
PHYSIOLOGICAL MODELS, DEVELOPMENT

Modeling is an important facet of engineering. Models are
simplified representations of real-world systems. For this
reason, models are also an important part of everyday life.
If you wanted to drive from Tucson, Arizona to Madison,
Wisconsin you would use a model of the highway system
called a road map (either on paper or on a computer screen).
Such a map would allow you to understand the highway
system of the United States without driving on every road.
If you wanted a model of the life of Southern aristocrats
at the time of the Civil War, you could use the book Gone
with theWind. Highway engineers create models to see how
traffic-light synchronization or lane obstructions would af-
fect traffic flow. Ohm’s law may be a good model for a re-
sistor. F = ma is a simple model for the movement of a
baseball. Models allow us to apply mathematical tools to
real-world systems. We use models to understand things
that are big, complicated, expensive, or far away in space
or time. Certainly, physiological systems fall into some
of these categories and are often modeled in the field of
biomedical engineering.

Figure 1 shows the relationships between models and
the real world. On the extreme left, people do experiments
on real-world systems. Baseball players often fit into this
category. Over the years, there has been a lot of experi-
mentation with the baseball bat. Most of this experimen-
tation was illegal, because the rules say that (for profes-
sional players) the bat must be made from one solid piece
of wood. However, to make the bat heavier, George Sisler,
who played first base for St. Louis Browns in the 1920s,
pounded Victrola phonograph needles into his bat barrel
and in the 1950s Ted Kluszewski of the Cincinnati Reds
hammered in big nails. To make the bat lighter, many play-
ers have drilled a hole in the end of the bat and filled it with
cork. Detroit’s Norm Cash admitted to using a corked bat
in 1961 when he won the American League batting title
by hitting .361. However, the corked bat may have had lit-
tle to do with his success, because he presumably used a
corked bat the next year when he slumped to .243. Some
players have been caught publicly using doctored bats. In
1974, the bat of Graig Nettles of the Yankees shattered as
it made contact, and out bounced six Super Balls. In 1987
Houston’s Billy Hatcher hit the ball and his bat split open,
spraying cork all over the infield. These are all examples of
experimentation with no concrete models to guide them.

To lessen the waste of time and decrement of perfor-
mance entailed in such experiments with altered bats, we

Figure 1. Relationship of systems and models. [Reprinted with
permission from W. L. Chapman, A. T. Bahill, and A. W. Wymore,
Engineering Modeling and Design, Boca Raton, FL: Copyright
CRC Press, 1992, p. 45 (1).]

made mathematical models of individual humans. Then
we coupled these models to the equations of physics and
predicted the ideal bat weight for each individual (2,3,3a).
This modeling process is shown in the center box of Fig.
1. However, there is another box labeled Computer simu-
lation of model on the right side of Fig. 1. Our model was
composed of mathematical equations that we had to solve
on a computer. If everything goes right, the digital com-
puter simulation should produce the same results as the
mathematical equations. But care must be taken to ensure
that this is true. Things that you must worry about include
(a) the accuracy of the computer code; (b) numerical fac-
tors, such as the integration step size truncation errors,
and the integration technique (e.g., quadrature, Adams-
Moulton, Runge–Kutta) [see Yakowitz and Szidarovszky
(4) for details]; (c) implementation considerations such as
using a commercial simulation package that is much bigger
than the model, like using a calculator to add single-digit
numbers (the point is that in some situations the unused
routines could cause problems, like overwriting areas of
memory or forcing pointers out of bounds); and (d) the pos-
sibility that the hardware is defective (How often do you
run the diagnostics on your personal computer?). In our
study, we carefully assessed each of these to see how they
would affect our predictions about the real world. In ad-
dition, matching the output of the model to the real-world
system can be a useful experimental approach to numeri-
cal validation in general.

Finally, at the extreme right side of Fig. 1 we find pure
mathematicians working in the computer world often with
no regard to the real world. Early studies of fractals fit into
this category. For more on the philosophy and practice of
modeling, see Bahill (5).

STEPS IN THE MODELING PROCESS

� Describe the system to be modeled
� Determine the purpose of the model
� Determine the level of the model
� Gather experimental data describing system behavior
� Investigate alternative models
� Select a tool or language for the simulation
� Make the model
� Validate the model

◦ Show that the model behaves like the real system
◦ Emulate something not used in the model’s design
◦ Perform a sensitivity analysis
◦ Show interactions with other models

� Integrate with models for other systems
� Analyze the performance of the model
� Re-evaluate and improve the model
� Suggest new experiments on the real system
� State your assumptions

Models can be used for many purposes:

� Understand or improve an existing system or organi-
zation
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� Create a new design or system
� Control a system
� Suggest new experiments
� Guide data collection activities
� Allocate resources
� Identify cost drivers
� Increase return on investment
� Identify bottlenecks
� Help sell the product
� Reduce risk

Modeling is not a serial process; some steps can be done
in parallel and it is very iterative. This prescription for
describing processes was developed by Bahill and Gissing
(6).

Frameworks help people organize and assess complete-
ness of integrated models of their enterprises. Several pop-
ular frameworks have been used to architect enterprises.
The Zachman framework, like many others, considers mul-
tiple perspectives and multiple aspects of an enterprise
(Bahill, Botta and Daniels (6a)).

DESCRIBE THE SYSTEM TO BE MODELED

The control of movement has long been an enigma for sci-
entists as well as for parents who marvel at the miracle of
seeing their children take their first steps. The control of
muscles that we often take for granted is so complex that
it is difficult to comprehend the intricacies involved. To de-
velop an understanding of such complex movement control
systems, we started with a study of a simple neuromuscu-
lar system, developed physiologically realistic models, and
then refined these models.

The eye movement system is a good starting point be-
cause of its simplicity, relative to other neuromuscular sys-
tems. This system has primarily two degrees of freedom,
namely, horizontal and vertical; and only two muscles are
involved in horizontal eye movements, as compared with
six or more degrees of freedom and about 30 major mus-
cles for each leg involved in locomotion. The study of the
eye movement system is also aided by the ease with which
the movements can be measured. Any knowledge gained
in the control of eye movements will contribute not only
to the understanding of the oculomotor system but also to
the understanding of larger, more complex neuromuscular
systems.

The purpose of the eye movement system is to keep
the fovea, the region of the retina with the greatest visual
acuity in daylight, on the object of interest. To accomplish
this task, the following four types of eye movements work
in harmony: saccadic eye movements, which are used in
reading text or scanning a roomful of people; vestibulo-
ocular eye movements, used to maintain fixation during
head movements; vergence eye movements, used when look-
ing between near and far objects; and smooth-pursuit eye
movements,used when tracking a moving object.These four
types of eye movements have four independent control sys-
tems, involving different areas of the brain. Their dynamic

properties, such as latency, speed, and bandwidth, are dif-
ferent, and they are affected differently by fatigue, drugs,
and disease.

The specific actions of these four systems can be illus-
trated by the example of a duck hunter sitting in a rowboat
on a lake. He scans the sky using saccadic eye movements,
jerking his eyes quickly from one fixation point to the next.
When he sees a duck, he tracks it using smooth-pursuit eye
movements. If the duck lands in the water right next to his
boat, he moves his eyes toward each other with vergence
eye movements. Throughout all this, he uses vestibulo-
ocular eye movements to compensate for the movement of
his head caused by the rocking of the boat. Thus, all four
systems are continually used to move the eyes.

This section is primarily about developing and validat-
ing a model for the human smooth-pursuit eye movement
system. Other systems are only included when they inter-
act with the smooth-pursuit system.

The purpose of this model is to help understand the hu-
man smooth pursuit eye movement system. The level of
the model is that of eye movements from a few minutes of
arc to a few dozen degrees, of speeds up to 30 degrees per
second, and for durations up to 20 seconds.

GATHER EXPERIMENTAL DATA DESCRIBING SYSTEM
BEHAVIOR

Experiments with transient target waveforms reveal a
150 millisecond (msec) time delay in the human smooth-
pursuit eye movement system (7). The effects of this time
delay are apparent during starting and stopping tran-
sients, as shown in Fig. 2(8). However, when a human (or
a monkey) tracks a target that is moving sinusoidally, the
subject quickly locks onto the target and tracks with nei-
ther latency nor phase lag. It is as if the subject creates an
internal model of the target movement and uses this model
to help track the target.This internal model has been called
a predictor (9-11), a long-term learning process (12), a per-
cept tracker (13–16), a neural motor pattern generator (17)
and a target-selective adaptive controller (8,18-20).

The Sinusoidal Target Waveform

The sinusoid is the most common smooth-pursuit target
waveform because it is easy to generate and easy to track.
Our sinusoidal target waveform is given by r(t) = A sin ωt.
Our normal amplitude, A, was 5◦ (i.e., ±5◦ from primary
position).

Figure 2 (top) shows tracking of the beginning of si-
nusoidal movement. Smooth pursuit began 150 ms after
the target started to move. It was followed by a correc-
tive saccade at 200 ms and then by zero-latency, unity-
gain tracking. Figure 2 also shows a termination of si-
nusoidal smooth-pursuit tracking. The smooth-pursuit ve-
locity started declining 120 ms after the target velocity
dropped. It reached zero velocity at 220 ms, when a correc-
tive saccade occurred to end the subject’s tracking. Thus,
the beginning and ending transients show the effects of the
time delay, whereas steady-state tracking does not.
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Figure 2. Typical beginning (top) and ending (bottom) of sinu-
soidal tracking. When the target (dashed line) started there was
a 150 ms delay before the eye velocity increased; when the target
stopped there was a 120 ms delay before the eye velocity began to
decrease. Target movements were ±5◦ from primary position. The
time axis is labeled in seconds, and upward deflections represent
rightward movements. [Reprinted from A. T. Bahill and J. D. Mc-
Donald, Smooth pursuit eye movements in response to predictable
target motions, Vision Res., 23: 1573–1583, 1983, with permission
from Elsevier Science. (8).]

