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All-pass filters are often included in the catalog of classical
filter types. A listing of types of classical filters reads as
follows: low-pass, high-pass, bandpass, band-stop, and all-
pass filters. The transfer functions (see Transfer func-
tions) of all of these filters can be expressed as real, ra-
tional functions of the Laplace transform variable s (see
Laplace transforms). That is, these transfer functions
can be expressed as the ratio of two polynomials in s which
have real coefficients. All of the types of filters listed have
frequency-selective magnitude characteristics except for
the all-pass filter. That is, in the sinusoidal steady state,
a low-pass filter passes low-frequency sinusoids relatively
well and attenuates high-frequency sinusoids. Similarly, a
bandpass filter in sinusoidal steady state passes sinusoids
having frequencies that are within the filter’s passband
relatively well and attenuates sinusoids having frequen-
cies lying outside this band. It should be kept in mind that
all of the filters on the list modify the phase of applied
sinusoids (see Filtering theory). Figure 1 shows idealized
representations of the magnitude characteristics of classi-
cal filters for comparison.

However, the all-pass filter is the only filter on the list
having a magnitude characteristic that is not frequency
selective; in the sinusoidal steady state, an all-pass filter
passes sinusoids having any frequency. The filter does not
change the amplitude of the input sinusoid or it changes
the amplitudes of input sinusoids by the same amount no
matter the frequency. An all-pass filter modifies only the
phase, and this is the property that is found useful in signal
processing.

Only the transfer function of the all-pass filter, ex-
pressed as a rational function of s must have zeros (loss
poles) in the right-half s plane (RHP). The poles and zeros
of the transfer function are mirror images with respect to
the origin. The transfer functions of the other filters are
usually minimum phase transfer functions, meaning that
the zeros of these transfer functions are located in the left-
half s plane (LHP) or on the imaginary axis but not in the
open RHP. As a result of these properties, the transfer func-
tion of an all-pass filter, TAP(s), can be expressed as a gain
factor H times a ratio of polynomials in which the numer-
ator polynomial can be constructed from the denominator
polynomial by replacing s by −s thereby creating zeros that
are images of the poles. H can be positive or negative.

The primary application of all-pass filters is in phase
equalization of filters having frequency-selective magni-
tude characteristics. A frequency-selective filter usually re-
alizes an optimum approximation to ideal magnitude char-
acteristics. For example, a Butterworth low-pass filter ap-

proximates the ideal brick-wall low-pass magnitude char-
acteristic [see Fig. 1(a)] in a maximally flat manner. An
ideal filter also has linear phase in the passband in order
to avoid phase distortion. But the Butterworth filter does
not have linear phase. So an all-pass filter is designed to
be connected in cascade with the Butterworth filter in or-
der to linearize its phase characteristic. This application is
discussed in greater detail later in this article.

Another application of all-pass filters is creation of delay
for a variety of signal-processing tasks. A signal-processing
system may have several branches, and, depending on the
application, it may be important to make the delay in each
branch approximately equal. This can be done with all-
pass filters. On the other hand, a signal processing task
may require delaying one signal relative to another. Again,
an all-pass filter can be used to provide the delay. This
application is also discussed in greater detail in this article.

PROPERTIES OF ALL-PASS FILTERS

The transfer function of an all-pass filter, TAP(s), has the
form

where the constant H is the gain factor, which can be posi-
tive or negative, and D(s) is a real polynomial of s. Thus, a
first-order all-pass filter transfer function, denoted by TAP1,
with a pole on the negative real axis at s = −a is given by

and a second-order transfer function, denoted as TAP2, with
complex poles described by undamped natural frequency
(or natural mode frequency) ω0 and Q (½ < Q < ∞ for
complex poles in the open LHP) is given by

Of course, an all-pass transfer function can be created that
has two real-axis poles as would be obtained by cascad-
ing two buffered first-order transfer functions, but all-pass
transfer functions with complex poles are the most useful
for phase equalization of filters.

To show that the magnitude characteristic is constant
for all frequencies for all-pass transfer functions of any or-
der, we first obtain from Eq. (1)

where ∗ indicates the conjugate. Then from Eq. (4), we ob-
tain

This result is also shown graphically in Fig. 2 for the case
of a second-order all-pass transfer function with complex
poles. An arbitrary point P has been selected on the jω axis,
and we see that the lengths of the vectors from the poles to
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2 Phase Equalizers

Figure 1. Idealized magnitude characteristics of classical filters. (a) Low-pass filter. (b) High-pass
filter. (c) Bandpass filter. (d) Band-stop filter. (e) All-pass filter.

Figure 2. A pole-zero plot for a second-order all-pass transfer
function with complex poles is shown. An arbitrary point on the
jω axis, denoted as P, has been selected. The lengths of the vectors
from the poles to point P are the same as the corresponding lengths
of the vectors from the zeros to point P

the point are the same as the lengths of the vectors from
the zeros to point P. Thus, the magnitude characteristic is
determined only by H and is not a function of frequency.

