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Two basic and desirable features of an approximation the-
ory are the existence of:

• a constructive methodology for obtaining reduced-com-
plexity models

• an appropriate quantization of the approximation error,
in other words, the estimation of some measure of the
error between the given high-complexity model and the
derived reduced-complexity model(s)

The importance of the second item cannot be overemphasized:
In approximating a system, one wishes to have some idea of
what has been eliminated.

Often an additional desirable feature consists in

• looking for reduced-complexity models within a specified
class, e.g. the class of stable systems

For instance, in case the nominal model is stable, if the in-
tended use of a reduced-complexity model is in open-loop, it
is imperative that the latter also be stable.

We will deal with linear, time-invariant, discrete- and con-
tinuous-time, finite-dimensional systems described by convo-
lution sums or integrals. In addition, we will only consider the
approximation of stable systems. Most of the approximation
methods available—for example, Padé approximation—fail to
satisfy the requirements listed above. We will discuss the the-
ory of Hankel-norm approximation and the related approxi-
mation by balanced truncation. The size of systems—including
error systems—is measured in terms of appropriately defined
2-norms, and complexity is measured in terms of the (least)
number of state variables (i.e., first-order differential or dif-
ference equations) needed to describe the system.

This approach to model reduction has an interesting his-
tory. For operators in finite-dimensional spaces (matrices),
the problem of optimal approximation by operators of lower
rank is solved by the Schmidt–Mirsky theorem (see Ref. 1).
Although this is not a convex problem and consequently con-
ventional optimization methods do not apply, it can be solved
explicitly by using an ad hoc tool: the singular value decompo-
sition (SVD) of the operator. The solution involves the trunca-
tion of small singular values.

In the same vein, a linear dynamical system can be repre-
sented by means of a structured (Hankel) linear operator in
appropriate infinite dimensional spaces. The Adamjan–Arov–
Krein (AAK) theory (see Refs. 2 and 3) generalizes the
Schmidt–Mirsky result to dynamical systems, that is to struc-
tured operators in infinite-dimensional spaces. This is also
known as optimal approximation in the Hankel norm. The orig-
inal setting of the AAK theory was functional analytic. Subse-
quent developments due to Glover (4) resulted in a simplifiedLINEAR DYNAMICAL SYSTEMS, APPROXIMATION
linear algebraic framework. This setting made the theory
quite transparent by providing explicit formulae for the quan-Approximation is an important methodology in science and

engineering. In this essay we will review a theory of approxi- tities involved.
The Hankel norm approximation problem can be ad-mation of linear dynamical systems that has a number of de-

sirable features. Main ingredients of this theory are: the 2- dressed and solved both for discrete- and continuous-time sys-
tems. However, the following is a fact: The discrete-time casenorms used to measure the quantities involved, in particular

the Hankel norm, the infinity norm, and a set of invariants is closer to that of finite-dimensional operators and to the
Schmidt–Mirsky result. Therefore, the intuitive understand-called the Hankel singular values. The main tool for the con-

struction of approximants is the all-pass dilation (unitary ex- ing of the results in this case is more straightforward. In the
continuous-time case, on the other hand, while the interpreta-tension) of the original dynamical system.
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tion of the results is less intuitive than for the discrete-time The first part of the section entitled ‘‘Construction of
Approximants’’ presents the fundamentals of continuous-timecase, the corresponding formulas turn out to be simpler (see
linear systems. The convolution and the Hankel operators areRemark 3). Because of this dichotomy we will first state the
introduced together with the grammians and the computationresults in the discrete-time case, trying to make connections
of the singular values of the Hankel operator H �. These areand draw parallels with the Schmidt–Mirsky theorem (see
followed by Lyapunov equations, inertia results, and state-section entitled ‘‘The Schmidt–Mirsky Theorem and the AAK
space characterizations of all-pass systems—all important in-Generalization’’). The numerous formulas for constructing ap-
gredients of the theory. Subsequently, various formulas forproximants, however, will be given for the continuous-time
optimal and suboptimal approximants are given. These for-case (see section entitled ‘‘Construction of Approximants’’).
mulae are presented for continuous-time systems since (asThe Hankel-norm approximation, as well as model reduc-
mentioned earlier) they are simpler than their discrete-timetion by balanced truncation, inherits an important property
counterparts. First comes an input–output approach applica-from the Schmidt–Mirsky result: Unitary operators form the
ble to single-input single-output systems (see section entitledbuilding blocks of this method and cannot be approximated; a
‘‘Input–Output Construction Method for Scalar Systems’’); itmultiple singular value indicates that the original operator
involves the solution of a polynomial equation which iscontains a unitary part. This unitary part has to either be
straightforward to set up and solve. The remaining formulasincluded in the approximant as a whole or discarded as a
are all state-space-based. The following cases are treated (inwhole; it must not be truncated. The same holds for the exten-
increasing complexity): square systems, suboptimal case;sion to Hankel-norm approximation. The fundamental build-
square systems, optimal case; general systems, suboptimaling blocks are all-pass systems, and a multiple Hankel singu-
case. These are followed by the important section entitledlar value indicates the existence of an all-pass subsystem. In
‘‘Error Bounds of Optimal and Suboptimal Approximants’’;the approximation, this subsystem will be either eliminated
these bounds concern the 2-induced norms of both the Hankelor included as a whole; it must not be truncated. Conse-
and the convolution operators of error systems. The sectionquently, it turns out that the basic operation involved in con-
entitled ‘‘Balanced Realizations and Balanced Model Reduc-structing approximants is all-pass dilation (unitary exten-
tion,’’ presents the closely related approximation method bysion)—that is, the extension of the number of states of the
balanced truncation. Again error bounds are available, al-original system so that the aggregate becomes all-pass (uni-
though balanced approximants satisfy no optimality prop-tary) [see Main Theorem (2.3)].
erties.The article contains three main sections. The first, entitled

This article concludes with three examples and a brief‘‘The Schmidt–Mirsky Theorem and the AAK Generaliza-
overview of some selected recent developments, including antion,’’ reviews 2-norms and induced 2-norms in finite dimen-
overview of the approximation problem for unstable systems.sions and states the Schmidt–Mirsky result. The second half

Besides the original sources, namely Refs. 2–4, parts of theof this section presents the appropriate generalization of
material presented below can also be found in books (5,6) andthese concepts for linear discrete-time systems. An operator
in lecture notes (7). For the mathematical background needed

which is intrinsically attached to a linear system � is the con- we refer to Ref. 8.
volution operator S �. Therefore, the problem of optimal ap-
proximation in the 2-induced norm of this operator arises

THE SCHMIDT–MIRSKY THEOREMnaturally. For reasons explained in the section entitled ‘‘Ap-
AND THE AAK GENERALIZATIONproximation of � in the 2-Induced Norm of the Convolution

Operator,’’ however, it is currently not possible to solve this
In this section we will first state the Schmidt–Mirsky theo-problem, except in some special cases [see Remark 4(b)]. A
rem concerned with the approximation of finite-dimensionalsecond operator, the Hankel operator H �, is obtained by re-
unstructured operators in the 2-norm, which is the operatorstricting the domain and the range of the convolution opera-
norm induced by the vector Euclidean norm. Then, discrete-tor. The 2-induced norm of H � is the Hankel norm of �. It
time linear dynamical systems are introduced together withturns out that the optimal approximation problem is solvable
the associated convolution operator; this is a structured opera-in the Hankel norm of �. This is the AAK result, stated in
tor defined on the space of square summable sequences. It isthe section entitled ‘‘The AAK Theorem.’’ The main result of
argued in the section entitled ‘‘Approximation of � in the 2-optimal and suboptimal approximation in the Hankel norm is
Induced Norm of the Convolution Operator’’ that due to thepresented next. The fundamental construction involved is the
fact that the convolution operator has a continuous spectrum,all-pass dilation (unitary extension) �̂ of �.
it is not clear how the Schmidt–Mirsky result might be gener-The most natural norm for the approximation problem is
alized in this case. However, roughly speaking by restrictingthe 2-induced norm of the convolution operator, which is
the domain and the range of the convolution operator, the

equal to the infinity norm of the associated rational transfer
Hankel operator is obtained. It turns out that the Schmidt–

function (i.e., the maximum of the amplitude Bode plot). How- Mirsky result can be generalized in this case; this is the fa-
ever, only a different problem can be solved, namely the ap- mous AAK theorem followed by the section entitled ‘‘The
proximation in the 2-induced norm of the Hankel operator Main Result.’’
(which is different from the convolution operator). Although
the problem solved is not the same as the original one, the 2-Norms and Induced 2-Norms in Finite Dimensions
singular values of the Hankel operator turn out to be impor-

The Euclidean or 2-norm of x � �n is defined astant invariants. Among other things, they provide a priori
computable bounds—both upper and lower—for the infinity
norm of the error systems. x 2 :=

p
x2

1 + · · · + x2
n
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Given the linear map A : �n � �m, the norm induced by the values the Frobenius norm of A defined by Eq. (3), is
Euclidean norm in the domain and range of A is the 2-induced
norm: A F =

p
σ 2

1 + · · · + σ 2
n

The following central problem can now be addressed.x 2-ind := sup
x �=0

Ax 2

x 2
(1)

PROBLEM 1. OPTIMAL LOW-RANK APPROXIMATION.
It readily follows that Given the finite matrix A, find a matrix X of the same size

but lower rank such tht the 2-induced norm of the error E :�
A � X is minimized.Ax 2

2

x 2
2

= x∗A∗Ax
x∗x

≤ λmax(A∗A)

The solution of this problem is provided by the Schmidt–
Mirsky theorem (see, e.g., Ref. 1, page 208):where ( � )* denotes complex conjugation and transposition. By

choosing x to be the eigenvector corresponding to the largest
eigenvalue of A*A, the above upper bound is attained, and Theorem 1. Schmidt–Mirsky. Given is the matrix A of
hence the 2-induced norm of A is equal to the square root of rank n. For all matrices X of the same size and rank at most
the largest eigenvalue of A*A: k � n, there holds:

A − X 2-ind ≥ σk+1(A) (5)A 2-ind =
√

λmax(A∗A) (2)

The lower bound �k�1(A) of the error is attained by X*, whichThe m � n matrix A can also be considered as an element of
is obtained by truncating the dyadic decomposition of A, tothe (m�n)-dimensional space �m�n. The Euclidean norm of A
the leading k terms:in this space is called the Frobenius norm:

X∗ :=
k∑

i=1

σiuiv
∗
i (6)A F :=

√
trace(A∗A) =

�∑
i, j

A2
i, j (3)

Remark 1. (a) The importance of this theorem lies in the factThe Frobenius norm is not an induced norm. It satisfies
that it establishes a relationship between the rank k of the�A�2-ind � �A�F.
approximant, and the (k � 1)st largest singular value of A.

