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theta rhythms in rodents serve as a gating mechanism in the
information transfer between the brain structures (2).

In humans, alpha rhythms occur during wakefulness and
are most pronounced in the posterior regions of the head.
They are best observed when the eyes are closed and the sub-ELECTROENCEPHALOGRAPHY
ject is in a relaxed state. They are blocked or attenuated by
attention (especially visual) and by mental effort (3).An electroencephalogram (EEG) is a record of electric signals

Mu rhythms have a frequency band similar to alpha, butgenerated by the cooperative action of brain cells or, more
their topography and physiological significance are different.precisely, the time course of extracellular field potentials gen-
They are related to the function of the motor cortex and areerated by synchronous action of brain cells. The name is de-
prevalent in the central part of the head. Mu rhythms arerived from the Greek words enkephalos (brain) and graphein
blocked by motor functions (2,3).(to write). An electroencephalogram can be obtained by means

Beta activity is characteristic for states of increased alert-of electrodes placed on the scalp or directly on or in the cortex.
ness and focused attention, as was shown in several animalIn the latter case it is sometimes called an electrocorticogram
and human studies. It has been observed at the onset of vol-(ECoG) or subdural EEG (SEEG). An EEG recorded in the
untary movements and is present during the processing ofabsence of external stimuli is called a spontaneous EEG; an
sensory information (3).EEG generated as a response to an external stimulus is called

In general, it can be concluded that the slowest corticalan event-related potential (ERP). The amplitude of an EEG
rhythms are related to an idle brain and the fastest are formeasured with scalp electrodes is 50 �V to 200 �V.
information processing. The EEG is observed in all mammals,In the EEG the following rhythms have been distinguished
the characteristics of primates’ EEGs being closest to the hu-(1): delta (0.5 Hz to 4 Hz), theta 4 Hz to 8 Hz), alpha (8 Hz to
man. Cat, dog, and rodent EEGs also resemble human EEGs,13 Hz), and beta (above 13 Hz, usually 14 Hz to 40 Hz) (Fig.
though their spectral content is somewhat different. In lower1). The term gamma rhythm for 35 Hz to 45 Hz activity is
vertebrates EEG-like activity is also observed, but it lacks thenow seldom used. The contribution of different rhythms to the
rhythmical behavior found in hgiher-vertebrate recordings.EEG depends on the age and behavioral state of the subject,

The EEG is affected by central nervous system (CNS) dis-mainly the level of alertness. There are also considerable in-
orders, including epilepsy, craniocerebral traumas, tumors,tersubject differences in EEG characteristics. The EEG pat-
cerebral inflammatory processes, degenerative and metabolictern changes in different neuropathological states and is also
CNS disorders, cerebral anoxia, psychiatric disorders, cere-influenced by metabolic disorders (1).
bral palsy, migraine, dementia, and pharmacological sub-The delta rhythm is a predominant feature in EEGs re-
stances.corded during deep sleep. During deep sleep, delta waves

have usually large amplitudes (75 �V to 200 �V peak-to-peak)
and show strong coherence with signals acquired in different

HISTORICAL REVIEW OF ELECTROENCEPHALOGRAPHYlocations on the scalp.
Theta rhythms rarely occur in humans and primates, ex-

The discovery by Luigi Galvani (1837 to 1882) of intrinsiccept during infancy and childhood. In humans, activity in the
electrical transmission in the peripheral and central nervoustheta band is mostly attributed to the slowing of alpha
system and the discovery by Alexandro Volta (1745 to 1827)rhythms due to pathology. However, theta rhythms are pre-
in generating and storing electricity were historical mile-dominant in rodents; in their case the frequency range is
stones in neurophysiology and EEG research (34). Later, thebroader (4 Hz to 12 Hz) and the waves have a high amplitude

and characteristic sawtooth shape. It is hypothesized that introduction of the first vacuum-tube amplifier by Alexander
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Figure 1. Electrodes (4,5).
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Forbes (1882 to 1965) into neurophysiological research had The synapses of the neuron are in contact with the mem-
branes of the other neurons. When the action potential ar-significant impact on EEG research (34).