The phase, however, is a function of frequency. Denoting
the phase of the all-pass transfer function as θAP, selecting
H to be positive for convenience, and denoting the phase of
D(jω) as θD, we can write:

The all-pass transfer function produces phase lag, see 1.
If H is negative, then an additional phase of π radians is
introduced. Figure 3 shows the phase plots obtained for
the first-order transfer function in Eq. (2) with a = 1 and

Figure 3. Phase plots for the first-order all-pass transfer func-
tion of Eq. (2) with a zero at s = 1 and for second-order transfer
functions of Eq. (3) with ω0 = 1 and Q = ½, 1, 2, and 4. H is positive
for all the transfer functions.

for the second-order transfer function in Eq. (3) with ω0 =
1 and Q values equal to ½, 1, 2, and 4. H is positive for
all the transfer functions. Upon examination of the plots
generated by the second-order transfer functions, it is seen
that for Q = ½, there is no point of inflection. For certain
higher values of Q, there is a point of inflection. The point
of inflection is obtained by differentiating the expression
for phase two times with respect to ω, equating the result
to zero, and solving for a positive ω. The result is

Thus, for Qs greater than 0.578, there is a point of inflection
in the phase plot.

The negative of the derivative of phase with respect to
ω is the group delay, denoted as τ(ω). Group delay is also
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termed envelope delay or merely delay, and its units are
seconds. Oftentimes, designers prefer working with delay
rather than phase because delay can be expressed as a ra-
tional function of ω. The expression for phase involves a
transcendental function tan−1( ). For example, the phase
of the second-order transfer function with positive H, ω0 =
1 and Q = 2 (see Eq. 3) is

However, the delay is given by

which is a rational function of ω resulting from the deriva-
tive of the arctangent function. Figure 4 depicts the de-
lays corresponding to the phase plots given in Fig. 3. For
Q greater than 0.578, the plots of delay exhibit peaks. For
Q2 > ½, the peaks occur at ω � ω0 = 1.

PHASE DISTORTION

At steady state, a linear, time-invariant network affects
only the amplitude and phase of an applied sinusoid to
produce an output sinusoid. The output sinusoid has the
same frequency as the input sinusoid. If the input sig-
nal is composed of two sine waves of different frequencies,
then, depending on the network, the output signal could
be changed in amplitude or in phase or both. For exam-
ple, suppose the network is a low-pass filter and that the
input signal consists of two sinusoids with different fre-
quencies, but both frequencies lie within the passband. In
this case, the network should pass the signal to the out-
put with minimum distortion. Since the frequencies of the
sine waves that make up the input signal lie within the
passband, very little amplitude distortion is encountered.
However, the result can be severely phase distorted. If no
phase distortion is to be produced, then the phase charac-
teristic in the passband of the network must be linear and,
hence, have the form −kω + θ0, where k is the magnitude of
the slope of the phase characteristic and θ0 is the phase at
ω = 0. Furthermore, if θ0 is neither 0 nor a multiple of 2π

radians, then a distortion known as phase-intercept distor-
tion results. In the following, phase-intercept distortion is
not considered. The interested reader is referred to Ref. 2
for further information on phase-intercept distortion.

To illustrate the effects that a system with linear phase
has on an input signal, let an input signal v(t), given by

be applied to a network with transfer function T(s). Assume
the phase of the system is given by θ(ω) = −kω, where k is
a positive constant, and assume that |T(jω)| = |T(2jω)| =
1. In Eq. (10), A1 and A2 are the peak amplitudes of the
two sinusoids that make up v(t). The output signal can be
written as

Rewriting Eq. (11), we obtain

where it is seen that each sinusoid in vo(t) is delayed by the
same amount, namely k seconds. The output voltage has
been delayed by k seconds, but there is no phase distortion.

However, suppose the phase of the system is given by θ =
−kω3, a nonlinear phase characteristic. With the input sig-
nal given by Eq. (10) and, as before, assuming that |T(jω)|
= |T(2jω)| = 1, we obtain

From Eq. (13), it is seen that the sinusoids are delayed by
different amounts of time. The nonlinear phase character-
istic has resulted in phase distortion. Although the human
ear is relatively insensitive to phase changes (3), applica-
tions such as control and instrumentation can be greatly
impaired by phase distortion. To illustrate this important
point further, assume that a signal vi(t) is applied to three
different hypothetical amplifiers. The signal vi(t) is com-
posed of two sinusoids and is given by

One sinusoid has twice the frequency of the other sinusoid.
One amplifier is perfectly ideal and has a gain G1 = 10 with
no phase shift. The second amplifier has a gain magnitude
equal to 10 and has a linear phase shift given by θ = −ω.
Thus, its transfer function can be expressed as

The third amplifier also has a gain magnitude equal to 10,
but it has a nonlinear phase characteristic given by θ =
−ω3. Thus, its transfer function is given by

Figure 5 depicts the output of the first amplifier. Since
the amplifier is perfectly ideal, the output is exactly 10vi.
Figure 6 shows the output of the second amplifier, and it is
seen that the waveform at the output of the amplifier with
linear phase is the same as shown in Fig. 5 except that the
waveform in Fig. 6 has been delayed by 1 s. Delay of the
entire waveform does not constitute phase distortion. On
the other hand, the output of the amplifier with nonlinear
phase, shown in Fig. 7, is clearly distorted. For example, its
peak-to-peak value is more than 12% larger than it should
be. In the next section, we examine the use of a second-
order all-pass filter to linearize the phase of nth-order low-
pass filters.

PHASE EQUALIZATON

Phase equalization is the term used to describe compen-
sation employed with a filter or a system to remedy phase
distortion. The goal is to achieve linear phase (flat time
delay), and the compensator is labeled a phase equalizer.
In this section, we derive the specifications for a second-
order all-pass filter that can be used to linearize the phase
of most all-pole low-pass filters. The technique can also be
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Figure 4. Delay plots for the all-pass transfer
functions listed in Fig. 3. The plot for Q = ½ has
the largest delay near the origin.