(b) The minimizer X* given above is not unique, since eachThe SVD and the Schmidt–Mirsky Theorem
member of the family of approximants

Consider a rectangular matrix A � �n�m; let the eigenvalue
decomposition of the symmetric matrices A*A and AA* be

A∗A = VSVV ∗, AA∗ = USUU∗
X (η1, . . ., ηk) :=

k∑
i=1

(σi − ηi)uiv
∗
i , 0 ≤ ηi ≤ σk+1, i = 1, . . ., k

(7)
where U, V are (square) orthogonal matrices of size n, m, re-

attains the lower bound, namely �k�1(A).spectively (i.e., UU* � In, VV* � Im). Furthermore SV, SU are
(c) The problem of minimizing the 2-induced norm of A �diagonal, and assuming that n � m we have

X over all matrices X of rank at most k, is a nonconvex optimi-
zation problem, since the rank of the sum (or of a linear com-
bination) of two rank k matrices is, in general, not k. There-

SV = diag(σ 2
1 , . . ., σ 2

n , 0, . . ., 0),

SU = diag(σ 2
1 , . . ., σ 2

n ), σi ≥ σi+1 ≥ 0 fore, there is little hope of solving it using conventional
optimization methods.

Given the orthogonal matrices U, V and the nonnegative real (d) If the error in the above approximation is measured in
numbers �1, . . ., �n, we have terms of the Frobenius norm, the lower bound in Eq. (5) is

replaced by ��2
k�1 � � � � � �2

n. In this case, X* defined by
A = USV ∗

Eq. (6) is the unique optimal approximant of A, which has
rank k.

where S is a matrix of size n � m with �i on the diagonal and
zeros elsewhere. This is the singular value decomposition 2-Norms and Induced 2-Norms in Infinite Dimensions
(SVD) of A; �i, i � 1, . . ., n, are the singular values of A,

The 2-norm of the infinite sequence x : � � � iswhile the columns ui, vi of U, V are the left, right singular
vectors of A, respectively. As a consequence, the dyadic decom-
position of A follows: x 2 :=

p
· · · + x(−1)2 + x(0)2 + x(1)2 + · · ·

The space of all sequences over � which have finite 2-norm is
denoted by �2(�); �2 is known as the Lebesgue space of square-

A =
n∑

i=1

σiuiv
∗
i (4)

summable sequences. Similarly, for x defined over the nega-
tive or positive integers ��, ��, the corresponding spaces ofThis is a decomposition in terms of rank one matrices; the

rank of the sum of any k terms is k. In terms of the singular sequences having finite 2-norm are denoted by �2(��), �2(��).
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The 2-norm of the matrix sequence X : � � �p�m is defined as S � has (block) Toeplitz and lower-triangular structure. The
rational p � m matrix function

X 2 :=
p

· · · + X (−1) 2
F + X (0) 2

F + X (1) 2
F + · · ·

The space of all p � m sequences having finite 2-norm is de-
noted by �p�m

2 (�). Given the linear map A : X � Y, where X, Y

H�(z) :=
∞∑

t=0

h�(t)z−t = C(zI − A)−1B + D =
[

pi j (z)

qi j (z)

]
,

1 ≤ i ≤ p, 1 ≤ j ≤ m
are subspaces of �2(�), the norm induced by the 2-norm in the

is called the transfer function of �. The system is stable if thedomain and range is the 2-induced norm, defined by Eq. (1);
eigenvalues of A are inside the unit disk in the complex plane,again Eq. (2) holds.
that is, ��i(A)� � 1; this condition is equivalent to the impulse
response being an �2 matrix sequence: h� � �p�m

2 (�). If � is notLinear, Discrete-Time Systems
stable, its impulse response does not have a finite 2-norm.

A linear, time-invariant, finite-dimensional, discrete-time sys- However, if A has no eigenvalues on the unit circle, the im-
tem � is defined as follows: pulse response can be reinterpreted so that it does have a

finite 2-norm. This is done next. Let T be a basis change in
the state space such that the matrices A, B, C can be parti-
tioned as

� :
x(t + 1) = Ax(t) + Bu(t)

y(t)= Cx(t) + Du(t)
, t ∈ Z

x(t) � �n is the value of the state at time t, u(t) � �m and y(t)
� �p are the values of the input and output at time t, respec-

A =
�

A+ 0
0 A−

�
, B =

�
B+
B−

�
, C − (C+ C−)

tively; and A, B, C, and D are constant maps. For simplicity,
where the eigenvalues of A� and A� are inside and outside ofwe will use the notation
the unit disk, respectively. In contrast to Eq. (9), the �2-im-
pulse response denoted by h�2 of � is defined as follows:

� :=
�

A B
C D

�
∈ R(n+p)×(n+m) (8)

h�2 := h2+ + h2− (12)

The dimension (or order) of the system is n: dim � � n. We where
will denote the unit step function by I (I(t) � 1 for t 
 0, and
zero otherwise) and the Kronecker delta by � (�(0) � 1, and
zero otherwise). The impulse response h� of � is

h2+(t) := C+ At
+B+I(t)+ δ(t)D

h2−(t) := C−At
−B−I(−t)

h�(t) = CAt−1BI(t)+ Dδ(t) (9) where as before � is the unit step function and � is the Kro-
necker symbol. Accordingly, we will write �2 � �� � ��. No-

To � we associate the convolution operator S � which maps tice that the algebraic expression for he transfer function re-
inputs u into outputs y: mains the same in both cases:

H�2(z) = H2+(z) + H2−(z) = C+(zI − A+)−1B+

+ D + C−(zI − A−)−1B− = H�(z)

S� : u �−→ y, where y(t) = (h� ∗ u)(t)

:=
t∑

τ=−∞
h�(t − τ )u(τ ), t ∈ Z (10)

What is modified is the region of convergence of H� from

This convolution sum can also be written in matrix notation: |λmax(A−)| < |z| to |λmax(A+)| < |z| < |λmin(A−)|

This is equivalent to trading the lack of stability (poles out-
side the unit disk) for the lack of causality (h�2 is nonzero for
negative time). Thus a system with poles both inside and out-
side of the unit disk (but not on the unit circle) will be inter-
preted as a possibly antistable �2 system �2, by defining the
impulse response to be nonzero for negative time. Conse-
quently h�2 � �2(�). The matrix representation of the corre-
sponding convolution operator is

S�2 =

�
BBBBBBBBBB�

. . .
...

...
...

...
· · · h2+(0) h2−(−1) h2−(−2) h2−(−3) · · ·
· · · h2+(1) h2+(0) h2−(−1) h2−(−2) · · ·
· · · h2+(2) h2+(1) h2+(0) h2−(−1) · · ·
· · · h2+(3) h2+(2) h2+(1) h2+(0) · · ·

...
...

...
...

. . .

�
CCCCCCCCCCA

(13)

�
BBBBBBBBBB�

...
y(−2)

y(−1)

y(0)

y(1)

...

�
CCCCCCCCCCA

=

�
BBBBBBBBBB�

. . .

· · · h(0)

· · · h(1) h(0)

· · · h(2) h(1) h(0)

· · · h(3) h(2) h(1) h(0)

...
...

...
...

. . .

�
CCCCCCCCCCA

︸ ︷︷ ︸
S� �

BBBBBBBBBB�

...
u(−2)

u(−1)

u(0)

u(1)

...

�
CCCCCCCCCCA

(11)
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Notice that S �2 has block Toeplitz structure, but is no longer to explore the possibility of optimal approximation of � in the
2-induced norm of the convolution operator S �. In this regardlower triangular. All discrete-time systems � with no poles on

the unit circle will be interpreted as �2 systems �2. For sim- the following result holds.
plicity of notation, however, they will still be denoted by �.
They are composed of two subsystems: (a) the stable and Proposition 1. Let �* :� inf�z��1 �min(H�(z)), while �* :�
causal part �� and (b) the stable but anti-causal part ��: sup�z��1 �max(H�(z)). Every � in the interval [�*, �*] is a singular
� � �� � ��. value of the operator S �.

For square �2 systems—that is, �2 systems having the same
number of inputs and outputs p � m—the class of all-pass We conclude that since the singular values of S � form a
�2 systems is defined as follows: For all pairs u, y satisfying continuum, it is not a priori clear how the Schmidt–Mirsky
Eq. (10), there holds result might be generalized to the convolution operator of �.

y 2 = α u 2 (14)
Remark 2. Despite the above conclusion, the approach dis-
cussed below yields as byproduct the solution of this problemfor some fixed positive constant �. This is equivalent to
in the special case of the one-step model reduction; see Re-
mark 4(b).

S ∗
� S� = α2I ⇔ H∗

�(z−1)H�(z) = α2Im, |z| = 1

Approximation of � in the 2-Induced
This last condition says that the transfer function (scaled by Norm of the Hankel Operator
�) is a unitary matrix on the unit circle.

