
716 ASYNCHRONOUS CIRCUITS

ASYNCHRONOUS CIRCUITS

Digital Very Large Scale Integration (VLSI) circuits are usu-
ally classified into synchronous and asynchronous circuits.
Synchronous circuits are generally controlled by global syn-
chronization signals provided by a clock. Asynchronous cir-
cuits, on the other hand, do not use such global synchroniza-
tion signals. Between these extremes there are various
hybrids. Digital circuits in today’s commercial products are
almost exclusively synchronous. Despite this big difference in
popularity, there are a number of reasons why asynchronous
circuits are of interest.

In this article, we present a brief overview of asynchronous
circuits. First we address some of the motivations for design-
ing asynchronous circuits. Then, we discuss different classes
of asynchronous circuits and briefly explain some asynchro-
nous design methodologies. Finally, we present an asynchro-
nous design in detail.

MOTIVATIONS FOR ASYNCHRONOUS CIRCUITS

Throughout the years researchers have had a number of rea-
sons for studying and building asynchronous circuits. Some of
the often mentioned advantages of asynchronous circuits are
speed, low energy dissipation, modular design, immunity to
metastable behavior, freedom from clock skew, and low gener-
ation of and low susceptibility to electromagnetic interfer-
ence. We elaborate here on some of these potentials and indi-
cate when they have been demonstrated through comparative
case studies.

Speed

Speed has always been a motivation for designing asynchro-
nous circuits. The main reasoning behind this advantage is
that synchronous circuits exhibit worst-case behavior,
whereas asynchronous circuits exhibit average-case behavior.
The speed of a synchronous circuit is governed by its clock
frequency. The clock period should be large enough to accom-
modate the worst-case propagation delay in the critical path
of the circuit, the maximum clock skew, and a safety factor
due to fluctuations in the chip fabrication process, operating
temperature, and supply voltage. Thus, synchronous circuits
exhibit worst-case performance, in spite of the fact that the
worst-case propagation in many circuits, particularly arith-
metic units, may be much longer than the average-case prop-
agation.

Many asynchronous circuits are controlled by local commu-
nications and are based on the principle of initiating a compu-
tation, waiting for its completion, and then initiating the next
one. When a computation has completed early, the next com-
putation can start early. For this reason, the speed of asyn-
chronous circuits equipped with completion-detection mecha-
nisms depend on the computation time of the data being
processed, not the worst-case timing. Accordingly, such asyn-
chronous circuits exhibit average-case performance. An exam-
ple of an asynchronous circuit where the average-case poten-
tial is nicely exploited is reported in (1), an asynchronous
divider that is twice as fast as its synchronous counterpart.
Nevertheless, to date, there are few concrete examples dem-
onstrating that the average-case performance of asynchro-
nous circuits is higher than that of synchronous circuits per-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



ASYNCHRONOUS CIRCUITS 717

forming similar functions. The reason is that the average-case (6). Another example where modular design is demonstrated
performance advantage is often counterbalanced by the over- is the TANGRAM compiler developed at Philips Research
head in control circuitry and completion-detection mecha- Laboratories (7).
nisms.

Besides demonstrating the average-case potential, there Low Power
are case studies in which the speed of an asynchronous design

Due to rapid growth in the use of portable equipment and theis compared to the speed of a corresponding synchronous ver-
sion. Molnar et al. report a case study (2) of an asynchronous trend in high-performance processors towards unmanageable
FIFO that is every bit as fast as any synchronous FIFO using power dissipation, energy efficiency has become crucial in
the same data latches. Furthermore, the asynchronous FIFO VLSI design. Asynchronous circuits are attractive for energy-
has the additional benefit that it operates under local control efficient designs, mainly because the clock is eliminated. In
and is easily expandable. At the end of this article, we give systems with a global clock, all of the latches and registers
an example of a FIFO with a different control circuit. operate and consume dynamic energy during each clock pulse,

in spite of the fact that many of these latches and registers
Immunity to Metastable Behavior may not have new data to store. There is no such waste of

energy in asynchronous circuits, because computations areAny circuit with a number of stable states also has metasta-
initiated only when necessary.ble states. When such a circuit gets into a metastable state,

Two notable examples that demonstrated the potential ofit can remain there for an indefinite period of time before re-
asynchronous circuits in energy-efficient design are the worksolving into a stable state (3,4). Metastable behavior occurs,
done at Philips Research Laboratories and at Manchesterfor example, in circuit primitives that realize mutual exclu-
University. The Philips group designed a fully asynchronoussion between processes, called arbiters, and components that
digital compact-cassette (DCC) error detector which con-synchronize independent signals of a system, called synchro-
sumed 80% less energy than a similar synchronous versionnizers. Although the probability that metastable behavior
(8). The AMULET group at Manchester University success-lasts longer than period t decreases exponentially with t, it is
fully implemented an asynchronous version of the ARM mi-possible that metastable behavior in a synchronous circuit
croprocessor, one of the most energy-efficient synchronous mi-lasts longer than one clock period. Consequently, when meta-
croprocessors. The asynchronous version achieved a powerstable behavior occurs in a synchronous circuit, erroneous
dissipation comparable to the fourth generation of ARM,data may be sampled at the time of the clock pulses. An asyn-
around 150 mW (9), in a similar technology.chronous circuit deals gracefully with metastable behavior by

Recently, power management techniques are being used insimply delaying the computation until the metastable behav-
synchronous systems to turn the clock on and off condition-ior has disappeared and the element has resolved into a sta-
ally. However, these techniques are only worthwhile imple-ble state.
menting at the level of functional units or higher. Besides,
the components that monitor the environment for switchingModularity
the clock continue dissipating energy.