Figure 5. Output voltage of perfectly ideal
amplifier with input voltage given by Eq. (14).
The amplifier has a gain equal to 10 with no
phase shift.

Figure 6. Output voltage of amplifier with lin-
ear phase characteristic. The output voltage is
delayed 1 s in comparison to the output voltage
shown in Fig. 5.
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Figure 7. Output voltage of amplifier with non-
linear phase characteristic with input voltage
given by Eq. (14). The effects of phase distortion
are easily seen when this waveform is compared
with those in Figs. 5 and 6.

Figure 8. Cascade connection of a second-order low-pass filter
with a second-order all-pass filter. It is assumed there is no loading
between the two filters.

extended to other phase-equalization tasks. We begin the
derivation by linearizing the phase of a second-order low-
pass filter having a transfer function given by

Figure 8 depicts the cascade connection of this low-pass
filter with a second-order all-pass filter with transfer func-
tion TAP(s). The form of the transfer function of the all-pass
filter is given by Eq. (3), but for the purposes of this deriva-
tion, let us designate its undamped natural frequency as
ωA and its Q as QA. The overall phase of the cascade cir-
cuit is θ(ω) = θL(ω) + θA(ω) where θL and θA are the phase
contributed by the low-pass filter and the all-pass filter, re-
spectively. We wish to make θ(ω) approximate linear phase
in the Maclaurin sense (1). Since θ is an odd function of ω,
the Maclaurin series for θ has the form

where K1 is the first derivative of θ(ω) with respect to ω with
the result evaluated at ω = 0, and K3 is proportional to the
third derivative evaluated at ω = 0, and so on. Therefore, we
want to choose ωA and QA to make K3 and K5 equal to zero
in Eq. (18). Then K7ω

7 will be the lowest order undesired
term in the series for θ(ω).

The phase θL contributed by the second-order low-pass
filter can be expressed as

The use of a program that is capable of performing symbolic
algebra is recommended to obtain the Maclaurin series for
θL. The results are

Equation (20) can be used also to write the series for the
phase of the all-pass filter directly. Then, forming θ = θL +
θA and truncating the results after the term containing ω7

we obtain

The next step is to set the coefficients of ω3 and ω5 equal to
zero in Eq. (21). Thus, we must satisfy the equations

Introduce parameters a and b to represent the left sides of
Eqs. 22a and 22b, respectively. That is, let
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Thus,we have two equations,Eqs. 22a and 22b, that involve
a, b, QA, and ωA. Upon eliminating ωA, we obtain a twelfth-
order equation for QA given by

where

For a given second-order low-pass transfer function, d can
be found from Eqs. 23a, and 23b. Then a positive solution
for QA is sought from Equation (24). Finally, ωA is obtained
from

Note that a positive result must be found both for QA from
Eq. (24) and for ωA from Eq. (26) in order to obtain a solu-
tion.

Although only a second-order low-pass filter transfer
function was utilized to derive Eqs. 24 and 26, these two
equations are used for the nth order all-pole case as well
because only the parameters a, b, and d need to be modi-
fied. For example, suppose we wish to linearize the phase
of a normalized fourth-order Butterworth filter, denoted as
B4(s), with a second-order all-pass filter. The transfer func-
tion B4(s) is given by

where ω1 = ω2 = 1, Q1 = 0.541196, and Q2 = 1.306563. The
parameters a and b become

Calculating d from Eq. (25) and employing Eqs. 24 and 26,
we obtain QA = 0.5434 and ωA = 1.0955. If the normalized
Butterworth transfer function is to be frequency scaled to
a practical frequency, then the all-pass transfer function
must be frequency scaled by the same amount.

Phase equalization has been applied only to transfer
functions of even order in the derivation and the example.
To apply phase equalization to an odd-order filter, we must
determine the additional factor to add to each parameter a
and b. An odd-order, all-pole, low-pass filter transfer func-
tion To(s) can be expressed as To(s) = T1(s)TE(s) where T1(s)

is given by

k is positive, and TE(s) is the remaining portion of the over-
all transfer function and is of even order. We have assumed
that the odd order of To(s) arises because of the existence
of one real axis pole, the usual case. All other poles of To(s)
occur in complex conjugate pairs. Denoting the phase of
T1(jω) as θ1(ω), we write

If we consider the case of linearizing the phase given in
Eq. (30) with a second-order all-pass transfer function, we
obtain

and the terms given in Eq. (31) are added to the expressions
for the parameters a and b for higher order odd transfer
functions.

Table 1 provides the values for QA and ωA needed to
linearize the phase of low-pass Butterworth filters with a
3.01-dB variation in the passband and the phase of 1-dB
ripple Chebyshev low-pass filters. Note that no solution
exists for the second-order Butterworth filter. As an appli-
cation of Table 1, we find the step responses of two normal-
ized fifth-order Butterworth filters. One filter has a second-
order all-pass connected in cascade in order to linearize its
phase, and the other does not. The transfer function B5(s)
is given by

In Fig. 9, the step response of B5(s) has less delay, and the
step response of B5(s)TAP2(s) with QA and ωA obtained from
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Figure 9. Step responses of fifth-order Butterworth low-pass fil-
ters with and without phase equalization. The step response of the
filter with phase equalization exhibits preshoot and has greater
delay.