The Cubic Target Waveform

Humans can overcome a large internal time delay and
track sinusoidal target waveforms with unity gain and no
time delay. Moreover, they learn to do this very quickly.
To help determine if humans can easily track every pre-
dictable waveform, we created a cubic waveform. The cubic
waveform is simple, but we could not imagine a naturally
occurring cubic visual target.

We used the cubical target waveform (shown in Fig. 3)
because no naturally occurring visual targets move with a
periodic cubical waveform; thus, our results were not influ-
enced by previous learning; yet, the cubical waveform re-
sembles a sinusoid so it should be possible to track. The cu-
bical target waveform was formed with the following third-
order polynomial:

where T represents target period and A is the amplitude.
Previous studies have shown that humans track well when
the target has an amplitude of 5◦ and a frequency of about
0.32 Hz, so these values were used in our experiments. The
target always started with zero phase and zero offset. No
warning was given before the target started. Another ben-
efit of the cubic waveform is that it looks like a sinusoid
but the velocity is strikingly different. Therefore, by ana-
lyzing the eye velocity records we could tell if the subject
had really learned the cubical waveform or if he had merely
approximated it with a sinusoid.

Figure 3 shows excellent tracking of the cubical target
waveform. Using only smooth-pursuit eye movements, the
subject was able to keep the fovea on the target for over 8 s.
Saccades were not removed or filtered out of the eye posi-
tion traces; indeed small conjugate saccades can be seen at
the 8.5 s mark.

Figure 3. Binocular eye movements for good tracking of the cubi-
cal target waveform. [From D. E. McHugh and A. T. Bahill, Learn-
ing to track predictable target waveforms without a time delay,
Invest. Ophthalmol. Vis. Sci., 26: 933, 1985. (21).]

Learning to Track the Cubical Waveform

Figure 3 shows that a human can track the cubic target
waveform very well. But this capability is not inherent.
It must be learned. Our standard learning protocol be-
gan with a 6 s square-wave calibration target waveform,
followed by 9 s of the cubical target waveform, 3 s of the
square-wave target waveform, another 9 s of the cubical
waveform, and finally another 6 s of the square-wave cali-
bration target waveform. The subjects were allowed to rest
for 5 min and then the sequence was repeated. This process
continued for about 2 h.

Because the purpose of the eye movement control sys-
tem is to keep the fovea on the target, we felt that the error
between the eye and the target was the most appropri-
ate measure of the quality of tracking. Our primary metric
therefore was the mean-square error (MSE) between eye
position and target position. The human fovea (specifically
the inner foveal pit) has a radius of 0.5◦ (17, 22). There-
fore, a target consistently on the outer edge of the fovea
produces an MSE of 0.25◦2.

Single and double exponential curves were fit to the
MSE data. The best fit was usually an exponential of the
form MSE = Ae−Bt + C. The solid lines of Fig. 4 show the
exponential curves fit to the data of our four best-tracking
college students. We were trying to quantify the ultimate
capabilities of the human smooth-pursuit system, so we
only report the performance of our best subjects. In this
figure, we only show data of four of 20 college students. The
other students did not demonstrate such low-error track-
ing.

To narrow in on this exquisite tracking performance we
decided to study optimal humans performing optimally.
Who is an optimal human? For eye tracking capability, we
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Figure 4. Time course of learning for seven subjects. Solid lines
are the exponential curves fit to the data of our four best-tracking
college students. Circles, asterisks, and squares are data points for
three professional baseball players. [From D. E. McHugh and A.
T. Bahill, Learning to track predictable target waveforms without
a time delay, Invest. Ophthalmol. Vis. Sci., 26: 935, 1985. (21).]

thought professional athletes would fit the bill. So we in-
vited some professional baseball players to participate in
our experiments. The MSEs for three members of the Pitts-
burgh Pirates Baseball Club are represented by circles, as-
terisks, and squares in Fig. 4. In viewing the target for the
first time, professional baseball players 1 and 2 had much
smaller MSEs (0.05 and 0.08) than our other subjects. They
had never seen a cubical waveform before, yet they started
out with low MSEs. Baseball players 1 and 2 played in the
major leagues for over 10 years. Player number 3 never
got out of the class A Farm System. These data seem to
indicate that the ability to track the cubical waveform is
correlated with the ability to hit a baseball.

DEVELOPING THE MODEL

An important decision in making a model is determining
its architecture. Some architectural decisions that must
be made are whether it should be state-based or memory-
less. Botta, Bahill and Bahill (22a) offer recommendations
to help make this determination. In this case, we decided
that the smooth pursuit system was a stated-based system.
(The state dynamics are modeled with an integrator K/(τs
+ 1)). Next, choosing between continuous and discrete, we
decided the smooth pursuit system was discrete. To com-
plete the high-level architecture we choose a closed-loop
feedback control system.

Most physiological systems are closed-loop negative-
feedback control systems. For example, consider someone
trying to touch his or her nose with a finger. He or she would
command a new reference position and let the arm start to
move. But before long, sensory information from the visual
and kinesthetic systems would signal the actual finger po-
sition. This sensory feedback signal would be compared to
the reference or command signal to create the error signal
that drives the arm to the commanded output position.

In the analysis of such systems, it is difficult to see which
effects in the output are due to elements in the forward
path and which are due to sensory feedback. In order to
understand the contribution of each element, it is neces-
sary to open the loop on the system—that is, to remove the
effects of feedback. For some systems it is easy to open the
feedback loop, while for others it is exceedingly difficult
since some systems have multiple or even unknown feed-
back loops. It is easy to open the loop on the human eye
movement system.

Many investigators have studied the human smooth-
pursuit eye movement system under open-loop conditions;
these studies have helped us understand this system. How-
ever, some investigators reported varied and inconsistent
responses; they found open-loop responses idiosyncratic. It
is suggested that the reason for these difficulties is that
physiological systems, unlike man-made feedback control
systems, are capable of changing their control strategy
when the control loop is opened. Several specific changes in
eye movement control strategy are shown in this section.
Although the specific system studied was the eye move-
ment system, the technique presented should generalize
to other physiological systems.

Opening the Loop on a System

A linear system can be schematically represented as a
closed-loop system, as shown in Fig. 5(a). In this figure,
R represents the reference input, and Y is the output. The
output is measured with a transducer, H, and the resulting
signal is subtracted from the input to yield the error signal,
E. In many systems (such as the oculomotor systems), the
element in the feedback loop, H, is unity; therefore the out-
put is compared directly with the input, which explains the
reason for calling the resultant the error. This error signal
is the input for the main part of the system represented by
G. This is called a closed-loop system because of the closed
loop formed by G, H, and the summer. This system can be
redrawn as shown in Fig. 5(b). Although the transfer func-
tion of this equivalent system describes the input–output
relationship of the system, it is not very useful for modeling
physiological systems because it hides specific behavior by
lumping everything into one box. On the other hand, im-
portant information about the system’s performance can
be gained by techniques that examine components within
the loop. One such technique for studying a system is to
“open the loop,” as shown in Fig. 5(c), and then study the
response of this open-looped system. The open-loop trans-
fer function is defined as the total effect encountered by a
signal as it travels once around the loop. That is, the open-
loop transfer function is Gol = GH.

Note that this is not the input–output transfer function
of the system with its loop opened (which would be G),nor is
this the transfer function of the equivalent redrawn closed-
loop system shown in Fig. 5(b). When we open the loop on
a closed-loop system, bizarre behavior often results. In re-
sponse to a step disturbance, a closed-loop system with its
loop opened will usually vary its output until it is driven
out of its normal operating range. For instance, if R in Fig.
5(c) is a step and G is a pure integrator, the error will be con-
stant and the output will increase until the system reaches
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Figure 5. (a) A closed-loop feedback control system, (b) an equiv-
alent representation, and (c) the closed-loop system with its loop
opened. Many analysis techniques require the study of the open-
looped system of (c). [From A. T. Bahill, Bioengineering: Biomed-
ical, Medical and Clinical Engineering, 1981, p. 215. Reprinted
with permission of Prentice-Hall, Upper Saddle River, NJ. (Ref.
5.]

its limit of linearity.
Often the success of a systems analysis depends on be-

ing able to open the loop on a system. If it is an electrical
circuit, one might merely cut a wire. However, if it is a hu-
man physiological system, such an approach is not feasible,
and other techniques must be developed. Such techniques
usually involve manipulating the variable normally con-
trolled by the system, so that the feedback is ineffective in
changing the error signal. For example, in the physiologi-
cal sciences, some of the earliest examples of opening the
loop are the voltage clamp technique developed by Mar-
mount (23) and Cole (24), wherein they measured the volt-
age and injected current to keep the voltage constant, and
the light modulation technique used by Stark to study the
human pupil (25). In the voltage clamp technique the ex-
perimenters fixed the voltage across a neuronal membrane,
the parameter that is normally controlled by the neuron:
Although it struggled to open and close the ionic channels,
the neuron could not regulate the membrane voltage, and
therefore the loop was opened. In the case of the pupil of
the eye, the experimenters controlled the amount of light
falling on the retina: Although it struggled to open and
close the pupil, the pupillary system could not control the
amount of light falling on the retina, and thus the loop
was opened. Similarly, the use of force and length servos
in research on motor systems provides a means of examin-
ing components within feedback loops, although setting up
these studies is complicated by the multiplicity of feedback
loops in these systems (see, for example, 26).