Modularity in design is an advantage exploited by many asyn-
It is also worth mentioning that, unlike synchronous cir-chronous design styles. The basic idea is that an asynchro-

cuits, most asynchronous circuits do not waste energy on haz-nous system is composed of functional modules communicat-
ards, which are spurious changes in a signal. Asynchronousing along well-defined interfaces. Composing asynchronous
circuits are essentially designed to be hazard-free. Hazardssystems is simply a matter of connecting the proper modules
can be responsible for up to 40% of energy loss in synchronouswith matching interfacial specifications. The interfacial speci-
circuits (10).fications describe only the sequences of events that can take

place and do not specify any restrictions on the timing of
these events. This characteristic reduces the design time and Freedom from Clock Skew
complexity of an asynchronous circuit, because the designer

Because asynchronous circuits generally do not have clocksdoes not have to worry about the delays incurred in individual
they do not have many of the problems associated with clocks.modules or the delays inserted by connection wires. Designers
One such problem is clock skew, the technical term for theof synchronous circuits, on the other hand, often pay consider-
maximum difference in clock arrival time at different parts ofable attention to satisfying the detailed interfacial timing
a circuit. In synchronous circuits, it is crucial that all modulesspecifications.
operating with a common clock receive this signal simultane-Besides ease of composability, modular design also has the
ously, that is, within a tolerable period of time. Minimizingpotential for better technology migration, ease of incremental
clock skew is a difficult problem for large circuits. Variousimprovement, and reuse of modules (5). Here the idea is that
techniques have been proposed to control clock skew, but gen-an asynchronous system adapts itself more easily to advances
erally they are expensive in terms of silicon area and energyin technology. The obsolete parts of an asynchronous system
dissipation. For instance, the clock distribution network ofcan be replaced with new parts to improve system perfor-
the DEC Alpha, a 200 MHz microprocessor at a 3.3 V supply,mance. Synchronous systems cannot take advantage of new
occupies 10% of the chip area and uses 40% of the total chipparts as easily, because they must be operated with the old
power consumption (11). Although asynchronous circuits doclock frequency or other modules must be redesigned to oper-
not have clock skew problems, they have their own set ofate at the new clock frequency.
problems in minimizing the overhead needed for synchroniza-One of the earliest projects that exploited modularity in

designing asynchronous circuits is the Macromodules project tion among the parts.



718 ASYNCHRONOUS CIRCUITS

MODELS AND METHODOLOGIES

There are many models and methodologies for analyzing and
designing asynchronous circuits. Asynchronous circuits can
be categorized by the following criteria: signaling protocol and
data encoding, underlying delay model, mode of operation,
and formalism for specifying and designing circuits. This sec-
tion presents an informal explanation of these criteria.

S
e
n
d
e
r

Data

Request

Acknowledge

n

R
e
c
e
i
v
e
r

S
e
n
d
e
r

Data

Acknowledge

(a) Bundled data convention (b) Dual-rail data encoding

2n

R
e
c
e
i
v
e
r

Signaling Protocols and Data Encodings Figure 1. Two different data communication schemes.

Modules in an asynchronous circuit communicate data with
some signaling protocol consisting of request and acknowledg-
ment signals. There are two common signaling protocols for data are invalid. Notice that a request signal occurs only after
communicating data between a sender and a receiver, the data become valid. This is an important timing restriction as-
four-phase and the two-phase protocol. In addition to the sig- sociated with these communication protocols, namely, the re-
naling protocol, there are different ways to encode data. The quest signal that indicates that data are valid should always
most common encodings are single-rail and dual-rail encod- arrive at the receiver after all data wires have attained their
ing. We explain the two signaling protocols first and then dis- proper value. The restriction is referred to as the bundling
cuss the data encodings. constraint. For this reason the communication protocol is of-

If the sender and receiver communicate through a two- ten called the bundled data protocol. Figure 2(b) shows a se-
phase signaling protocol, then each communication cycle has quence of events in a four-phase protocol and single-rail data
two distinct phases. The first phase consists of a request initi- encoding. Other sequences are also applicable for the four-
ated by the sender. The second phase consists of an acknowl- phase protocol.
edgment by the receiver. The request and acknowledgment The dual-rail encoding scheme uses two wires for every
signals are often implemented by voltage transitions on sepa- data bit. There are several dual-rail encoding schemes. All
rate wires. No distinction is made between the directions of combine the data encoding and signaling protocol. There is no
voltage transitions. Both rising and falling transitions denote explicit request signal, and the dual-rail encoding schemes all
a signaling event. require (2n � 1) wires as illustrated in Fig. 1(b). In four-phase

The four-phase signaling protocol consists of four phases, a signaling, there are several encodings that are used to trans-
request followed by an acknowledgment, followed by a second mit a data bit. The most common encoding has the following
request, and finally a second acknowledgment. If the request meaning for the four states in which each pair of wires can
and acknowledgment are implemented by voltage transitions, be, 00 � reset, 10 � valid 0, 01 � valid 1, and 11 is an unused
then at the end of every four phases, the signaling wires re- state. Every pair of wires has to go through the reset state
turn to the same voltage levels as at the start of the four before becoming valid again. In the first phase of the four-
phases. Because the initial voltage is usually zero, this type phase signaling protocol, every pair of wires leaves the reset
of signaling is also called return-to-zero signaling. Other state for a valid 0 or 1 state. The receiver detects the arrival
names for two-phase and four-phase signaling are two-cycle of a new set of valid data when all pairs of wires have left the
and four-cycle signaling, respectively, or transition and level reset state. This detection replaces an explicit request signal.
signaling, respectively. The second phase consists of an acknowledgment to inform

Both signaling protocols are used with single and dual-rail the sender that data has been consumed. The third phase con-
data encodings. In single-rail data encoding each bit is en- sists of the reset of all pairs of wires to the reset state, and
coded with one wire, whereas in dual-rail encoding, each bit the fourth phase is the reset of the acknowledgment.
is encoded with two wires. In a two-phase signaling protocol, a different dual-rail en-