Table 1 has greater delay due to the presence of the all-pass
filter. However, it is seen from Fig. 9 that the response for
the phase-equalized filter more nearly approximates the
step response of an ideal low-pass filter with delay because
the response of an ideal filter should begin ringing before it
rises to the upper amplitude level. In other words, it should
exhibit “preshoot.”

Oftentimes, the design of filters having frequency-
selective magnitude characteristics other than low-pass is
accomplished by applying Cauer transformations to a low-
pass prototype transfer function. Unfortunately, the Cauer
transformations do not preserve the phase characteristics
of the low-pass transfer function. Thus, if a Cauer low-pass
to bandpass transformation is applied to a low-pass filter
transfer function that has approximately linear phase, the
resulting bandpass filter transfer function cannot be ex-
pected to have linear phase, especially if the bandwidth of
the bandpass filter is relatively wide. An approach to lin-
earizing the phase of filters other than low-pass filters is to
make use of a computer program that plots delay resulting
from the cascading of a specified magnitude-selective filter
with one or more all-pass filters. Using Eq. (7) and Figure
4 as guides, the peaks of the time delays of the all-pass fil-
ters can be placed to achieve approximately linear overall
phase.

AN APPLICATION OF DELAY

An all-pass filter can be combined with a comparator to ob-
tain a slope-polarity detector circuit (4). The basic arrange-
ment of the all-pass filter and the comparator is shown in
Fig. 10. An LM311 comparator works well in this circuit,
and a first-order all-pass filter can be used for input signals
that are composed of sinusoids that do not differ greatly in
frequency. To understand the behavior of this circuit, sup-
pose vi(t) = Asin(ωt), where A is positive and represents the
peak value of the sine wave. The output voltage of the all-
pass filter is vA(t) = Asin(ωt-ωt1), where t1 is the delay in
seconds caused by the filter. Figure 11 depicts vi(t), vA(t),
and the output voltage of the comparator vo(t), for A = 4 V
and ω = 2π(100) rad/s. The output terminal of the compara-
tor has a pull-up resistor connected to 5 V. Ideally, when the

Figure 10. Essential components of a slope-polarity detector.

slope of vi(t) is positive, vo(t) is high, and vo(t) is low when
the slope of vi(t) is negative. Actually, the circuit’s output
changes state at a time which is slightly past the time at
which vi(t) changes slope. It is at this later time that the
delayed input to the comparator, vA(t), causes the polarity
of the voltage (vi(t) − vA(t)) between the leads of the com-
parator to change. The need for an all-pass filter in this
application is clear because the amplitude of the input sig-
nal must not be changed by the delaying circuit no matter
the frequencies present in the input signal. A first-order
all-pass filter is ordinarily adequate for the task. The pole
and zero can be set far from the origin, and their placement
is not overly critical. Too little delay results in insufficient
overdrive for the comparator. Too much delay increases the
error in the time at which the comparator changes state be-
cause the polarity of the voltage between the leads of the
comparator does not change soon enough after the slope
of vi(t) changes. For the example illustrated in Fig. 11 in-
volving a simple sine wave, the amplitudes of the input
and delayed sine waves are equal at a time closest to zero
denoted by tE and given by

The voltage difference, denoted as VE, between the peak of
the input sine wave and the level at which the input and
delayed sine waves are equal is given by

If, for example, the delay provided by the all-pass filter is
0.5 ms for the 100-Hz input sine wave, then the input sine
wave will have decreased by approximately 50 mV from its
peak value before the comparator begins to change state.
This circuit works well at steady state for input signals
that do not contain significant high-frequency components.
Thus, it works reasonably well if the input signal is a tri-
angular waveform, but it does not work well with square
waves.

A SYNTHESIS APPLICATION

First-order all-pass filters can be utilized to realize filters
with magnitude-selective characteristics. For example, the
circuit shown in Fig. 12, which is based on (5) and (6), re-
alizes a bandpass filter transfer function by using a first-
order all-pass circuit in a feedback loop. The overall trans-
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Figure 11. Input voltage vi(t), delayed input voltage vA(t), and
comparator output voltage vo(t) for the slope-polarity detector
shown in Figure 10 when the input voltage is a sine wave.

fer function of the circuit is

where K1 is the gain factor associated with the transfer
function of the first-order all-pass filter. If C1R1 = CR, K1

= 1, and R2 = R3, then Eq. (35) reduces to the transfer
function of a standard second-order bandpass filter given
by

The Q and ω0 of the poles in Eq. (36) are

Although the circuit requires the matching of elements and
several operational amplifiers, including, possibly, a buffer
at the input, it demonstrates that all-pass filters can be
employed in the realization of filters having frequency-
selective magnitude characteristics.

Figure 12. Second-order bandpass filter realized by incorporat-
ing a first-order all-pass filter in a feedback path.

Figure 13. Passive circuit that can be used to realize a first-order
all-pass filter. Only one capacitor is needed.

ALL-PASS CIRCUIT REALIZATIONS

Voltage-mode Realizations

In this section, we examine a variety of circuits used to
realize all-pass transfer functions for which the input and
output variables of interest are voltage. Inductorless cir-
cuits for first-order all-pass filters can be realized using
the bridge circuit shown in Fig. 13. The transfer function
of this circuit is given by

If R1 = R2, then Eq. (38) reduces to the transfer function of
an all-pass filter (7). However, the requirement that R1 =
R2 results in a gain factor equal to −½, which is small in
magnitude. Also, a common ground does not exist between
the input and output ports of the circuit.

