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STOCHASTIC OPTIMIZATION, STOCHASTIC
APPROXIMATION AND SIMULATED ANNEALING

Optimization problems are central to human existence. Indi-
viduals and organizations are often faced with making trade-
offs between different factors in order to obtain desirable out-
comes, and the problem of choosing these factors in some
‘‘best’’ way is the essence of the optimization problem. Some
of the earliest manifestations occurred at the dawn of civiliza-
tion when humans developed strategies for societal organiza-
tion and for obtaining food and shelter. Optimization contin-
ues today throughout society in the design, operation, control,
and evaluation of modern systems.

Formal optimization is associated with the specification of
a mathematical objective function and a collection of factors
(or parameters) that can be adjusted to optimize the objective
function. In particular, one can formulate an optimization
problem as follows:

Find θ∗that solves min
θ∈C

L(θ ) (1)

where L : Rp � R1 represents some loss function to be mini-
mized, � represents the p-dimensional vector of adjustable pa-
rameters, and C 	 Rp represents a constraint set defining the
allowable values for the parameters �. (Note that a maximiza-
tion problem can be trivially recast as the minimization prob-
lem in Eq. (1) by applying a minus sign to the objective func-
tion.) Our focus in this article will be problems for which �
represents a vector of continuous parameters; this is in con-
trast to discrete problems such as ‘‘how many items X do we
need to optimize performance?’’ Discrete optimization is a
large subject unto itself, and will not be considered in any
detail here (see, e.g., Ref. 1 for a detailed discussion of this
subject from a deterministic perspective). Further, we are in-
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terested in the case where L is sufficiently complicated that this is true is in numerical integration, where Monte Carlo
methods can be much more efficient in high-dimensionalit is not possible to obtain a closed-form analytical solution to
problems than deterministic quadrature approaches).Eq. (1). This is far and away the most common setting for

However, deterministic optimization—which includes lin-large-scale optimization problems encountered in practice.
ear and nonlinear programming and such well-known meth-Hence to solve for �* in Eq. (1), one uses an iterative algo-
ods as steepest descent, Newton–Raphson, and conjugate gra-rithm: a step-by-step method for moving from an initial guess
dient—provides a useful starting point for the study ofat �* to a final value that is expected to be closer to the true
stochastic methods. In particular, many (though certainly not�* than the initial guess.
all) of the methods in both deterministic and stochastic opti-One of the major distinctions in optimization is between
mization for the continuous problems of interest in this articleglobal and local optimization. All other factors being equal,
rely in some manner on the gradient vector of the loss func-one would always want the global optimal solution to Eq. (1),
tion with respect to the parameters:that is, the �* that provides a lower value of L than any other

value of � � C. However, in practice this solution is often not
available and one must be satisfied with obtaining a local so-
lution. For example, L may be shaped so that there is a
clearly defined (local) minimum point over a broad region of
the allowable � space C while there is a very narrow spike at
a distant point such that the trough of this spike is lower

ggg(θ ) ≡




∂L
∂θ1...
∂L
∂θp




than any point in the broad region. Hence, the local solution
is better than any nearby �, but may not be the best possible Then for local unconstrained optimization (i.e., C � Rp), a
�. Because of the inherent limitations of the vast majority of necessary condition for optimization when L is a continuously
optimization algorithms, it is usually only possible to ensure differentiable nonlinear function is that �* satisfies
that an algorithm will approach a local minimum with a finite
amount of resources being put into the optimization process. ggg(θ∗) = 0 (2)
However, since the local minimum may still yield a signifi-

(constrained problems can also be formulated in this waycantly improved solution (relative to no formal optimization
through, e.g., the use of a penalty function added to the ‘‘ba-process at all), the local minimum may be a fully acceptable
sic’’ loss function to penalize violations of the constraints).solution for the resources available (human time, money, com-
The proof of this result follows from simple Taylor series ar-puter time, etc.) to be spent on the optimization. Most of this
guments showing that if Eq. (2) is not true then one can movearticle will focus on algorithms that are only guaranteed to
� in some direction that reduces the value of L. Many optimi-yield a local optimum; however, we will also consider one type
zation algorithms are based on Eq. (2), thereby converting theof algorithm (simulated annealing) that aims to find a global
general optimization setting of Eq. (1) to the problem of find-solution from among multiple local solutions.
ing a root to the equation g(�) � 0.Our focus in this article is the study of iterative algo-

This article will focus on two broad—and popular—classesrithms where
of stochastic optimization algorithms: stochastic approxima-
tion and simulated annealing. There are many other stochas-1. there is random noise in the measurements of L (and
tic optimization algorithms that we are not considering: nota-its derivatives if relevant) and/or
bly, genetic algorithms, evolutionary strategies, evolutionary2. there is a random choice in computing the search direc-
programming, and various types of iterative random search.tion as the optimization algorithm iterates toward a so-
Many references on these other approaches are available tolution.
the interested reader. Among these are Ref. 2 for genetic algo-
rithms, Ref. 3 or the journal Evolutionary Computation forThe above two characteristics contrast with classical deter-
genetic algorithms and other evolutionary methods, and Refs.ministic optimization, where it is assumed that one has per-
4, 5, or 6 for random search.fect information about the loss function (and its derivatives,

The next section of this article reviews the core stochasticif relevant) and that this information is used to determine the
approximation (SA) algorithm that is based on direct (butsearch direction in a deterministic manner at every step of
usually noisy) measurements of the gradient vector g(�); thisthe algorithm. In many practical problems one will not have
is the well-known Robbins–Monro SA algorithm. Then followsperfect information about the loss function due to inevitable
an overview of SA when only measurements of the loss func-noise effects. A common example is where it is desired to min-
tion L(�) are available [not measurements of the gradient

imize some mean squared error in the performance of some g(�)]. The subsequent section analyzes in greater detail one of
system (e.g., the tracking error in a robot manipulation prob- the gradient-free SA methods—simultaneous perturbation
lem). Only rarely will one be able to compute the mean SA—introduced previously. Then a review of simulated an-
squared error (or its derivatives); rather, one might be able to nealing is given. The final section is a brief summary putting
get a specific observation of the squared error, but this differs these algorithms into perspective.
(sometimes very significantly) from the mean squared error.

Relative to point 2 above, it is sometimes beneficial to de-
ROBBINS–MONRO STOCHASTIC APPROXIMATIONliberately introduce randomness into the search process as a

means of speeding convergence and making the algorithm
Background and Algorithm Formless sensitive to modeling errors. Although the introduction

of randomness may seem counterproductive, it is well known We now discuss the well-known Robbins–Monro stochastic
approximation (RMSA) algorithm, which is a gradient-basedto have beneficial effects in some settings (another case where
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stochastic optimization algorithm (sometimes referred to as a gence of the iterate, which implies convergence in probability.
‘‘stochastic gradient method’’) for a wide variety of nonlinear Blum (11) was apparently the first to give conditions for a.s.
problems. This subsection will introduce the basic algorithm convergence. Neither of a.s. and mean-square convergence is
form. The following two subsections discuss some of the theo- implied by the other, but a.s. is stronger than in probability.]
retical properties related to convergence and asymptotic dis- Many sufficient conditions have been given over the years
tributions. Then we will summarize three extensions to the for a.s. convergence of the SA algorithm in Eq. (3). Ruppert
basic algorithm form, and finally summarize how the RMSA (12) and Rustagi (13, Chap. 9), for example, discuss conditions
algorithm is implemented in several different nonlinear appli- that have largely evolved out of the statistics perspective.
cations. Ljung (14), Kushner and Clark (15), Kushner and Yin (98),