In single-rail encoding, the value of the bit is represented coding is used. An example of an encoding is as follows. Each
by the voltage on the data wire. When communicating n data pair of wires has one wire associated with a 0 and one wire
bits with a single-rail encoding during periods where the data associated with a 1. A transition on the wire associated with
wires are guaranteed to remain stable, we say that the data 0 represents the communication of a 0, whereas a transition
are valid. During periods where the data wires are possibly on the other wire represents a communication of a 1. Thus, a
changing, we say the data are invalid. A two-phase or four- transition on one wire of each pair signals the arrival of a
phase signaling protocol is used to tell the receiver when data new bit value. A transition on both wires is not allowed. In
are valid or invalid. The sender informs the receiver about the first phase of the two-phase signaling protocol every pair
the validity of the data through the request signal, and the of wires communicates a 0 or a 1. The second phase is an
receiver, in turn, informs the sender of the receipt of the data acknowledgment sent by the receiver.
through the acknowledgment signal. Therefore, to communi- Of all data encodings and signaling protocols, the most
cate n bits of data, a total number of (n � 2) wires are neces- popular are the single-rail encoding and four-phase signaling
sary between the sender and the receiver. The connection pat- protocol. The main advantages of these protocols are the
tern for single-rail encoding and two or four-phase signaling small number of connecting wires and the simplicity of the
is depicted in Fig. 1(a). encoding, which allows using conventional techniques for im-

Figure 2(a) shows the sequence of events in a two-phase plementing data operations. The disadvantage of these proto-
signaling protocol. The events include the times when the cols are the bundling constraints that must be satisfied and
data become valid and invalid. The transparent bars indicate the extra energy and time wasted in the additional two

phases compared with two-phase signaling. Dual-rail data en-the periods when data are valid. During the other periods,



ASYNCHRONOUS CIRCUITS 719

Data

One cycle One cycle

Request

Acknowledge

(a) (b)

Data

Request

Acknowledge

Figure 2. Data transfer in (a) two-phase signaling and (b) four-phase signaling.

codings are used to communicate data in asynchronous cir- changes immediately after receiving an appropriate response
cuits free of any timing constraints. Dual-rail encodings, how- to a previous input change, even if the entire circuit has not
ever, are expensive in practice, because of the many yet stabilized. The fundamental mode was introduced in the
interconnecting wires, the extra circuitry to detect completion 1960s to simplify analyzing and designing gate circuits with
of a transfer, and the difficulty in data processing. Boolean algebra. The input-output mode evolved in the eight-

ies from event-based formalisms to describe modular design
Delay Models methods that abstracted from the internal operation of a

circuit.An important characteristic distinguishing different asyn-
chronous circuit styles is the delay model on which they are

Formalismsbased. For each circuit primitive, gate or wire, a delay model
stipulates the sort of delay it imposes and the range of the Just as in any other design discipline, designers of asynchro-
delays. Delay models are needed to analyze all possible be-

nous circuits use various formalisms to master the complexi-
havior of a circuit for various correctness conditions, like the

ties in designing and analyzing their artifacts. The formal-absence of hazards.
isms used in asynchronous circuit design are categorized intoA circuit is composed of gates and interconnecting wires,
two classes, formalisms based on Boolean algebra and formal-all of which impose delays on the signals propagating through
isms based on sequences of events. Most design methodolo-them. The delay models are categorized into two classes, pure
gies in asynchronous circuits use some mixture of both for-delay models and inertial delay models. In a pure delay
malisms.model, the delay associated with a circuit component pro-

The design of many asynchronous circuits is based on Bool-duces only a time shift in the voltage transitions. In reality,
ean algebra or its derivative switching theory. Such circuitsa circuit component may shift the signals and also filter out
often use the fundamental mode of operation, the bounded-pulses of small width. Such a delay model is called an inertial
delay model, and have, as primitive elements, gates that cor-delay model. Both classes of delay models have several ranges
respond to the basic logic functions, like AND, OR, and inver-for the delay shifts. We distinguish the zero-delay, fixed-delay,
sion. These formalisms are convenient for implementing logicbounded-delay, and unbounded-delay models. In the zero-de-
functions, analyzing circuits for the presence of hazards, andlay model, the values of the delays are zero. In the fixed-delay
synthesizing fundamental-mode circuits (12,14).model, the values of the delays are constant, whereas in the

Event-based formalisms deal with sequences of eventsbounded-delay model the values of the delays vary within a
rather than binary logic variables. Circuits designed with anbounded range. The unbounded-delay model does not impose
event-based formalism operate in the input-output mode, un-any restriction on the value of the delays except that they
der an unbounded-delay model, and have, as primitive ele-cannot be infinite. Sometimes two different delay models are
ments, the JOIN, the TOGGLE, and the MERGE, for example.assumed for the wires and the gates in an asynchronous cir-
Event-based formalisms are particularly convenient for de-cuit. For example, the operation of a class of asynchronous
signing asynchronous circuits when a high degree of concur-circuits is based on the zero-delay model for wires and the
rency is involved. Several tools have been generated for auto-unbounded-delay model for gates. Formal definitions of the
matically verifying asynchronous circuits with event-basedvarious delay models are given in (12).
formalisms (15,16). Examples of event-based formalisms areA concept closely related to the delay model of a circuit is
trace theory (17–19), DI algebra (20), Petri nets, and signalits mode of operation. The mode of operation characterizes the
transition graphs (21,22).interaction between a circuit and its environment. Classical

asynchronous circuits operate in the fundamental mode
(13,14), which assumes that the environment changes only

DESIGN TECHNIQUESone input signal and waits until the circuit reaches a stable
state. Then the environment is allowed to apply the next

This section introduces the most popular types of asynchro-change to one of the input signals. Many modern asynchro-
nous circuits and briefly describes some of their design tech-nous circuits operate in the input-output mode. In contrast to

the fundamental mode, the input-output mode allows input niques.