Richard Caton (1842 to 1926) is regarded as the first scien- rives at the synapse, it secretes a chemical substance, called
a mediator or transmitter, which causes a change in the per-tist to investigate brain potentials. He worked on the exposed

brains of cats and rabbits, measuring electric currents by meability of the postsynaptic membrane to the ions. As a re-
sult, ions traverse the membrane, and a difference in poten-means of a galvanometer, a beam of light reflected from its

mirror being projected onto a scale placed on a nearby wall tial (postsynaptic potentials, or PCPs) across the membrane
is created. When the negativity inside the neuron is decreased(4). The results showed that ‘‘feeble currents of varying direc-

tions pass through the multiplier when the electrodes are (e.g., by the influx of Na�), the possibility of firing is
higher—an excitatory postsynaptic potential (EPSP) is gener-placed at two points of the external surface, or one electrode

on the gray matter, and one on the surface of skull.’’ This first ated. An inhibitory postsynaptic potential (IPSP) is created
when the negativity inside the neuron is increased (by theobservation can be regarded as a discovery of electroencepha-

lographic activity. The second concerns the steady dc po- flux of Cl� ions) and the neuron becomes hyperpolarized. Un-
like the action potential, the PSPs are graded potentials: theirtential.

Adolf Beck (1863 to 1939) also investigated spontaneous amplitudes are proportional to the amount of secreted media-
tor, which depends on the excitation of the input neuron.activity of the brains of rabbits and dogs. He was the first to

observe the rhythmical oscillations of brain electrical activity Postsynaptic potentials typically have amplitudes of 5 mV to
10 mV and time spans of 10 ms to 50 ms. In order to obtain(4). He also observed the disappearance of these oscillations

when the eyes were stimulated with light, the first discovery suprathreshold excitation, the amplitudes of many postsynap-
tic potentials have to be superimposed in the soma of a neu-of the so-called alpha blocking. Later, Napolean Cybulski

(1854 to 1919) presented the electroencephalogram in a ron. A neuron can have very abundant arborizations, making
up to 10,000 synaptic junctions with other neurons.graphical form by applying a galvanometer with a photo-

graphic attachment, and was the first to observe epileptic The electrical activity of neurons generates currents along
the cell membrane in the intra- and extracellular spaces, pro-EEG activity elicited by an electric stimulation in a dog (4).

Progress in recording techniques, namely the application ducing an electric field conforming approximately to that of a
dipole. Microscopic observation of this electric field requiresof a double-coil galvanometer, made possible the recording of

human EEG activity. Hans Berger (1873 to 1941) was the the synchronization of electrical activity of a large number
of parallelly oriented dipoles (6). Indeed, parallelly orientedfirst to investigate human EEG activity during sleep and

changes in EEG patterns that occur with different states of pyramidal cells of the cortex are to a large degree synchro-
nized by virtue of common feeding by thalamocortical connec-consciousness (5). His works on EEG of patients with local-

ized and diffused brain disorders opened the way to clinical tions (2). The condition of synchrony is fullfilled by the PSPs,
which are relatively long in duration. The contribution fromelectroencephalography, which became a diagnostic aid in

hospitals after the first World War. action potentials to the electric field measured extracranially
is negligible.

The problem of the origins of EEG rhythmical activity has
been approached by electrophysiological studies on brainTHE NEUROPHYSIOLOGICAL BASIS OF THE EEG
nerve cells and by the modeling of electrical activity of the
neural populations (2,3). The question arises whether theIn the brain there are two main classes of cells: nervous cells,

called neurons, and glial cells. In both of them the resting rhythms are caused by single cells with pacemaker properties
or by oscillating neural networks. It has been shown thatpotential is approximately �80 mV, the inside of the cells be-

ing negative. The difference of potential across a cell mem- some thalamic neurons display oscillatory behavior, even in
the absence of synaptic input (7). There is evidence that thebrane comes from the diffeences in concentration of the cat-

ions K�, Na�, the anion Cl�, and large organic anions. Ca�� intrinsic oscillatory properties of some neurons contribute to
the shaping of the rhythmic behavior of networks to whichions are less abundant, but they have an important regula-

tory role. The potential difference is maintained by the active they belong. However, these properties may not be sufficient
to account for the network’s rhythmic behavior (2). It seemstransport of K� to the inside of the cell and Na� to the outside;

the energy for this transport is supplied through metabolic that cooperative properties of networks consisting of excit-
atory and inhibitory neurons connected by feedback loopsprocesses.