The bridge circuit shown in Fig. 14, which can be re-
drawn as a symmetrical lattice, can realize first-order all-
pass transfer functions with a gain factor equal to 1. The
transfer function of this circuit is

If ZB = R and ZA = 1/(sC), a first-order all-pass transfer
function is obtained. If inductors are allowed in the circuit,
then the circuit in Fig. 14 can realize higher order all-pass
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Figure 14. Passive circuit that can be used to realize first-order
all-pass filters with gain factor equal to 1. Two capacitors are
needed. If inductors are allowed, this circuit can realize higher
order all-pass transfer functions with complex poles.

transfer functions. For example, suppose a circuit is needed
to realize a third-order all-pass transfer function TAP3(s)
given by

where p(s) and q(s) are the numerator and denomina-
tor polynomials, respectively. The denominator polynomial
q(s) can be expressed as the sum of its even part, m(s), and
its odd part, n(s). Thus, q(s) = m(s) + n(s). If the roots of q(s)
are confined to the open LHP, then the ratios n/m and m/n
meet the necessary and sufficient conditions to be an LC
driving point impedance (8). Thus, if the numerator and de-
nominator of the transfer function in Eq. (40) are divided
by m(s), we obtain

By comparing the result in Eq. (41) with Eq. (39), it is seen
that ZA = 1 � and the box labeled ZB in Fig. 14 consists of
the series connection of a 1 Henry inductor and an LC tank
circuit that resonates at 1 rad/s. However, the resulting
circuit requires six reactive elements and does not have a
common ground between the input and output ports, and
these properties may preclude the use of bridge circuit all-
pass networks in some applications.

Single transistor first-order all-pass transfer function
realizations have been described by several authors. The
interested reader may refer to Refs. 9 and 10 for addi-
tional information. Inductorless second-order realizations
are also described in Refs. 9 and 10 but the poles and zeros
of the transfer functions are confined to the real axis. Rubin
and Even extended the results in Ref. 9 to include higher
order all-pass transfer functions with complex poles, but
inductors are employed (11).

Figure 15 shows two first-order all-pass circuits based
on operational amplifiers (op-amps) (12, 13, also see Active
filters). The transfer functions are given by Ta = (Z2 −
kR1)/(Z2 + R1) and Tb = (−kZ1 + R2)/(Z1 + R2). Thus, if
Z2 in Fig. 15(a) or if Z1 in Fig. 15(b) are selected to be the
impedances of capacitors and k = 1, then first-order all-pass
circuits are realized. The circuit in Fig. 15(a) can be used

Figure 15. Single op-amp active realizations of first-order all-
pass filters. (a) First-order all-pass circuit with gain factor equal
to +1. (b) First-order circuit with gain factor equal to −1.

to realize the all-pass circuits used in Figs. 10 and 12. Both
circuits in Fig. 15 can be modified to realize second-order
inductorless all-pass transfer functions, but the poles and
zeros are confined to the real axis. Resistor R1 in Fig. 15(a)
and resistor R2 in Fig. 15(b) are replaced by RC impedances
Z1 and Z2, respectively. The circuit in Fig. 15(a) is clearly
related to the all-pass circuit shown in Fig. 13. An op-amp
has been employed so that the input and output voltages
have a common point of reference.

The realization of inductorless second-order all-pass cir-
cuits with complex poles can be achieved with the circuits
shown in Fig. 16. These circuits are minimal in the num-
ber of capacitors required. If the op-amps are ideal in the
sense of having infinite gain-bandwidth product, then both
circuits have the same transfer function, namely,

where

In order to obtain an all-pass transfer function, we must
impose the requirement
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Figure 16. Op-amp circuits for the realization of inductorless
second-order all-pass filters with complex poles. (a) Circuit use-
ful in low Q applications in which a light load must be driven. (b)
Circuit employed in higher Q applications, but it requires a buffer
if a load must be driven.

If Eq. (44) is satisfied, then Eq. (42) becomes

where

Although both circuits have the same transfer function
when the op-amp is ideal, there are differences in the cir-
cuits. The circuit in Fig. 16(a) can drive light loads with-
out an output buffer (14), whereas the circuit in Fig. 16(b)
requires a buffer for such loads (15). However, it can be
shown that when the finite op-amp gain-bandwidth prod-
uct is taken into account, the circuit in Fig. 16(b) is better
suited for the realization of all-pass transfer functions with
poles having a Q greater than about five. Since the Qs re-
quired for phase equalization of low-pass filters are usually
quite low, the circuit in Fig. 16(a) is a good choice for that
application.

If the requirement for a minimum number of capaci-
tors is relaxed, then many inductorless active circuits are
available that can realize second-order all-pass transfer
functions with complex poles. The interested reader is in-
vited to consult Ref. 16. In fact, if a second-order bandpass
circuit is available which has a negative gain factor, then

Figure 17. Second-order all-pass circuit realization based on a
bandpass filter circuit with negative gain factor.

a second-order all-pass can be realized by summing the
output of the bandpass filter with the input signal. Figure
17 shows an all-pass realization using this scheme that is
based on the bandpass filter described earlier in this arti-
cle. The transfer function is

where ω0 and Q are given in Eq. (37). To obtain an all-pass
filter, RX and RY must satisfy

It is seen that this same scheme is employed in the all-
pass filter circuit depicted in Fig. 16(b). If a second-order
band-pass filter is available that has a positive gain fac-
tor, then a second-order all-pass filter can be obtained by
“interchanging input and ground” (17).

