
ADAPTIVE FILTERS 259

Now consider the expectation of Eq. (37): For stable convergence each term in Eq. (45) must be less
than one, so we must have

E[www(n+ 1)] =E[www(n)] + 2µE[d(n)xxx(n)]

− 2µE[xxx(n)xxx(n)T]E[www(n)]
(38)

0 < µ <
1

λmax
(46)

We have assumed that the filter weights are uncorrelated
where �max is the largest eigenvalue of the correlation matrixwith the input signal. This is not strictly satisfied, because
R, though this is not a sufficient condition for stability underthe weights depend on x(n); but we can assume that � has
all signal conditions. The final convergence rate of the algo-small values because it is associated with a slow trajectory.
rithm is determined by the value of the smallest eigenvalue.So, subtracting the optimum solution from both sides of Eq.
An important characteristic of the input signal is therefore(38), and substituting the autocorrelation matrix R and cross-
the eigenvalue spread or disparity, defined ascorrelation vector p, we get

λmax/λmin (47)E[www(n + 1)] − R−1ppp = E[www(n)]− R−1ppp + 2µR{R−1ppp − E[www(n)]}
(39)

So, from the point of view of convergence speed, the ideal
Next, defining value of the eigenvalue spread is unity; the larger the value,

the slower will be the final convergence. It can be shown (3)
that the eigenvalues of the autocorrelation matrix areξξξ (n + 1) = E[www(n + 1)] − R−1ppp (40)
bounded by the maximum and minimum values of the power

from Eq. (39) we obtain spectral density of the input.
It is therefore concluded that the optimum signal for fast-

est convergence of the LMS algorithm is white noise, and thatξξξ (n + 1) = (III − 2µR)ξξξ (n) (41)
any form of coloring in the signal will increase the conver-

This process is equivalent to translation of coordinates. Next, gence time. This dependence of convergence on the spectral
we define R in terms of an orthogonal transformation (7): characteristics of the input signal is a major problem with the

LMS algorithm, as discussed in Ref. 6.
R = KTQK (42)

LMS-Based Algorithms
where Q is a diagonal matrix consisting of the eigenvalues

The Normalized LMS Algorithm. The normalized LMS(�0, �1, . . ., �N) of the correlation matrix R, and K is the uni-
(NLMS) algorithm is a variation of the ordinary LMS algo-tary matrix consisting of the eigenvectors associated with
rithm. Its objective is to overcome the gradient noise amplifi-these eigenvalues.
cation problem. This problem is due to the fact that in theSubstituting Eq. (42) in Eq. (41), we have
standard LMS, the correction �e(n)x(n) is directly propor-
tional to the input vector x(n). Therefore, when x(n) is large,
the LMS algorithm amplifies the noise.

ξξξ (n + 1) = (III − 2µKTQK)ξξξ (n)

= KT(III − 2µQ)Kξξξ (n)
(43)

Consider the LMS algorithm defined by

Multiplying both sides of the Eq. (43) by K and defining www(n + 1) = www(n) + 2µe(n)xxx(n) (48)

Now consider the difference between the optimum vector w*
vvv(n + 1) = Kξξξ (n + 1)

= (III − 2µQ)vvv(n)
(44)

and the current weight vector w(n):

we may rewrite Eq. (44) in matrix form as
vvv(n) = www∗ − www(n) (49)

Assume that the reference signal and the error signal are

d(n) = www∗Txxx(n) (50)

e(n) = d(n) − www(n)Txxx(n) (51)

Substituting Eq. (50) in Eq. (51), we obtain

e(n) = www∗Txxx(n) − www(n)Txxx(n)

= [www∗T − www(n)T]xxx(n)

= vvvT(n)xxx(n)

(52)

We decompose v(n) into its rectangular components

vvv(n) = vvvo(n) + vvvp(n) (53)




v0(n)

v1(n)

...
vN−1(n)




=



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...
(1 − 2µλN )n


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v0(0)

v1(0)

...
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Therefore, the NLMS algorithm given by Eq. (64) is equiva-
lent to the LMS algorithm if

2µ = α

xxxT(n)xxx(n)
(66)

vp(n)

vp(n)
vp(n–1)

vp(n) x(n)

NLMS AlgorithmFigure 13. Geometric interpretation of the NLMS algorithm.

where vo(n) and vp(n) are the orthogonal component and the
parallel component of v(n) with respect to the input vector.
This implies

vvvp(n) = Cxxx(n) (54)

where C is a constant. Then substituting Eq. (53) and Eq. (54)
in Eq. (52), we get

Parameters: M = filter order
α = step size

Initialization: Set www(0) = 0
Computation: For n = 0,1, 2, . . ., compute

y(n) = www(n)Txxx(n)

e(n) = d(n) − y(n)