720 ASYNCHRONOUS CIRCUITS

TYPES OF ASYNCHRONOUS CIRCUITS store the state variables in feedback loops containing delay
elements, instead of in latches or flip-flops, as synchronous-

There are special types of asynchronous circuits for which for- sequential circuits do. The design procedure begins with cre-
ating a flow table and reducing it through some state mini-mal and informal specifications have been given. Here are

brief informal descriptions of some of them in a historical mization technique. After a state assignment, the procedure
obtains the Boolean expressions and implements them incontext.

There are two types of logic circuits, combinational and se- combinational logic with the aid of a logic minimization pro-
gram. To guarantee a hazard-free operation, Huffman circuitsquential. The output of a combinational circuit depends only

on the current inputs, whereas the output of a sequential cir- adopt the restrictive single-input-change fundamental mode,
that is, the environment changes only one input and waitscuit depends on the previous sequence of inputs. With this

definition of a sequential circuit, almost all asynchronous cir- until the circuit becomes stable before changing another in-
put. This requirement substantially degrades the circuit per-cuit styles fall into this category. However, the term asyn-

chronous-sequential circuits or machines generally refers to formance. Hollaar realized this fact and introduced a new
structure in which the fundamental mode assumption is re-those asynchronous circuits based on finite-state machines

similar to those in synchronous sequential circuits (14,23). laxed (30). In his implementation, the state variables are
stored in NAND latches, so that inputs are allowed to changeMuller was the first to rigorously formalize a special type

of circuit for which he coined the name speed-independent cir- earlier than the fundamental mode allows. Although Hol-
laar’s method improves the performance, it suffers from thecuit. An account of this formalization is given in (24,25). In-

formally, a speed-independent circuit is a network of gates danger of producing hazards. Besides, neither technique is
adequate for designing concurrent systems. Models and algo-that satisfies its specification irrespective of any gate delays.

From a design discipline that was developed as part of the rithms for analyzing asynchronous-sequential circuits have
been developed by Brzozowski and Seger (12).Macromodules project (6) at Washington University in St.

Louis, the concept of another type of asynchronous circuits The quest for more concurrency, better performance, and
hazard-free operation, resulted in the formulation of a newevolved, which was given the name delay-insensitive circuit,

that is, a network of modules that satisfies its specification generation of asynchronous-sequential circuits known as
burst-mode machines (31,32). A burst-mode circuit does notirrespective of any element and wire delays. It was realized

that proper formalization of this concept was needed to spec- react until the environment performs a number of input
changes called an input burst. The environment, in turn, isify and design such circuits in a well-defined manner. Such a

formalization was given by Udding (26). not allowed to introduce the next input burst until the circuit
produces a number of outputs called an output burst. A stateAnother name frequently used in designing asynchronous

circuits is self-timed systems. This name was introduced by graph is used to specify the transitions caused by the input
and output bursts. Two synthesis methods have been pro-Seitz (27). A self-timed system is described recursively as ei-

ther a self-timed element or a legal connection of self-timed posed and automated for implementing burst-mode circuits.
The first method employs a locally generated clock to avoidsystems. The idea is that self-timed elements can be imple-

mented with their own timing discipline, and some may even some hazards (33). The second method uses three-dimen-
sional flow tables and is based on Huffman circuits (34). Onehave synchronous implementations. In other words, the ele-

ments ‘‘keep time to themselves.’’ In composing self-timed sys- limitation of burst mode circuits is that they restrict concur-
rency within a burst.tems from self-timed elements, however, no reference to the

timing of events is made. Only the sequence of events is rel-
evant. Speed-Independent Circuits and STG Synthesis

Some have found that the unbounded gate-and-wire delay
Speed-independent circuits are usually designed by a form of

assumption, on which the concept of a delay-insensitive cir-
Petri nets (35). A popular version of Petri nets, signal-transi-

cuit is based, is too restrictive in practice. For example, the
tion graphs (STG), was introduced by Chu. He also developed

unbounded gate-and-wire delay assumption implies that a
a synthesis technique for transforming STGs into speed-inde-

signal sent to multiple recipients by a fork incurs a different
pendent circuits (21). Chu’s work was extended by Meng, who

unbounded delay for each of the recipients. In (28) it is pro-
produced an STG-based tool for synthesizing speed-indepen-

posed to relax this delay assumption slightly by using iso-
dent circuits from high-level specifications (36). In this tech-

chronic forks. An isochronic fork is a fork whose difference in
nique, a circuit is composed of computational and intercon-

the delays of its branches is negligible compared with the de-
necting blocks. Computational blocks range from a simple

lays in the element to which it is connected. A delay-insensi-
shifter module to more complicated ones, such as ALUs,

tive circuit that uses isochronic forks is called a quasi-delay- RAMs, and ROMs. Interconnecting blocks synchronize the
insensitive circuit (17,28). Although isochronic forks give more operation of computational blocks by producing appropriate
design freedom in exchange for less delay insensitivity, care control signals. Computational blocks generate completion
has to be taken with their implementation (29). signals after their output data becomes valid. The intercon-

necting blocks use the completion signals to generate four-
Asynchronous-Sequential Machines phase handshake protocols.