Operational transconductance amplifiers (OTAs) can
also be used to obtain active circuit realizations of voltage-
mode all-pass filters. These active devices are approx-
imations to differential-input voltage-controlled current
sources (18, 19) and ideally have infinite input and out-
put impedances. Figure 18 shows circuit configurations for
a first-order and a second-order all-pass filter. If the OTAs
are ideal, the transfer function for the first-order filter is

where gm1 and gm2 are the transconductances of OTA1 and
OTA2, respectively. The transconductance is controlled by
a control current that is applied to a terminal (not shown)
of the OTA. Ideally, the transconductance is constant for
a constant control current. If the control currents for the
OTAs in Fig. 18(a) are adjusted so that gm1 = gm2, then a
first-order all-pass filter is obtained. The transfer function
for the circuit shown in Fig. 18(b) is

To obtain a second-order all-pass circuit, the transconduc-
tances in Fig. 18(b) must satisfy
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Figure 18. Operational transconductance amplifier (OTA) all-
pass filter realizations. (a) First-order all-pass circuit. (b) Second-
order all-pass circuit.

and gm4 = gm5. For realizing integrated circuit versions of
filters (see Analog processing circuits), OTAs are partic-
ularly suited, because they are relatively simple in struc-
ture, and they can operate at higher frequencies than, say,
voltage-mode op-amps. However, OTAs depart from ideal
in many aspects, of which the chief aspects are finite input
and output impedances, a frequency-dependent transcon-
ductance,and a limited range of input signal that is allowed
for linear operation. The input and output impedances also
are dependent on the control current (18, 19). The non-
ideal characteristics of OTAs must be taken into account
in the design of most circuits if accurate results are to be
obtained.

Voltage-mode all-pass filters can also be constructed us-
ing current-feedback op-amps (CFOAs). Soliman (20) pro-
vides several useful realizations.

Current-mode Realizations

All-pass filters in which the input and output variables
of interest are currents are called current-mode circuits.
If, in addition, the variables of interest throughout the
circuit are currents, then the current is a fully current-
mode circuit. Active, fully current-mode circuits are of in-
terest because they offer a larger bandwidth if properly
designed than do active voltage-mode circuits (21). Pas-

Figure 19. Current-mode all-pass circuits. (a) First-order. (b)
Second-order.

sive current-mode all-pass filters are easily obtained from
passive voltage-mode filters because the networks are re-
ciprocal. Thus, if the output port of the voltage-mode cir-
cuit is excited by a current source and if the input port of
the voltage-mode circuit is shorted with the output current
flowing through this short, then the current transfer func-
tion of the resulting circuit is the same as the voltage-mode
transfer function of the original circuit. However, the input
and output currents do not have a common ground. Active
current-mode all-pass filters with a common ground can be
obtained from voltage-mode filters that incorporate a volt-
age amplifier by using the adjoint network concept (22). For
example, the application of the adjoint network concept to
the first-order voltage-mode all-pass circuit in Figure 15(b)
results in the fully current-mode all-pass circuit shown in
Fig. 19(a). This first-order all-pass filter employs a second-
generation, positive current conveyor (CCII+) as the active
device (see Current conveyors). The transfer function of
the circuit is

If Z1 is chosen as (1/(sC), then a first-order current-mode
all-pass filter is obtained. Although the all-pass filter in
Fig. 19(a) uses the minimum number of passive elements,
the capacitor is not counted as a grounded capacitor (a ca-
pacitor in which one lead of the capacitor has its own con-
nection to ground), because it is connected to ground only
through the output lead. If this circuit is cascaded with
another circuit, the output lead may be connected to a vir-
tual ground, and in this case, the capacitor would not be
a physically grounded one. Other first-order all-pass real-
izations that incorporate one (grounded) capacitor and use
one CCII have been given (23), although they employ four
resistors. These realizations are easily cascaded.

A second-order all-pass filter that uses only one CCII is
shown in Fig. 19(b). This circuit can realize complex poles
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and uses the minimum number of capacitors (23). Note that
no feedback elements are connected to the output terminal
z of the current conveyor, and so this all-pass realization
can be easily cascaded to achieve higher order realizations.
Either a positive or a negative current conveyor can be
employed. The transfer function of the circuit is given by

where a and b are identified in Fig. 19(b) and k is

The plus sign is chosen if a CCII+ is used, and the minus
sign is chosen if a CCII− is utilized.

To realize an all-pass transfer function, the elements
must also satisfy

Minimum passive sensitivities are obtained with C1 = C2,
but the spread of element values can be reduced for larger
Qs by choosing C2 larger than C1.

CCIIs are simpler to construct than first-generation cur-
rent conveyors (CCIs), and so are much more widely used.
However, a second-order all-pass filter with complex poles
can be realized using a single CCI (24). This circuit uses
the minimum number of capacitors, and both capacitors
are grounded.