Neurons have the ability to generate action potentials play the crucial role in establishing EEG rhythms. The fre-
quency of oscillation depends on the intrinsic membrane prop-when the electrical excitation of the membrane exceeds a

threshold. The permeability for Na� ions increases rapidly, erties, on the membrane potential of the individual neurons,
and on the strength of the synaptic interactions.and influx of Na� ions in the cell causes a rapid increase in

the potential, but subsequent increase of membrane perme- The role of EEG oscillations in information processing has
not been fully recognized. However, there is strong evidenceability to K� ions leads to their outflow from the cell. Since

the permeability for Na� ions decreases after about 2 ms, the that coherent oscillations in the beta range in a population of
neurons might be the basic mechanism in feature binding ofinside of the cell again becomes negative with respect to sur-

rounding medium. The negativity is even greater than before the visual system (8). Indeed, it seems that this observation
is not limited to the visual system and that synchronized os-the neuron became hyperpolarized. By this the action poten-

tial is created. The action potentials obey the ‘‘all or nothing’’ cillatory activity provides an efficient way to switch the sys-
tem between different behavior states and to cause a qualita-firing rule, such that for subthreshold excitations action po-

tentials are not generated, and for suprathreshold stimuli a tive transition between different modes of information
processing. In this way, neuronal groups with a similar dy-pulse of a constant amplitude is generated.
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namic functional state can be formed, subserving perceptual ERPs. Prior to sampling, low-pass antialiasing filters are
used; high-pass filters are applied in order to eliminate arti-processes. It has also been postulated that the role of synchro-

nized oscillatory EEG activity in the alpha and theta range is facts of the lowest frequencies.
to serve as a gating mechanism for the flow of the information
through the network. Bursts of oscillatory activity may consti- SLEEP EEG
tute a mechanism by which the brain can regulate changes of
state in selected neuronal networks and change the route of A sleep EEG displays a characteristic alternating pattern.
information (2). The classical description of sleep involves division into

stages (12): stage 1 (drowsiness), stage 2 (light sleep), stage 3
(deep sleep), stage 4 (very deep sleep), and REM (dreaming

RECORDING STANDARDS period accompanied by rapid eye movements.). A polysomno-
gram includes not only an EEG, but also an electrooculogram

The EEG is usually registered by means of electrodes placed (EOG), electromyogram (muscular activity), and respiration.
on the scalp. They can be secured by an adhesive such as It may also include measurement of blood flow, an electrocar-
collodion or embedded in a special snug cap. The resistance diogram (ECG), and the oxygen level in the blood. The EOG
of the connection should be less than 5 k�, so the recording is recorded by means of electrodes placed at the canthi of the
site is first cleaned and diluted alcohol, and conductive elec- eyes. As a result of the corneoretinal standing potential (the
trode paste applied to the electrode cup. cornea is positive relative to the fundus), the eye movements