The next attempt to address this approximation problem is
by defining a different operator attached to the system �. Re-Approximation of � in the 2-Induced
call that �m

2 (I ) denotes the space of square-summable se-Norm of the Convolution Operator
quences of vectors, defined on the interval I , with entries in

Let � be an �2 system. The convolution operator S � can be �m. Given the stable and causal system �, the following opera-
considered as a map: tor is defined by restricting the domain and the range of the

convolution operator, Eq. (10):
S� : �m

2 (Z) → �p
2 (Z)

The 2-induced norm of � is defined as the 2-induced norm of
S �:

H� : �m(Z−) −→ �p(Z+)

u− �−→ y+, where y+(t) =
−1∑

τ=−∞
h�(t − τ )u−(τ ),

t ≥ 0 (16)
� 2-ind := S� 2-ind = sup

u �=0

S�u 2

u 2
H � is called the Hankel operator of �. Its matrix representa-
tion in the canonical bases isDue to the equivalence between the time and frequency do-

mains (the Fourier transform is an isometric isomorphism),
this norm can also be defined in the frequency domain. In
particular,

� 2-ind = sup
|z|=1

σmaxH�(z) =: H� �∞

This latter quantity is known as the �� norm of H�. If the

�
y(0)

y(1)

y(2)

...

�
=

�
h(1) h(2) h(3) · · ·
h(2) h(3) h(4) · · ·
h(3) h(4) h(5) · · ·

...
...

...
. . .

�
︸ ︷︷ ︸

H�

�
u(−1)

u(−2)

u(−3)

...

�

(17)
system is single-input single-output, it is the supremum of
the amplitude Bode plot. In the case where � is stable, H� is Thus the Hankel operator of � maps past inputs into future
analytic outside the unit disk, and the following holds: outputs. It has a number of properties given next. The first

one for single-input single-output systems is due to Kro-
necker.� 2-ind = sup

|z|≥1
σmaxH�(z) =: H� h∞

Proposition 2. Given the system � defined by Eq. (8), theThis is known as the h� norm of H�. For simplicity, we will
rank of H� is at most n. The rank is exactly n if, and only if,use the notation
the system � is reachable and observable. Furthermore, if �
is stable, H � has a finite set of nonzero singular values.� 2-ind := S� 2-ind = H� ∞ (15)

In order to compute the singular values of the Hankel op-It will be clear from the context whether the subscript �
erator, we define the reachability matrix R and the observ-stands for the �� norm of the h� norm. If � is all-pass—that
ability matrix O :is, Eq. (14) is satisfied—then ���2-ind � �H��� � �.

Our aim is the generalization of the Schmidt–Mirsky re-
R(A,B) = [B AB A2B · · · ], O (C, A) = [R(A∗,C∗ )]∗sult for an appropriately defined operator. It is most natural
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both of these matrices have rank at most n. The reachability An important property of the Hankel singular values of � is
that twice their sum provides an upper bound for the 2-in-and observability grammians are
duced norm of � (see also the section entitled ‘‘Error Bounds
of Optimal and Suboptimal Approximants’’).

Lemma 1. Given the stable system � with Hankel singular

P := RR
∗ =

∑
t≥0

AtBB∗(A∗)t, Q := O ∗O =
∑
t≥0

(A∗)tC∗CAt

(18)
values �i, i � 1, . . ., n (multiplicities included), the following

The quantities P and Q are n � n symmetric, positive semi- holds true: ���2-ind � 2(�1 � � � � � �n).
definite matrices. They are positive definite if and only if � is
reachable and observable. The grammians are (the unique) The AAK Theorem. Consider the stable systems � and �	 of
solutions of the linear matrix equations: dimension n and k, respectively. By Proposition 2, H � has

rank n and H �	 has rank k. Therefore, the Schmidt–Mirsky
theorem implies thatAP A∗ + BB∗ = P , A∗QA + C∗C = Q (19)

which are called discrete-time Lyapunov or Stein equations. H� − H� ′ 2-ind ≥ σk+1(H� ) (23)
The (nonzero) singular values �i of H � are the square roots

of the (nonzero) eigenvalues �i of H *� H �. The key to this com- The question which arises is to find the infimum of the above
putation is the fact that the Hankel operator can be factored norm, given the fact that the approximant is structured (block
in the product of the observability and the reachability matri- Hankel matrix): inf�	�H � � H �	�2-ind. A remarkable result due
ces: to Adamjan, Arov, and Krein, code-named AAK result, asserts

that this lower bound is indeed attained for some �	 or dimen-
sion k. The original sources for this result are Refs. 2 and 3.H� = O (C,A)R(A,B)

For ui � �m
2 (��), ui � 0, there holds Theorem 2. AAK Theorem. Given the �p�m

2 (��) sequence of
matrices h � (h(t))t
0, such that the associated Hankel matrix
H has finite rank n, there exists an �p�m

2 (��) sequence of ma-
trices h* � (h*(t))t
0, such that the associated Hankel matrix
H * has rank k and in addition

H ∗
� H�ui = σ 2

i ui ⇔ R∗O ∗ORui

= σ 2
i ui ⇔ RR

∗︸ ︷︷ ︸
P

O ∗O︸︷︷︸
Q

Rui = σ 2
i Rui

H − H∗ 2-ind = σk+1(H ) (24)
Thus, ui is an eigenfunction of H *� H � corresponding to the
nonzero eigenvalue �2

i iff R ui � 0 is an eigenfunction of the If p � m � 1, the optimal approximant is unique.
product of the grammians P Q :

The result says that every stable and causal system � can
σ 2

i (H�) = λi(H ∗
� H� ) = λi(PQ) (20) be optimally approximated by a stable and causal system �*

of lower dimensions; the optimality is with respect to the 2-
Proposition 3. The nonzero singular values of the Hankel induced norm of the associated Hankel operator (see Fig. 1).
operator H � associated with the stable system � are the
square roots of the eigenvalues of the product of the grammi- The Main Result. In this section we will present the main
ans P Q . result. As it turns out, one can consider both suboptimal and

optimal approximants within the same framework. Actually,
Definition 1. The Hankel singular values of the stable sys- as shown in the sections entitled ‘‘State-Space Construction
tem � as in Eq. (10), denoted by for Square Systems: Suboptimal Case’’ and ‘‘State-Space Con-

struction for Square Systems: Optimal Case,’’ the formulas
for suboptimal approximants are simpler than their optimal
counterparts.

σ1(�) > · · · > σq(�) with multiplicity

ri, i = 1, . . ., q,

q∑
i=1

ri = n (21)

PROBLEM 2. Given a stable system �, we seek approxi-
mants �* satisfying

are the singular values of H � defined by Eq. (16). The Hankel
norm of � is the largest Hankel singular value: σk+1(�) ≤ � − �∗ H ≤ ε < σk(�)

� H := σ1(�)

The Hankel operator of a not necessarily stable �2 system �
is defined as the Hankel operator of its stable and causal part
�� : H � :� H ��.

Thus, the Hankel norm of a system having poles both inside
and outside the unit circle is defined to be the Hankel norm
of its causal and stable part. In general,

Σ(  )

Σe

+
–

Σ

� 2-ind ≥ � H (22) Figure 1. Construction of approximants.
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This is a generalization of Problem 1, as well as the problem stable approximant of � in the 2-induced norm of the convolu-
tion operator (i.e., the �� norm).solved by the AAK theorem. The concept introduced in the

next definition is the key to its solution. (b) We are given a stable system � and seek to compute an
approximant in the same class (i.e., stable). In order to
achieve this, the construction given above takes us outsideDefinition 2. Let �e be the parallel connection of � and �̂:
this class of systems, since the all-pass dilation system �̂ has�e :� � � �̂. If �e is an all-pass system with norm �, �̂ is
poles both inside and outside the unit circle. In terms of ma-called an �-all-pass dilation of �.
trices, we start with a system whose convolution operator S �

is a (block) lower triangular Toeplitz matrix. We then com-As a consequence of the inertia result of the section entitled
pute a (block) Toeplitz matrix S �̂, which is no longer lower‘‘The Grammians, Lyapunov Equations, and an Inertia Re-
triangular, such that the difference S � � S �̂ is unitary. Itsult,’’ the all-pass dilation system has the following crucial
then follows that the lower left-hand portion of S �̂, which isproperty.
the Hankel matrix H �̂, has rank r and approximates the Han-
kel matrix H �, so that the 2-norm of the error satisfies

Main Lemma 1. Let �̂ be an �-all-pass dilation of �, where Eq. (25).
� satisfies Eq. (25). It follows that �̂ has exactly k poles inside (c) The suboptimal and optimal approximants can be con-
the unit disk, that is, dim �� � k. structed using explicit formulae. For continuous-time sys-

tems, see the section entitled ‘‘Construction Formulas for
We also restate the analog of the Schmidt–Mirsky result [Eq. Hankel-Norm Approximants.’’
(23)], applied to dynamical systems:

Proposition 4. Given the stable system �, let �	 have at CONSTRUCTION OF APPROXIMANTS
most k poles inside the unit disk. Then

The purpose of this section is to present, and to a certain ex-
tent derive, formulas for suboptimal and optimal approxi-� − � ′

H ≥ σk+1(�)

mants in the Hankel norm. Because of Theorem 3, all we need
is the ability to construct all-pass dilations of a given system.This means that the 2-induced norm of the Hankel operator
To this goal, the first subsection is dedicated to the presenta-of the difference between � and �	 is no less than the (k �
tion of important aspects of the theory of linear, continuous-1)st singular value of the Hankel operator of �. Finally, recall
time systems; these facts are used in the second subsection.that if a system has both stable and unstable poles, its Han-
The closely related approach to system approximation by bal-kel norm is that of its stable part. We are now ready for the
anced truncation is briefly discussed in the section entitledmain result which is valid for both discrete- and continuous-
‘‘Balanced Realizations and Balanced Model Reduction.’’time systems.