The prototype stochastic optimization application for the and Benveniste et al. (16, Chap. I.2) discuss a somewhat dif-
RMSA algorithm is the problem of finding a root to the equa- ferent set of conditions that have largely grown out of the
tion g(�) � 0 based on (noisy) measurements of g(�). Let Y(�) engineering perspective. Central to the latter approach is the
represent the measurement of g(�). [Although this article is definition of an underlying ordinary differential equation
written in the language of optimization, many of the ideas (ODE) that roughly emulates the SA algorithm in Eq. (3) for
carry over directly to the general root-finding context as well, large k and as the random effects disappear. It turns out that
where g(�) represents the function for which a zero is to be the convergence properties of this deterministic differential
found.] equation are closely related to the stochastic convergence

RMSA was introduced in a famous 1951 paper (10) and properties of Eq. (3). Lai (17, Sec. 2) provides a nice intuitive
has spawned a large number of follow-on papers. The algo- explanation of this differential-equation-based approach.
rithm has the form Probably the most famous of the convergence conditions

for RMSA are those on the gain sequence �ak�. The conditions
provide a careful balancing between wanting to damp out theθ̂k+1 = θ̂k − akY (θ̂k) (3)

noise effects as we get near the solution �* (ak � 0) and
where ak is a nonnegative gain sequence that must satisfy avoiding premature (false) convergence of the algorithm
certain conditions (discussed below) and �̂k represents the es- (��

k�0ak � �). The scaled harmonic sequence �a/(k � 1)�,
timate of �* at the kth iteration. Since the deterministic term a � 0, is the best-known example of a gain sequence that
�L/�� does not equal the stochastic term Y, the SA algorithm satisfies the gain conditions (and, as discussed in the next
is fundamentally different from the well-known deterministic subsection, is an optimal choice with respect to the theoretical
steepest descent algorithm. However, there is an intuitive rate of convergence, although in practice other decay rates
connection, since E(Y) � �L/�� under standard RMSA condi- may be superior in finite samples). Usually some numerical
tions [typically under the relatively modest regularity condi- experimentation is required to choose the best value of the
tions justifying the interchange of a derivative and an (expec- scale factor that appears in the decaying gain sequence. Other
tation) integral] (see, e.g., Ref. 7 or 8). conditions important for convergence relate to the smoothness

A variation on the basic form in Eq. (3) is to include a of g(�), the relative magnitude of the noise, and the position
projection operator, say �C, that automatically maps solutions

of the initial condition.
outside the constraint set C back to the ‘‘nearest’’ point
within C. Kushner and Yin (98) treat this approach exten-

Asymptotic Normality of Robbins–Monro Stochasticsively. In such a case, Eq. (3) becomes
Approximation and Choice of Gain Sequence

θ̂k+1 = �C[θ̂k − akY (θ̂k)] We discussed above the issue of convergence of the iterate
�̂k. This is of central importance in any optimization algo-

We will not treat this form further in this article. rithm. Also of importance is the probability distribution of the
iterate (which, recall, is a random vector in our stochastic op-

Convergence of the Robbins–Monro timization context). Having knowledge of the distribution pro-
Stochastic Approximation Algorithm vides key insight into two main aspects of the algorithm: (1)

error bounds for the iterate and (2) guidance in the choice ofAs with any optimization algorithm, it is of interest to know
the optimal gain ak so as to minimize the likely deviation ofwhether the iterate �̂k will converge to �* as k gets large. In
�̂k from �*.fact, one of the strongest aspects of SA is the rich convergence

Unfortunately, the theory governing the asymptotic distri-theory that has been developed over many years. Researchers
bution of the SA iterate is rather difficult. This is to be ex-and analysts in many fields have noted that if they can show

that a particular stochastic optimization algorithm is a form pected, given the nonlinear transformations arising from the
of SA algorithm, then it may be possible to establish formal recursion (3): a value Y(�̂k) forms the basis for �̂k�1, which in
convergence where otherwise that might have remained an turn is the point of evaluation for Y(�̂k�1) (generally a nonlin-
open question. In neural networks, for example, White (9) was ear mapping) in the next iteration.
apparently the first to use this idea to show convergence of General results on the asymptotic distribution of SA iter-
certain forms of the well-known backpropagation algorithm. ates are given by Fabian (18). His work is a generalization of
Note that since we are in a stochastic context, convergence is previous asymptotic distribution results for SA by Sacks (19).
in a probabilistic sense. In particular, the most common form He shows that, under appropriate regularity conditions,
of convergence established for SA is in the almost sure (a.s.)
(or ‘‘with probability one’’) sense. [A historical note: Robbins
and Monro (10) showed conditions for mean-square conver- kα/2(θ̂k − θ∗ )

dist−→ N(0,	) (4)
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sider: (1) the setting where the observed gradient Y includesas k � �, where �
dist

denotes convergence in distribution (see
a state vector that evolves as � is being updated, (2) methodsRef. 20, Chap. 3, or any other graduate-level probability text
of algorithm acceleration by improved choice of the gain se-for a formal definition of this type of convergence), � is some
quence, (3) iterate averaging for SA as a means for accelerat-covariance matrix that depends on the Hessian matrix of
ing convergence, and (4) the setting where the loss function LL(�) (at � � �*), N(0, �) represents a multivariate normal
may change with time.distribution with mean 0 and covariance �, and 	 governs the

decay rate for the SA gain sequence ak [e.g., ak � a/(k � 1)	].
Joint Parameter and State Evolution. In our first generaliza-Ruppert (12) also discusses this result. Various special cases

tion, we replace Y(�̂k) by Y(�̂k, xk), where xk represents a stateof this result dealing with the situation 	 � 1 are presented
vector related to the system being optimized. The book byin Refs. 13 (pp. 258–259), 21 (pp. 71–78), and 12. The intu-
Benveniste et al. (16) is devoted to this framework, which wasitive interpretation of Eq. (4) is that �̂k � �* will be approxi-
apparently first considered by Ljung (14) and extended bymately normally distributed with mean 0 and covariance ma-
Metivier and Priouret (30). It is typically assumed that xktrix �/k	 for k reasonably large.
evolves online according to a set of certain Markov transitionEquation (4) implies that the rate at which the iterate �̂k
probabilities. The convergence properties of �̂k [as given byapproaches �* is k�	/2. This follows because a random vector
Eq. (3)] then depend on the properties of these transitionwith the distribution N(0, �) on the right-hand side of Eq. (4)
probabilities. Benveniste et al. (16) discuss several applica-is ‘‘well behaved’’ (i.e., not degenerate 0 or � in magnitude),
tions of this framework in the context of telecommunications,and �̂k � �* must be decaying at a rate k�	/2 to balance the

k	/2 ‘‘blowup’’ factor on the left-hand side of Eq. (4). Under fault detection, and signal processing. One of the common
standard conditions on �ak� (see preceding subsection), the Markov representations of the evolution of the state is via the
rate of convergence of �̂k to �* is maximized at 	 � 1. linear state equation xk�1 � A(�̂k)xk � B(�̂k)wk, where A and B