The design of asynchronous-sequential, finite-state machines
Delay-Insensitive Circuits and Compilationwas initiated with the pioneering work of Huffman (23). He

proposed a structure similar to that of synchronous-sequen- Several researchers have proposed techniques for designing
tial circuits consisting of a combinational logic circuit, inputs, delay-insensitive circuits. Ebergen (37) has developed a syn-

thesis method based on the formalism of trace theory. Theoutputs, and state variables (14). Huffman circuits, however,



ASYNCHRONOUS CIRCUITS 721

The simplest primitive is the WIRE, a two-terminal element
that produces an output event on its output terminal b after
every input event on its input terminal a. Input and output
events in a WIRE must alternate. An input event a must be
followed by an output event b before another event a occurs.
A WIRE is physically realizable with a wire, and events are
implemented by voltage transitions. An initialized WIRE, or
IWIRE, is very similar to a WIRE, except that it starts by pro-
ducing an output event b instead of accepting an input event
a. After this, its behavior exactly resembles that of a WIRE.

The primitive for synchronization is the JOIN, also called
the RENDEZVOUS (6). A JOIN has two inputs a and b and one
output c. The JOIN performs the AND operation of two events
a and b. It produces an output event c only after both of its

TOGGLE

MERGE M

JOIN

IWIRE

WIRE

b

c

c

c

b

b

a

a

b

a

b

a

a

inputs, a and b, receive an event. The inputs can change
Figure 3. Some primitives in event-based designs.

again after an output is produced. A JOIN can be implemented
by a Muller C-element, explained in the next section.

The MERGE component performs the OR operation of two
method consists of specifying a component by a program and events. If a MERGE component receives an event on either of
then transforming this program into a delay-insensitive net- its inputs, a or b, it produces an output event c. After an input
work of basic elements (18). event, there must be an output event. Successive input events

Martin proposes a method (28) that starts with the speci- are not allowed. A MERGE is implemented by a XOR gate.
fication of an asynchronous circuit in a high-level program- The TOGGLE has a single input a and two outputs b and c.
ming language similar to Hoare’s Communicating Sequential After an event on input a, an event occurs on output b. The
Processes (CSP) (38). An asynchronous circuit is specified as next event on a results in a transition on output c. An input
a group of processes communicating over channels. After vari- event must be followed by an output event before another in-
ous transformations, the program is mapped into a network put event can occur. Thus, output events alternate or toggle
of gates. This method led to the design of an asynchronous after each input event. The dot in the TOGGLE schematic indi-
microprocessor (39) in 1989. Martin’s method yields quasi- cates the output which produces the first event.
delay-insensitive circuits.

Van Berkel (17) designed a compiler based on a high-level The Muller C-Element
language called Tangram. A Tangram program also specifies

The Muller C-element is named for its inventor D. E. Mullera set of processes communicating over channels. A Tangram
(24). Traditionally, its logical behavior is described as follows.program is first translated into a handshake circuit. Then
If both inputs are 0 (1), then the output becomes 0 (1). Other-these handshake circuits are mapped into various target ar-
wise the output remains the same. For the proper operationchitectures, depending on the data-encoding techniques or
of the C-element, it is also assumed that, once both inputsstandard-cell libraries used. The translation is syntax-di-
become 0 (1), they do not change again until the outputrected, which means that every operation occurring in a Tan-
changes. A state diagram is given in Figure 4. The behaviorgram program corresponds to a primitive in the translated
of the output c of the C-element is expressed in terms of thehandshake circuit. This property is exploited by various tools
inputs a and b and the previous state of the output ĉ by thethat quickly estimate the area, performance, and energy dis-
following Boolean function:sipation of the final design by analyzing the Tangram pro-

gram. Van Berkel’s method also yields quasi-delay-insensi-
c = [ĉ · (a + b)] + (a · b) (1)tive circuits.

Other translation methods from a CSP-like language to a
The C-element is used to implement the JOIN, which has a

(quasi-) delay-insensitive circuit are in (40,41).
slightly more restrictive environment behavior in the sense
that an input is not allowed to change twice in succession. A

AN ASYNCHRONOUS DESIGN EXAMPLE

In this section we present a typical asynchronous design, a
micropipeline (5). The circuit uses single-rail encoding with
the two-phase signaling protocol to communicate data be-
tween stages of the pipeline. The control circuit for the pipe-
line is a delay-insensitive circuit. First we present the primi-
tives for the control circuit, then we present the latches that
store the data, and finally we present the complete design.

The Control Primitives

Figure 3 shows a few simple primitives used in event-based

100

110000

010

011

001111

101

a

b

b

a

a

b

c

(c)

b

a

design styles. The schematic symbol for each primitive is de-
picted opposite its name. Figure 4. State diagram of the C-element.



722 ASYNCHRONOUS CIRCUITS

P1
P3

VDD

VDD

P5

N5

N5

P5

P4

P6

N6

P2

c’ c’c

c

c

c

b a

a
a

b

b

a

b

N2

N1

P1

P2

a

b

b

a

b

a

a

b

N2

P6

N6

N1

P3

P4

N4

N3

N3

(a) (b)

N4

Figure 5. Two CMOS implementations of the C-element: (a) conventional and (b) symmetric.

state graph for the JOIN is produced by replacing the bidirec- of three so-called double-throw switches. Implementation (b)
tional arcs by unidirectional arcs. includes a MERGE, a TOGGLE, and a level-controlled latch con-