Theorem 3. Let �̂ be an �-all-pass dilation of the linear, sta- Linear, Continuous-Time Systems
ble, discrete- or continuous-time system �, where

L 2 Linear Systems. For continuous-time functions, let

σk+1(�) ≤ ε < σk(�) (25)
L n(I ) := { f : I → R

n , I ⊂ R}
It follows that �̂� has exactly k stable poles and consequently

Frequent choices of I : I � �, I � �� or I � ��. The 2-norm
of a function f isσk+1(�) ≤ � − �̂ H < ε (26)

In case �k�1(�) � �, f 2 :=
�∫

t∈I

f (t) 2
2 dt

�1/2

, f ∈ L n(I )

σk+1(�) = � − �̂ H
The corresponding L 2 space of square-integrable functions is

L n
2 (I ) := { f ∈ L n(I ), f 2 < ∞}Proof. The result is a consequence of the following sequence

of equalities and inequalities:
The 2-norm of the matrix function F : I � �p�m, is defined as

σk+1(�) ≤ � − �̂+ H = � − �̂ H ≤ � − �̂ ∞ = ε

The first inequality on the left side is a consequence of Main
F 2 :=

�∫
t ∈ I

F(t) 2
F dt

�1/2

Lemma 1, the equality follows by definition, the second in-
equality follows from Eq. (22), and the last equality holds by where the subscript ‘‘F’’ denotes the Frobenius norm. The
construction, since � � �̂ is �-all-pass. space of all p � m matrix functions having finite 2-norm is

denoted by L
p�m
2 (I ). Let A : X � Y, where X and Y are sub-

spaces of L
q
2(�), for some q. The 2-induced norm of A is de-Remark 3. (a) For � � �1(�), the above theorem yields the

solution of the Nehari problem, namely to find the best anti- fined as in Eq. (1), and Eq. (2) holds true.
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We will consider linear, finite-dimensional, time-invariant, From now on, all continuous-time systems � with no poles on
the imaginary axis will be interpreted as L 2 systems; to keepcontinuous-time systems described by the following set of dif-

ferential and algebraic equations: the notation simple, they will be denoted by � instead of �2.
The stable and causal subsystem will be denoted by ��, and
the stable but anti-causal one will be denoted by ��: � �
�� � ��.� :

dx(t)
dt

= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
, t ∈ R

The Convolution Operator. The convolution operator associ-
where u(t) � �m, x(t) � �n, and y(t) � �p are the values of the ated to � is defined as follows:
input, state, and output at time t, respectively. The system
will be abbreviated as

� =
�

A B
C D

�
∈ R(n+p)×(n+m) (27)

S� : u �−→ y,

where y(t) = (h� ∗ u)(t) :=
∫ ∞

−∞
h�(t − τ )u(τ ) dτ,

t ∈ R (30)

In analogy to the discrete-time case, we define the continu-
Corresponding to Proposition 1 we have the following:ous-time unit step function I(t) (I(t) � 1 for t � 0, and zero

otherwise) and the delta distribution �. The impulse response
Proposition 5. Let �* :� inf��� �min(H�( j�)), while �* :�of this system is
sup��� �max(H�( j�)). Every � in the interval [�*, �*] is a singu-
lar value of the operator S �.h�(t) = CeAtBI(t)+ δ(t)D (28)

Since the singular values of S � form a continuum, the samewhile the transfer function is
conclusion as in the discrete-time case follows (see also Re-
mark 2). Again, the 2-induced norm of � turns out to be theH�(s) = C(sI − A)−1B + D
infinity norm of the transfer function H�:

Unless A has all its eigenvalues in the left half-plane (LHP),
� 2-ind := S� 2-ind = H� ∞ (31)the impulse response h� is not square-integrable—that is,

does not belong to the space L
p�m
2 (�). In this case we shall say

If � is all-pass [Eq. (14)], then ���2-ind � �H��� � �.that the system is not an L 2 system. If, however, A has no
eigenvalues on the j� axis, it can be interpreted as an L 2

The Grammians, Lyapunov Equations, and an Inertia Result.system by appropriate redefinition of the impulse response.
For stable systems (i.e., R e(�i(A)) � 0), the following quanti-As in the discrete-time case, let there be a state transforma-
ties are defined:tion such that

P :=
∫ ∞

0
eAtBB∗eA∗ t dt, Q :=

∫ ∞

0
eA∗ tC∗CeAt dt (32)A =

�
A+ 0
0 A−

�
, B =

�
B+
B−

�
, C = (C+ C−)

They are called the reachability and observability grammianswhere the eigenvalues of A� and A� are in the LHP and right
of �, respectively. By definition, P and Q are positive semi-half-plane (RHP), respectively. The L 2-impulse response is
definite. It can be shown that reachability and observabilitydefined as follows:
of � are equivalent to the positive definiteness of each one of
these grammians. As in the discrete-time case, the grammi-h�2 := h2+ + h2− (29)
ans are the (unique) solutions of the linear matrix equations

where AP + P A∗ + BB∗ = 0, A∗Q + QA + C∗C = 0 (33)

which are known as the continuous-time Lyapunov equations
[cf. Eq. (19)]. Such equations have a remarkable property

h2+(t) := C+eA+tB+I(t)+ δ(t)D

h2−(t) := C−eA− tB−I(−t)
known as inertia result: There is a relationship between the
number of eigenvalues of A and (say) P in the LHP, RHP,As in the discrete-time case,
and the imaginary axis. More precisely, the inertia of A �
�n�n isH�2(s) = H2+(s) + H2−(s) = C+(sI − A+)−1B+

+ D + C−(sI − A−)−1B− = H�(s) in (A) := {ν(A), δ(A), π(A)} (34)

This is equivalent to trading the lack of stability (poles in the where �(A), �(A), and �(A) are the number of eigenvalues of A
RHP) to the lack of causality (h�2 is nonzero for negative in the LHP, on the imaginary axis and in the RHP, respec-
time). What is modified is the region of convergence from tively.

Proposition 6. Let A and X � X* satisfy the Lyapunov equa-
tion: AX � XA* � R, where R � 0. If the pair (A, R) is reach-

Re(λmax(A−)) < Re(s) to

Re(λmax(A+)) < Re(s) < R(λmin(A−))
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able, then the inertia of A is equal to the inertia of X: The Hankel singular values of H � and their multiplicities will
be denoted as in Eq. (21). Finally,in(A) � in(X).

Main Lemma 1 is based on this inertia result. � H = �+ H ≤ � 2-ind

Lemma 1 can be strengthened in the continuous-time caseRemark 3. One of the reasons why continuous-time formulas
(see also the section entitled ‘‘Error Bounds of Optimal andare simpler than their discrete-time counterparts is that the
Suboptimal Approximants’’).Lyapunov equations [Eqs. (34)] are linear in A, while the

discrete-time Lyapunov equations [Eqs. (19)] are quadratic
Lemma 2. Let the distinct Hankel singular values of the sta-in A.
ble system � be �i, i � 1, . . ., q; following holds: ���2-ind �
2(�1 � � � � � �q).All-Pass L 2 Systems. All-pass systems are a subclass of L 2

systems. As indicated in Theorem 3, all-pass systems play an
A Transformation Between Continuous- and Discrete-Time Sys-important role in Hankel norm approximation. The following

tems. As mentioned in the introductory paragraphs of this ar-characterization is central for the construction of suboptimal
ticle, the formulas for the construction of approximants willand optimal approximants (see sections entitled ‘‘State-Space
be given for the continuous-time case because they are gener-Construction for Square Systems: Suboptimal Case’’ and
ally simpler than their discrete-time counterparts. Thus, in‘‘State-Space Construction for Square Systems: Optimal
order to apply the formulas to discrete-time systems, the sys-Case’’). The proof is by direct computation; for details see
tem will have to be transformed to continuous-time first, andRef. 7.
at the end the continuous-time optimal or suboptimal approx-
imants obtained will have to be transformed back to discrete-

Proposition 7. Given is � as in Eq. (27) with p � m. The time approximants.
following statements are equivalent. One transformation between continuous- and discrete-time

systems is given by the bilinear transformation z � (1 �
• � is �-all-pass. s)/(1 � s) of the complex plane onto itself. The resulting rela-
• For all input–output pairs (u, y) satisfying y � h� � u, tionship between the transfer function Hc(s) of a continuous-

there holds: �y�2 � ��u�2. time system and that of the corresponding discrete-time sys-
tem Hd(z) is• H*� (�j�)H�( j�) � �2Im

• There exists Q � Q * � �n�n, such that the following
equations are satisfied: Hc(s) = Hd

�1 + s
1 − s

�

The state space maps
A∗Q + QA + C∗C = 0

QB + C∗D = 0

D∗D = α2Im

(35)

�c :=
�

A B
C D

�
, �d :=

�
F G
H J

�

• The solutions P and Q of the Lyapunov equations
are related as given in Table 1. Furthermore, the proposition
that follows states that the Hankel and infinity norms remainAP + P A∗ + BB∗ = 0, A∗Q + QA + C∗C = 0
unchanged by this transformation.

satisfy P Q � �2In, and in addition we have D*D � �2Im.
Proposition 8. Given the stable continuous-time system �c

with grammians P c and Q c, let �d with grammians P d andThe Continuous-Time Hankel Operator. In analogy to the
Q d, be the discrete-time system obtained by means of thediscrete-time case, we define the operator H � of the stable
transformation given above. It follows that P c � P d andsystem � which maps past inputs into future outputs:
Q c � Q d. Furthermore, this bilinear transformation also pre-
serves the infinity norms (i.e., the 2-induced norms of the
associated convolution operators): ��c�� � ��d��.

H� : L m
2 (R− ) −→ L p

2 (R+ )

u− �−→ y+, where y+(t) =
∫ 0

−∞
h�(t − τ )u−(τ ) dτ,

t ≥ 0 (36)

H � is called the Hankel operator of �. Unlike in the discrete-
time case, however (see Eq. (17)), H � has no matrix represen-
tation.