In practical finite-sample problems, however, the choice of are appropriately dimensioned matrices and wk is a sequence
	 � 1 is not generally recommended. Most analysts and re- of independent, identically distributed random vectors (see,
searchers find a lower value of 	 yields superior finite-sample e.g., Ref. 14). Then the behavior of the Markov chain, and the
behavior. (This is a fact that is well known, but not widely associated convergence of �̂k, can be tied directly to the stabil-
documented in the literature because it contradicts the theo- ity of this linear process using well-known results in linear
retical result suggesting the optimality of 	 � 1; nevertheless, systems theory.
in the author’s experience and in the experience of all SA im- A specific application of this form is in temporal difference
plementers he has consulted, a lower value of 	 is generally learning for function approximation (99). The goal here is to
preferable. Other—effectively equivalent—ways exist for approximate the ‘‘cost-to-go’’ function associated with many
slowing down the decay rate of ak so that it acts like 	 
 1 in time-series prediction and control problems. The cost-to-go
finite samples; see, e.g., the practically oriented paper of Oka- function measures the expected future cost associated with
mura et al. (22) for estimation in finite-impulse-response specific policies (e.g., control strategies) for a dynamic process,
adaptive filters.) The intuitive reason for the desirability of 	 given that the process is currently in a particular state. When

 1 is that a slower decay provides a larger step size in the the state evolves according to a Markov chain, temporal dif-
iterations with large k, allowing the algorithm to move in big- ference learning can be cast as an RMSA form with joint pa-
ger steps towards the solution. This observation is a practical rameter and state evolution.finite-sample result, as the asymptotic theory showing opti-
mality of 	 � 1 is unassailable.

Adaptive Estimation and Second-Order Algorithms. There areIn fact, in many applications, a constant step size (	 � 0) is
a large number of methods for adaptively estimating the gainused. Typical applications involve adaptive tracking or control
sequence (or a multivariate analog of the gain) to enhance theproblems where �* is changing in time. The constant gain pro-
convergence rate of RM-type SAs. Some of these are built onvides enough impetus to the algorithm to keep up with the
stochastic approximation analogs of the famous Newton–variation in �*, whereas if a decaying gain were used, too lit-
Raphson deterministic optimization algorithm (e.g., Ref. 31).tle weight would be applied to the current input information
It is known—see, e.g., Ref. 16, Sec. 3.2—that the asymptoti-to allow for the algorithm to track the solution. Such con-
cally optimal gain for RMSA is a matrix given by H(�*)�1/k,stant-gain algorithms are also frequently used in neural net-
where H(�) represents the Hessian matrix of L(�). This iswork training even when there is no variation in the underly-
identical to deterministic optimization, except that we nowing �* (9,23). Constant-step-size SA algorithms will generally
have the decay factor k included to cope with the stochasticnot formally converge. (However, a partial convergence theory
effects. Unfortunately, this is largely of theoretical interestis possible for constant gains. This is typically based on lim-
only, since in practice one does not know either �* or the Hes-iting arguments as the gain magnitude gets small. Essen-
sian as a function of �. It also is an asymptotic result, and, astially, one is able to show that the iterate from a constant-
discussed in the preceding subsection, optimality for practicalgain algorithm will approach the optimal � to within some
finite-sample analysis may impose other requirements. Nev-error that decreases as the gain magnitude is made smaller.

See, e.g., Refs. 24–28.) Also note that the limiting distribution ertheless, this asymptotic result provides a type of ideal in
for the standardized SA iterate [analogous to the left-hand designing adaptive SA algorithms.
side of Eq. (4)] is not generally normal with constant step Perhaps the first adaptive technique is that of Kesten (32),
size (29,26). where one looks at the signs of the difference �̂k�1 � �̂k in a

scalar � process as a means of designing an adaptive gain
Extensions of Standard RMSA sequence ak (unlike the approaches described below, this ap-

proach does not explicitly use the connection with the HessianThis section discusses some extensions to the basic RMSA
framework presented in Eqs. (3)–(4). In particular, we con- matrix as mentioned above). If there are frequent sign
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changes, this is an indication that the iterate is near the solu- convergence that previously was possible only with knowl-
edge of the Hessian H(�*), as discussed under ‘‘Adaptive esti-tion, while if signs are not changing we have an indication

that the iterate is far from the solution. This forms the basis mation and second-order algorithms’’ above. This result is
available for any valid gain satisfying the above-mentionedfor an adaptive choice of the gain ak, whereby a larger gain is

used if there are no sign changes and a smaller gain is used additional condition. Hence, in principle, iterate averaging
greatly reduces one of the traditional banes of SA implemen-if the signs change frequently. Kesten (32) established a.s.

convergence with such a scheme. A multivariate extension of tation—namely, choosing the gain sequence in some optimal
way.the Kesten idea is described in Delyon and Juditsky (33), in-

cluding theoretical justification of the extension via a.s. con- Variations on the above basic iterate averaging formula-
tion are readily available. One obvious variation is to not av-vergence of the iterates.

Ljung and Soderstrom (34, Sec. 2.4, Sec. 3.4, and Chap. 4) erage in the first few iterations, but rather start the average
at some N � 0 or else use only a sliding window of the lastand Wei (35) discuss stochastic analogs of the Newton–

Raphson search in the context of parameter estimation for n � N (say) measurements. In practical finite-sample imple-
mentations, such modifications are likely to help, since theparticular (possibly linear) models. [These represent exten-

sions of the first paper on adaptive Hessian estimates for sca- first few iterations tend to produce the poorest estimates. In
the sliding-window approach, formal asymptotically optimallar problems (100).] In so doing, Refs. 34 and 35 demonstrate,

via the method of minimizing prediction error, that a batch normality can be retained if the window length grows with
time (see, e.g., Ref. 38). A further modification to the basicversion of the problem of finding a �* satisfying Eq. (2) (where

all the data are processed simultaneously) can be converted approach is to use the averaged value �k (together with �̂k) in
a modified form of the RMSA iteration [instead of �̂k alone onto the recursive form (where the data are processed one at a

time) using only the current (instantaneous) input. The scalar the right-hand side of the basic form (3)]. This is referred to
as the feedback approach in Ref. 39, and can be shown togain ak is then replaced in their formulation by a matrix that

approximates the (unknown) true inverse Hessian matrix cor- sometimes yield further improvement.
In practice, however, the results on iterate averaging areresponding to the current data point’s contribution to the

loss function. more mixed than the above would suggest. Numerical studies
by the author have shown that a well-chosen ak sequence willRuppert (36) describes an approach where the Hessian is

estimated by taking finite differences of a gradient measure- yield results superior to that possible by averaging (see also
Ref. 40, p. 57, and Ref. 41 for some cautionary notes). Oncement. The gradient used by Ruppert differs slightly from the

standard RM gradient in Eq. (3) in that he converts the basic again, this appears to be a consequence of the finite-sample
properties of practical problems. More study is required toproblem from one of minimizing L(�) to one of minimizing

��L/���2 (note that this yields the same �* when there is a understand the full capabilities of iterate averaging in
practice.unique minimum). Spall (102) presents a more efficient ap-

proach to general Hessian estimation based on the simultane-
ous perturbation idea discussed below. Time-Varying Loss Functions. A final generalization of the

Robbins–Monro recursion that we discuss is one where the
loss function (and corresponding gradient with respect to �)Iterate Averaging. An important and relatively recent de-
varies with k. This problem is treated in Refs. 42 and 43. Thevelopment in SA is the concept of iterate averaging. Like
basic idea is that, while the loss function may change shapemany good ideas, this one is simple and, in some problems,
with k, it is assumed that the underlying minimum �* is ei-can be effective. The idea was jointly described by Polyak and
ther constant for all k or fixed in the limit as k � � (evenJuditsky (37) and Ruppert (Ref. 12, based on a 1988 internal
though the loss function may change shape indefinitely). Thetechnical report). There are several variations, but the basic
two references mentioned above show a.s. convergence inidea is to replace �̂k as our current ‘‘best’’ estimate of �* after
these cases for the scalar-� setting; the proofs have to bek iterations with the average
changed from those commonly seen in SA to accommodate the
time-varying loss.