We think these open-loop techniques can be used in a
broad range of physiological systems. Of course, nothing

is easy and some problems must be overcome. In many
systems, the difficulties lie in trying to isolate one system
so that others do not interfere, as in the previously men-
tioned pupillary and motor control systems. In other cases,
the difficulty lies in opening the loop on the system. For ex-
ample, if the output of the respiratory system is defined to
be the ventilation rate, then one could study the open-loop
behavior of the system by controlling the concentration of
the gases being breathed while monitoring the ventilation
rate. However, when modeling a different aspect of this sys-
tem, such that a different quantity is defined as the output,
opening the loop would become difficult: For example, con-
trolling the venous concentration of CO2 would be difficult.

Physiological systems often have several parallel feed-
back loops (e.g., hormonal and neural) acting simultane-
ously. One of the greatest challenges in studying a physi-
ological control system is that one may not even be aware
of all the feedback pathways.

Opening the Loop on the Eye Movement Control System

An easy way to open the loop on the eye movement system
is to stabilize an object on the retina. This can be done, for
example, by looking a few degrees to the side of a camera
when someone triggers a flash. There will be an afterimage
a few degrees off your fovea. Try to look at the afterimage:
You will make a saccade of a few degrees, but the image (be-
ing fixed on the retina) will also move a few degrees. You
will then make another saccade, and the image will move
again. Thus, no matter how you move your eye, you cannot
eliminate the error and put the image on your fovea. This
is the same effect as if someone opened the loop on an elec-
tronic system by cutting a wire [as in Fig. 5(c)]. Therefore,
this is a way of opening the loop on the eye movement sys-
tem. There is also another simple way to study open-loop
saccadic behavior. Gaze at the blue sky on a sunny day and
try to track your floaters (sloughed collagen fibers in the
vitreous humor). These hair-like images move when the
eye moves; therefore your initial saccades will not succeed
in getting them on the fovea. However, with a little prac-
tice, one can learn to manipulate these images, because
they are not fixed on the retina and a human can rapidly
learn to manipulate the system. This latter point often con-
founds attempts to open the loop on a physiological system.
When the experimenter attempts to open the loop, the hu-
man quickly changes control strategy, thereby altering the
system under study.

The most common experimental technique for opening
the loop on the eye movement system, pioneered by Young
and Stark (27), employs electronic feedback as shown in
Fig. 6. In operation, the target is given a small step dis-
placement, say 2 degrees to the right. After about 200 ms,
the eyes saccade 2◦ to the right. During this movement, the
target is moved 2◦ farther to the right, so that at the end of
the saccade the target is still 2◦ to the right. After another
200 ms delay, the eyes saccade another 2◦ to the right, and
the target is moved another 2◦, thereby maintaining the
2◦ retinal error. The saccadic eye movements are not effec-
tive in changing the retinal error; therefore, the loop has
been opened. In this open-loop experiment, the subject pro-
duces a staircase of 2◦ saccades about 200 ms apart, until
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Figure 6. Electronic technique for opening the loop on the human
eye movement system. The position of the eye, θE , is continuously
measured and is summated with the input target signal, θT . For
the eye movement system H = 1, because if the eye moves 10◦, the
image on the retina also moves 10◦. If the eye movement monitor
and associated electronics are carefully designed so that H′ = 1,
then any change in actual eye position, θE , is exactly canceled by
the change in measured eye position, θ′

E. Thus the error signal,
E, is equal to the target signal. This is the same effect as if the
feedback loop had been cut, as in Fig. 5(c). The target position
in space (TPS) is the sum of the input signal and the measured
eye position; care must be taken to keep this position within the
linear range of the eye movement monitor. [From A. T. Bahill and
D. R. Harvey, Open-loop experiments for modeling the human eye
movement system, IEEE Trans. Syst. Man Cybern., SMC-15: 241,
© 1986 IEEE (30).]

Figure 7. Position of the target and eye as functions of time for
typical human open-loop tracking. After the feedback loop was
opened, and the 1-sec mark, the subject made a series of saccades
trying to catch the target. When this strategy did not work, he
seemed to turn off the saccadic system and produce only smooth-
pursuit eye movements. This subject was experienced in oculomo-
tor experiments. The large open-loop gain appears to be a char-
acteristic of such experienced subjects. [From A. T. Bahill and D.
R. Harvey, Open-loop experiments for modeling the human eye
movement system, IEEE Trans. Syst. Man Cybern., SMC-15: 248,
© 1986 IEEE (30).]

the measuring system becomes nonlinear. Such a staircase
of saccades is shown in the beginning of Fig. 7.

Electronic feedback has also been used to open the loop
on the smooth-pursuit system. In these experiments, the
target was moved sinusoidally. When the eye moved at-
tempting to track the target, the measured eye position
signal was added to the sinusoidally moved target position
(as shown in Fig. 6). Thus the eye movements became in-
effective in correcting the retinal error and the feedback
loop was, in essence, opened. In contrast to open-loop sac-
cadic experiments, open-loop smooth-pursuit experiments
do not stabilize the image on the retina, but rather the tar-
get is moved across the retina in a controlled manner by
the experimenter. This is done because the saccadic system
is a position tracking system and retinal position must be
controlled, whereas the smooth-pursuit system is a velocity
tracking system and retinal velocity must be controlled.

Results of Open-Loop Experiments on the Smooth-Pursuit
System

Open-loop experiments should provide results that not
only describe the characteristics of elements within the
feedback loop, but also provide a description of the system’s
performance under closed-loop conditions. Consequently,
similarity of actual closed-loop behavior with that pre-
dicted from open-loop data is indication of the success of
the investigation. Such agreement has been found byWyatt
and Pola (28, 29) in experiments in which subjects tracked
sinusoidal waveforms. Although idiosyncratic differences
were found between their subjects, agreement was found
between actual and predicted closed-loop behavior for in-
dividual subjects. However, subsequent investigators were
not able to replicate their results (16). And in other studies
(30, 31), individualistic behavior was varied enough to ob-
viate any meaningful description of the system using such
data.

Several factors can be identified that possibly contribute
to the differences between individual subjects and between
different experiments. One such factor is the predictabil-
ity of the target waveform used in testing. While Wyatt
and Pola (28) used predictable sinusoidal waveforms and
obtained consistent results, Collewijn and Tamminga (31)
used a pseudorandom mixture of sinusoids and found great
variability between subjects. However, sinusoids were also
used by Harvey (30) with inconsistent results between sub-
jects. Another factor may be the influence of prior experi-
ence on subject performance. Examining the results from
several studies (28–31) reveals that open-loop gains are
larger in subjects with more experience in laboratory track-
ing tasks.

The one common element shared by these studies is in-
tersubject variability, although the magnitude of this vari-
ability differed considerably. It is noteworthy that such
variability is found not only between subjects, but also in
the performance of individual subjects in single trials. Such
variation has been observed by Harvey (30) and also by
Leigh et al. (32), in a subject in which open-loop behavior
was observed by presenting a visual target to a patient’s
paralyzed eye while monitoring the motion of the normal,
but covered, eye. Each subject’s performance also depends
on the instructions given to the subject (33). These findings
show that the variability inherent in open-loop studies is
attributable not only to differences between subjects but
also to time-varying performance of individual subjects.

Comparing Open-Loop Experiments with Simulations

Insight into the behavior of the smooth-pursuit system
under open-loop conditions was sought by Harvey (30)
through a comparison of experimental results with those
from simulations. The simulations were performed using
the target-selective adaptive control (TSAC) model (19)
shown in Fig. 8. This model has three branches. The top
branch, the saccadic branch, generates a saccade after a
short delay whenever the disparity between target and
eye position is too great. The middle branch, the smooth-
pursuit branch, produces smooth tracking of moving tar-
gets. The input to the smooth-pursuit branch is velocity,
so the first box (labeled smooth-pursuit processing) con-
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Figure 8. The general form of the TSAC model. [From A.
T. Bahill and T. M. Hamm, Using open-loop experiments
to study physiological systems with examples from the hu-
man eye movement systems,News Physiol. Sci., 4: 107,1989
(56).]

tains a differentiator and a limiter. The box labeled smooth-
pursuit controller and dynamics contains a first-order lag
(called a leaky integrator), a gain element, a time delay, a
saturation element, and an integrator to change the veloc-
ity signals into the position signals used by the extraocu-
lar motor system. The bottom branch contains the target-
selective adaptive controller that identifies and evaluates
target motion and synthesizes an adaptive signal, Rc , that
is fed to the smooth-pursuit branch. This signal permits
zero-latency tracking of predictable visual targets, which
the human subject can do, despite the time delays present
in the oculomotor system. The adaptive controller must be
able to predict future target velocity, and it must know and
compensate for the dynamics of the rest of the system. The
adaptive controller is separate from the smooth-pursuit
system in the model and also in the brain (11). The adaptive
controller sends signals to the smooth-pursuit system and
also other movement systems (34). All of these branches
send their signals to the extraocular motor system, con-
sisting of motoneurons, muscles, the globe, ligaments, and
orbital tissues. And of course, the final component of the
model is a unity gain feedback loop that subtracts eye po-
sition from target position to provide the error signals that
drive the system. The solid lines in this figure are signal
pathways, while the dashed lines are control pathways. For
instance, the dashed line between the saccadic controller
and the smooth-pursuit controller carries the command to
turn off integration of retinal error velocity during a sac-
cade.