It turns out that just as in Eq. (20), it can be shown that
the nonzero singular values of the continuous-time Hankel
operator are the eigenvalues of the product of the two gram-
mians:

σ 2
i (H�) = λi(H ∗

� H� ) = λi(PQ) (37)

Table 1. Transformation Formulas

Continuous-Time Discrete-Time

F � (I � A)(I � A)�1

G � �2(I � A)�1B
A, B, C, D z �

1 � s
1 � s H � �2C(I � A)�1

J � D � C(I � A)�1B

A � (F � I)�1(F � I)
B � �2(F � I)�1G

s �
z � 1
z � 1

F, G, H, J
C � �2H(F � I)�1

D � J � H(F � I)�1G
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Construction Formulas for Hankel-Norm Approximants The basic construction given in Theorem 3 hinges on the con-
struction of an �-all-pass dilation �̂ of �. Let

We are ready to give some of the formulas for the construction
of suboptimal and optimal Hankel-norm approximants. As
mentioned earlier, all formulas describe the construction of H�(s) = p(s)

q(s)
, H

�̂
(s) = p̂(s)

q̂(s)
all-pass dilation systems [see Eq. (3)]. We will concentrate on
the following cases (in increasing degree of complexity): We require that the difference H� � H�̂ � H�e

be �-all-pass.
Therefore, the problem is as follows: Given � and the polyno-
mials p and q such that deg(p) � deg(q) :� n, find polynomi-• An input–output construction applicable to scalar sys-
als p̂ and q̂ of degree at most n such thattems. Both optimal and suboptimal approximants are

treated. The advantage of this approach is that the equa-
tions can be set up in a straightforward manner using
the numerator and denominator polynomials of the

p
q

− p̂
q̂

= ε
q∗q̂∗

qq̂
⇔ pq̂ − qp̂ = εq∗q̂∗ (38)

transfer function of the given system (see the section
This polynomial equation can be rewritten as a matrix equa-entitled ‘‘Input–Output Construction Method for Scalar
tion involving the quantities defined above:Systems’’).

• A state-space-based construction method for suboptimal
T(p)q̂̂q̂q − T(q)p̂̂p̂p = εT(q∗)q̂̂q̂q∗ = εT(q∗)K q̂qq

approximants (see the section entitled ‘‘State-Space Con-
struction for Square Systems: Suboptimal Case’’) and for Collecting terms we have
optimal approximants (see the section entitled ‘‘State-
Space Construction for Square Systems: Optimal Case’’)
of square systems. (T(p)− εT(q∗)K , −T(q))

�
q̂̂q̂q
p̂̂p̂p

�
= 0 (39)

• A state-space-based parameterization of all suboptimal
approximants for general (i.e., not necessarily square) The solution of this set of linear equations provides the coef-
systems (see the section entitled ‘‘General Case: Parame- ficients of the �-all pass dilation system �̂. Furthermore, this
terization of All Suboptimal Approximants’’). system can be solved for both the suboptimal � � �i and the

optimal � � �i cases. We will illustrate the features of this• The optimality of the approximants is with respect to the
approach by means of a simple example. For an alternativeHankel norm (2-induced norm of the Hankel operator).
approach along similar lines, see Ref. 9.The section entitled ‘‘Error Bounds of Optimal and Sub-

optimal Approximants’’ gives an account of error bounds
Example. Let � be a second-order system, that is, n � 2. Iffor the infinity norm of approximants (2-induced norm of
we normalize the coefficient of the highest power of q̂, thatthe convolution operator).
is, q̂2 � 1, we obtain the following system of equations:• The section entitled ‘‘Balanced Realizations and Bal-

anced Model Reduction’’ discusses model reduction by
balanced truncation which uses the same ingredients as
the Hankel norm model reduction theory. The approxi-
mants have a number of interesting properties, including
the existence of error bounds for the infinity norm of the
error. However, no optimality holds.

Input–Output Construction Method for Scalar Systems. Given
the polynomials a � ��

i�0 aisi, b � ��
i�0 bisi, and c � ��

i�0 cisi

satisfying c(s) � a(s)b(s), the coefficients of the product c are
a linear combination of those of b:

ccc = T(a)bbb

�
0 0 q2 0 0

p2 − εq2 0 q1 q2 0
p1 + εq1 p2 + εq2 q0 q1 q2

p0 − εq0 p1 − εq1 0 q0 q1

0 p0 + εq0 0 0 q0

�
︸ ︷︷ ︸

W (ε)

�
q̂1

q̂0

p̂2

p̂1

p̂0

�

= −

�
p2 + εq2

p1 − εq1

p0 + εq0

0
0

�

This can be solved for all � which are not roots of the equationwhere c :� (c� c��1 . . . c1 c0)* � ���1, b :� (b� . . . b0)* �
det W(�) � 0. The latter is a polynomial equation of second���1, and �(a) is a Toeplitz matrix with first column (a� . . .
degree; there are thus two values of �, �1, and �2, for whicha0 0 . . . 0)* � ���1, and first row (a� 0 . . . 0) � �1�(��1).
the determinant of W is zero. It can be shown that the roots ofWe will also define the sign matrix
this determinant are the eigenvalues of the Hankel operator
H �; since in the single-input single-output case H � is self-K = diag( . . . , 1,−1, 1)
adjoint (symmetric), the absolute values of �1 and �2, are the
singular values of H �. Thus both suboptimal and optimal ap-

of appropriate size. Given a polynomial a with real coeffi- proximants can be computed this way. (See also the first ex-
cients, the polynomial c* is defined as c(s)* :� c(�s). This ample of the section entitled ‘‘Examples.’’)
means that

State-Space Construction for Square Systems: Suboptimal
Case. In this section we will discuss the construction of ap-ccc∗ = K ccc
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proximants in the case where m � p. Actually this is no loss Solving these two equations for the unknown quantities, we
obtainof generality because if one has to apply the algorithm to a

nonsquare system, additional rows or columns of zeros can be
added so as to make the system square. For details we refer
to Ref. 4. Consider the system � as in Eq. (27), with
R e(�i(A)) � 0 and m � p. For simplicity it is assumed that
the D-matrix of � is zero. Compute the grammians P and Q

Â = −A∗ + C∗(CP − D̂B∗)�−∗

B̂ = −QB + C∗D̂

Ĉ = (CP − D̂B∗)�−∗
(45)

by solving the Lyapunov equations [Eqs. (34)]. We are looking
where ��* :� (�*)�1. There remains to show is that Â has ex-for
actly k stable eigenvalues. From the Lyapunov equation for
Q e it also follows that Q̂ � ���1P . By construction [see Eq.
(43)], � has k positive and n � k negative eigenvalues; the�̂ =

�
Â B̂
Ĉ D̂

�
same holds true for Q̂ (i.e., in (Q̂ ) � �k, 0, n � k�). Further-
more, the pair Ĉ, Â is observable, because otherwise A has

such that the parallel connection of � and �̂ denoted by �e, is
eigenvalues on the j� axis, which is a contradiction to the

�-all-pass. First, note that �e has the following state-space
original assumption that A is stable. Then by Proposition 6,

representation:
the inertia of �Q̂ is equal to that of Â, which completes the
proof.

Corollary 1. The system �̂ has dimension n and the dilated
system �e has dimension 2n. The stable subsystem �̂� has

�e =

�
A B

Â B̂
C −Ĉ −D̂

�
(40)

dimension k.
According to the last characterization of Proposition 7, �e is �-

State-Space Construction for Square Systems: Optimal Case.all-pass iff the corresponding grammians and D matrices sat-
The construction of the previous section can be extended toisfy
include the optimal case. This section presents the formulae
which first appeared in Section 6 of Ref. 4.

PeQe = ε2I2n, D̂∗D̂ = ε2Im (41)
In this case we need to construct the all-pass dilation �e

for � equal to the lower bound in Eq. (25), namely �k�1(�).
This implies that D̂/� is a unitary matrix of size m. The key Thus, �k�1 is an eigenvalue of the product of the grammians
to the construction of P e and Q e, is the unitary dilation of P

P Q of multiplicity, say r. There exists a basis change in the
and Q . Consider the simple case where the grammians are state space such that
scalar P � p, Q � q, and � � 1. In this case we are looking
for filling in the ? so that

P =
�

Irσk+1 0
0 P2

�
, Q =

�
Irσk+1 0

0 Q2

�
(46)

The balancing transformation Eq. (60) discussed in the sec-

�
p ?
? ?

��
q ?
? ?

�
=
�

1 0
0 1

�

tion entitled ‘‘Balanced Realizations and Balanced Model Re-
assuming that pq � 1. It readily follows that one solution is duction’’ accomplishes this goal.

Clearly, only the pair P 2 and Q 2 needs to be dilated. As in
the suboptimal case, explicit formulae for �̂ can be obtained
by using Eq. (35) of Proposition 7. Partition A, B, and C con-
formally with P and Q :

�
p 1 − pq

1 − pq −q(1 − pq)

��q 1

1 − p
1 − pq

�
=
�

1 0
0 1

�
(42)

In the general (nonscalar) case, this suggests defining the
quantity:

A =
�

A11 A12

A21 A22

�
, B =

�
B1

B2

�
, C = (C1 C2)

where A11 � �r�r, B1, C*1 � �r�m, and Ir denotes the r � r� := ε2In − PQ (43)
identity matrix. The (1, 1) block of the Lyapunov equations

Assuming that � is not equal to any of the eigenvalues of the yields B1B*1 � C*1 C1; this implies the existence of a unitary
product P Q (i.e., to any of the singular values of the Hankel matrix U of size m, such that
operator H �), � is invertible. Keeping in mind that P and Q

B1U = C∗
1, UU∗ = Imdo not commute, the choice of P e and Q e corresponding to Eq.

(42) is
Using Eqs. (45) we construct an all-pass dilation of the sub-
system (A22, B21, C12); solving the corresponding equations we
obtainPe =

�
P �

�∗ −Q�

�
, Qe =

�
Q In

In −�−1P

�
(44)

Once the matrices P e and Q e for the dilated system �e have
been constructed, the next step is to construct the matrices
Â, B̂, and Ĉ of the dilation system �̂. According to Eq. (35) of
Proposition 6, the Lyapunov equation A*e Q e � Q eAe � C*e Ce �
0 and the equation Q eBe � C*e De � 0 have to be satisfied.