Figure 1 depicts a time-varying loss function Lk(�) for aθ k ≡ (k + 1)−1
k∑

j=0

θ̂ j (5)

scalar parameter. This figure shows a case where the loss
function and the minimizing parameter value both change

where each of the �̂j summands is computed as in Eq. (3). The with time, but one where the optimal parameter value con-
singular achievement of the above references was to show verges to a limiting point �*�. This is a situation for which the
that k1/2(�k � �*) is asymptotically normally distributed with above-mentioned theory would apply.
mean 0 and a covariance matrix that is as small as possible
in a matrix sense. These references establish this optimality

Applications of Robbins–Monro Stochastic Approximation
of Eq. (5) for gain sequences satisfying the standard condi-
tions plus the conditions ak�1/ak � 1 � o(ak) [with o( 
 ) im- RMSA has been applied in a large number of engineering

(and other) problems, often under another name. This subsec-plying a term that goes to 0 faster than the argument]. This
important additional condition implies that ak must decay at tion provides a summary of several applications together with

some references for further study.a rate slower than the optimal rate of 1/k for the individual
iterates �̂k (as discussed in the preceding subsection). The im- Neural network (NN) training via the well-known back-

propagation algorithm has long been recognized as an appli-plications of this result are quite strong: namely, that one can
use the standard algorithm in Eq. (3) together with the sim- cation of the RMSA algorithm, two of the publications dis-

cussing this connection being Ref. 9 and Ref. 44 (pp.ple averaging in Eq. (5) to achieve the same optimal rate of
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The final application we mention here is in image restora-
tion. Here the task is to recover a true image of a scene from
a recorded image of the scene where the recorded image is
typically corrupted by noise and/or otherwise degraded from
the original image. The essential reason for using RMSA
rather than more conventional signal processing and deconvo-
lution techniques is the ability to adapt to nonlinearities in
the process. Some recent references that discuss implementa-
tions of RMSA in the context of image restoration are Refs.
50 and 51. Abreu et al. (50) are concerned with removing im-
pulse noise that may be due, for example, to noisy sensor or
transmission errors in collecting the image data. They note
that nonlinear methods have often proven superior to linear
methods for this problem. Cha and Kassam (51) describe an
approach to image restoration based on a type of NN called

L2(  )θ

θ

θ

L3(  )θ

Lk(  )θ

Lk+1(  )θ

L1(  )θ

∗
∞

Time index, k

the radial basis function network (e.g., Ref. 6, Sec. 9.5), whereFigure 1. Example of time-varying loss functions with limiting mini-
RMSA is used to train the weights of this form of functionmum �*�.
approximator. Their use of the radial basis function network
is as a spatially invariant filter taking measurement data as
input and producing estimates of the pixel-by-pixel gray lev-190–199). The essence of the backpropagation algorithm is to

systematically compute (via the chain rule applied to the neu- els in the image.
ral network structure) the gradient g(�) [or its noisy measure-
ment Y(�)] for use in an algorithm identical to RMSA (it ap-

STOCHASTIC APPROXIMATION WITH GRADIENT
pears that the authors of some of the earlier publications in

APPROXIMATIONS BASED ON FUNCTION MEASUREMENTS
this area—e.g., Ref. 45—were unaware of the connection
with RMSA).

Introduction and Contrast of Gradient-Based
A popular area for application of RMSA is in recursive esti-

and Nongradient Algorithms
mation for linear models, especially as applied in signal pro-
cessing, fault detection, and adaptive control [e.g., Benveniste There has been a growing interest in stochastic optimization

algorithms that do not depend on direct gradient informationet al. (16, Chap. I.1), Ljung et al. (21, Chap. III), and Solo
and King (101, Chap. 5)]. Several variations of the resulting or measurements. Rather, these algorithms are based on an

approximation to the gradient formed from (generally noisy)algorithms exist, most notably the least mean squares (LMS)
and recursive least squares (RLS) algorithms. The essential measurements of the loss function. This interest has been mo-

tivated, for example, by problems in the adaptive control andidea in such algorithms is that the data are processed sequen-
tially as they arrive according to a formula that weights each statistical identification of complex systems, the optimization

of processes by large Monte Carlo simulations, the training ofnew data point in light of the assumed linear relationship
between the input and output on the one hand and the data recurrent neural networks, the recovery of images from noisy

sensor data, and the design of complex queuing and discrete-that have already arrived on the other. This contrasts with
traditional linear regression methods where all the data are event systems.

Overall, such algorithms exhibit certain convergence prop-assumed to be available at the outset and the processing is
done in batch form. Given the dynamic nature of problems in erties of the Robbins–Monro gradient-based algorithms con-

sidered above while requiring only loss-function measure-signal processing, fault detection, adaptive control, and cer-
tain other areas, this recursive processing has obvious advan- ments. A main advantage of such algorithms is that they do

not require the detailed knowledge of the functional relation-tages. Further, it can be shown that the recursive algorithms
yield an estimate at time t that is close to that which would ship between the parameters being adjusted (optimized) and

the loss function being minimized that is required in gradi-result from batch processing if all the data up to time t were
available at the outset (when t is reasonably large). ent-based algorithms [in particular, they do not need the

Y(�) term in the RM recursion of Eq. (3)]. Such a relationshipAnother popular area for application of RMSA is in simula-
tion-based optimization, especially in the context of discrete- can be notoriously difficult to develop in some areas (e.g., non-

linear feedback controller design or system optimization viaevent dynamic systems such as queuing networks. Here the
goal may be to optimize some design aspect of a system (e.g., large-scale simulation), while in other areas (such as high-

dimensional statistical parameter estimation) there may bethe position of certain machines on a factory floor) by running
experiments via computer simulations. A systematic ap- large computational saving in calculating a loss function

rather than a gradient. In contrast, the approaches based onproach to simulation-based optimization has been adapted
under the rubric of perturbation analysis, which was intro- gradient approximations require only conversion of the basic

output measurements to sample values of the loss function,duced in modern form by Y. C. Ho and his colleagues in the
late 1970s. In this method, one aims to get a gradient esti- which does not require full knowledge of the system input–

output relationships. Examples of approximation-based meth-mate Y(�) at any � value based on only one or a small number
of simulation runs. Given the stochastic nature of the simula- ods using loss-function measurements only are given below;

such methods include, as an early prototype, the Kiefer–tion, this gradient estimate will also only be a stochastic esti-
mate of the true gradient �L/��. Some references on simula- Wolfowitz finite-difference SA algorithm (52).