Knowledge of the exact positions of electrodes is very im- produce changes in the potential between electrodes.
portant for both interpretation of a single recording and com- The EOG and EMG help to differentiate REM from the
parison of results; hence the need for standardization. The awake state: while these sleep states have similar spectral
traditional 10–20 electrode system (9) fixes the positions of characteristics, in REM eye movements are more pronounced,
19 EEG electrodes (and two electrodes placed on earlobes: and there is a loss of muscular activity. The sequence of sleep
A1, A2) in relation to specific anatomic landmarks, such that stages is usually illustrated in the form of a hypnogram (Fig.
10% to 20% of the distance between them is used as the elec- 2). The recognition of states is based on the contribution of
trode interval [Fig. 1(a–c)]. The first part of derivation’s name the different rhythms and the occurrence of characteristic sig-
indexes the array’s row from the front of the head: Fp, F, C, nal structures absent in the waking EEG, namely, sleep spin-
P, and O. The second part is formed from numbers, even on dles, vertex waves, and K complexes. Sleep spindles are
the left and odd on the right side, or z or 0 for the center. rhythmic waves of frequency 11 Hz to 15 Hz characterized by
Progress in topographic representation of EEG recordings de- progressively increasing and then gradually decreasing am-
mands a larger number of electrodes. Electrode sites halfway plitude. A vertex wave is a compound potential: a small spike
between those defined by standard 10–20 system have been discharge of positive polarity preceding a large spike, which
introduced in the extended 10–20 system (10). is followed by a negative wave of latency around 100 ms and

The EEG is a measure of potential difference; in a referen- often another small positive spike. Vertex waves are a kind
tial (or unipolar) setup it is measured relative to the same of auditory evoked response (AER), as can be judged from
electrode for all derivations. This reference electrode is usu- their shape and place of occurrence. The K complex consists
ally placed on an earlobe, nose, mastoid, chin, neck, or scalp of an initial sharp component, followed by a slow component
center. There is no universal consensus regarding its best lo- that fuses with a superimposed fast component. The sharp
cation. In the bipolar setup (mortgage) each channel registers component may be biphasic or multiphasic. Sometimes the K
the potential difference between two particular scalp elec- complex is described only as having slow and fast compo-
trodes. Data recorded in a referential setup can be trans- nents; the initiating sharp component is equated with a ver-
formed into any bipolar montage, for the sake of display or tex wave (1).
futher processing. The average reference montage can be ob- Sleep stages can be briefly characterized as follows:
tained by subtracting from each channel the average activity
from all the remaining derivations. The Hjorth transform ref- Stage 1. Decrease of alpha rhythm, appearance of mixed
erences each electrode to the four closest neighbors, which is frequencies in the 2 Hz to 7 Hz band of low amplitude,
an approximation of the Laplace transform (LT). The LT, cal- occasional vertex waves and slow rolling eye movements
culated as a second spatial derivative of the signal, represents

Stage 2. Spindles, vertex waves, K complexesthe scalp current density (11).
Stage 3. Preponderant slow rhythm, K complexes, someIn contrast with the open question of the reference, the

spindlesnecessity of artifact rejection is universally acknowledged.
Stage 4. Very slow rhythm of high amplitude, some K com-The main problem lies in the lack of a working definition for

plexesan EEG artifact—it can stem from muscle or heart activity
(EMG, ECG), eye movement (EOG), external electromagnetic REM. Decrease of amplitude, faster rhythms, rapid eye
fields, poor electrode contact, the subject’s movement an so movements, and decrease of muscular activity
on. Corresponding signals (EMG, EOG, ECG, and body move-
ments) registered simultaneously with EEG are helpful in the The evolution of slow wave activity and characteristic spin-

dles during overnight sleep is shown in Fig. 2.visual rejection of artifact-contaminated epochs.
An EEG is usually digitized by a 12 bit analog-to-digital It has been found recently that when the sleep becomes

deeper the sources that drive EEG activity move from theconverter (ADC) with the sampling frequency ranging from
100 Hz for spontaneous EEGs to several hundred hertz for posterior regions of the head (prevalent in the waking state

with eyes closed) to the centrofrontal regions (13). There is aERPs to several kilohertz for recording short-latency far-field
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Figure 2. Hypnogram, sleep spindles, vertex waves, and K complex.

tendency to perceive sleep as a continuous process, revealing The sleep pattern changes dramatically during matura-
tion. For newborn babies REM takes most of the sleep time,a microstructure which may be described in terms of ‘‘cyclic

alternating patterns.’’ They consist of a phase A of enhance- and in young children only REM and non-REM stages can
be distinguished.ment of electric activity and a subsequent phase B character-

ized by attenuation of EEG activity. Each phase lasts only Maturation changes in electrocortical activity of fetal ani-
mals also involve an increase of power in the higher frequencybetween 2 s and 60 s.