There are many implementations of the C-element. We sisting of a double-throw switch and an inverter.
have given two popular CMOS implementations in Figure 5. A double-throw switch is schematically represented by an
Implementation (a) is a conventional pull-up, pull-down im- inverter and a switching tail. The tail toggles between two
plementation suggested by Sutherland (5). Implementation positions based on the logic value of a controlling signal. A
(b) is suggested by Van Berkel (29). Each implementation has double-throw switch, in fact, is a two-input multiplexer that
its own characteristics. Implementation (b) is the best choice produces an inverted version of its selected input. A CMOS
for speed and energy efficiency (42). There are many varia- implementation of the double-throw switch is shown in Fig-
tions of the C-element and other elements that are convenient ure 7 (5). The position of the switch corresponds to the state
for the design of asynchronous circuits. For some of these where c is low.
variations and their uses, in particular the asymmetric C-ele- An event-controlled latch can assume two states, transpar-
ment, see Ref. 28. ent and opaque. In the transparent state no data is latched,

but the output replicates the input, because a path of two
Storage Primitives inverting stages exists between the input and the output. In

the opaque state, this path is disconnected so that the inputTwo event-controlled latches due to Sutherland (5) are de-
data may change without affecting the output. The currentpicted in Figure 6. Their operation is managed through two
data at the output, however, is latched. Implementations ininput control signals, capture and pass, labeled c and p, re-
Figs. 6(a) and 6(b) are both shown in their initial transparentspectively. They also have two output control signals, capture
states. The capture and pass signals in an event-controlleddone, cd, and pass done, pd. The input data is labeled D, and

the output data is labeled Q. Implementation (a) is composed latch always alternate. Upon a transition on c, the latch cap-

Figure 6. Two event-driven latch imple-
mentations.

c p pc

cd pd cd pd

D

D

M

Q Q

(a) (b)



ASYNCHRONOUS CIRCUITS 723

nous circuits that have gained much attention in the asyn-
chronous community. Many VLSI circuits based on
micropipelines have been successfully fabricated. The AMU-
LET microprocessor (9) is one example. Although there are
many asynchronous implementations of micropipelines, we
only show an asynchronous implementation based on two-
phase signaling and data bundling, as given in Ref. 5. For
other implementations of pipelines involving four-phase sig-
naling, the reader is referred to Ref. 45.

The simplest form of a micropipeline is a First-In-First-
Out (FIFO) buffer. A four-stage FIFO is shown in Figure 8. It
has a control circuit composed solely of interconnected JOINs
and a data path of event-controlled registers. The control sig-
nals are indicated by dashed lines. The thick arrows show the
direction of data flow. Data is implemented with single-rail
encoding, and the data path is as wide as the registers can

z

c’

VDD

y

y

c

c

x

c

y

z

x

x

c’

accommodate. Adjacent stages of the FIFO communicate
Figure 7. A CMOS implementation of a double-throw switch. through a two-phase, bundled-data signaling protocol. This

means that a request arrives at the next stage only when the
data for that stage becomes valid. A bubble at the input of a

tures the current input data and becomes opaque. The follow- JOIN is a shorthand for a JOIN with an IWIRE on that input. It
ing transition on cd is an acknowledgment to the data pro- implies that, initially, an event has already occurred on the
vider that the current data is captured and that the input input with the bubble, and the JOIN produces an output event
data can be changed safely. A subsequent transition on p re- immediately upon receiving an event on the other input.
turns the latch to its transparent state to pass the next data Initially, all control wires of the FIFO are at a low voltage
to its output. The p signal is acknowledged by a transition on and the data in the registers are not valid. The FIFO is acti-
pd. Notice that in implementation (a) of Fig. 6 signals cd and vated by a rising transition on Rin, which indicates that input
pd are merely delayed and possibly amplified versions of c data is valid. Subsequently, the first-stage JOIN produces a
and p, respectively. rising output transition. This signal is a request to the first-

A group of event-controlled latches, similar to implementa- stage register to capture the data and become opaque. After
tion (a) of Fig. 6, can be connected, sharing a capture wire capturing the data, the register produces a rising transition
and a pass wire, to form an event-controlled register of arbi- on its cd output terminal. This causes a transition on Ain and
trary data width. Implementation (b) of Fig. 6 can be general- a transition on r1, which is a request to the second stage of
ized similarly into a register by inserting additional level-con- the FIFO. Meanwhile, the data has proceeded to the second-
trolled latches between the MERGE and the TOGGLE. A stage register and has arrived there before the transition on
comparison of different micropipeline latches is reported in r1 occurs. If the environment does not send any new data, the
(43) and later in (44). first stage remains idle, and the data and the request signals

propagate further to the right. Notice that each time the data
Pipelining is captured by a stage, an acknowledgment is sent back to the

previous stage which causes its latch to become transparentPipelining is a powerful technique for constructing high-per-
formance processors. Micropipelines are elegant asynchro- again. When the data has propagated to the last register, it

Figure 8. A four-stage micropipeline

Reg

c pd

cd p

Reg

cd p

c pd

Rin

Din

Ain r1 a2

a1

Reg

c pd

cd p

Reg

cd p

c pd

r2 Rout

Dout

r3 Aout

a3

FIFO structure.



724 ASYNCHRONOUS CIRCUITS

Figure 9. A general four-stage micropipe-
line structure.

Reg

c pd

cd p

Reg

cd p

c pd

Rin

Din

Ain r1 a2

a1

Reg

c pd

cd p

Reg

cd p

c pd

r2 Rout

Dout

r3 Aout

a3

L
o

g
ic

L
o

g
ic

L
o

g
ic

L
o

g
ic

Delay Delay

Delay Delay

is stored and a request signal Rout is forwarded to the con- CONCLUDING REMARKS
sumer of the FIFO. At this point, all control signals are at a
high voltage except for Aout. If the data is not removed out of We have touched only on a few topics relevant to asynchro-

nous circuits and omitted many others. Among the topicsthe FIFO, that is, Aout remains at low voltage, the next data
coming from the producer advances only up to the third-stage omitted are the important areas of verifying, testing, and ana-

lyzing the performance of asynchronous circuits. We hope,register, because the fourth-stage JOIN cannot produce an out-
put. Finally, Aout also becomes high when the consumer ac- however, that within the scope of these pages we have pro-

vided enough information for further reading. For more infor-knowledges receipt of the data. Further data storage and re-
moval follows the same pattern. The operation of each JOIN is mation on asynchronous circuits, see (12, 46, or 47). A com-

prehensive bibliography of asynchronous circuits is in (48).interpreted as follows. If the previous stage has sent a request
for data capture and the present stage is empty, then send a Up-to-date information on research in asynchronous circuit

design is at (49).signal to capture the data in the present stage.
The FIFO is modified easily to include data processing. A The authors wish to thank Bill Coates for his generous

criticisms of a previous draft of this article.four-stage micropipeline, in its general form, is illustrated in
Figure 9. Now the data path consists of alternately positioned
event-driven registers and combinational logic circuits. The
event-driven registers store the input and output data of the BIBLIOGRAPHY
combinational circuits, and the combinational circuits per-
form the necessary data processing. To satisfy the data- 1. T. E. Williams and M. A. Horowitz, A zero-overhead self-timed
bundling constraint, delay elements are occasionally required 160ns 54b CMOS divider, IEEE J. Solid-State Circuits, 26: 1651–