Because of the fundamentally different information neededtion-based optimization in the context of RMSA are Refs. 46,
47, 8, 48, and 49. in implementing these gradient-based (RM) and gradient-free
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algorithms, it is difficult to construct meaningful methods of surements of g(�) are assumed available, in contrast to the
RM framework.comparison. As a general rule, however, the gradient-based

algorithms will converge faster than those using loss-func- The recursive procedure we consider is in the general SA
form:tion-based gradient approximations when speed is measured

in number of iterations. Intuitively, this is not surprising given
the additional information required for the gradient-based al- θ̂k+1 = θ̂k − akĝk(θ̂k) (6)
gorithms. In particular, based on asymptotic theory, the opti-
mal rate of convergence measured in terms of the deviation where ĝk(�̂k) is the estimate of the gradient �L/�� at the iter-
of the parameter estimate from the true optimal parameter ate �̂k based on the above-mentioned measurements of the loss
vector is of order k�1/2 for the gradient-based algorithms (see function. Under appropriate conditions, the iteration in Eq.
the subsection on asymptotic normality above) and of order (6) will converge to �* in some stochastic sense, usually a.s.
k�1/3 for the algorithms based on gradient approximations, (see, e.g., Ref. 53 or 15). Typical convergence conditions are
where k represents the number of iterations (52). (Exceptions similar to those mentioned above for the RMSA algorithm.
to this maximum rate of convergence for the nongradient al- The essential part of Eq. (6) is the gradient approximation
gorithms are discussed in Refs. 53–55 and Ref. 56, where spe- ĝk(�̂k). We discuss below two forms that have attracted atten-
cial cases are presented that achieve a rate arbitrarily close tion. We let y( 
 ) denote a measurement of L( 
 ) at a design
to, or equal to, k�1/2.) level represented by the dot [i.e., y( 
 ) � L( 
 ) � noise], and ck

In practice, of course, many other factors must be consid- be some (usually small) positive number [if the noise has
ered in determining which algorithm is most appropriate for mean 0, then y( 
 ) � Q( 
 ) as defined in the section on RMSA].
a given circumstance. Three examples of why this is true are: One-sided gradient approximations involve measurements
(1) in cases where it is not possible to obtain reliable knowl- y(�̂k) and y(�̂k � perturbation) while two-sided gradient ap-
edge of the system input–output relationships, the gradient- proximations involve measurements of the form y(�̂k � pertur-
based algorithms may be either infeasible (if no system model bation). The two general forms of gradient approximations
is available) or undependable (if a poor system model is used); are:
(2) the total cost to achieve effective convergence depends not
only on the number of iterations required, but also on the cost Finite Difference (FD) (52,58). Each component of �̂k is per-
needed per iteration, which is typically greater in gradient- turbed one at a time, and corresponding measurements
based algorithms (this cost may include greater computa- y( 
 ) are obtained; each component of the gradient esti-
tional burden, additional human effort required for determin- mate is formed by differencing the corresponding y( 
 )
ing and coding gradients, experimental costs for model build- values and then dividing by a difference interval. This
ing such as labor, materials, and fuel, etc.); and (3) the rates is the standard approach to approximating gradient vec-
of convergence are based on asymptotic theory, and may not tors and is motivated directly from the definition of a
be representative of practical convergence rates in finite sam- gradient as a vector of p partial derivatives, each con-
ples. For these reasons, one cannot say in general that a gra- structed as the limit of the ratio of a change in the func-
dient-based search algorithm is superior to a gradient-approx- tion value over a corresponding change in one compo-
imation-based algorithm even though the gradient-based nent of the argument vector. Typically, the ith
algorithm has a faster asymptotic rate of convergence (and component of ĝk(�̂k) (i � 1, 2, . . ., p) for a two-sided FD
with simulation-based optimization such as perturbation approximation is given by
analysis, as discussed above, requires only one system run
per iteration, while the approximation-based algorithm may
require multiple system runs per iteration). As a general rule, ĝki(θ̂k) = y(θ̂k + ckei ) − y(θ̂k − ckei )

2ckhowever, if direct gradient information is conveniently and re-
liably available, it is generally to one’s advantage to use this where ei denotes a vector with a one in the ith place and
information in the optimization process. The focus in this sec- zeros elsewhere (an obvious analog holds for the one-
tion is on the case where such information is not readily sided version; likewise for the SP form below).
available.

Simultaneous Perturbation (SP) (59,60). All elements ofSpall (57) presents a summary of historical contributions
�̂k are randomly perturbed together to obtain two mea-in the area of optimization with algorithms based on gradient
surements y( 
 ), but each component of ĝk(�̂k) is formedapproximations using only loss-function measurements. The
from a ratio involving the individual components in thesummary below is a much condensed version of that review.
perturbation vector and the difference in the two corre-
sponding measurements. For two-sided SP, we have

Background

As in the introduction consider the problem of minimizing a
(scalar) differentiable loss function L(�), where � � Rp, p � 1,

ĝki(θ̂k) = y(θ̂k + ck�k) − y(θ̂k − ck�k)

2ck�ki

and where the optimization problem can be translated into
where the distribution of the user-specified random per-finding the minimizing �* such that the gradient g(�) � 0. It
turbations for SP, �k � (�k1, �k2, . . ., �kp)T, satisfies con-is assumed that measurements of L(�) are available at vari-
ditions mentioned in the next section.ous values of � (actually, most of the algorithms have the

weaker requirement of only requiring measurements of the
difference of two values of the loss function, as opposed to The algorithm [Eq. (6)] with one of the gradient approxi-
measuring the loss functions themselves). These measure- mations will be referred to as FDSA or SPSA, as appropriate.

[An approach in the same spirit as SPSA, called random di-ments may or may not include added noise. No direct mea-
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rections SA, is discussed in Refs. 61, 15, and 62, but it is and efficiency of SPSA. The subsection after that summarizes
a reference dealing with guidelines for practical implementa-shown in Ref. 63 that SPSA will generally have a lower as-

ymptotic mean squared error than RDSA for the same num- tion of the algorithm. The subsection after that discusses
some extensions to the basic SPSA algorithm, including someber of measurements y( 
 ).] Note that the number of loss-func-

tion measurements y( 
 ) needed in each iteration of FDSA relatively recent results on a second-order version of SPSA
that emulates the Newton–Raphson algorithm of determinis-grows with p, while with SPSA only two measurements are

needed, independent of p. This, of course, provides the poten- tic optimization while still only requiring loss-function mea-
surements (i.e., no gradient or Hessian information). Numeri-tial for SPSA to achieve a large saving (over FDSA) in the

total number of measurements required to estimate � when p cal studies of SPSA are available in many of the references
(see, e.g., Ref. 60, 66, 64, 69, 70, or 63).is large. This potential is only realized if the number of itera-

tions required for effective convergence to �* does not increase
in such a way as to cancel the measurement savings per gra- Basic Assumptions and Supporting Theory
dient approximation at each iteration. The next section will

Once again, the goal is to minimize a loss function L(�) overdiscuss this efficiency issue further, demonstrating when this
� � C 	 Rp. The SPSA algorithm works by iterating from anpotential can be realized.
initial guess of the optimal �, where the iteration process de-
pends on the above-mentioned simultaneous perturbation ap-
proximation to the gradient g(�). The form of the SPSA gradi-SIMULTANEOUS PERTURBATION
ent approximation was presented above.STOCHASTIC APPROXIMATION

Spall (74,60) presents sufficient conditions for convergence
of the SPSA iterate (�̂k � �* a.s.) using the differential equa-Introduction
tion approach discussed in the RMSA section in the context

The preceding section motivated the interest in techniques for of the RM algorithm. Because of the different form of the in-
recursive optimization that rely on measurements of the loss put, the conditions here are somewhat different from those of
function only, not on measurements (or direct calculations) of the RM approach. In particular, we must impose conditions
the gradient (or higher-order derivatives) of the loss function. on both gain sequences (ak and ck), the user-specified distribu-
The focus was on two such techniques in the stochastic ap- tion of �k, and the statistical relationship of �k to the mea-
proximation setting: finite-difference (Kiefer–Wolfowitz) SA, surements y( 
 ). We will not repeat the conditions here, since
and simultaneous perturbation SA. This chapter will focus on they are available in Refs. 74 and 60 (with later extensions in
SPSA for reasons of its relative efficiency. Refs. 75–77). The main conditions are that ak and ck both go