In the experiments, many different target waveforms
are used. The step target was presented to the subject to
verify that the technique of opening the loop using elec-
tronic feedback was working. Because the step target in-
troduced a position error rather than a velocity error, this
experiment opened the loop on the saccadic system rather
than the pursuit system. A position error with the feedback
loop opened should have elicited a staircase of saccades. If
this expected open-loop response to the step target was
seen, then the electronic feedback was opening the loop
correctly, as between 1.5 s and 2.5 s of Fig. 7.

There was difficulty in getting consistent results for si-
nusoids with the loop opened. The most consistent results
obtained for such presentations came from the first few sec-
onds after the loop has been opened. This finding suggests
that the difficulties with open-loop sinusoids were proba-

bly due to the involvement of high-level processes such as
adaptation. Once the loop was opened, the behavior of the
target changed. Often the subjects would appear to respond
to this change in target behavior by changing their tracking
strategies. Figure 7 shows a presumed example of such a
change in human tracking strategy. Between 1.5 s and 2.5 s
of this record the subject behaved as one would expect for
a subject tracking an open-loop target; there is a saccade
every 200 ms (approximately the time delay before the sac-
cadic system responds to a position error). However, in the
middle of the record, the saccades cease; it seems that the
subject turned off the saccadic system. Such saccade free
tracking was common in these experiments and in other
open-loop experiments (16,28,29,32,33,35). The records are
strikingly devoid of saccades in spite of the large position
errors, a finding that, oddly, received little comment by pre-
vious investigators (except for 33), although it is often seen
in the data.

By way of comparison, the model is shown tracking a si-
nusoid under open-loop conditions in Fig. 9. To simulate the
changes in strategy that are apparent in the human data
of Fig. 7, the model characteristics were changed at inter-
vals. From 2 to 4.25 s there is normal closed-loop track-
ing. At 4.25 s the loop was opened, the adaptive controller
was turned off, and the smooth-pursuit gain was reduced
to 0.7, thus producing a staircase of saccades similar to
those shown in Fig. 7. At 7.25 s the saccadic system was
turned off, the adaptive controller was turned back on, and
the gain of the smooth-pursuit system was returned to its
normal value; the model tracked with an offset similar to
that of Fig. 7. This type of position offset was often noticed
in human subjects during open-loop tracking. Finally, at
10.5 s the adaptive controller was turned off and the model
tracked without an offset but with a time delay as was seen
in some subjects.

These simulations help explain some confusing data in
the literature by allowing us to suggest that when the loop
on the human smooth-pursuit system is opened, subjects
alter their tracking strategy to cope with altered target
behavior. Some subjects continue to track with all sys-
tems (producing a staircase of saccades), some turn off the
saccadic system (producing smooth tracking with an off-
set), some also turn off the adaptive controller (producing
smooth tracking without an offset), and some change the
gain on the smooth-pursuit system. Thus, each subject ap-
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Figure 9. Position of the target (dashed) and model (solid) as
functions of time under a variety of conditions. At the first ar-
row, the loop was opened, at the second arrow the saccadic system
was turned off, and at the third arrow the adaptive controller was
turned off. Tracking patterns similar to each of these are common
in human records. [From A. T. Bahill and D. R. Harvey, Open-loop
experiments for modeling the human eye movement system, IEEE
Trans. Syst. Man Cybern., SMC-15: 249, © 1986 IEEE (30).]

pears to adapt to the novel tracking task created by opening
the loop by selecting subcomponents of the smooth-pursuit
system and/or changing parameters within those subsys-
tems.All these strategy changes are within the possibilities
provided by the model.

To eliminate these changes in strategy, recent studies
of open-loop smooth pursuit tracking only use the first
140 msec of target movement (35a).

Such plasticity is common in physiological systems.
Repetitive stimulation of the vergence eye movement sys-
tem indicates that that the speed of an individual move-
ment depends on the size of the preceding target movement
(37a). Multifaceted control is also common in other phys-
iological systems (see, for example, 36 and 37). Thus, the
potential exists in other physiological control systems for
changes in strategy—that is, a change in the balance of con-
trol subsystems in different physiological states whether
these states occur “naturally” or are imposed by an inves-
tigator. Such changes may occur in different behavioral
states as observed, for example, for respiratory control in
the newborn (38). Consequently, it should not be surpris-
ing that when an investigator attempts to open the loop on
a control system the control strategy changes. This section
demonstrates this principle for the eye movement system.

The technique of opening the loop on a physiological
system in order to better understand its behavior is very
powerful as long as care is taken to acknowledge that the
human is a complex organism and is likely to change its
behavior when the input changes its behavior.

MAKE THE MODEL

The human can overcome a time delay and track visual
targets with zero latency. This is nicely demonstrated by
the smooth-pursuit eye movement system. We found that
if our model was to emulate the human, it had to predict
target velocity and compensate for system dynamics. The
model accomplished this using a prediction algorithm. To
help validate the model, a sensitivity analysis and a pa-
rameter estimation study were performed.

Figure 10 shows our model for the human eye move-
ment systems. Like the human, this model can overcome
the time delay and track a target without latency. To do
this, the model must be able to predict future target veloc-
ity and compensate for system dynamics. In this section, a
least-mean-square technique for predicting target velocity

is described. After incorporating this prediction algorithm
into the model, the model was studied to learn more about
the model, and hopefully about the human. In particular,
we performed a sensitivity and analysis of the predictor
and then investigated how parameter variations affected
the MSE between the predicted output and the actual tar-
get waveform.

The TSAC Model

This section primarily examines the smooth-pursuit eye
movement system. The earliest model for the smooth-
pursuit system is the sampled data model developed by
Young and Stark (27). Because of later evidence presented
by Robinson (39) and Brodkey and Stark (40), the pursuit
branch is no longer viewed as a sampled data system, but
rather as a continuous one.

There is one physically realizable model capable of over-
coming the time delay in the smooth-pursuit branch, the
TSAC model developed by McDonald (18, 19). This model
with the saccadic and smooth-pursuit branches and their
interactions is shown in Fig. 10. The computer simulation
that implements this model was written in the C language
on a Unix computer system.

Referring to Fig. 10, the input to the smooth-pursuit
branch is retinal error, which is converted to velocity by the
differentiator. The limiter prevents any velocities greater
than 70◦/s from going through this branch. [The numbers
given in this section are only typical values, and the stan-
dard deviations are large—for example, and LaRitz (41)
showed smooth-pursuit velocities of 130◦/s for a baseball
player.] The leaky integrator K/(ts + 1) is suggested from
(a) experimental results showing that humans can track
ramps with zero steady-state error (7) and (b) open-loop
experiments that showed a slope of −20 dB per decade for
the pursuit branch’s frequency response (30). The gain, K,
for the pursuit branch must be greater than unity, since
the closed-loop gain is almost unity. Currently used values
for the gain are between 2 and 4 (30, 42). The e−sT term
represents the time delay, or latency, between the start of
the target movement and the beginning of pursuit move-
ment by the subject. A time delay of 150 ms is currently ac-
cepted (30,33).The saturation element prevents the output
of any velocities greater than 60◦/s, the maximum velocity
produced by most human smooth-pursuit systems.

The model must be able to overcome the 150 ms time
delay and track with zero latency. Because the smooth-
pursuit system is a closed-loop system, the model’s time
delay appears in the numerator and the denominator of
the closed-loop transfer function,

An adaptive predictor using adaptive filters was designed
to overcome the time delay in the numerator. Compensa-
tion for the model’s dynamics overcomes the time delay in
the denominator.

We used several different techniques for predicting tar-
get velocity. There are many more to choose from (see the
“Adaptive filters” and “Filtering theory” sections of this
encyclopedia). Now we will make a detailed presentation of
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Figure 10. McDonald’s TSAC model has
three branches: smooth pursuit, saccadic,
and the adaptive predictor.

one of these prediction techniques. The nonmathematical
reader may skip this section (all the way to “VALIDATE
THE MODEL”) without loss of continuity.

The Least-Mean-Square Adaptive Filter

The least-mean-square (LMS) adaptive filter (43–45), is a
self-designing filter composed of a tapped delay line, vari-
able weights, a summing junction to add the weighted sig-
nals, and machinery to adjust the weights. Two processes
occur in the adaptive filter: the adaptation process and the
operation process.

The adaptation process handles weight adjustment. The
values of the weights are determined by estimating the
statistical characteristics of the input and output signals.
The heart of the adaptation process is the weight adjust-
ment algorithm. As each new input sample is received, the
weights are updated by the algorithm,

where

W(j + 1) the weight vector after adaptation
W(j) the weight vector before adaptation
ks the proportionality constant controlling stability and

the rate of convergence
E(j) the difference between the desired response and the

filter’s output, the error
X(j) the vector of input signals
∇[E2(j)] the gradient of the error squared with respect to

W(j)

In order to find the best possible weights, we computed
the gradient (with respect to W) of the squared error, set
this equal to zero, and solved for the optimum weights. The
result is the Weiner–Hopf equation:

where

WLMS the vector of weights that would give the LMS error
φ(x, x) autocorrelation matrix of the input signals
φ(x, d) covariance matrix between the input signal and the

desired output signal

Figure 11. Implementation of the weight adjustment algorithm.
[From D. R. Harvey and A. T. Bahill, Development and sensi-
tivity analysis of adaptive predictor for human eye movement
model, Transaction of the Society for Computer Simulation, De-
cember 1985. © 1985 by Simulation Councils, Inc., San Diego, CA.
Reprinted by permission. (20).]