D̂ = σk+1U

B̂ = −Q2B2 + C∗
2D̂

Ĉ = (C2P2 − D̂B∗
2)(�∗

2 )−1

Â = −A∗
22 + C∗

2Ĉ

(47)
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where �2 :� �2
k�1 � P 2Q 2 � �(n�r)�(n�r). Hence unlike the subop- Error Bounds of Optimal and Suboptimal Approximants. Given

is the stable m � m system �, having Hankel singular valuestimal case, D̂ is not arbitrary. In the single-input single-out-
put case, D̂ is completely determined by the above relation- �i and multiplicity ri, i � 1, . . ., q [see Eq. (21)]. Let �̂ be the

�-all-pass dilation of �, where � � �q (the smallest singularship (is either �1 or �1) and hence there is a unique optimal
approximant. This is not true for systems with more than one value). Following Corollary 2, the dimension of �̂� is n � q,

which implies that �̂ � �̂�; that is, it is stable. Thus by theinput and/or more than one output. Furthermore, in the one-
step reduction case (i.e., �k�1 � �n) the all-pass dilation system same corollary, for a one-step reduction, the all-pass dilation

system has no unstable poles; for simplicity we will use the�̂ has no antistable part; that is, it is the optimal Hankel-
norm approximant. notation

�q := �̂(σq)Corollary 2. (a) In contrast to the suboptimal case, in the
optimal case, �̂ has dimension r, and the dilated system �e

Thus � � �q is all-pass of magnitude �q, and consequently wehas dimension 2n � r. Furthermore, the stable subsystem
have�� has dimension n � r. (b) In the case where �k�1 � �n, since

�̂ � �̂�, � � �̂ is stable and all-pass with norm �n. σi(�q) = σi(�), i = 1, . . ., n − rq (52)

General Case: Parameterization of All Suboptimal Approxi- We now approximate �q by �q�1 through a one-step optimal
mants. Given the system � as in Eq. (27), let � satisfy Eq. Hankel-norm reduction. By successive application of the same
(25). The following rational matrix �(s) has size (p � m) � procedure, we thus obtain a sequence of all-pass systems �i,
(p � m): i � 1, . . ., q, and a system �0 consisting of the matrix D0,

such that the transfer function of � is decomposed as follows:
�(s) := Ip+m − C�(sI − A�)−1Q−1

� C∗
�J (48)

H�(s) = D0 + H1(s) + · · · + Hq(s) (53)

where
where Hk(s) is the transfer function of the stable all-pass sys-
tem �k having dimension 2n � �q

i�k ri, k � 1, . . ., q; the di-
mension of the partial sums �k

i�1 Hi(s) is equal to �k
i�1 ri, k �

1, 2, . . ., q. Thus Eq. (53) is the equivalent of the dyadic
decomposition Eq. (4), for �.

From the above decomposition we can derive the following
upper bound for the H � norm of �. Assuming that H�(�) �
D � 0, we obtain

H�(s) − D0 ∞ ≤ H1(s) ∞︸ ︷︷ ︸
σ1

+· · · + Hq(s) ∞︸ ︷︷ ︸
σq

C� :=
�

C 0
0 B∗

�
∈ R(p+m)×2n

A� :=
�

A 0
0 −A∗

�
∈ R2n×2n

Q� :=
�

Q εIn

εIn P

�
∈ R2n×2n,

J :=
�

Ip 0
0 −Im

�
∈ R(p+m)×(p+m)

Evaluating the above expression at infinity yields
Putting these expressions together we obtain

D0 2 ≤ σ1 + · · · + σq

Thus, combining this inequality with �H�(s)�� � �D0�2 � �1 �
� � � � �q, yields the bound given in Lemma 2:

H�(s) ∞ ≤ 2(σ1 + · · · + σq) (54)

�(s) =
�

�11 �12
�21 �22

�

:=
�

Ip + C(sI − A)−1�−1PC∗ εC(sI − A)−1�−1B
−εB∗(sI + A∗)−1�−∗C∗ Im − B∗(sI + A∗)−1Q�−1B

�

(49)

This bound can be sharpened by computing an appropriate
By construction, � is J-unitary on the j� axis; that is, D0 � �m�m as in Eq. (53):
�*(�j�)J�( j�) � J. Define

H�(s) − D0 ∞ ≤ σ1 + · · · + σq (55)

Finally, we state a result of Ref. 4, on the Hankel singular

�
�1(
)

�2(
)

�
:= �(s)

�

(s)
Im

�
=
�

�11(s)
(s) + �12(s)
�21(s)
(s) + �22(s)

�
(50)

values of the stable part �e� of the all-pass dilation �e. It will
be assumed for simplicity that each Hankel singular value

The proof of the following result can be found in Chap. 24 of has multiplicity one: ri � 1. Assume that �e� � � � �̂�, where
Ref. 10. Recall Theorem 3.

�̂� is an optimal Hankel approximant of � of dimension k; the
following holds: �1(�e�) � � � � � �2k�1(�e�) � �k�1(�),

Theorem 4. �̂ is an �-all-pass dilation � if and only if �2k�2(�e�) � �1(�̂�) � �k�2(�), . . ., �n�k(�e�) � �n�k�1(�̂�) �
�n(�). Using these inequalities we obtain an error bound for
the H � norm of the error of � with a degree k optimal approx-H� − H

�̂
= �1(
)�2(
)−1 (51)

imant �̂�. First, note that

where �(s) is a p � m anti-stable contraction (all poles in the
right half-plane and ��(s)�� � 1). δ := �− − D0 ∞ ≤ σ1(�̂−) + · · · + σn−k−1(�̂−)
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This implies �� � �̂� � D0�� � �k�1(�) � �. Combining all the input is zero (u � 0), is equal to
previous inequalities we obtain the bounds:

x∗
oQxo (59)

We conclude that the states which are difficult to reach—that

σk+1 ≤ � − �̂+ − D0 ∞ ≤ σk+1(�) + σ1(�̂−)

+ · · · + σn−k−1(�̂−) ≤ σk+1(�) + · · · + σn(�)
(56)

is, those which require a large amount of energy to reach—
are in the span of the eigenvectors of the reachability gram-The left-hand-side inequality in Eq. (25), and the above finally
mian P corresponding to small eigenvalues. Moreover, theyield upper and lower bounds on the H � norm of the error:
states which are difficult to observe—that is, those which
yield small amounts of observation energy—are those which

σk+1 ≤ � − �̂+ ∞ ≤ 2(σk+1 + · · · + σn) (57) lie in the span of the eigenvectors of the observability gram-
mian Q corresponding to small eigenvalues as well.

The first upper bound in Eq. (56) above is the tightest; but This observation suggests that one way to obtain reduced
both a D term and the singular values of the antistable �̂� order models is by eliminating those states which are difficult
part of the all-pass dilation are needed. The second upper to reach and/or difficult to observe. However, states which are
bound in Eq. (56) is the second-tightest; it only requires difficult to reach may not be difficult to observe, and vice
knowledge of the optimal D term. Finally the upper bound in versa; as simple examples show, these properties are basis-
Eq. (57) is the least tight among these three. It is, however, dependent. This suggests the need for a basis in which states
the most useful, since it can be determined a priori, that is, which are difficult to reach are simultaneously difficult to ob-
before the computation of the approximants, once the singu- serve, and vice versa. From these considerations, the question
lar values of the original system � are known. arises: Given a continuous- or discrete-time stable system �,

does there exist a basis of the state space in which states
which are difficult to reach are also difficult to observe?Remark 4. (a) In a similar way a bound for the infinity norm

The answer to this question is affirmative. The transfor-of suboptimal approximants can be obtained. Given �, let �̂
mation which achieves this goal is called a balancing transfor-be an all-pass dilation satisfying Eq. (25). Then, similarly to
mation. Under an equivalence transformation T (basis changeEq. (56), the following holds:
in the state space: x̃ :� Tx, det T � 0) we have Ã � TAT�1,
B̃ � TB, and C̃ � CT�1, while the grammians are transformedσr+1 ≤ � − �̂+ ∞ ≤ 2(ε + σr+1 + · · · + σn)
as follows:

(b) For a one-step Hankel-norm reduction, � � �̂ is all-
pass; that is, P̃ = TP T∗, Q̃ = T−∗QT−1 ⇒ P̃ Q̃ = T(PQ)T−1

The problem is to find T, det T � 0, such that the transformed� − �̂ H = � − �̂ ∞ = σq

grammians P̃ and Q̃ are equal. This will ensure that the
which shows that in this case �̂ is an optimal approximant states which are difficult to reach are precisely those which
not only in the Hankel norm but in the infinity norm as well. are difficult to observe.
Thus for this special case, and despite Propositions 1 and 5,
the Hankel-norm approximation theory yields a solution for Definition 3. The stable system � is balanced iff P � Q . �
the optimal approximation problem in the 2-norm of the con- is principal-axis balanced iff
volution operator S �; recall that this is the problem we ini-
tially wished to solve. P = Q = S := diag(σ1, . . ., σn)

Balanced Realizations and Balanced Model Reduction The existence of a balancing transformation is guaranteed.

A model reduction method which is closely related to the Han-
Lemma 3. Balancing Transformation. Given the stablekel-norm approximation method is approximation by bal-
system � and the corresponding grammians P and Q , let theanced truncation. This involves a particular realization of a
matrices R, U, and S be defined by P �: R*R and RQ R* �:linear system � given by Eq. (27), called balanced realization
US2U*. A (principal axis) balancing transformation is given(the D matrix is irrelevant in this case). We start by ex-
byplaining the rational behind this particular state-space real-

ization.
The Concept of Balancing. Consider a stable system � with T := S1/2U∗R−∗ (60)

positive definite reachability and observability grammians P

and Q . It can be shown that the minimal energy required for where (as before) R�* �: (R*).�1

the transfer of the state of the system from 0 to some final To verify that T is a balancing transformation, it follows
state xr is by direct calculation that TP T* � S and T�*Q T�1 � S. We

also note that if the Hankel singular values are distinct (i.e.,
have multiplicity one), balancing transformations T̂ are deter-x∗

r P −1xr (58)
mined from T given above, up to multiplication by a sign ma-
trix L—that is, a diagonal matrix with �1 on the diagonal:Similarly, the largest observation energy produced by observ-

ing the output, when the initial state of the system is xo and T̂ � LT.



416 LINEAR DYNAMICAL SYSTEMS, APPROXIMATION

Model Reduction. Let � be balanced with grammians equal Remark 5. (a) The last part of the above theorems says that
if the neglected singular values are small, then the Bode plotsto S, and partition:
of � and �1 are guaranteed to be close in the H � norm. The
difference between part 3 for continuous- and discrete-time
systems above is that the multiplicities of the neglected sin-
gular values do not enter in the upper bound for continuous-
time systems.