Recent applications of SPSA are described in Refs. 64 and to 0 at rates neither too fast nor too slow, that L(�) is suffi-
65 (queuing systems), 66 (industrial quality improvement), 67 ciently smooth (several times differentiable) near �*, and that
(pattern recognition), 68 (neural network training), 69 and 70 the ��ki� are independent and symmetrically distributed about
(adaptive control of dynamic systems), 71 (statistical model 0 with finite inverse moments E(��ki��1) for all k, i. One partic-
parameter estimation and fault detection), 72 (sensor place- ular distribution for �ki that satisfies these latter conditions
ment and configuration), and 73 (vehicle traffic management). is the symmetric Bernoulli �1 distribution; two common dis-

As discussed in the preceding section, SPSA is based on a tributions that do not satisfy the conditions (in particular, the
highly efficient and easily implemented simultaneous pertur- critical finite-inverse-moment condition) are the uniform and
bation approximation to the gradient: this gradient approxi- the normal.
mation uses only two loss-function measurements, indepen- Although the convergence result for SPSA is of some inde-
dent of the number of parameters being optimized. This pendent interest, the most interesting theoretical results in
contrasts, for example, with the standard (two-sided) finite- Ref. 60, and those that best justify the use of SPSA, are the
difference approximation associated with the well-known asymptotic efficiency conclusions that follow from an asymp-
Kiefer–Wolfowitz SA algorithm, which uses 2p function mea- totic normality result. In particular, under some minor addi-
surements to approximate the gradient. The fundamental tional conditions in Ref. 60 (Proposition 2), it can be shown
(and perhaps surprising) theoretical result in Ref. 60 (Sec. 4) is: that

Under reasonably general conditions, SPSA and Kiefer–Wolfowitz
kβ/2(θ̂k − θ∗ )

dist−→ N(µ,	) as k → ∞ (7)finite-difference-based SA (FDSA) achieve the same level of statis-
tical accuracy for a given number of iterations even though SPSA

where � � 0 depends on the choice of gain sequences (ak anduses p times fewer function evaluations than FDSA (since each
gradient approximation uses only 1/p the number of function eval- ck), � depends on both the Hessian and the third derivatives
uations). of L(�) at �*, and � depends on the Hessian matrix at �* (note

that in general � � 0, in contrast to many well-known asymp-
totic normality results in estimation). Given the restrictionsThis theoretical result has been confirmed in many numerical

studies, even in cases where p is on the order of several hun- on the gain sequences to ensure convergence and asymptotic
normality, the fastest allowable value for the rate of conver-dred or thousand. The subsection below discusses this result

further. Of course, this result will not always hold in finite- gence of �̂k to �* is k�1/3. This contrasts with the fastest allow-
able rate of k�1/2 for the RMSA algorithm. Hence, one measuresample practice, because it is derived from asymptotic theory;

further, the asymptotic theory is based on conditions that of the value of the gradient information in RM is the increase
in rate of convergence. There are exceptions to this result,may be violated in some practical applications (the general

conditions are similar to those for the RMSA algorithm). and cases arise where the SPSA rate can be made either arbi-
trarily close to the RM rate of k�1/2 (following the logic of Ref.The next subsection summarizes the problem setting and

discusses some of the theory associated with the convergence 53) or the same as the RM rate (e.g., the use in simulation-
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based optimization with ‘‘common random numbers’’—see (the standard algorithm can be coded in 12 or fewer lines). In
addition, this reference provides some practical guidelines forRef. 56).

Spall (60, Sec. 4) uses the asymptotic normality result in choosing the gain coefficients ak and ck. The values recom-
mended in these guidelines differ from the asymptoticallyEq. (7) (together with a parallel result for FDSA) to establish

the relative efficiency of SPSA. This efficiency depends on the theoretical optimal values in a reflection of the realities of
finite-samples analysis (e.g., it is recommended in practiceshape of L(�), the values for �ak� and �ck�, and the distributions

of the ��ki� and measurement noise terms. There is no single that the gains ak and ck decay at rates slower than the asymp-
totically optimal 1/k and 1/k1/6, respectively). Furthermore,expression that can be used to characterize the relative effi-

ciency; however, as discussed in Refs. 60 (Sec. 4) and 63, in theoretical guidelines, such as discussed in Fabian (53) and
Chin (63), are not generally useful in practical applications,most practical problems SPSA will be asymptotically more ef-

ficient than FDSA. For example, if ak and ck are chosen as in since they require the very information on the loss function
and its gradients that is assumed unavailable.the guidelines mentioned in the subsection below, then by

equating the asymptotic mean squared errors E(��̂k � �*�2) in
SPSA and FDSA, we find Further Results and Extensions to the Basic Algorithm

Sadegh and Spall (79) consider the problem of choosing the
best distribution for the vector �k. Based on asymptotic distri-

no. of measurements of L(θ ) in SPSA
no. of measurements of L(θ ) in FDSA

→ 1
p

(8)

bution results, it is shown that the optimal distribution for
as the number of loss measurements in both procedures gets the components of �k is symmetric Bernoulli. This simple dis-
large. This result implies that the p-fold saving per iteration tribution has also proven effective in many finite-sample
(gradient approximation) translates directly into a p-fold sav- practical and simulation examples.
ing in the overall optimization process. Some extensions to the basic SPSA algorithm above are

Figure 2 is an illustration of the relative efficiency of SPSA reported in the literature. For example, its use in feedback
and FDSA in an adaptive control problem related to wastewa- control problems, where the loss function changes with time,
ter treatment. The specific scenario is close to that described is given in Refs. 69, 70. The former reference also reports on
in Ref. 70. The plot is showing the mean deviation (in a root- a gradient smoothing idea (analogous to ‘‘momentum’’ in the
mean square, RMS sense) of the output of a treatment plant neural network literature) that may help reduce noise effects
from some specified target values for water cleanliness and and enhance convergence (and gives guidelines for how the
methane gas byproduct, the goal, of course, being to minimize smoothing should be reduced over time to ensure conver-
the RMS error. We see that on an iteration-by-iteration basis, gence). Alternatively, it is possible to average several SP gra-
the SPSA and FDSA approaches yield similar RMS values. dient approximations at each iteration to reduce noise effects
However, the cost per iteration in FDSA [measured in num- (at the cost of additional function measurements); this is dis-
ber of L(�) measurements] is 412 (� p) times that of SPSA. cussed in Ref. 60. An implementation of SPSA for global mini-
This leads to the very large overall cost savings shown in the mization is discussed in Ref. 80 [for the case where there are
upper right box of the figure. In fact, one iteration of FDSA multiple minimums at which g(�) � 0]; this approach is based
takes over five times the number of loss measurements than on a stepwise (slowly decaying) sequence ck (and possibly ak).
are taken in all 80 iterations of SPSA. The performance of the The problem of constrained (equality and inequality) optimi-
two algorithms in Fig. 2 is very consistent with the theoretical zation with SPSA is considered in Refs. 81 and 65 using a
result in Eq. (8) above. projection approach. A one-measurement form of the SP gra-

dient approximation is considered in Ref. 82; although it is
Implementation of Simultaneous shown in that reference that the standard two-measurement
Perturbation Stochastic Approximation form will usually be more efficient (in terms of the total num-

ber of loss-function measurements to obtain a given level ofReference 78 includes a step-by-step summary of the imple-
accuracy in the � iterate), there are advantages to the one-mentation of SPSA together with a listing of MATLAB� code
measurement form in real-time operations where the underly-
ing system dynamics may change too rapidly to get a credible
gradient estimate with two successive measurements (and,
analogously to the perturbation analysis and related ap-
proaches in simulation-based optimization for discrete-event
systems, this would allow for a one-run gradient estimate, but
without requiring the gradient information needed in the
IPA-type approaches).

