current computation. More-
over, problems related to the generation of clocks are min-
imized. Figure 14 shows a generic representation of power
consumption versus operations performed. Because a clock
consumes power when the circuit is idle, depending on the
input data rate, the ASC consumes less power. A good ex-
ample of an ASC exhibiting less power consumption than
its synchronous counterpart is found in Ref. 13.

There are some interesting approaches combining the
advantages of the synchronous and the asynchronous style.
These structures are locally clocked and are based on the
generation of a local clock that ensures correct operation
of the circuit under asynchronous inputs. The most impor-
tant are those based on burst-mode operation, metastable-
insensitive Q-modules, and stoppable clocks (10).

BIBLIOGRAPHY

1. S. H. Unger, Asynchronous Sequential Switching Circuits.,
New York: Wiley-Interscience, 1969.

2. C. L. Seitz, System timing, inC. A. Mead andL. Conway (eds.),
Introduction to VLSI Systems. Reading, MA: Addison-Wesley
Pubs., 1980.

3. D. M. Chapiro, Globally-asynchronous locally-synchronous,
PhD thesis, Stanford University, 1984.

4. D. Sokolov and A. Yakovlev, Clockless Circuits and System
Synthesis, IEE Proc. Computers and Digital Techniques, 152
(3): 298–316, 2005.

5. H. B. Bakoglu, Circuits, Interconnections and Packaging for
VLSI. Reading, MA: Addison-Wesley Pubs., 1990.

6. J. M. Rabaey, Digital Integrated Circuits. A Design Perspective.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

7. E. G.Friedman, Clock Distribution Networks in Synchronous
Digital Integrated Circuits, Proceedings of the IEEE, 89 (5):
665–692, 2001.

8. T. H. Y. Meng, Synchronization Design for Digital Systems.
Norwell, MA: Kluwer Academic Pubs., 1991.

9. A. J. Martin, Compiling communicating processes into delay-
insensitive VLSI circuits. Distributed Computing, 1 (4):
226–234, 1986.

10. K. van Berkel, Handshake Circuits: an Asynchronous Archi-
tecture for VLSI Programming. Cambridge University Press,
1993.



Asynchronous Sequential Logic 9

11. A. Bardsley,The BALSA Asyn-
chronous Synthesis Systems web pages:
http://www.cs.manchester.ac.uk/apt/projects/tools/balsa/

12. I. E. Sutherland, Micropipelines. Commun. of the ACM, 32 (6):
720–738, 1989.

13. K. van Berkel, R. Burgess, J. Kessels, M. Roncken, F. Schalij,
and A. Peeters, Asynchronous circuits for a low power: A DCC
error corrector. IEEE Design and Test of Computers, 11 (2):
22–32, 1994.

Reading List

Most classical textbooks dedicated to digital logic design discuss
asynchronous sequential logic. A summary of them is as follows:

A. E. A. Almaini, Electronic Logic Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1994, chap. 5.

E. J. McCluskey, Logic Design Principles. Englewood Cliffs, NJ:
Prentice-Hall, 1986, chap. 9.

F. J. Hill and G. R. Peterson, Computer Aided Logical Design with
Emphasis on VLSI. New York: John Wiley & Sons, 1993, chap.
14.

R. F. Tinder, Digital Engineering Design: A Modern Approach. En-
glewood Cliffs, NJ: Prentice-Hall 1991, chap. 6.

S. H. Unger, The Essence of Logic Circuits. 2nd ed., Piscataway,
NJ: IEEE Press, 1997, chap. 6.

ANTONIO J. ACOSTA-JIMÉNEZ

MANUEL J. BELLIDO-DÍAZ

ANGEL BARRIGA-BARROS

University of Seville, Seville,
Spain