To solve the Wiener–Hopf equation it is necessary to
compute the correlation matrices. However, this would re-
quire a lot of computer time; furthermore, these matrices
cannot be computed in advance, because this would require
a priori knowledge of the statistics of the input signal.

Because it is difficult to compute the true gradient,
we use an estimate of the gradient, which is equal to
−2E(j)X(j). Our algorithm is a form of the method of steep-
est descent using estimated gradients instead of measured
gradients. Using this estimated gradient, the adjustment
algorithm can be written as

Figure 11 illustrates the implementation of this weight
adjustment algorithm. If the input signals are uncorre-
lated, then the expected value of the estimated gradient
converges to the true gradient without any knowledge of
the input signal’s statistics.

During the operation process of the LMS filter, illus-
trated in Fig. 12, the tapped delay-line input signals are
weighted, using the gains from the adaptation process and
summed to form the output signal. The difference between
the desired output signal and the actual output of the fil-
ter is the error that is fed back to the weight adjustment
algorithm.

The speed and accuracy of the filter while converging to
the optimal solution depends on several factors. Because
noise is introduced into the weight vector from the gra-
dient estimates, it follows that if the filter is allowed to
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Figure 12. The LMS adaptive filter. The boxes labeled “Weight
adjustment” contain systems like Fig. 11. [From D. R. Harvey and
A. T. Bahill, Development and sensitivity analysis of adaptive pre-
dictor for human eye movement model, Transaction of the Society
for Computer Simulation, December 1985. © 1985 by Simulation
Councils, Inc., San Diego, CA. Reprinted by permission. (20).]

converge slowly, less noise will be introduced during each
adaptation cycle and the convergence will be smoother. Re-
gardless of the speed with which the filter converges, some
noise will be introduced. This noise prevents the filter from
converging to the minimum MSE. The ratio of the excess
MSE to the minimum MSE gives a measure of the misad-
justment of the filter compared to the optimum system. The
misadjustment depends on the time constant of the filter’s
weights, where the time constant is defined as the time it
takes for the weights to fall within 2% of their converged
value. A good approximate formula for the misadjustment,
M, is

This algorithm shows that M is proportional to the number
of weights, n, and inversely proportional to the time con-
stant, τMSE. The time constant τMSE can be measured exper-
imentally for each simulation. However, we would prefer to
find an analytical way to estimate it. We can do that as fol-
lows.

To ensure convergence the proportionality constant, ks ,
in the weight adjustment algorithm must be within the
following bounds:

where E[X2
j] is the expected value of the square of the

jth input. For slow and precise convergence, ks should be
within the following more restrictive bounds:

According toWidrow (43,44), for a filter using tapped delay-
line input signals, the time constant is related to the pro-
portionality constant by

Figure 13. The adaptive predictor. The boxes labeled “Adaptive
filter” and “Slave filter” contain systems similar to those in Fig.
12. [From D. R. Harvey and A. T. Bahill, Development and sen-
sitivity analysis of adaptive predictor for human eye movement
model, Transaction of the Society for Computer Simulation, De-
cember 1985. © 1985 by Simulation Councils, Inc., San Diego, CA.
Reprinted by permission. (20).]

In summary, an adaptive filter is made up of a tapped delay
line, variable weights, a summing junction, and the weight
adjustment algorithm. The filter adjusts its own internal
settings to converge to the optimal solution. Due to noise
from the gradient estimate, the accuracy and speed of con-
vergence depends on the number of weights and the pro-
portionality constant, ks .

The Adaptive Predictor

The adaptive predictor is an application of the LMS adap-
tive filter. We used this predictor to overcome the 150 msec
time delay in the smooth-pursuit model.

Figure 13 shows the design of the adaptive predictor.
Two filters are used:an adaptive filter and a slave filter.The
adaptive filter determines the appropriate weights. It does
this by predicting the value of the input signal 150 ms into
the future, D̂( j + T ). To accomplish this, the input signal,
D(j), is delayed by an amount of time equal to the time to
be predicted, in this case 150 ms. This delayed signal, X(j),
then serves as the input to the adaptive filter. The filter’s
weights converge to values that give an output signal, Y(j)
or D̂( j), which ideally matches the undelayed input signal.

The slave filter is responsible for predicting. The input
to the slave filter is the undelayed signal, D(j). The slave
filter is organized like the adaptive filter except there is no
automatic adaptation process—that is, no weight adjust-
ment. The weights from the adaptive filter are copied into
the slave filter after each adaptation cycle. The output of
the slave filter, D̂( j + T ), is the predicted value of the input
signal at the desired future time.

For the TSAC model, the velocity of the target must be
predicted 150 ms into the future to overcome the smooth
pursuit system’s time delay. Therefore, the target’s veloc-
ity, the input signal to the predictor, was delayed by 150 ms
and used as the adaptive filter’s input. Our adaptive fil-
ter used between 15 and 150 weights and a proportion-
ality constant of 0.00001. Figures 14 and Figure 15 show
the behavior of the predictor with 150 weights. 14 show
the behavior of the predictor with 150 weights. Figure 14
shows the output of the predictor, D̂( j + T ), for various tar-
get waveforms superimposed on the signal to be predicted.
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Figure 14. The predictor’s output superimposed on the signal it is
predicting for four different target velocity waveforms, which are,
from top to bottom: parabolic, triangular, sinusoidal, and square.
[From D. R. Harvey and A. T. Bahill, Development and sensi-
tivity analysis of adaptive predictor for human eye movement
model, Transaction of the Society for Computer Simulation, De-
cember 1985. © 1985 by Simulation Councils, Inc., San Diego, CA.
Reprinted by permission. (20).]

Figure 15. The learning curve for the adaptive predictor. [From
D. R. Harvey and A. T. Bahill, Development and sensitivity anal-
ysis of adaptive predictor for human eye movement model, Trans-
action of the Society for Computer Simulation, December 1985. ©
1985 by Simulation Councils, Inc., San Diego, CA. Reprinted by
permission. (20).]

The filter’s transients die out within 2.5 s of each abrupt
change in velocity.

Figure 15 shows the predictor’s MSE, ‖E( j)‖2, plotted
against the number of iterations of the filter; an itera-
tion was completed every 5 ms. After 450 iterations the
MSE was effectively zero, which corresponds to 2.25 s. This
agrees with the predictor’s output in Fig. 14. The settling
time of the filter, 450 iterations, is approximately 4τMSE,
where τMSE is the average time constant for the weights.
This gives a τMSE of 112.5 iterations. Using Eq. (14), M
= n/4τMSE, the predictor has a misadjustment of approxi-
mately 33.3%.

The predicted target velocity from the adaptive predic-
tor compensates for the effects of the time delay in the nu-
merator of the transfer function of Eq. (6). To overcome the
effects of the time delay in the denominator, compensation
for the model’s dynamics must be done. This means that
the brain must have a model for itself and the rest of the
physiological system, and that it uses this model to gener-
ate the required compensation signal.

Compensating for Plant Dynamics

When linear state-variable feedback notation is used for a
system, its closed-loop transfer function is

where

Y system output, θ in Fig. 10
Ri system input
T time delay
A system matrix
b input coefficient vector
′ vector transpose operation
k

′ transposed control vector
h

′ transposed output coefficient vector
K the gain

The general method of compensating for model dynam-
ics is complex. It involves computing an adaptive signal
Ra , which, when added to the target position Rs , produces
a system input Ri that will produce zero-latency tracking.
This method is discussed in detail by McDonald (18, 19).
We will now briefly show how we used it.

For the human eye movement system the order of the
system, the control vector and the output vector are one,
so that the following values are appropriate:

The system’s input, ri (t), is the sum of the target reference
signal, rs (t), and the adaptive signal, ra (t), that must be
computed. To obtain zero-latency tracking, y(t) must equal
rs (t). Putting all of this information into Eq. (10) gives

Solving for ra gives

The e+sT term shows that predictions must be made. How-
ever, the smooth-pursuit system is a velocity tracking sys-
tem, not a position tracking system, so the controller must
be able to predict future values of target velocity. For exam-
ple, if r²s(t) is the present target velocity, it must be able to
produce r²s(t + T ), where T is the time delay of the smooth-
pursuit system. And the controller must modify this pre-
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diction to compensate for the dynamics of the system in
accordance with Fig. 10 becomes

This compensation signal allows the smooth-pursuit sys-
tem to overcome the time delay. To synthesize this signal
the adaptive controller must be able to both predict future
values of the target velocity and compute first derivatives.
These are reasonable computations for the neurons of the
human brain. Therefore, Eq. (14) is the algorithm that is
in the box of Fig. 10 labeled “Target-selective adaptive con-
troller.”

Perform a Sensitivity Analysis

To determine which parameters have the greatest effect
on the model and when they exert their influence, we com-
puted the semirelative sensitivity function, S̃y

β, for each pa-
rameter (5,46,47):

where y is the output of the system and β is the parameter
that is varied. For this study, we used a fixed perturbation
size of +5%. In general a 5% step size may be too large, but
in this particular study it worked well (5).