β = α

xxxT(n)xxx(n)

www(n + 1) = www(n) + βe(n)xxx(n)

e(n) = [vvvo(n) + vvvp(n)]Txxx(n) (55)

Time-Variant LMS Algorithms. In the classical LMS algo-e(n) = [vvvo(n) + Cxxx(n)]Txxx(n) (56)
rithm there is a tradeoff between validity of the final solution
and convergence speed. Therefore its use is limited for severalBecause vo(n) is orthogonal to x(n), the scalar multiplication
practical applications, because a small error in the coefficientis
vector requires a small convergence factor, whereas a high
convergence rate requires a large convergence factor.vvvT

o xxx(n) = 0 (57)
The search for an optimal solution to the problem of ob-

taining high convergence rate and small error in the finalThen solving for C from Eqs. (56) and (57) yields
solution has been an arduous in recent years. Various algo-
rithms have been reported in which time-variable conver-
gence coefficients are used. These coefficients are chosen so

C = e(n)

xxxT(n)xxx(n)
(58)

as to meet both requirements: high convergence rate and low
and MSE. Interested readers may refer to Refs. 9–14.

Recursive Least-Squares Algorithmvvvp(n) = e(n)xxx(n)

xxxT(n)xxx(n)
(59)

The recursive least-squares (RLS) algorithm is required for
rapidly tracking adaptive filters when neither the reference-The target now is to make v(n) as orthogonal as possible to
signal nor the input-signal characteristics can be controlled.x(n) in each iteration, as shown in Fig. 13. The above men-
An important feature of the RLS algorithm is that it utilizestioned can be done by setting
information contained in the input data, extending back to
the instant of time when the algorithm is initiated. The re-vvv(n + 1) = vvv(n) − αvvvp(n) (60)
sulting convergence is therefore typically an order of magni-

Finally, substituting Eq. (49) and Eq. (59), we get tude faster than for the ordinary LMS algorithm.
In this algorithm the mean squared value of the error sig-

nal is directly minimized by a matrix inversion. Consider the
FIR filter output

www∗ − www(n + 1) = www∗ − www(n) − α
e(n)xxx(n)

xxxT(n)xxx(n)
(61)

y(n) = wwwTxxx(n) (67)www(n + 1) = www(n) + α
e(n)xxx(n)

xxxT(n)xxx(n)
(62)

where x(n) is the input vector given by x(n) � [x(n), x(n � 1,where, in order to reach the target, � must satisfy (9)
. . ., x(n � M � 1)]T and w is the weight vector. The optimum
weight vector is computed in such a way that the mean0 < α < 2 (63)
squared error, E[e2(n)] is minimized, where

In this way
e(n) = d(n) − y(n) = d(n) − wwwTxxx(n) (68)

www(n + 1) = www(n) + βe(n)xxx(n) (64)
E[e2(n)] = E[{d(n) − wwwTxxx(n)}2] (69)

where
To minimize E[e2(n)], we can use the orthogonality principle
in the estimation of the minimum. That is, we select the
weight vector in such a way that the output error is orthogo-

β = α

xxxT(n)xxx(n)
(65)
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nal to the input vector. Then from Eqs. (67) and (68), we ob- Next, for convenience of computation, let
tain

Q(n) = R−1(n) (82)
E[xxx(n){d(n) − xxxT(n)www}] = 0 (70)

and
Then

E[xxx(n)xxxT(n)www] = E[d(n)xxx(n)] (71) K(n) = R−1(n − 1)xxx(n)

λ + xxxT(n)R−1(n − 1)xxx(n)
(83)

Assuming that the weight vector is not correlated with the
Then from Eq. (81) we haveinput vector, we obtain

E[xxx(n)xxxT(n)]www = E[d(n)xxx(n)] (72) www(n) = 1
λ

[Q(n − 1) − K(n)xxxT(n)Q(n − 1)]

[λppp(n − 1) + d(n)xxx(n)]
(84)

which can be rewritten as

Rwww = ppp (73)

where R and p are the autocorrelation matrix of the input
signal and the correlation vector between the reference sig-

www(n) = Q(n − 1)ppp(n − 1) + 1
λ

d(n)Q(n − 1)xxx(n)

− K(n)xxxT(n)Q(n − 1)ppp(n − 1)

− 1
λ

d(n)K(n)xxxT(n)Q(n − 1)xxx(n)

(85)

nal d(n) and input signal x(n), respectively. Next, assuming
ergodicity, p can be estimated in real time as

ppp(n) =
n∑

k=0

λn−kd(k)xxx(k) (74)

www(n) = www(n − 1) + 1
λ

d(n)Q(n − 1)xxx(n)

− Q(n − 1)xxx(n)xxxT(n)www(n − 1)

λ + xxxT(n)Q(n − 1)xxx(n)