A =
�

A11 A12

A21 A22

�
, S =

�
S1 0
0 S2

�
,

B =
�

B1

B2

�
, C = (C1 C2)

(61)

(b) Proposition 8 implies that the bilinear transformation
between discrete- and continuous-time systems preserves bal-

The systems ancing (see also ‘‘A Simple Discrete-Time Example’’ below).
(c) Let �hank and �bal be the reduced-order systems obtained

by one step Hankel-norm approximation, and one step bal-�i :=
�

Aii Bi

Ci

�
, i = 1, 2

anced truncation, respectively. It can be shown that �hank �
�bal is all-pass with norm �q; it readily follows that

are called reduced-order systems obtained form � by balanced
truncation. These have certain guaranteed properties. How- � − �bal ∞ ≤ 2σq and � − �bal H ≤ 2σq
ever, these properties are different from discrete- and contin-
uous-time systems. Hence we state two theorems. For a proof

A consequence of the above inequalities is that the error forsee, for example, Ref. 6.
reduction by balanced truncation can be upper-bounded by
means of the singular values of � as given in Theorem 5. Fur-Theorem 5. Balanced Truncation: Continuous-Time Sys-
thermore, this bound is valid both for the H � norm and fortems. Given the stable (no poles in the closed right half-
the Hankel norm.plane) continuous-time system �, the reduced-order systems

(d) Every linear, time-invariant, continuous-time and sta-
�i, i � 1, 2, obtained by balanced truncation have the follow-

ble system �, can be expressed in balanced canonical form. Ining properties:
the generic case (distinct singular values) this canonical form
is given in terms of 2n positive numbers, namely the singular1. �i, i � 1. 2, satisfy the Lyapunov equations AiiSi �
values �i 
 0, and some bi 
 0, as well as n signs si � �1,SiA*ii � BiB*i � 0, and A*ii Si � SiAii � C*i Ci � 0. Further-
i � 1, . . ., n. The quantities �i :� si�i are called signed singu-more, Aii, i � 1, 2, have no eigenvalues in the open right
lar values of �; they satisfy H�(0) � 2(�1 � � � � � �n). Forhalf-plane.
details on balanced canonical forms we refer to the work of

2. If S1 and S2 have no eigenvalues in common, both �1 Ober—for example, Ref. 11.
and �2 have no poles on the imaginary axis and are, in
addition, reachable, observable, and balanced.

EXAMPLES3. Let the distinct singular values of � be �i, with multi-
plicities mi, i � 1, . . ., q. Let �1 have singular values

In this section we will illustrate the results presented above�i, i � 1, . . ., k, with the corresponding multiplicities
by means of three examples. The first deals with a simplemi, i � 1, . . ., k, k � q. The H � norm of the difference
second-order continuous-time system. The purpose is to com-between the full-order system � and the reduced-order
pute the limit of suboptimal Hankel-norm approximants as �system �1 is upper-bounded by twice the sum of the ne-
tends to one of the singular values. The second example dis-glected Hankel singular values:
cusses the approximation of a discrete-time system [third-or-
der finite impulse response (FIR) system] by balanced trunca-� − �1 ∞ ≤ 2(σk+1 + · · · + σq) (62)
tion and Hankel-norm approximation. The section concludes

If the smallest singular value is truncated—that is, with the approximation of the four classic analog filters (But-
S2 � �qIrq

—equality holds. terworth, Chebyshev 1, Chebyshev 2, and Elliptic) by bal-
anced truncation and Hankel-norm approximation.

Theorem 6. Balanced Truncation: Discrete-Time Sys-
tems. Given the stable, discrete-time system (no poles in the A Simple Continuous-Time Example
complement of the open unit disk) �, the reduced-order sys-

Consider the system � given by Eq. (27), where n � 2, m �tems �i obtained by balanced truncation have the following
p � 1, andproperties:

1. �i, i � 1, 2, have no poles in the closed unit disk; these
systems are, in general, not balanced.

2. If �min(S1) 
 �max(S2), �1 is, in addition, reachable and
observable.

3. The h� norm of the difference between full- and re-

A = −

� 1
2σ1

1
σ1 + σ2

1
σ1 + σ2

1
2σ2

�
, B =

�
1
1

�
,

C = (1 1), D = 0
duced-order models is upper-bounded by twice the sum
of the neglected Hankel singular values, multiplicities where �1 
 �2. This system is in balanced canonical form; this
included: means that the grammians are P � Q � diag(�1, �2) :� S;

this canonical form is a special case of the forms discussed in
� − �1 ∞ ≤ 2 trace(S2) Ref. 11.
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We wish to compute the suboptimal Hankel-norm approxi- Approximation by Balanced Truncation. A balanced realiza-
tion of this system is given bymants for �1 
 � 
 �2. Then we will compute the limit of this

family for � � �2 and � � �1, and we will show that the sys-
tem obtained is indeed the optimal approximant. From Eq.
(43), � � �2I2 � S2 � diag(�2 � �2

1, �2 � �2
2); the inertia of � is

�1, 0, 1�; furthermore, from Eq. (45) we obtain �d :=
�

F G
H J

�
=

�
0 α 0 β

α 0 −α 0
0 α 0 −γ

−β 0 −γ 0

�
,

α = 5−1/4, β =
�

3
√

5 + 5√
10

, γ =
�

3
√

5 − 5√
10

where the reachability and observability grammians are
equal and diagonal:

Â =

� ε − σ1

2σ1(ε + σ1)

ε − σ1

(σ1 + σ2)(ε + σ2)

ε − σ2

(σ1 + σ2)(ε + σ1)

ε − σ2

2σ2(ε + σ2)

�
,

B̂ =
�

ε − σ1

ε − σ2

�
,

Ĉ =
� −1

ε + σ1

−1
ε + σ2

�
,

D̂ = ε

P = Q = S = diag(σ1, σ2, σ3), σ1 =
√

5 + 1
2

σ2 = 1, σ3 =
√

5 − 1
2Since the inertia of Â is equal to the inertia of ��, Â has one

stable and one unstable poles (this can be checked directly by
The second- and first-order balanced truncated systems arenoticing that the determinant of Â is negative). As � � �2 we

obtain

�d,2 =
�

F2 G2
H2 J2

�
=
�

0 α β

α 0 0
−β 0 0

�
,

�d,1 =
�

F1 G1
H1 J1

�
=
�

0 β

−β 0

�Â =
� σ2 − σ1

2σ1(σ1 + σ2)

σ2 − σ1

2σ2(σ1 + σ2)

0 0

�
, B̂ =

�
σ2 − σ1

0

�
,

Ĉ =
� −1

σ1 + σ2

−1
2σ2

�
, D̂ = σ2

Notice that �d,2 is balanced, but has singular values which are
different from �1 and �2. �d,1 is also balanced since G1 � �H2,This system is not reachable but observable (i.e., there is a
but its grammians are not equal to �1.pole-zero cancellation in the transfer function). A state-space

Let �c denote the continuous-time system obtained fromrepresentation of the reachable and observable subsystem is
�d by means of the bilinear transformation described in the
section entitled ‘‘A Transformation Between Continuous- and
Discrete-Time Systems’’

Ā = σ2 − σ1

2σ1(σ1 + σ2)
, B̄ = σ2 − σ1, C = −1

σ1 + σ2
, D̄ = σ2

Equations (45) depend on the choice of D̂. If we choose it to
be ��, the limit still exists and gives a realization of the opti-
mal system which is equivalent to A, B, C, D given above.

Finally, if � � �1, after a pole-zero cancellation, we obtain

�c =
�

A B
C D

�
=

�−1 − 2α2 2α 2α2 δ+
2α −1 −2α −√

2
−2α2 −2α −1 + 2α2 δ−
−δ+

√
2 δ− 2

�
the following reachable and observable approximant:

where �� � �2(� � �). Notice that �c is balanced. We now
compute first and second reduced-order systems �c,1 and �c,2

Ā = σ1 − σ2

2σ1(σ1 + σ2)
, B̄ = σ1 − σ2, C̄ = −1

σ1 + σ2
, D̄ = σ1

by truncating �c:
This is the best antistable approximant of �—that is, the
Nehari solution [see Remark 3(a)].

A Simple Discrete-Time Example

In this section we will consider a third-order discrete-time
FIR system described by the transfer function:

�c,2 =
�

A2 B2
C2 D2

�
=

�
−1 − 2α2 2α δ+

2α −1 −√
2

−δ+
√

2 2

�

�c,1 =
�

A1 B1
C1 D1

�
=
�−1 − 2α2 δ+

−δ+ 2

�
Let �d,2 and �d,1 be the discrete-time systems obtaining byH(z) = z2 + 1

z3 (63)
transforming �c,2 and �c,1 back to discrete-time:

We will first consider approximation by balanced truncation.
The issue here is to examine balanced truncation first in dis-
crete-time and then in continuous-time, using the bilinear
transformation of the section entitled ‘‘A Transformation Be-
tween Continuous- and Discrete-Time Systems,’’ and compare
the results. Subsequently, Hankel-norm approximation will
be investigated.

�̄d,2 =
�

F̄2 Ḡ2

H̄2 J̄2

�
=

�
0 α β

α α2 −αγ

−β αγ −γ 2

�

�̄d,1 =
�

F̄1 Ḡ1

H̄1 J̄1

�
=
� −σ3/2 (α+β)σ3/2α2

−(α + β)σ3/2α2 2− (α2 +β)2/(1+α2)

�
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The conclusion is that �d,2 and �d,1 are balanced and different Again using the transformation of the section entitled ‘‘A
Transformation Between Continuous- and Discrete-Time Sys-from �d,2 and �d,1. It is interesting to notice that the singular

value of �d,1 is �2 � (1 � �1)/�5, while that of �d,1 is �1; �2 tems’’ we obtain the following discrete-time optimal approxi-
mant:satisfies �2 � �2 � �1. Furthermore, the singular values of

�d,2 are 5�2/4, �5�2/4 which satisfy the following interlacing
inequalities:

Hd,2(z) = Hc,2

�z − 1
z + 1

�
= z

z2 − σ3
σ3 <

√
5β2/4 < σ2 < 5β2/4 < σ1

Notice that the optimal approximant is not an FIR system. It
The numerical values of the quantities above are �1 � has poles at ���3. Furthermore, the error
1.618034, �3 � 0.618034, � � 0.66874, � � 1.08204, � �
0.413304, �� � 2.47598, and �� � .361241.