The sleep pattern changes greatly during childhood and bands, as was shown for fetal lambs by means of wavelet
transform (14). Increased correlation between EEG, respira-adolescence. In old age the contribution of stages 3 and 4 de-

creases markedly. The changes of the sleep pattern may be tory activity, and blood pressure was also found with increas-
ing age (15). However, morphine destroys these correlations.caused not only by a normal aging, but also by degenerative

diseases. An abnormal polysomnogram is often present in These observations indicate that maturation is connected
with increased CNS integration.sleep disorders and in some psychiatric disorders (e.g., de-

pression). Therefore, investigation of the sleep pattern is an Physiologically, the maturation process is connected with
the development of dendritic trees and myelination. Myelinimportant clinical tool.
layers produced by glial cells cover the axons of neurons and
act as an insulator of the electrically conductive cells. TheMATURATION OF THE EEG
propagation of electrical activity is faster and less energy-con-
suming in myelinated fibers.The maturation of the brain as evidenced by the EEG has its

peak at 30 years; then it stabilizes, forming a plateau, and
starts to decay. The rate of decay is correlated with mental EVENT-RELATED POTENTIALS
health.

The first continuous signal resembling an EEG can be seen ERPs are the stimulus-induced synchronization and enhance-
ment of spontaneous EEG activity (16). Among them, thein premature babies of conceptual age 32 weeks to 35 weeks.

EEG development in infancy and adolescence is characterized most clinically used are the evoked potentials (EPs), usually
defined as changes of EEG triggered by particular stimuli:by a shift of the EEG rhythm toward higher frequencies. In

newborns, slow delta rhythms predominate; then the basic visual (VEP), auditory (AEP), somatosensory (SEP). The basic
problem in the analysis of EPs is detecting them within thefrequency shifts toward theta at the age of 12 months. The

posterior slow activity characteristic of young children con- usually larger EEG activity. EPs’ amplitudes are one order of
magnitude smaller than that of the ongoing EEG (or evenstantly diminishes during adolescence. Alpha rhythm appears

at the age of 10 years (1). In young adults (21 years to 30 less). Averaging is a common technique in EP analysis; it
makes possible the reduction of background EEG noise on theyears) the EEG still shows mild signs of immaturity, includ-

ing contributions of 1.5 Hz to 3 Hz and 4 Hz to 7 Hz waves assumption that the background noise is a random process
but the EP is deterministic.during the waking state, normally not seen past the age of 30.
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The EP pattern depends on the nature of the stimulation, few seconds, is accompanied by jerking or spasms, as
well as by a loss of consciousness.the placement of the recording electrode, and the actual state

of the brain. Visual EPs are best seen in the posterior regions 2. Generalized: the EEG patterns are bilaterally symmet-
of the head, auditory potentials at the vertex, and somatosen- rical and roughly synchronous; the epileptic activity is
sory EPs at the brain hemisphere contralateral to the stimu- spread over wide areas of both hemispheres simultane-
lus (e.g., stimulation of the right hand will give rise to an EP ously from the onset of attack.
in the left hemisphere).

3. Unclassifiable: different from types 1 and 2.
EPs are usually described in terms of the amplitudes and

latencies of their characteristic waves. The components oc-
In epileptic discharges the membrane potential of corticalcurring at different times are different in nature; they are