An accelerated form of SPSA is reported in Refs. 83 and
102. This approach extends the SPSA algorithm to include
second-order (Hessian) effects with the aim of accelerating
convergence in a stochastic analog to the deterministic New-
ton–Raphson algorithm. Like the standard (first-order) SPSA
algorithm, this second-order algorithm is simple to implement
and requires only a small number—independent of p—of loss-
function measurements per iteration (no gradient measure-
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ments, as in standard SPSA). In particular, only four mea-
surements are required to estimate the loss-function gradientFigure 2. Relative performance of SPSA and FDSA in wastewater

treatment system. and inverse Hessian at each iteration (though one additional
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measurement is recommended as a check on algorithm behav- earlier sections) is the willingness to give up the quick gain
of a rapid decrease in the loss function by allowing the possi-ior). The algorithm is implemented with two simple parallel

recursions: one for � and one for the Hessian of L(�). The re- bility of temporarily increasing it. SAN derives this property
from the Boltzmann (or Gibbs) probability distribution of sta-cursion for � is a stochastic analog of the well-known New-

ton–Raphson algorithm of deterministic optimization. The tistical mechanics, describing the probability of system hav-
ing a particular energy state:recursion for the Hessian matrix is simply a recursive calcula-

tion of the sample mean of per-iteration Hessian estimates
that are formed using SP-type ideas. P(energy = x) = cT exp

(
− x

cbT

)
(9)

SIMULATED ANNEALING where cT � 0 is a normalizing constant, cb � 0 is known as
the Boltzmann constant, and T is the temperature of the sys-

Introduction and Motivation from the Physics of Cooling tem. Note that at high temperatures, the system is more
likely to be in a high-energy state than at low temperatures.This section continues in the spirit of the preceding two in
The optimization analogy derives from the fact that even atconsidering algorithms that do not require direct gradient in-
a low temperature (equivalent to the optimization algorithmformation. One of the algorithms that has attracted consider-
having run for some time with a decreasing temperature),able attention is simulated annealing (SAN). SAN was origi-
there is some nonzero probability of reaching a higher energynally developed for discrete optimization problems, but more
state (i.e., higher level of the loss function). So the SAN pro-recently has found application in continuous optimization
cess sometimes goes uphill, but the probability of this de-problems of the type emphasized in the previous sections.
creases as the temperature is lowered. Hence, there is theOne of the main virtues of SAN is that, in principle, this
possibility of getting out of a local minimum in favor of find-algorithm addresses the difficult global optimization problem
ing a global minimum, and this possibility is especially promi-discussed in the introduction. The algorithm is designed to
nent in the early iterations when the temperature is high.traverse local minima en route to a global minimum to L(�).

It was Metropolis et al. (85) who first introduced the ideaFurther, since the method can address both discrete and con-
of the Boltzmann–Gibbs distribution into numerical analysistinuous optimization problems, there is no need to assume the
through constructing a means for simulation of a system atexistence of a loss-function gradient (much less compute it).
some fixed temperature. In particular, if a system is in someThe term ‘‘annealing’’ comes from analogies to the cooling
current energy state Ec, and some system aspects are changedof a liquid or solid. A central issue in statistical mechanics is
to make the system potentially achieve a new energy stateanalyzing the behavior of substances as they cool. At high
En, then the Metropolis simulation always has the system gotemperatures, molecules have much mobility, but as the tem-
to the new state if Enew 
 Ecurr. On the other hand, if Enew �perature decreases this mobility is lost and the molecules may
Ecurr, then the probability of the system actually going to thetend to line themselves in a crystalline structure. This struc-
new state isture is the minimum-energy state for the system. Note the

qualifier ‘‘may’’: temperature alone does not govern whether
the substance has reached a minimum-energy state. To
achieve this state, the cooling must occur at a sufficiently

exp
(

−Enew − Ecurr

cbT

)
(10)

slow rate. If the substance is cooled at too rapid a rate, an
This expression is known as the Metropolis criterion. Afteramorphous (or polycrystalline) state may be reached that is
a large number of such decisions and outcomes, the systemnot a minimum-energy state of the substance. The principle
eventually reaches an equilibrium where the system state isbehind annealing in physical systems is the slow cooling of
governed by the Boltzmann–Gibbs distribution in Eq. (9).substances to reach the minimum-energy state.
This is predicated on the system being at the fixed tempera-In optimization, the analogy to a minimum-energy state
ture T. Kirkpatrick et al. (84) were apparently the first to usefor a system is a minimized value of the loss function. The
this criterion for optimization together with the idea of atechnique of SAN attempts to capture mathematically the
changing temperature that decays according to an annealingprocess of controlled cooling associated with physical pro-
schedule (exponentially in their case). Geman and Gemancesses, the aim being to reach the lowest value of the loss
(86) go beyond the informal annealing guidelines of Kirkpat-function in the face of possible local minima. As with the
rick et al. (84) and establish conditions on the annealingphysical cooling process, whereby temporary higher-energy
schedule for formal convergence of their form of the SAN algo-states may be reached as the molecules go through their
rithm iterate to the global minimum.alignment process, SAN also allows temporary increases in

the loss function as the learning process captures the infor-
Algorithm Form

mation necessary to reach the global minimum. A more thor-
ough explanation of the analogy between SAN and physical Using the principles discussed in the preceding subsection,

we now present the general SAN algorithm form. There arecooling is given in, e.g., Ref. 84.
It is clear that the critical component of an SAN algorithm variations depending on how one wants to implement the an-

nealing schedule and how one performs the sampling re-is the mathematical analog of the rate of cooling in physical
processes. As with all other stochastic optimization algo- quired for generating a new candidate point. As before, we

consider the minimization of some loss function L(�), � �rithms, the choice of this algorithm- and problem-specific cool-
ing schedule (analogous to the gains in stochastic approxima- C 	 Rp. Since the user has control over T, one can (without

loss of generality) take cb � 1 in the Metropolis criterion (10).tion) has a strong effect on the success or failure of SAN.
A primary distinction between SAN and the majority of Below are listed the general sequence of steps in SAN when

noise-free measurements of L are available:other optimization approaches (including those discussed in
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Step 1. Choose an initial temperature T and set of current level increases from 0, in contrast with the sudden large deg-
radation in approaches such as SAN that use explicit decisionparameter values �curr; determine L(�curr).
criteria based on loss-function measurements). The pri-Step 2. Randomly determine a new value of �, �new, that is
mary difficulty arises in the critical decision step 3, where‘‘close’’ to the current value, and determine L(�new).
�curr is changed or not changed according to the value of � �Step 3. Compare the two L values via the Metropolis crite-
L(�new) � L(�curr) together with the random sampling associ-rion (10): Let � � L(�new) � L(�curr). Accept �new if � 
 0.
ated with the Metropolis criterion. With noisy function mea-Alternatively, if � � 0, accept the new point �new only if
surements, the value of �, now equal to y(�new) � y(�curr) in-a uniform (0, 1) random variable U (generated by Monte
stead of L(�new) � L(�curr), will be altered from its underlyingCarlo) satisfies U � exp(��/T).
true value according to noise-free function measurements. In

Step 4. Repeat steps 2 and 3 for some period until either fact, even a modest level of noise will frequently alter the sign
the budget of function evaluations allocated for that T of �, which is likely to change the decision regarding the ac-
has been used or the system reaches some state of equi- ceptance or rejection of the new point �new. The obvious means
librium. by which one can attempt to cope with noise is to average