MINIMUM PHASE AND ALL-PASS FILTERS

We say that a real, rational, stable transfer function in s
is a minimum phase transfer function if all its zeros are
confined to the closed LHP. No zeros are allowed in the
RHP. On the other hand, a nonminimum phase transfer
is one that has one or more zeros in the RHP. An all-pass
transfer function is nonminimum phase. Figure 20 depicts
pole-zero diagrams for minimum phase [Figs. 20(a) and (c)]
and nonminimum phase [Figs. 20(b) and (d)] transfer func-
tions. To convert the diagram in Fig. 20(a) to a diagram cor-
responding to a nonminimum phase transfer function with
the same magnitude characteristic, we reflect the zeros in
Fig. 20(a) through the origin. Thus, z3 = −z1 and z4 = −z2 in
Fig. 20(b). The corresponding transfer functions have the
same magnitude characteristics because the lengths of the
vectors from the zeros z1 and z2 to an arbitrary point P on
the jω axis in Fig. 20(a) are the same as the lengths of the
vectors from the zeros z3 and z4 to P in Fig. 20(b). How-
ever, considering the order of the transfer functions (third
order) and that both have the same magnitude character-
istic, there is more phase lag associated with the pole-zero
diagram in Fig. 20(b) than with Fig. 20(a).

In Figs. 20(c) and 20(d), a pair of complex poles, labeled
p1 and p2, has been reflected into the RHP as zeros labeled
z1 and z2, where z1 = −p1 and z2 = −p2. The phase char-
acteristics of the corresponding transfer functions are the

Figure 20. Transfer function pole-zero plots. (a) and (c) Plots for
minimum phase transfer functions. (b) and (d) Plots for nonmini-
mum phase transfer functions. The transfer functions correspond-
ing to the plots in (a) and (b) have the same magnitude character-
istics but differ in phase characteristics. The transfer functions
corresponding to the plots in (c) and (d) have the same phase char-
acteristics but differ in magnitude characteristics.

same, but the magnitude characteristics differ. Still, the
second-order transfer function corresponding to Fig. 20(d)
is a nonminimum phase one. Note that it has the same
phase as the fourth-order transfer function corresponding
to Fig. 20(c).

A nonminimum phase transfer function can be ex-
pressed as the product of a minimum phase transfer func-
tion and an all-pass transfer function. For example, sup-
pose we have the transfer function

T (s) = (s − 1)[(s − 3)2 + 1]
[(s + 1)2 + 1][(s + 2)2 + 1]

By multiplying T(s) by

and regrouping the factors, we obtain

where TMP(s) is a minimum phase transfer function and
TAP(s) denotes an all-pass transfer function.

For sinusoidal steady state analysis applications, a min-
imum phase transfer function T(s) can be expressed in the
form

where α(ω) is the attenuation function in nepers and θ(ω)
is the negative of the phase function in radians. These
two functions are not independent but are related by the
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Hilbert transforms given by

where � is a dummy variable and α(0) is the value of the
attenuation function at zero frequency (25). Equations 55a
and 55b show that if α(ω) is specified for all ω, then θ(ω)
is also specified over all ω for a minimum phase transfer
function. Thus, α(ω) and θ(ω) cannot be specified indepen-
dently. Even if α(ω) is specified over only part of the jω axis
and θ(ω) is specified over the remaining parts, then T(jω)
is determined over the whole axis.

However, attenuation and phase are independent of
each other in the case of nonminimum phase transfer func-
tions. This is the reason that nonminimum phase transfer
functions usually are used to meet simultaneous attenu-
ation and phase specifications (26). Nevertheless, all-pole
low-pass minimum phase transfer functions can serve as
useful prototypes for all-pass filters (27). An all-pole filter
has a transfer function given by

where we take the gain factor H to be positive for conve-
nience, and m(s) and n(s) are the even and odd parts of
the denominator polynomial q(s), respectively. The phase
of this low-pass filter is given by

An all-pass transfer function constructed from this low-
pass transfer function has the form

and has a phase characteristic that can be expressed as

Thus, the phase and delay characteristics are the same
as for the low-pass prototype transfer function except for
the factor of two. Suppose that the low-pass prototype is
a Bessel filter transfer function. Then an all-pass transfer
function can be devised that also has maximally flat delay
at ω = 0 and which has, ideally,a lossless magnitude charac-
teristic. For example, the third-order Bessel filter transfer
function is

Thus, the corresponding all-pass transfer function is

The Bessel filter produces a 1-s delay, and the all-pass fil-
ter generates a 2-s delay, but the delay in both cases is

maximally flat at ω = 0.

DIGITAL ALL-PASS FILTERS

Digital filters can be classed into two categories: finite im-
pulse response (FIR) filters and infinite impulse response
(IIR) filters (see Digital filters). The FIR filters can be
designed with perfectly linear phase. However, in general,
stable, realizable IIR filters cannot achieve perfectly linear
phase. Although IIR filters can be designed to approximate
given magnitude and phase requirements, a popular ap-
proach to digital filter design is to base a design on contin-
uous time filter approximations and transform the result
to digital filter form. Then the phase is linearized (equal-
ized) using cascaded digital all-pass filters. This approach
is a practical one (among several practical approaches) if
the order of the all-pass filter required is reasonable (28).