The smooth-pursuit model developed in this study is not
independent of other systems. The saccadic system and
the adaptive predictor interact with the smooth-pursuit
branch. Therefore, we performed the sensitivity analysis
twice: once with the saccadic system and the predictor
turned on, and again with the saccadic system and the pre-
dictor turned off. Eliminating the saccadic system and pre-
dictor allowed us to isolate the pursuit branch and study
it independently.

The sensitivity of the predictor was studied for three pa-
rameters: ks , the proportionality constant; the number of
weights; and the time to be predicted. For ks and the num-
ber of weights, the target waveforms were also changed to
determine if the predictor was sensitive to different input
signals.

The effect of ks was found to be the greatest after points
of acceleration discontinuities. We performed a sensitiv-
ity analysis for many target waveforms, including the four
shown in Fig. 14. The influence of ks is most apparent for
the analyses done with the cubic position waveforms. In
Fig. 16, we show the results for the cubical target posi-
tion waveform, which has the parabolic velocity waveform
shown in this figure. S̃ks

peaks at the turnaround points
and then begins to taper off to a steady-state value.

Similar results were found for the sensitivity analyses
when the number of weights was changed for each target
waveform. Figure 17 shows the results of the sensitivity
occurs a little later for the weights. S̃n is similar for the two
parameters, but the time of greatest sensitivity occurs a
little later for the weights. This similarity of the two sen-
sitivity functions is reasonable if the misadjustment algo-
rithm of the adaptive filter from Eqs. 6 and 9 is recalled:

Figure 16. Semirelative sensitivity function of the predictor for
changes in the proportionality constant, ks, for a cubic waveform.
[From D. R. Harvey and A. T. Bahill, Development and sensi-
tivity analysis of adaptive predictor for human eye movement
model, Transaction of the Society for Computer Simulation, De-
cember 1985. © 1985 by Simulation Councils, Inc., San Diego, CA.
Reprinted by permission. (20).]

Figure 17. Semirelative sensitivity function of the predictor for
changes in the number of weights for a cubic waveform. [From D.
R. Harvey and A. T. Bahill, Development and sensitivity analysis
of adaptive predictor for human eye movement model, Transac-
tion of the Society for Computer Simulation, December 1985. ©
1985 by Simulation Councils, Inc., San Diego, CA. Reprinted by
permission. (20).]

This equation shows that a 5% change in either the pro-
portionality constant, ks , or the number of weights, n, will
change the misadjustment of the predictor in a similar
manner.

The other parameter changed for the predictor was the
prediction time, the desired time to be estimated. The S̃

curve for this case also had the same shape as the curve
for the number of weights and the proportionality constant,
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but its magnitude was smaller.
From these curves, the effect of the predictor can be de-

termined. Changing each parameter by 5% showed that all
of them exert their greatest influence right after acceler-
ation discontinuities. Therefore, the predictor’s influence
will be the greatest at those points.

The Effect of Parameter Changes on the Mean-Square
Error

Our semirelative sensitivity analysis gives a measure of
how changing a parameter affects the model, and it shows
when the parameter exerts its greatest influence. For our
second sensitivity analysis, we considered the effect on the
model’s performance of changing each parameter over a
range of values. Each parameter was given values above
and below the nominal values; the velocity MSE between
the model’s output and the target was computed for each
change. For the predictor, the filter’s mean-square error
(MSE) was computed between the velocity of the target
150 ms in the future and the velocity predicted by the adap-
tive predictor. The MSE were then plotted against the pa-
rameter values.

The Predictor’s Sensitivity to Changes in Parameters

The effect of changes in the proportionality constant on the
predictor was studied first. As the proportionality constant
in Fig. 18 became larger, the filter’s MSE became smaller.
According to the misadjustment algorithm, the larger the
value of ks , the larger the misadjustment. This appears to
disagree with this figure. However, the MSE for the figure
was taken during the first 12 s of the simulation; therefore,
the start-up transients are influencing the error. The larger
the value of ks , the faster the filter adapts; for smaller ks

the filter takes longer to converge, but does not converge to
a solution with smaller error. Therefore, in the figure, the
large MSE for a small ks results because the filter takes
longer to converge to the optimal solution. With the larger
ks values, the filter is converging rapidly and appears to
have a smaller error. If ks were increased even more, the
error would also begin to increase. When we made the fil-
ter’s task easier, by eliminating the start-up transient and
only studying the steady-state behavior, we found that the
filter’s MSE increased with ks as expected.

Our detailed analysis also showed a larger MSE for the
cubic waveform compared to the sinusoidal waveform. This
result is not unexpected since the cubic is a waveform that
is of higher order than the sine wave and because the mis-
adjustment is proportional to the expected value of the in-
put signal.

Referring to Fig. 19, the MSE of the predictor is shown
as function of the number of weights in the adaptive filter.
According to the misadjustment algorithm, as the number
of weights increases, so does the misadjustment of the filter.
The curves here show the filter’s error decreasing until 15
weights and then rising slightly before falling off after 40
weights. Because the adaptive filters use a tapped delay-
line input signal, as the number of weights is increased,
the input signals for the adaptive and slave filters begin
to overlap. This improves the predictor’s performance be-
cause the statistics of the two input signals are the same

Figure 18. The MSE of the predictor as a function of changes in
the proportionality constant. [From D. R. Harvey and A. T. Bahill,
Development and sensitivity analysis of adaptive predictor for hu-
man eye movement model,Transaction of the Society for Computer
Simulation, December 1985. © 1985 by Simulation Councils, Inc.,
San Diego, CA. Reprinted by permission. (20).]

Figure 19. The MSE of the predictor as a function of changes in
the number of weights for a cubic waveform. [From D. R. Harvey
and A. T. Bahill, Development and sensitivity analysis of adap-
tive predictor for human eye movement model, Transaction of the
Society for Computer Simulation, December 1985. © 1985 by Sim-
ulation Councils, Inc., San Diego, CA. Reprinted by permission.
(20).]

since the input signals are the same.
The increase in error between 15 and 40 weights shows

the rise in error predicted by the misadjustment algorithm.
However, after 40 weights the statistics of the input signals
for the two filters begin to get close enough that the error
drops off. The input signals for the two filters begin over-
lapping after 30 weights, which is approximately where the
curves peak.

The effect of changing the prediction time and the sig-
nal’s frequency were also studied. Figure 20 shows the pre-
dictor’s error as a function of prediction time. The error
appears to be a linear function of the prediction time. The
further into the future that is to be predicted, the worse the
predictor does. We also computed that for changes in fre-
quency, the faster the target moves the poorer the predictor
does.
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Figure 20. The change in the MSE of the predictor as the predic-
tion time is changed. [From D. R. Harvey and A. T. Bahill, Develop-
ment and sensitivity analysis of adaptive predictor for human eye
movement model, Transaction of the Society for Computer Simu-
lation, December 1985. © 1985 by Simulation Councils, Inc., San
Diego, CA. Reprinted by permission. (20).]

Summarizing, the predictor’s performance is poorer as
the proportionality constant is increased, although the er-
ror is a function of the time when the measurements were
taken. For instance, in this study the start-up transients
have not died down so the reverse statement appears true.
For the weights, as the number of weights increased, the
error also increased. The exception, seen in this work, oc-
curs when a tapped delay-line input signal is used and the
statistics of the input signals to the adaptive and slave
filters are similar. The error of the predictor increases as
the prediction time increases and as the input signal’s fre-
quency increases.

Discussion of Model and Least-Mean-Square Predictor

To create a model, we first determine the form and then de-
rive parameter values. When possible we use physiological
data to derive these values. A sensitivity analysis shows
which parameters are the most and the least important so
we can focus our efforts appropriately. In one of our final
modeling stages we run a function minimization routine to
adjust parameter values so that we get the least-squared
error between the human and the model outputs.

Our model shown in Fig. 10 approximates the human
smooth-pursuit system. Similarly, our simulation is only
an approximation of the model in Fig. 10. For example, the
model of Fig. 10 should be stable for any gain up to 2.3.
But our simulation started to oscillate at 1.8. We found
that we were getting 5◦ to 10◦ of artificial phase shift from
the differentiators, the integrators, and even the summers.
A smaller simulation step size would have obviously solved
the problem; however, just being aware of the problem was
also sufficient.

Our LMS predictor worked well except when disconti-
nuities in the target waveform were present. For any de-
sired accuracy, trade-offs could be made between the pre-
dicted gain and the number of weights. When this predic-
tor was incorporated into our full eye movement model,
the model was able to overcome its 150 ms delay and track

Figure 21. Position as a function of time for the TSAC model
tracking a target with only the smooth-pursuit branch (top),
smooth-pursuit and saccadic branches (middle), and all three
branches turned on (bottom). Only the bottom trace resembles
tracking of a normal human. Target movement was ±5◦; time is
in seconds. [From A. T. Bahill and J. D. McDonald, Model emu-
lates human smooth pursuit system producing zero-latency target
tracking, Biol. Cybern., 48: 218, 1983 (19).]

targets with no latency, just like the human.
For optimal performance, 150 weights were used. Be-

cause the model gets a new target position every 5 ms, this
means it uses the previous 750 ms of data for each calcu-
lation. We are not sure that the human uses this large a
data window. Therefore, we also ran the model with only
15 weights. Even with this reduced number of weights, the
model still performed as well as the human.