− 1
λ

d(n)Q(n − 1)xxx(n)xxxT(n)Q(n − 1)xxx(n)

λ + xxxT(n)Q(n − 1)xxx(n)

(86)

ppp(n) =
n−1∑
k=0

λn−kd(k)xxx(k) + d(n)xxx(n)

= λ

n−1∑
k=0

λn−k−1d(k)xxx(k) + d(n)xxx(n)

(75)

ppp(n) = λppp(n − 1) + d(n)xxx(n) (76)

www(n) = www(n − 1) + 1
λ

Q(n − 1)xxx(n)

λ + xxxT(n)Q(n − 1)xxx(n)

× [λd(n) + d(n)xxxT(n)Q(n − 1)xxx(n)

− λxxxT(n)www(n − 1) − d(n)xxxT(n)Q(n − 1)xxx(n)]

(87)

where � is the forgetting factor. In a similar way, we can ob-
tain

www(n) = www(n − 1) + 1
λ

Q(n − 1)xxx(n)

λ + xxxT(n)Q(n − 1)xxx(n)

× λ[d(n) − xxxT(n)www(n − 1)]
(88)

R(n) = λR(n − 1) + xxx(n)xxxT(n) (77)
Finally, we have

Then, multiplying Eq. (73) by R�1 and substituting Eq. (76)
and Eq. (77), we get www(n) = www(n − 1) + K(n)ε(n) (89)

wherewww = [λR(n − 1) + xxx(n)xxxT(n)]−1[λppp(n − 1) + d(n)xxx(n)] (78)

Next, according to the matrix inversion lemma
K(n) = Q(n − 1)xxx(n)

λ + xxxT(n)Q(n − 1)xxx(n)
(90)

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1 (79)

and �(n) is the a priori estimation error, based on the old
with A � �R(n � 1), B � x(n), C � 1, and D � xT(n), we least-square estimate of the weights vector that was made at
obtain time n � 1, and defined by

ε(n) = d(n) − wwwT(n − 1)xxx(n) (91)

Then Eq. (89) can be written as

www(n) = www(n − 1) + Q(n)ε(n)xxx(n) (92)

www(n) =
[

1
λ

R−1(n − 1) −
�1

λ
R−1(n − 1)xxx(n)

�

×
�1

λ
xxxT(n)R−1(n − 1)xxx(n) + 1

�−1 1
λ

xxxT(n)R−1(n − 1)

]

× [λppp(n − 1) + d(n)xxx(n)]
(80)

where Q(n) is given by

Q(n) = 1
λ

�
Q(n − 1) − Q(n − 1)xxxT(n)Q(n − 1)

λ + xxxT(n)Q(n − 1)xxx(n)

�
(93)

www(n) = 1
λ

�
R−1(n − 1) − R−1(n − 1)xxx(n)xxxT(n)R−1(n − 1)

[λ + xxxT(n)R−1(n − 1)xxx(n)]

�

× [λppp(n − 1) + d(n)xxx(n)] (81)
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OMP’97, UDLA, Puebla, México, 1997.posed, such as structures based on Hopfield neural networks

24. L. Ortı́z-Balbuena et al., A continuous time adaptive filter struc-(23,25,26,27).
ture, IEEE Int. Conf. Acoust., Speech Signal Process., Detroit,
1995, pp. 1061–1064.

BIBLIOGRAPHY 25. M. Nakano et al., A continuous time equalizer structure using
Hopfield neural networks, Proc. IASTED Int. Conf. Signal Image
Process., Orlando, FL, November 1996, pp. 168–172.1. S. U. H. Qureshi, Adaptive equalization, Proc. IEEE, 73: 1349–

1387, 1985. 26. G. Espinosa F.-V., A. Dı́az-Méndez, and F. Maloberti, A 3.3 V
CMOS equalizer using Hopfield neural network, 4th IEEE Int.2. J. Makhoul, Linear prediction: A tutorial review, Proc. IEEE, 63:

561–580, 1975. Conf. Electron., Circuits, Syst., ICECS97, Cairo, 1997.



ADAPTIVE RADAR 263

27. M. Nakano-Miyatake and H. Perez-Meana, Analog adaptive fil-
tering based on a modified Hopfield network, IEICE Trans. Fun-
dam., E80-A: 2245–2252, 1997.

Reading List

M. L. Honig and D. G. Messerschmitt, Adaptive Filters: Structures,
Algorithms, and Applications, Norwell, MA: Kluwer, 1988.

B. Mulgrew and C. F. N. Cowan, Adaptive Filters and Equalisers,
Norwell, MA: Kluwer, 1988.

S. Proakis et al., Advanced Signal Processing, Singapore: Macmillan.

GUILLERMO ESPINOSA FLORES

VERDAD
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