To devise a first-order, real, stable, all-pass transfer
function, we place a zero outside the unit circle in the z
plane on the real axis at z = (1/r1) corresponding to a pole
at z = r1, |r1| < 1. The resulting transfer function is given
by

or

Evaluating H(z) in Eq. (68) for z = ejωT, where T is the sam-
pling interval, we obtain

The numerator of the term in parentheses in Eq. (69) is the
conjugate of the term in the denominator. Thus, the magni-
tude of the term in parentheses is one. Also, the magnitude
of −ejωT is one. As a result, we have |H(ejωT)| = 1/|r1|. The
phase, denoted as β(ω), for r1 assumed to be positive is ob-
tained from Eq. (69) as

Since the magnitude characteristic is a constant over fre-
quency and yet the phase characteristic changes as a func-
tion of frequency as can be seen from Eq. (70), the transfer
function in Eq. (67) is an all-pass one.

A second-order, real, stable all-pass transfer function
with complex poles can be devised in a manner similar to
that used for the first-order transfer function. For a com-
plex pole at z = rejθ, 0 < θ < π, we must have another pole
at z = re−jθ if the transfer function is to be real. We take
r positive for convenience and r < 1 for stability. Thus, for
each pair of complex poles given by z = re±jθ, we place a pair



14 Phase Equalizers

Figure 21. Poles and zeros of a digital third-order all-pass filter
transfer function.

of complex zeros outside the unit circle at z = (1/r)e±jθ. The
resulting transfer function is given by

which can be rearranged into

The magnitude characteristic is easily obtained by evalu-
ating H(z) in Eq. (72) for z = ejωT. The result is |H(ejωT)| =
1/r2, and the phase is given by

A pattern is indicated by Eqs. 68 and 72 for higher order,
real, stable all-pass transfer functions. Let N be the order
of the all-pass transfer function, and let the poles be inside
the unit circle and occur in conjugate pairs if complex. That
is, each complex pole pair is described by

where 0 ≤ m ≤ N/2 and 0 < ri < 1. Then the transfer func-
tion is given by

where k is given by

and all the coefficients ai in Eq. (75) are real. The mag-
nitude characteristic of the transfer function in Eq. (75)
evaluated for z = ejωT is 1/|k|. Figure 21 shows a pole-zero
plot on the z plane for an all-pass transfer function with a
real pole at z = r1 and two conjugate complex poles at z =
r2e±jθ. The transfer function is real and stable.

Figure 22. Plots of the first function to the right of the equal sign
in Eq. (70) for values of r = 0.2, 0.4, 0.6, 0.75, and 0.8.

The delay of an IIR digital filter can be made more flat
by connecting all-pass filters in cascade. The coefficients
required for the all-pass filters as well as the number of
all-pass filters needed are best determined by a cut-and-try
process using a computer program that plots delay charac-
teristics interactively and quickly. However, an aid for de-
lay equalization can be established. For this purpose, let θ

in the transfer function for a second-order all-pass transfer
function in Eq. (71) be expressed in terms of the sampling
interval T as θ = αT. Then the normalized time delay char-
acteristic can be obtained from −dβ/dω applied to Eq. (73).
Thus, we have

Equation (77) expresses the normalized delay as the sum
of two functions. Let us examine the first function to the
right of the equal sign. Its maximum value is (1 + r)/(1 −
r), which occurs at ω = α in −π ≤ ωT ≤ π. Since the de-
lay characteristics obtained from cascaded all-pass filters
are described by a sum of functions of this type, a conve-
nient design aid (29) is obtained by plotting this function
for several values of r. These plots are shown in Fig. 22. The
frequency axis has been normalized to (ω − α)/ωs, where ωs

is the sampling frequency given by ωs = 2π/T.
As an illustration of the concept, we apply delay equal-

ization to a bandpass filter transfer function (8) given by
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Figure 23. Equalizing the delay characteristic of a bandpass fil-
ter in the neighborhood of its center frequency with a second-order
all-pass filter.

This filter has its center frequency at ω = ωs/4 and has a
bandwidth described by 0.2ωs ≤ ω ≤ 0.3ωs. The normal-
ized delay characteristic of the bandpass filter is denoted
by τBP/T and is shown in Fig. 23. It is clear that this charac-
teristic would benefit by the addition of a delay lump from
a second-order all-pass filter located at ω = ωs/4 with r =
0.7. That is, a second-order all-pass filter is utilized with
normalized delay characteristic given by Eq. (77) with α

= ωs/4 and r = 0.7. The normalized delay characteristic of
the all-pass filter is labeled τAP/T in Fig. 23. The resulting
overall normalized delay characteristic, denoted by τo/T, is
also shown, and it is seen that the result is flatter in the
neighborhood of the center frequency at the expense of the
characteristic at the edges of the bandpass filter passband.
Additional all-pass delay lumps can be employed to correct
the delay at the band edges.

First- and second-order digital all-pass filters can be re-
alized using the structures shown in Fig. 24. Figure 24(a)
shows a realization for a first-order filter that employs only
one delay (30). Its transfer function is

Figure 24. Digital all-pass filter realizations. (a) First-order re-
alization. (b) Second-order realization.

where X and Y are the input and output variables, respec-
tively, and a1 is the coefficient of a multiplier. The structure
in Fig. 24(b) can be used to realize second-order all-pass
transfer functions. Its transfer function is given by

Both structures in Fig. 24 are minimal in the number of
delays required. Higher order all-pass filters can be con-
structed by cascading first- and second-order realizations.
There are many other structures that can be used to re-
alize first- and second-order all-pass filters; an extensive
catalog of such structures is given in Ref. 30, and a discus-
sion of the effects of multiplication roundoff and hardware
requirements is provided.
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