VALIDATE THE MODEL

The model tracks targets just as humans do. But in ad-
dition, we can do things with the model that we cannot
do with humans. In Fig. 21 the top trace shows the model
tracking with only the smooth-pursuit branch turned on,
that is the saccadic branch and the adaptive predictor were
turned off. The middle trace shows the model tracking with
smooth pursuit and saccades only. Finally, the bottom trace
shows the model tracking with smooth-pursuit saccades
and the adaptive predictor. Only the bottom trace matches
the tracking of normal humans.

Overcoming a Time Delay

To overcome a time delay and produce zero-latency track-
ing, you must (a) predict future target positions and (b)
compensate for system dynamics, shown in Fig. 10. The
latter means that you must have a model of the system
that is updated when the system is changed by exercise,
fatigue, or temperature variations.

INVESTIGATE ALTERNATIVE MODELS

We have just shown the development of the LMS adaptive
predictor. It worked well, but we also compared it to al-
ternative predictors. In our models we used the following
predictors: (a) difference equations, for example, r(n + 1)
= Ar(n) + Br(n − 1), (b) menu selection, (c) LMS adaptive
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filters, (d) recursive least-square (RLS) filters, (e) Kalman
filters, (f) adaptive lattice filters, and (g) a recursive least-
square filter in conjunction with menu selection.

Difference equations were the simplest and least accu-
rate. In the menu selection technique, the system has a
menu of waveforms to choose from. In our simple models,
we allowed sinusoidal, parabolic, cubic, and pseudorandom
waveforms. The model then tracked the target and tried to
identify the frequency, amplitude, and target waveform. It
then used an equation for that waveform to help predict
target motion. The seventh technique used a RLS filter
to identify the waveform and then used equations off the
menu to track the target. The other four techniques are
typical filters described in digital signal processing litera-
ture.

When we first searched for literature on prediction we
found very little. Then we realized that any digital filter
could also be used for prediction. In fact, if you can either
model a system, identify a system, filter a signal, or predict
a signal, then you can do the other three operations with no
additional effort. All of our predictors allowed zero-latency
tracking, just like the human. But, as will be discussed
later, some matched other aspects of human behavior bet-
ter than others.

The principle of Ockham’s razor (48) states that if
two models are equal in all respects except complexity,
then the simpler model is the better one (see also pe-
spmcl.vub.ac.be/OccamRaz.html). This is one reason why
we like the menu selection predictors. They are simpler
than the digital filters, which require complex matrix ma-
nipulation. Such calculations are fine for serial processing
digital computers, but are not likely to be used by parallel
processing analog computers such as the brain. This is one
of the reasons that artificial neural networks are becoming
so popular among physiological systems modelers (11).

EMULATE SOMETHING NOT USED IN THE MODEL’S
DESIGN

A powerful technique for validating a model is to use it
to simulate something that was unknown when the model
was developed. Figure 22 shows some human tracking was
that was noted to be unusual when the data were collected.
The target position was a sinusoidal waveform, but the eye
velocity waveform looks like that of a parabola. This behav-
ior had not been seen before, and no explanation was ap-
parent. But then we ran the menu selection model forcing it
to choose the wrong waveform. Figure 23 shows the model
tracking a sinusoidal waveform using a wrong guess of the
parabolic waveform. These waveforms look very much like
the human tracking of Fig. 22. This is another reason that
we favor the menu selection predictors.

The Science of Baseball

To help validate the model, we used it to simulate some-
thing that was not used in the design of the model. Ted
Williams, arguably the best hitter in the history of base-
ball, has described hitting a baseball as the most difficult
single act in all of sports (49). The speed of the ball ap-
proaches 100 mph (45 m/s) (baseball is a game of inches,

Figure 22. Human tracking of a sinusoidal target waveform. The
top trace shows target position (dashed) and eye position (solid),
the middle trace shows target velocity, and the bottom trace shows
eye velocity. The eye velocity waveform does not match the target
velocity waveform. [From A. T. Bahill and J. D. McDonald, Model
emulates human smooth pursuit system producing zero-latency
target tracking, Biol. Cybern., 48: 220, 1983 (19).]

Figure 23. TSAC model with menu selection predictor tracking a
sinusoidal target with an incorrect (parabolic) adaptive signal.The
top trace shows target position (dashed) and model eye position
(solid), the middle trace shows target velocity, and the bottom trace
shows model eye velocity. [From A. T. Bahill and J. D. McDonald,
Model emulates human smooth pursuit system producing zero-
latency target tracking, Biol. Cybern., 48: 219, 1983 (19).]

so the SI units come second in this section), producing an-
gular velocities greater than 500◦/s as the ball passes the
batter. Humans cannot track targets moving faster than
70◦/s (50) or perhaps 100◦/s (51); yet, professional batters
manage to hit the ball with force consistently and are able
to “get a piece of the ball” on an average of more than 80% of
their batting attempts. In this section we investigate how
they do this by examining a professional baseball player
tracking a “pitched ball,” and we demonstrate the superi-
ority of his eye movements and head–eye coordination to
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those of our other subjects.
Why did we want to study a batter tracking a baseball?

We wanted to learn more about how the brain controls
movement, and we therefore were searching for a situation
in which a human was performing optimally. This condi-
tion is fulfilled by a professional baseball player tracking
a pitched baseball.

In addition to the four basic eye movement systems, the
batter can also use the head-movement system. Does he?
Earlier studies by Bahill and LaRitz (41) have suggested
several strategies for tracking a baseball: Track the ball
with head movements and smooth-pursuit eye movements
and fall behind in the last 5 ft (1.5 m) of flight; track with
eyes only, or with head only, and fall behind in the last 5
ft (1.5 m); track the ball over the first part of its trajectory
with smooth-pursuit eye movements, make a saccadic eye
movement to a predicted point ahead of the ball, continue
to follow it with peripheral vision, and finally, at the end of
the ball’s flight, resume smooth-pursuit tracking with the
ball’s image on the fovea, the small area in the center of the
retina that has fine acuity. We will examine each of these
strategies.

The Simulated Fastball. To discover how well a batter
tracked the ball, we had to be able to determine the po-
sition of the ball at all times, and thus we could not use a
real pitcher or a throwing machine. Instead, we simulated
the trajectory of a pitched baseball. We threaded a fishing
line through a white plastic ball and stretched this line be-
tween two supports, which were set 80 ft (24 m) apart in
order to accommodate the 60.5 ft (18 m) between pitcher
and batter; a string was attached to the ball and wrapped
around a pulley attached to a motor, so that when the motor
was turned on, the string pulled the ball down the line at
speeds between 60 mph (27 m/s) and 100 mph (45 m/s). The
ball crossed the plate 2.5 ft (0.8 m) away from the subject’s
shoulders, simulating a high-and-outside fastball thrown
by a left-handed pitcher to a right-handed batter. This, like
all our constraints, was designed to give our subjects the
best possible chance of keeping their eyes on the ball. A low
curve ball thrown by a right-handed pitcher would have
been much harder to track.

By controlling the speed of the motor and counting the
rotations of the shaft, we could compute the position of the
ball at every instant of time, and thus compare the position
of the ball to the position of the batter’s gaze. We define both
positions in terms of the horizontal angle of the ball: the
angle between the line of sight pointing at the ball and a
line perpendicular to the subject’s body (see Fig. 24). This
angle is slightly more than 0◦ when the pitcher releases
the ball, and it increases to 90◦ when the ball crosses the
plate.

Tracking of a Professional Baseball Player. Figure 25
shows the tracking of a professional ballplayer Brian
Harper, then a member of the Pittsburgh Pirates. He
tracked the ball using head and eye movements, keeping
his eye on the ball longer than our other subjects did. Our
best-tracking student fell behind when the ball was 9 ft
(2.7 m) in front of the plate. This professional baseball
player was able to keep his position error below 2◦ until

Figure 24. The horizontal angle of the ball, θ, as defined in this
study, ranges from near 0 degrees when the pitcher releases the
ball to 90 degrees when the ball crosses the plate. [FromA.T. Bahill
and T. LaRitz, Why can’t batters keep their eyes on the ball, Am.
Sci., 72: 250, 1984 (41).]

the ball was 5.5 ft (1.7 m) from the plate. The peak veloc-
ity of his smooth-pursuit tracking was 120◦/s; at this point,
his head velocity was 30◦/s, thus producing a gaze veloc-
ity of 150◦/s. In three simulated pitches to the professional
baseball player, at speeds of 60 mph (27 m/s), 67 mph (30
m/s), and 70 mph (31 m/s) the overall tracking patterns
were the same; his maximum smooth-pursuit eye veloci-
ties were 120, 130, 120◦/s (52).

The gaze graph also takes into account the side-to-side
and front-to-back movements of the head; such transla-
tions of the head can produce changes in the gaze angle
(53). The data show that the contribution of the transla-
tion angle was slight until the ball was almost over the
plate.

The professional baseball player had faster smooth-
pursuit eye movements than our other subjects. In fact,
he had faster smooth-pursuit eye movements than any re-
ported in the literature. He also had better head–eye coor-
dination, tracking the ball with equal-sized head and eye
movements, whereas our other subjects usually had dis-
proportionately large head or eye movements.