and deeper neurons changes in a dramatic way, which leadscalled early and late EPs. The early EPs of latency � 10 ms
to the massive bursts of action potentials and large fluctua-to 12 ms (sometimes called ‘‘far fields’’) are connected with
tions of intra- and extracellular fields. The seizure initiationthe response of the receptors and peripheral nervous system;
is probably connected with the breakdown of the local inhibi-late EPs (‘‘near field’’ potentials) are generated in the brain.
tory mechanisms. The crucial factor in the generation of epi-In late EPs, exogenous components (primarily dependent
leptic activity is the synchronization of neural pools. Theupon characteristics of the external stimulus and endogenous
mechanisms of this synchronization are probably connectedcomponents) and endogenous components (dependent upon
with recurrent excitation operating through positive feedbackinternal cognitive processes) can be distinguished. Endoge-
loops. An important problem for diagnosis is the localizationnous components of latencies above 100 ms to 200 ms are
of the epileptic focus, which in severe cases can sometimes beinfluenced by attention to the stimulus. The later compo-
removed by surgical intervention. Usually intracranial elec-nents, around 300 ms, reflect recognition and discrimination
trodes are placed in the suspected region, found from thebetween stimuli.
scalp EEG, in order to better localize the focus. The tests in-EPs are widely used in clinical practice as a tests of the
volving measurement of ERPs are performed in order to checkintegrity of the sensory pathways of their different dysfunc-
if the removal of that part of brain will impair vital braintions. They are also helpful in the diagnosis of diffused brain
functions. The epileptic focus will not necessarily be detecteddiseases (e.g., multiple sclerosis or psychiatric disorders). Par-
by imaging techniques such as tomography, so the informa-ticularly in the diagnosis of psychiatric disorders, identifica-
tion contained in the EEG, and possibly also a magnet-tion of contingent negative variation (CNV) is helpful (1).
oencephalogram (MEG), is essential for localization of epilep-CNV is a potential consisting of a slow surface negativity
tic foci.that depends upon the association or contingency of two suc-

cessive stimuli. A first stimulus serves as a preparatory sig-
nal for the imperative stimulus, to which a response is made.
Early CNV is considered an indicator of arousal, whereas late EEG ANALYSIS
CNV is associated with attention to the experimental task.
CNV is a sensitive test of weakness in higher mental func- The original method of EEG analysis is visual scoring of the

signals plotted on paper. Modern computer analysis can ex-tions (e.g., schizophrenia, Alzheimer’s disease, migraine, and
anxiety) (18). tend electroencephalographic capabilities by supplying infor-

mation not directly available from the raw data. However, vi-ERP potentials, also known as Bereitschaft (readiness) po-
tentials, precede voluntary actions such as speech or move- sual analysis is still a widespread technique, especially for

detection of transient features of signals. In most cases thements. Usually they involve event-related desynchronization
(decrease of power in the alpha band) and an increase of high agreement of an automatic method with visual analysis is a

basic criterion for its acceptance.frequencies (17).
Due to its complexity, the EEG time series can be treated

as a realization of a stochastic process, and its statistical
EPILEPTIC SEIZURE DISORDERS properties can be evaluated by typical methods based on the

theory of stochastic signals. These methods include probabil-
Epilepsy is caused by the massive synchronization of neu- ity distributions and their moments (means, variances,
ronal electrical activity. During an epileptic seizure, groups of higher-order moments), correlation functions, and spectra.
neurons discharge synchronously, creating a large-amplitude Estimation of these observables is usually based on the as-
signal and leading to uncontrollable oscillations. Tumors, in- sumption of stationarity, which means that the statistical
fections, trauma, or metabolic and toxic disorders may be re- properties of the signal do not change during the observation
sponsible for the synchronized discharges. Epilepsy is the sec- time. While the EEG signals are ever changing, they can be
ond most common neurological disease (18). Its clinical subdivided into quasistationary epochs when recorded under
symptoms may involve the loss of awareness, drop attacks, constant behavioral conditions.
facial muscle and eye movements, aggressive outbursts, pro- EEG signal can be analyzed in the time or the frequency
longed confusional states, and flexor spasms of the whole domain, and one or several channels can be analyzed at a
body. time. The applied methods involve spectral analysis by the