1661, 1991.to slow down the propagation of the request signals. A delay
element must at least match the delay through its corre- 2. C. E. Molnar et al., A FIFO ring oscillator performance experi-

ment, Proc. Int. Symp. Advanced Res. Asynchronous Circuits. Syst.,sponding combinational logic circuit, either by some comple-
Los Alamitos, IEEE Computer Society Press, 1997, pp. 279–289.tion detection mechanism or by inserting a worst-case delay.

A micropipeline FIFO is flexible in the number of data 3. T. J. Chaney and C. E. Molnar, Anomalous behavior of synchro-
nizer and arbiter circuits, IEEE Trans. Comput., C-22: 421–422,items it buffers. There is no restriction on the rate at which
1973.data enter or exit the micropipeline, except for the delays im-

posed by the circuit elements. That is why this FIFO and mi- 4. L. R. Marino, General theory of metastable operation, IEEE
Trans. Comput., C-30: 107–115, 1981.cropipelines generally are termed elastic. In contrast, in an

ordinary synchronous pipeline, the rates at which data enter 5. I. E. Sutherland, Micropipelines, Communications ACM, 32: 720–
and exit the pipeline are the same, dictated by the external 738, 1989.
clock signal. A micropipeline is also flexible in the amount of 6. W. A. Clark and C. E. Molnar, Macromodular computer systems,
energy it dissipates, which is proportional to the number of in R. W. Stacy and B. D. Waxman (eds.), Computers in Biomedical
data movements. A clocked pipeline, however, continuously Research. Academic Press, 1974, vol. IV, chap. 3, pp. 45–85.
dissipates energy as if all stages of pipeline capture and pass 7. K. v. Berkel and M. Rem, VLSI programming of asynchronous
data all the time. Another attractive feature of a micropipe- circuits for low power, in G. Birtwistle and A. Davis (eds.), Asyn-
line is that it automatically shuts off when there is no activ- chronous Digital Circuit Design. Workshops in Computing, Berlin:

Springer-Verlag, 1995, pp. 152–210.ity. A clocked pipeline, on the other hand, requires a special
clock management mechanism to implement this feature. 8. K. v. Berkel et al., A fully asynchronous low-power error corrector
This sensing mechanism, however, constantly consumes en- for the DCC player, IEEE J. Solid-State Circuits, 29: 1429–

1439, 1994.ergy because it should never go idle.



ASYNCHRONOUS CIRCUITS 725

9. S. Furber, Computing without clocks: Micropipelining the ARM 31. B. Coates, A. Davis, and K. Stevens, The Post Office experience:
Designing a large asynchronous chip, Integration, VLSI J., 15:processor, in G. Birtwistle and A. Davis (eds.), Asynchronous Dig-

ital Circuit Design, Workshops in Computing, Berlin: Springer- 341–366, 1993.
Verlag, 1995, pp. 211–262. 32. A. Davis, Synthesizing asynchronous circuits: Practice and expe-

rience, in G. Birtwistle and A. Davis (eds.), Asynchronous Digital10. A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, Low-power
Circuit Design, Workshops in Computing, Berlin: Springer-Ver-CMOS digital design, IEEE J. Solid-State Circuits, 27: 473–
lag, 1995, pp. 104–150.484, 1992.

33. S. M. Nowick and D. L. Dill, Automatic synthesis of locally11. D. W. Dobberpuhl et al., A 200-mhz 64-b dual-issue CMOS micro-
clocked asynchronous state machines, Proc. Int. Conf. Comput.-processor, IEEE J. Solid-State Circuits, 27: 1555–1568, 1992.
Aided Des. (ICCAD), Los Alamitos: IEEE Computer Society Press,12. J. A. Brzozowski and C.-J. H. Seger, Asynchronous Circuits. New
1991 pp. 318–321.York: Springer-Verlag, 1995.

34. K. Y. Yun and D. L. Dill, Automatic synthesis of 3-D asynchro-13. E. J. McCluskey, Fundamental mode and pulse mode sequential
nous state machines, Proc. Int. Conf. Comput.-Aided Des. (IC-circuits, Proc. IFIP Congr. 62, Amsterdam: North-Holland, 1963,
CAD), Los Alamitos: IEEE Computer Society Press, 1992, pp.pp. 725–730.
576–580.

14. S. H. Unger, Asynchronous Sequential Switching Circuits. New
35. J. L. Peterson, Petri nets, Computing Surveys, 9: 223–252, 1977.York: Wiley-Interscience, 1969.
36. T. H.–Y. Meng, R. W. Brodersen, and D. G. Messerschmitt, Auto-

15. D. L. Dill, Trace Theory for Automatic Hierarchical Verification
matic synthesis of asynchronous circuits from high-level specifi-

of Speed-Independent Circuits. ACM Distinguished Dissertations,
cations, IEEE Trans. Comput.-Aided Des., 8: 1185–1205, 1989.