Step 5. Lower T according to the annealing schedule, and several function measurements y( 
 ) at each of the values
return to step 2. Continue the process until the total �curr and �new when performing the comparison at step 3. How-
budget for function evaluations has been used or some ever, this may dramatically increase the cost of optimization
indication of convergence is satisfied (analogous to the (specifically, the total number of function evaluations re-
system being ‘‘frozen’’ in its minimum-energy state). quired), since a large amount of averaging will often be re-

quired to effectively remove the noise, especially in the region
around a local or global minimum where the function may beThe specifics of implementation for the five steps above can

vary greatly. In the annealing schedule, Kirkpatrick et al. relatively flat. An alternative way is to alter the acceptance
criterion to accept the inherent errors that will be made with(84), Press et al. (87 p. 452), and Brooks and Morgan (88)

discuss the case where T decays geometrically in the number the noisy measurements. Hence we replace the criteria � 
 0
or � � 0 with � 
 �� or � � ��, where � is the function mea-of cooling phases (number of times T is lowered according to

step 5). Geman and Geman (86) present conditions such that surement noise standard deviation (or, more likely, an esti-
mate of it) and � the number of multiples of the standardif T decreases at the rate 1/log k (where k is the number of

algorithm iterations) then the probability distribution for the deviation that will be tolerated. The rationale for such a
change is that, while we are willing to accept a �new that tem-iteration converges to a uniform distribution over all possible

global minimum points. Szu and Hartley (89) present some porarily increases the loss function (a basic aspect of SAN),
we are less willing to forgo a �new that decreases the loss func-formal arguments justifying a faster rate of decay for T:

namely, having T decay at a rate 1/k. Another area for differ- tion. Changing the unconditional acceptance criterion from �

 0 to � 
 �� will allow for a greater number of cases whereent implementations is in step 2, where a new � value is gen-

erated randomly. Probably the most common form of pertur- L(�new) 
 L(�curr) even though y(�new) � y(�curr) due to the noise.
With � � 2, one can be sure (through the Chebyshev inequal-bation for continuous optimization is to add a p-dimensional

Gaussian random variable to the current value �curr (e.g., Ref. ity of probability) that most such cases will be caught, al-
though at the expense of letting some additional �new values6, p. 183). Alternative perturbations include the approach

based on changing only one component of � at a time (88), the that increase the loss function be accepted.
approach using spherically uniform perturbations (90), and
the approach using a multivariate Cauchy distribution to Evaluation of Simulated Annealing
change all components (89,62).

Although many positive studies regarding SAN have been re-Aside from the general variations in implementation
ported in the literature (e.g., Refs. 92–94), the author is un-above, SAN is critically dependent on the specific values for
aware of any formal theoretical analysis comparing SAN withvarious algorithm parameters and decision criteria. In partic-
the gradient-free SA algorithms discussed in the precedingular, these include the initial temperature T, the specific dis-
two sections. (Note that some connections of SAN with SAtribution parameters chosen for the perturbation distribution
have been explored in Refs. 95 and 96. The basic idea there(e.g., the covariance matrix for a Gaussian perturbation), the
is, beginning with the basic SA recursion using either gradi-specific parameter(s) associated with the decay of T (e.g., the
ents or function measurements, to add a Monte Carlo-gener-� in Tnew � �Told, where Tnew and Told are the new and old tem-
ated Gaussian noise term bkWk to the recursion, where bk �peratures if one is using a geometric decay), and the criterion
0 and Wk is the Gaussian random vector. This term is similarfor determining when to lower the temperature (e.g., the max-
to SAN in that it will force the iterate out of local minimaimum allowable number of function evaluations before a low-
under some conditions that are established in the cited pa-ering of T).
pers.) However, Fabian (97), Chin (103), Styblinski and TangThere appears to be no fully satisfactory way to accommo-
(62), and the author (together with several students in a grad-date noisy function measurements in SAN, although some
uate class he taught) have conducted some numerical compar-work on this aspect of the discrete (combinatorial) optimiza-
isons. Fabian (97), Chin (103), and Styblinski and Tang (62)tion problem has been carried out in Ref. 91. (One of the par-
compare different forms of SAN against several random andticularly appealing features of the stochastic approximation
deterministic search algorithms for problems with noise-freemethods in the preceding three sections is that they handle
measurements of the loss function. The SAN algorithms gen-noisy function measurements in an essentially seamless man-
erally compared poorly with the competing algorithms inner. Namely, the forms of the algorithms do not have to be
these two papers. The author’s studies involved four differentaltered, the convergence theory applies in the noisy case, and

there is a gradual degradation in performance as the noise loss functions: p � 2 and p � 20 fourth-order polynomials,
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and the Example 1 (p � 2, fourth-order polynomial) and Ex- to local) optimization problems. Simulated annealing is based
on an intriguing analogy to the cooling of materials and theample 6 (p � 10, trigonometric) functions in Ref. 62. The stud-

ies of the author considered both noise-free and noisy mea- achievement of an optimal state for the material by cooling
neither too fast nor too slow. While some positive experiencesurements of the four loss functions and compared SAN with

simple random search mentioned in Ref. 7 (pp. 186–189) and has been reported with optimization by simulated annealing,
it appears that there exist more efficient algorithms forthe global version of SPSA outlined in Ref. 80. Although SAN

was sometimes superior to the random search method, the many problems.
Although stochastic optimization has the potential forglobal SPSA method was significantly more efficient than

SAN in all cases considered, and, even more dramatically, treating a broader class of problems than many traditional
deterministic techniques, their application may sometimes bewas sometimes convergent when SAN seemed unable to ob-

tain a solution anywhere near the true optimal (this was most a challenge. A problem common to all stochastic optimization
techniques (including those not discussed in this article, suchapparent in the Example 6 problem of Ref. 62, which had a

very large number of local minima, one of which always as the genetic algorithm, sequential random search, and evo-
lutionary programming) is that values must be specified forseemed to form a trap for SAN). In order to have a fair com-

parison in performing these studies, the algorithm coefficients the algorithm’s tunable coefficients. All stochastic optimiza-
tion techniques have such coefficients (the gains in SA, terms(e.g., the gains for the SA algorithms and the decay rate and

other coefficients mentioned above for SAN) were tuned to ap- associated with the cooling schedule and probability of ac-
cepting a step in simulated annealing, etc.). These coefficientproximately optimize performance for the competing algo-

rithms. values are typically problem-dependent and can have a pro-
found effect on the performance of an algorithm.Since one must be careful in drawing conclusions beyond

the specific cases in any numerical analysis, the above should Stochastic optimization is playing an ever larger role in
optimization, as it allows for the treatment of problems suchnot indicate that SAN is always a poor performer. Rather,

these results should be a cautionary note in view of some of as global optimization and noisy loss-function evaluations
that arise frequently in areas such as network analysis, neu-the positive results reported elsewhere. Certainly, SAN does

have a role in the area of global optimization, as evidenced by ral network training, image processing, and nonlinear control.
It is expected that the role of stochastic optimization will con-its popularity and positive performance in some challenging

problems. Furthermore, the above studies were for problems tinue to grow as modern systems increase in complexity and
as population growth and dwindling natural resources forcewith ‘‘smooth’’ (differentiable) loss functions, and SAN (unlike

most SA algorithms) has the ability to deal with nonsmooth tradeoffs that were previously unnecessary. Stochastic opti-
mization allows for the treatment of a broader range of prob-loss functions.
lems than possible with only standard deterministic methods.
The algorithms of this article provided a sampling of several
important stochastic optimization methods.CONCLUDING REMARKS
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