Seizure types can be divided into three main categories as fast Fourier transform (FFT), autoregressive (AR) or autore-
follows (18): gressive moving-average (ARMA) parametric models, time–

frequency and time-scale methods (wavelets), nonlinear anal-
ysis (including the formalism for chaotic series), and artificial1. Local: the synchronized electrical activity starts in a

well-localized part of the brain. The seizure, lasting a neural networks.
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The estimation of power spectra is one of the most fre- tween the topographic distribution of EEG features and an
anatomic image (given, e.g., by a tomographic brain scan).quently used methods of EEG analysis (Fig. 3). It provides

information about the basic rhythms present in the signal Three types of features are most commonly mapped for clini-
cal applications: (1) direct variables such as amplitude, (2)and can be calculated by means of the FFT. Spectral estima-

tors with better statistical properties can be obtained by ap- transformed variables such as the total spectral power or the
relative spectral power in a frequency band, (3) the results ofplication of parametric models such as AR and ARMA models

or, for time-varying signals, the Kalman filter. For quasista- statistical test applied to given EEG feature.
The appearance of a map depends very much on the elec-tionary EEGs, and AR model is sufficient. The AR model rep-

resents a filter with a white noise at the input and the EEG trode reference system. Therefore, especially in many cases it
is recommended to use the spline-generated surface Lapla-series at the output; it is compatible with a physiological

model of alpha rhythm generation (19). The AR model also cians, which are reference-independent. This approach ap-
proximates the source current density and cancels a commonprovides a parametric description of the signal, and makes

possible its segmentation into stationary epochs. It also offers component due to volume conduction (6,11). The maps can be
superimposed on 3-D images obtained by means of CT or MRIthe possibility of detecting nonstationarities by means of in-

verse filtering (1). scans. This approach was used to map chosen temporal seg-
ments with epileptic events, extracted by means of waveletInterdependence between two EEG signals can be found

by a cross-correlation function or its analog in the frequency analysis (22).
The problem of automatic computer-assisted EEG diagno-domain—coherence. Cross-correlation can be used for com-

parison of EEGs from homologous derivations on the scalp. sis is approached by means of pattern recognition techniques
that involve choosing a number of characteristic features, andA certain degree of difference between these EEGs may be

connected with functional differences between brain hemi- clustering and classification of these features.
One of the first automatic diagnostic methods (23) wasspheres, but a low value of cross-correlation may also indicate

pathology. Cross-covariance functions have been extensively based on the observation that an increased amount of slow
EEG activity might be analogous to the slow activity seen inused in the analysis of ERPs for the study of the electrophysi-

ological correlates of cognitive functions (20). Coherences are the immature EEG. For each electrode, the maturity calcu-
lated on the basis of spectral features was compared with theuseful in determining the topographic relations of EEG

rhythms. Usually, ordinary coherence calculated pairwise be- actual maturity. A significant discrepancy was considered an
abnormality. In another diagnostic system (1), the ratio oftween two signals is used. However, for the ensemble of chan-

nels taken from different derivations the relationship be- slow to fast EEG activity and the degree of asymmetry be-
tween homologous derivations were taken into account. Thetween the signals may come from common driving by another

site. In order to find intrinsic relationships between signals most extended system, called neurometrics (24), is based on
standardized data acquisition techniques and EEG and ERPfrom different locations, partial coherences should be calcu-

lated: EEG signals recorded from the ensemble of electrodes feature extraction. Statistical tranformations are performed
in order to achieve Gaussian distributions before applicationare realizations of one EEG process and are usually corre-

lated (21). of multivariate statistical methods such as factor analysis,
cluster analysis, and discriminant analysis. Profiles of neuro-The representation of EEG activity in a spatial domain is

usually performed by mapping. However, it is more effective metric features that deviate from age-matched normals have
been obtained for patients suffering from cognitive disorders,for a human observer to look at the map than at the table of

numbers. A map may help to make a direct comparison be- psychiatric illnesses, and neurological dysfunctions.
Recently, pattern recognition and classification problems

in EEG research have been modeled in the form of artificial
neural networks (ANNs). The multilayer perceptron with
backpropagation of errors is the most common such technique
and has been used for spike detection (25). Self-organizing
ANNs have been used for recognition of topographic EEG pat-
terns (26,27).