Hd(z) − Hd,2(z) = σ3

[
1 − σ3z2

z3(z2 − σ3)

]
Hankel-Norm Approximation. The Hankel operator of the

system described by Eq. (63) is is all-pass with magnitude equal to �3 on the unit circle [as
predicted by Corollary 2(b)]. The corresponding optimal Han-
kel matrix of rank 2 is

H =

�
BBBBBBB�

1 0 1 0
0 1 0 0 · · ·
1 0 0 0
0 0 0 0

...
. . .

�
CCCCCCCA

The SVD of the 3 � 3 principal submatrix of H is

Ĥ =

�
BBBBBBBBB�

1 0 σ3 0 σ 2
3

0 σ3 0 σ 2
3 0 · · ·

σ3 0 σ 2
3 0 σ 3

3

0 σ 2
3 0 σ 3

3 0
σ 2

3 0 σ 3
3 0 σ 4

3
...

. . .

�
CCCCCCCCCA

In this particular case the 3 � 3 principal submatrix of Ĥ is
also an optimal approximant of the corresponding submatrix
of H .

�
1 0 1
0 1 0
1 0 0

�
=

�BBBBBB�

r
σ1√

5
0

r
σ3√

5
0 1 0r
σ3√

5
0 −

r
σ1√

5

�CCCCCCA
�

σ1 0 0
0 σ2 0
0 0 σ3

��BBBBBB�

r
σ1√

5
0
r

σ3√
5

0 1 0

−
r

σ3√
5

0
r

σ1√
5

�CCCCCCA (64)

where �i, i � 1, 2, 3, are as given earlier. It is tempting to
conjecture that the optimal second-order approximant is ob-
tained by setting �3 � 0 in Eq. (64). The problem with this
procedure is that the resulting approximant does not have

�
1 0 σ3

0 σ3 0
σ3 0 σ 2

3

�
=

�BBBBBB�

r
σ1√

5
0

r
σ3√

5
0 1 0r
σ3√

5
0 −

r
σ1√

5

�CCCCCCA
�

1 + σ 2
3 0 0

0 σ3 0
0 0 0

��BBBBBB�

r
σ1√

5
0
r

σ3√
5

0 1 0

−
r

σ3√
5

0
r

σ1√
5

�CCCCCCA (65)

Hankel structure.
To compute the optimal approximant, the system is first

Notice that the above decomposition can be obtained from Eq.transformed to a continuous-time system using the transfor-
(64) by making use of the freedom mentioned in Eq. (7). Fi-mation of the section entitled ‘‘A Transformation Between
nally it is readily checked that the Hankel matrix consistingContinuous- and Discrete-Time Systems’’; we obtain the
of 1 as (1, 1) entry and 0 everywhere else is the optimal ap-transfer function
proximant of H of rank one. The dyadic decomposition [Eq.
(53)] of H is

Hc(s) = Hd

�1 + s
1 − s

�
= 2(s3 − s2 + s − 1)

(s + 1)3

where Hd is the transfer function defined in Eq. (63). Applying
the theory discussed in the section entitled ‘‘State-Space Con-
struction for Square Systems: Optimal Case,’’ we obtain the

H(z) = H1(z) + H2(z) + H3(z) = σ1

[
1
z

]
+ σ2

[
1 − σ3z2

z(z2 − σ3)

]

+ σ3

[ −1 + σ3z2

z3(z2 − σ3)

]
following second-order continuous-time optimal approximant:

Notice that each Hi is �i-all-pass, and the degree of H1 is one,
that of H1 � H2 is two, and finally that of all three summands
is three.

Hc,2(s) = −(s2 − 1)

(1 − σ3)s2 + 2σ1s + (1 − σ3)
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A Higher-Order Example have to be approximated by systems of lower order than �C1

and �E; we thus choose to approximate �B and �C2 by 8th-
In our last example, we will approximate four well-known

order models, and we choose to approximate �C1 and �E by
types of analog filters by means of balanced truncation and

10th-order models. It is interesting to observe that for the
Hankel norm approximation. These are:

Chebyshev-2 filter the difference of the singular values, �13 �
�20, is of the order 10�7. Thus �C2 has an (approximate) 8th-

1. �B—Butterworth order all-pass subsystem of magnitude 0.05. Consequently,
2. �C1—Chebyshev 1: 1% ripple in the pass band (PB) �C2 cannot be approximated with systems of order 13 through
3. �C2—Chebyshev 2: 1% ripple in the stop band (SB) 19. Similarly, the Chebyshev-1 filter has an all-pass subsys-

tem of order 3; consequently approximations of order 1, 2, and4. �E—Elliptic: 0.1% ripple both in the PB and
3 are not possible.in the SB

The subscript ‘‘bal’’ stands for approximation by balanced
truncation, the subscript ‘‘hank’’ stands for optimal Hankel-In each case we will consider 20th-order low-pass filters, with
norm approximation, ‘‘FOM’’ stands for ‘‘full-order model,’’pass-band gain equal to 1, and cut-off frequency normalized
and ‘‘ROM’’ stands for ‘‘reduced-order model.’’to 1. Figure 2 shows the Hankel singular values of the full-

Figure 3 gives the amplitude Bode plots of the error sys-order models. It follows from these plots that in order to ob-
tems and tabulates their H � norms and upper bounds. Wetain roughly comparable approximation errors, �B and �C2 will
observe that the 10th-order Hankel-norm approximants of
�C1 and �E are not very good in the SB; one way for improving
them is to increase the approximation order; another is to
compute weighted approximants (see, e.g., Ref. 12). In Table
2, more detailed bounds for the approximants will be given in
the case where the approximant contains an optimal D-term
‘‘Bound 1’’ is the first expression on the right-hand side of Eq.
(56), and ‘‘Bound 2’’ is the second expression on the right-
hand side of the same expression:

Bound 11 := σ9(�) + σ1(�̂−)

+ · · · + σ11(�̂−) ≤ σ9(�)

+ · · · + σ20(�) =: Bound 12

Bound 21 := σ11(�) + σ1(�̂−)

+ · · · + σ9(�̂−) ≤ σ11(�)

+ · · · + σ20(�) =: Bound 22

Finally, Figure 4 shows the amplitude Bode plots of the
ROMs obtained by Hankel and balanced reductions.

CONCLUSION

The computational algorithms that emerged from balancing
and Hankel-norm model reduction have found their way to
software packages. The Matlab toolboxes, robust control tool-
box (13) and �-toolbox (14), contain m-files which address the
approximation problems discussed above. Two such m-files
are sysbal and hankmr; the first is used for balancing and
balanced truncation, while the second is used for optimal
Hankel-norm approximation (including the computation of
the anti-stable part of the all-pass dilation).

We will conclude with a brief discussion of some articles
which were written since Glover’s seminal paper (4), namely,
Refs. 9, 12, 15–20.

Hankel-norm approximation or balanced truncation can be
applied to stable systems. The approximants are guaranteed
to be close to the original system, within the bounds given in
the section entitled ‘‘Error Bounds of Optimal and Suboptimal
Approximants’’; the important aspect of this theory is that
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these bounds can be computed a priori—that is, before com-
puting the approximant. The bounds are in tems of the H �Figure 2. Analog filter approximation: Hankel singular values

(curves and numerical values). norm which is a well-defined measure of distance between
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Figure 3. Analog filter approximation:
Bode plots of the error systems for model
reduction by optimal Hankel-norm ap-
proximation (continuous curves), bal-
anced truncation (dash–dot curves), and
the upper bound [Eq. (57)] (dash–dash
curves). The table compares the peak val-
ues of these Bode plots with the lower andElliptic 0.2457
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•Norm of the Error and Bounds

upper bounds predicted by the theory.

stable systems and has a direct relevance in feedback con- The second paper (9) authored by Fuhrmann uses the au-
thor’s polynomial models for a detailed analysis of the Hankeltrol theory.

When the system is unstable, however, Hankel-norm ap- operator with given (scalar) rational symbol (i.e., single-input
single-output systems). Furhmann’s computations follow aproximation may not be the right thing to do, since it would

not predict closeness in any meaningful way. To bypass this different approach than the one used in Ref. 4. The Schmidt
pairs (singular vectors) are explicitly computed and hence thedifficulty Ref. 15 proposes approximating unstable systems

(in the balanced and Hankel norm sense) using the (normal- optimal Hankel approximants are obtained. This analysis
yields new insights into the problem; we refer to Theorem 8.1ized) coprime factors, derived from the transfer function. An-

other way to go about reducing unstable systems is by adopt- on page 184 of Ref. 9, which shows that the decomposition of
the transfer function in the basis provided by the Schmidting the gap metric for measuring the distance between two

systems; the gap is a natural measure of distance in the con- pairs of the Hankel operator provides the balanced realization
of the associated state space representation. Another advan-text of feedback control. For details on this approach we refer

to the work by Georgiou and Smith (16), and references tage is that it suggests the correct treatment of the polyno-
mial equation [Eq. (38)], which yields a set of n linear equa-therein.

Table 2. Various Upper Bounds for the Norm of the Error

Analog Filter Optimal D �9 �� � �hank�� Bound 11 Bound 12

Butterworth 0.0384 0.0384 0.0389 0.0390 0.0517
Chebyshev 2 0.1010 0.0506 0.1008 0.5987 0.6008

Optimal D �11 �� � �hank�� Bound 21 Bound 22

Chebyshev 1 0.2988 0.3374 0.4113 0.5030 0.9839
Elliptic 0.2441 0.2458 0.2700 0.3492 0.7909
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problem of approximating a finite-dimensional Hankel matrix
remains largely unknown. Some partial results are provided
in Ref. 20 which relate to results in Ref. 9.
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