Keep Your Eye on the Ball. Although the professional
baseball player was better than the college students at
tracking the simulated fastball, it is clear from our simu-
lations that batters, even professional batters, cannot keep
their eyes on the ball. Our professional baseball player was
able to track the ball until it was 5.5 ft (1.7 m) in front of
the plate. This could hardly be improved on; we hypoth-
esize that the best imaginable athlete could not track the
ball closer than 5 ft (1.5 m) from the plate, at which point it
would be moving three times faster than the fastest human
could track. This finding runs contrary to one of the most
often repeated axioms of batting instructors—“Keep your
eye on the ball”—and makes it difficult to account for the
widely reported claim that Ted Williams could sometimes
see the ball hit his bat.

If Ted Williams were indeed able to do this, it could only
be possible if he made an anticipatory saccade that put his
eye ahead of the ball and then let the ball catch up to his
eye. This was the strategy employed by the subject of Fig.
26; this batter observed the ball over the first half of its
trajectory, predicted where it would be when it crossed the
plate, and then made an anticipatory saccade that put his
eye ahead of the ball. Using this strategy, the batter could
see the ball hit the bat.
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Figure 25. The success of a professional baseball player in track-
ing a simulated 60-mph (27 m/sec) pitch is shown in these graphs.
The thin line in the top graph represents the horizontal angle of
the ball, θ, as it would be seen by a right-handed batter facing a
left-handed pitcher; the thick line represents the actual horizontal
angle of gaze of the subject trying to track this ball. This gaze an-
gle curve is generated by combining the horizontal head angle, the
horizontal eye angle, and the head-translation angle, which repre-
sents the eye movement necessary to compensate for side-to-side
and front-to-back movement of the head. Movements to the right
appear as upward deflections. [From A. T. Bahill and T. LaRitz,
Why can’t batters keep their eyes on the ball, Am. Sci., 72: 251,
1984 (41).]

But why would a batter want to see the ball hit the bat?
Because of his slow reaction time, he could not use the in-
formation gained in the last portion of the ball’s flight to
alter the course of the bat. We suggest that he uses the
information to discover the ball’s actual trajectory; that is,
he uses it to learn how to predict the ball’s location when it
crosses the plate—how to be a better hitter in the future.
The anticipatory saccade must be made before the end of
the trajectory, because saccadic suppression prevents us
from seeing during saccades (54, 55). This suppression of
vision extends about 20 msec after the saccade. So if you
want to see the ball hit the bat, you must make your antic-

Figure 26. In order to see the ball hit his bat, this subject made
an anticipatory saccade, indicated by the jump in the gaze angle
(thick line) that put his eye ahead of the ball (thin line); as a result,
the ball was on the fovea at the point of contact. The subject did
not move his head until after the ball crossed the plate. [From A.
T. Bahill and T. LaRitz, Why can’t batters keep their eyes on the
ball, Am. Sci., 72: 251, 1984 (41).]

ipatory saccade early in the trajectory.

Head Movements and the Vestibulo-Ocular System. The
vestibulo-ocular system is little used when tracking a base-
ball. However, in monitoring the eyes of our professional
ball player, we did detect a small vestibulo-ocular move-
ment to the left during the early part of the ball’s trajectory,
as the head was moving to the right; this appears as the
slight dip between 0.5 s and 0.7 s in the eye position trace in
Fig. 25. At this point, the head position was changing faster
than the angular position of the ball, and the vestibulo-
ocular eye movement compensated for the premature head
movement. Why would the batter want to start his head
movement early? The answer is that the head is heavier
than the eye and consequently takes longer to get moving;
therefore, in the beginning of the movement, as the head
starts turning to the right ahead of the ball, the vestibular
system in the inner ear signals the ocular system to make
a compensating eye movement, thus giving his head a head
start.

However, this vestibulo-ocular compensation must soon
stop. In the end, the eye and head must both be moving
to the right, and the batter must therefore suppress his
vestibulo-ocular reflex so that the tracking head movement
does not produce compensating eye movements that would
take his eye off the ball. The professional baseball player
was very good at suppressing his vestibulo-ocular reflex.
Some of our student subjects did not make head move-
ments until after the ball crossed the plate; others moved
their heads very little. Perhaps they did this because they
could not suppress the vestibulo-ocular reflex very well.

The fact that our professional baseball player used his
head to help track the ball seems to violate another of-
ten repeated batting axiom, “Don’t move your head.” The
professional made small tracking head movements in the
range of 10◦ to 20◦. He was able to suppress the vestibulo-
ocular reflex for these movements, which were probably
small enough to go unnoticed by a coach. However, body
movements could produce head movements of 90◦ or more;
it may be difficult to suppress the vestibulo-ocular reflex
for these large body-induced movements, which along with
correlated poor performance would be noticed by a coach.
Therefore, we think the axiom should be protracted: “Don’t
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Figure 27. The model trying to track a baseball with the predic-
tor turned off. The top trace is the angular position of the ball (dot-
ted) and gaze (solid) and the bottom trace is velocity. The record is
1 s long. The model “kept its eye on the ball” until the ball was 9
ft (2.7 m) in front of the plate. This tracking resembles that of our
best-tracking college students.

let your body move your head, but it’s okay to move your
head a little in order to track the ball.”

Batters do not use vergence eye movements. This is rea-
sonable, since vergence eye movements are not needed to
track the ball between 60 ft (18 m) and 6 ft (1.8 m) from
the plate and since there is not sufficient time to make such
movements between 6 ft (1.8 m) and the point of contact;
indeed, our data contained no vergence eye movements. So
any claim that a batter actually saw the ball hit the bat
must be based on monocular vision; only the dominant eye
tracks the ball.

Strategies. Sometimes our subjects used the strategy of
tracking with head and eyes and falling behind in the last 5
ft (1.5 m), and sometimes they used the strategy of tracking
with head and eyes but also using an anticipatory saccade.
It has been speculated that baseball players might use the
latter strategy when they are learning the trajectory of a
new pitch and use the former strategy when hitting home
runs.

The professional baseball player tracked our simulated
pitch better than any other subjects did. This superior
tracking was due to (a) his use of both head and eye move-
ments, (b) real fast smooth-pursuit eye movements, and (c)
giving his head a head start.

Modeling Baseball Players. The eye movements of base-
ball players were not used in the development of the TSAC
model. So if the model could simulate such eye movements,
it would be a strong validation of the model. First, the lim-
iter in the TSAC model was increased from its nominal
value of 70◦/s to the 130◦/s that the professional baseball
player exhibited. Figure 27 shows the model with the pre-
dictor turned off trying to track a baseball. It fell behind
when the ball was nine feet from the plate. Figure 28 shows
the model with the predictor turned on tracking a baseball.
It was able to track the ball until the ball was 5.5 feet from
the plate. The predictor makes a big difference. With the
predictor, the model does as well as the professional base-
ball player whose data are shown in Fig. 25. The ball and
gaze traces of Fig. 25 look very much like those of Fig. 28.

Models Are Simplifications

Remember that a model is a simplified representation of
some particular aspect of a real-world system. The real

Figure 28. The model tracking a baseball with the predictor
turned on. The model “kept its eye on the ball” until the ball was
5.5 ft (1.7 m) in front of the plate. This tracking resembles that of
our professional baseball player.

baseball moves in three dimensions. The right-hand rules
explain the spin-induced deflection of balls (57)in this three
dimensional space. In the studies reported in this chapter,
we controlled the movement of the ball so that vertical eye
movements were not required to track the ball.

What Was the Purpose of this Section on Baseball?

These data were not used in the development of the model.
Therefore, trying to make the model match these human
data is a test of the model. The model was able do things
it was not designed to do. Of course, some things had to
be modified. For example, the literature on smooth pur-
suit eye movements says that humans cannot track tar-
gets moving faster than 70 degrees/sec. Yet the profes-
sional baseball player of Figure 25had smooth pursuit eye
movements up to 130 deg/sec. So the Limiter in the model
should be adjustable for different levels of performance.
Thus the model’s architecture did not have to change, it
only required parameter tuning. The model’s validation is
also enhanced by the models realistic interactions with the
saccadic and vestibulo-ocular systems as shown in Figures
24 to 28.

SUMMARY

The data presented in this section prompt the following
summary about eye movements and baseball. You can’t
“keep your eye on the ball.” Our best students could only
track the ball until it was 9 feet in front of the plate. At
that point, its annular velocity was so high that they fell
behind. However, professional baseball players have su-
perior eye movements. They have better coordination of
head and eye movements. They have faster smooth pur-
suit eye movements than any reported in the oculomotor
literature. And they have better suppression of vestibulo-
ocular eye movements. Because of these superiorities, the
professional baseball player of this study was able to keep
his eye on the ball until it was 5.5 feet in front of the plate.
At this point, its annular velocity was so great that no one
could track it farther. However, many people have reported
that they have seen the ball hit their bat. This is possible
using a different strategy: track the ball over the first half
of its flight, and then make a saccade that takes the eye
off of the ball and aims the eye at the future site of the
bat-ball collision. With this strategy, you can see the ball
hit the bat.
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The data presented in this section prompt the follow-
ing summary about modeling human eye movements. Hu-
mans can overcome the time delays of the eye movement
systems and track predictable visual targets with no la-
tency or phase lag. To do the same, the TSAC model had to
compensate for system dynamics and predict target veloc-
ity. Therefore, we think humans must use mental models of
their eye movement systems to help compensate for system
dynamics. These mental models must be adaptive, so that
they can change due to muscular activity, fatigue, temper-
ature, and so on. One good way to predict target velocity is
menu selection. The baseball player’s menu contains fast-
ball, curveball, and slider.
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