The methods of analysis described so far are based on the
assumption of the quasistationarity of the EEG time series.
However, the understanding of brain processes involves anal-
ysis of dynamic features of brain activity offered by time–
frequency methods operating on a short time scale. The first
method aiming at dynamic analysis is the windowed Fourier
transform with a sliding window. Substantial progress has
also been achieved with wavelet analysis. The wavelet trans-
form (WT) describes signals in terms of coefficients represent-
ing their energy content in specified time–frequency regions.
This representation is constructed by means of decomposition
of the signal over a set of functions generated by translating
and scaling one function called a wavelet. WTs have been suc-
cessfully used for reconstruction of a single AEP, for paramet-
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reviewed elsewhere (28).Figure 3. FFT and AR power spectra.
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However, the time and frequency resolution in WTs are
subject to certain restrictions that lead to poor frequency reso-
lution at high frequencies, as shown in Fig. 4. The representa-
tion also depends on the setting of the time window, which
makes WT suitable mainly for the evaluation of time-locked
signals such as EP, and less appropriate for detecting struc-
tures appearing more or less randomly in the signal. This
problem has been approached by application of time-shift-
and frequency-shift-invariant time–frequency distributions of
the Cohen class. However, in the resulting Wigner plots the
cross terms are present and sophisticated mathematics has to
be applied to diminish their contribution. Also, the Wigner
plots obtained by these methods, being continuous functions,
do not provide the parametrization of signal structures.

These problems can be solved by a matching pursuit (MP)
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algorithm introduced by Mallat and Zhang (29), which decom-

Figure 5. MP: 3-D map.poses the signal into waveforms of well-defined frequency,
time of occurrence, time span, and amplitude. A Wigner plot
of the EEG obtained by means of MP parameterization is
shown in Fig. 5. It is easy to perceive the absence of the cross cal activity propagates along neuronal tracts and by volume
terms observed in Wigner distributions obtained by other conduction. The potentials measured by scalp electrodes are
methods. The parametrization makes possible the statistical attenuated by media by different conductivity (cerebrospinal
evaluation of EEG features and automatic detection of de- fluid, skull, skin), which results in the decrease of their ampli-
sired signal structures (30). The application of MP to the de- tude by a factor 10 to 20. The determination of source local-
tection of EEG structures is shown in Fig. 5. See Ref. 28 for ization from the field distribution involves solution of the in-
the details of modern time–frequency methods. verse problem and is nonunique. In solving the inverse

The determination of the geometry and orientation of corti- problem, usually one or several dipole sources are assumed
cal sources of electrical activity is a complex problem. Electri- and their positions and orientation are estimated by an itera-

tive fit to the measured field (e.g., Ref. 31). A possibility of
approaching the inverse problem without assuming dipole
sources is offered by low-resolution tomography (32).

Recently, MEG—recording of the magnetic field of the
brain—has proven to be helpful in solving the inverse prob-
lem. The magnetic field is perpendicular to the electric field
that produces it. Therefore, in a MEG the sources tangential
to the brain surface will be more visible, contrary to the EEG,
where the contribution of radial sources is larger. The combi-
nation of EEG and MEG is an optimal solution. Unfortu-
nately, magnetoencephalographs are still very expensive.

Methods of brain activity localization such as positron
emission tomography (PET) and nuclear magnetic resonance
(NMR) give a measure of metabolic rate or glucose consump-
tion, not the brain electrical activity itself. Although their
spatial localization properties are good, their time resolution
is much lower than that of EEG and MEG. Therefore, they
are not likely to replace EEG, which is a totally noninvasive
and low-cost technique capable of providing information
about relationships between cortical sites.

MODELS OF EEG GENERATION AND
CHAOTIC PHENOMENA IN EEG

The most successful models of EEG developed so far are based
on the consideration of neural populations characterized by
pulse density and slow electrical activity amplitude due to
postsynaptic potentials. The dynamic behavior is described in
terms of differential equations (3,18). It has been shown that
populations of excitatory and inhibitory cells connected by a
feedback loop produce rhythmic activity of frequency and
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bandwidth depending on the coupling strength determined by
synaptic interactions (18).Figure 4. Wavelets.
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