Cambridge, MA: MIT Press, 1989.
37. J. C. Ebergen, Translating Programs into Delay-Insensitive Cir-

16. J. Ebergen and S. Gingras, A verifier for network decompositions cuits, vol. 56 CWI Tract., Amsterdam: Centre for Mathematics
of command-based specifications, Proc. Hawaii Int. Conf. Syst. and Computer Science, 1989.
Sci., vol. I, Los Alamitos: IEEE Computer Society Press, 1993.

38. C. A. R. Hoare, Communicating Sequential Processes, Englewood
17. K. v. Berkel, Handshake Circuits: an Asynchronous Architecture Cliffs, NJ: Prentice-Hall, 1985.

for VLSI Programming, International Series on Parallel Computa-
39. A. J. Martin et al., The design of an asynchronous microproces-tion, Cambridge: Cambridge University Press, 1993, vol. 5.

sor, in C. L. Seitz (ed.), Adv. Res. VLSI: Proc. Decennial Caltech
18. J. C. Ebergen, J. Segers, and I. Benko, Parallel program and Conf. VLSI, Cambridge: MIT Press, 1989, pp. 351–373.

asynchronous circuit design, in G. Birtwistle and A. Davis (eds.),
40. E. Brunvand and R. F. Sproull, Translating concurrent programs

Asynchronous Digital Circuit Design. Workshops in Computing,
into delay-insensitive circuits. Proc. Int. Conf. Comput.-Aided Des.

Berlin: Springer-Verlag, 1995, pp. 51–103.
(ICCAD), Los Alamitos: IEEE Computer Society Press, 1989, pp.

19. T. Verhoeff, A theory of delay-insensitive systems, Ph.D. Thesis, 262–265.
Dept. of Mathematics and Computer Science, Eindhoven Univer- 41. S. Weber, B. Bloom, and G. Brown, Compiling joy to silicon, T.
sity of Technology, 1994. Knight and J. Savage (eds.), Proc. Brown/MIT Conf. Adv. Res.

20. M. B. Josephs and J. T. Udding, An overview of DI algebra, Proc. VLSI Parallel Syst., Cambridge: MIT Press, 1992, pp. 79–98.
Hawaii Int. Conf. Syst. Sci., vol. I, Los Alamitos: IEEE Computer 42. M. Shams, J. Ebergen, and M. Elmasry, A comparison of CMOS
Society Press, 1993. implementations of an asynchronous circuits primitive: the C-ele-

21. T.-A. Chu, Synthesis of self-timed VLSI circuits from graph-theo- ment, Int. Symp. Low Power Electron. Des., Digest of Technical
retic specifications, Ph.D. Thesis, MIT Laboratory for Computer Papers, New York: ACM Press, 1996, pp. 93–96.
Science, MIT, Cambridge, MA: 1987. 43. P. Day and J. V. Woods, Investigation into micropipeline latch

22. T. H.-Y. Meng, Asynchronous design for digital signal processing design styles, IEEE Trans. VLSI Syst., 3: 264–272, 1995.
architectures, Ph.D. thesis, University of California Berkeley, 44. K. Y. Yun, P. A. Beerel, and J. Arceo, High-performance asyn-
1988. chronous pipeline circuits, Proc. Int. Symp. Advanced Res. Asyn-

23. D. A. Huffman, The synthesis of sequential switching circuits, chronous Circuits Syst., Los Alamitos: IEEE Computer Society
IRE Trans. Electron. Comput., 257: (3,4): pp. 161–190, 275–303, Press, 1996.
1954. 45. S. B. Furber and P. Day, Four-phase micropipeline latch control

circuits, IEEE Trans. VLSI Syst., 4: 247–253, 1996.24. D. E. Muller and W. S. Bartky, A theory of asynchronous circuits,
Proc. Int. Symp. Theory Switching, Cambridge: Harvard Univer- 46. A. Davis and S. M. Nowick, Asynchronous circuit design: Motiva-
sity Press, 1959 pp. 204–243. tion, background, and methods, in G. Birtwistle and A. Davis

(eds.), Asynchronous Digital Cricuit Design. Workshops in Com-25. R. E. Miller, Sequential Circuits and Machines, vol. 2 of Switching
puting, Berlin: Springer-Verlag, 1995, pp. 1–49.Theory. New York: Wiley, 1965.

47. S. Hauck, Asynchronous design methodologies: An overview,26. J. T. Udding, Classification and composition of delay-insensitive
Proc. IEEE, 83: 69–93, 1995.circuits, Ph.D. Thesis, Dept. of Mathematics and Computer Sci-

ence, Eindhoven University of Technology, 1984. 48. A. Peeters, The Asynchronous Bibliography. Uniform Resource
Locator (URL) ftp://ftp.win.tue.nl/pub/tex/async.bib.Z. Corre-27. C. L. Seitz, System timing, in C. A. Mead and L. A. Conway
sponding e-mail address: async-bib@win.tue.nl.(eds.), Introduction to VLSI Systems. Addison-Wesley, 1980,

49. The Asynchronous Logic Homepage. Uniform Resource Locatorchap. 7.
(URL) http://www.cs.man.ac.uk/amulet/async/.28. A. J. Martin, Programming in VLSI: From communicating pro-

cesses to delay-insensitive circuits, in C. A. R. Hoare (ed.), Devel-
MAITHAM SHAMSopments in Concurrency and Communication. UT Year of Pro-
University of Waterloogramming Series, Addison-Wesley, 1990, pp. 1–64.
JO C. EBERGEN29. K. v. Berkel, Beware the isochronic fork, Integration, VLSI J., 13:
Sun Microsystems Laboratories103–128, 1992.

30. L. A. Hollaar, Direct implementation of asynchronous control MOHAMED I. ELMASRY

University of Waterloounits, IEEE Trans. Comput., C-31: 1133–1141, 1982.


