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Robust control can be generally defined as the control, by
means of fixed compensators, of uncertain plants (i.e., of sys-
tems with uncertain dynamics and unknown disturbance sig-
nals). Robustness in a control system refers to its ability to
cope with uncertainties in a satisfactory manner, maintaining
its stability and performance as desired. Uncertainty in sig-
nals and systems is inevitable, reflecting both the complexity
of the physical world and the limitation in human under-
standing. Uncertain signals typically arise as a result of the
randomness and unpredictability of environmental effects
and are of an unmeasurable and unpredictable nature. Uncer-
tain system dynamics, on the other hand, can be attributed
to changes in the actual system and to modeling errors, be
they accidental or deliberate. Generally, uncertain dynamics
may come from the following sources:

1. Imperfect or incomplete knowledge of physical pro-
cesses. This represents the information unattainable
because of one’s limited knowledge or inadequate mea-
surements. It can be particularly acute for complex sys-
tems and processes (e.g., those found in biomedical engi-
neering).

2. Parameter variations. Every physical system will un-
dergo a change in parameter values under different op-
erating conditions. Aging itself can be a factor.

3. Neglected high-frequency dynamics, time delays, non-
linearities, and the like. It may occur as a result of a
sheer lack of knowledge, or the difficulty to model these
characteristics. It may also occur because of the desire
for models of low complexity.

While robustness is a concept of universal significance, ro-
bustness analysis for control systems is the study of whether
a system, however designed, can meet specified stability and
performance goals in the presence of uncertainty within a
prescribed range.

Uncertain plants can be modeled in various ways. In par-
ticular, models can be stochastic or purely deterministic. In
robust control, uncertain systems are typically modeled deter-
ministically, as bounded sets of system models. A property is
then said to hold robustly if it holds for every model in the
set. The simplest case is that of unstructured uncertainty: the
model set consists of all systems in a certain neighborhood
(e.g., all transfer functions lying within a certain ‘‘distance’’
of a distinguished ‘‘nominal’’ system). Such a description is
particularly appropriate to account for unmodeled dynamics.
One rather typical example is the modeling of flexible struc-
tures. It is well known that, in general, a flexible structure

ROBUST CONTROL ANALYSIS cannot be accurately represented by a finite-dimensional sys-
tem. For control design purposes, however, we desire, and

Robustness is a property inherently sought after in engi- most often are compelled to find, an approximate finite-di-
mensional model with a relatively low order. In doing so, aneering systems. The concept is directly linked to such issues

as design viability and system reliability. In broad terms, ro- common practice is to include in the nominal model a small
number of dominant modes in the low-frequency range andbustness can be regarded as the capability to withstand un-

known, unexpected, and often hostile conditions that can ad- to treat the high-frequency modes as modeling uncertainty.
Evidently, this description is also appropriate for modelingversely affect a system’s behavior. A system must be

sufficiently robust in order to function properly under unde- errors resulting from model reduction, or from any frequency
response truncation. Moreover, it can be used to cover, albeitsirable circumstances, conducting its task as designed. As en-

gineering systems are becoming more and more complex and in a conservative way, parameter variations. The latter
amounts to drawing up a frequency response envelope to de-are required to operate in increasingly more uncertain envi-

ronments, robustness has become increasingly more crucial. scribe the range of parameter variation in frequency domain.
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Finally, in robustness analysis, it is common to introduce a models. It defines an exact measure of robust stability and
performance in the frequency domain. The method is a natu-fictitious uncertainty to represent a performance objective.

A more accurate account of parametric uncertainty calls ral progression of earlier work on using singular values to
extend the concept of stability margin to multivariable sys-for model sets within which individual models are uniquely

characterized by the value(s) of one or more parameter(s) tems, an idea that was heavily influenced by operator theo-
retic results such as the Small Gain Theorem. The main im-(e.g., transfer function coefficients). Typically each such pa-

rameter takes values in a known range. Such models account petus for the development of the structured singular value
theory, evidently, has been the recognition that unstructuredfor the fact that parameters in physical devices are bound to

vary with time, environment, and operating conditions. Ack- uncertainty is too crude a model, often leading to excessive
conservatism.ermann’s car steering problem (1) offers a good illustrative

example. In his study of a four-wheel steering vehicle, he From a computational point of view, the success of �
hinges critically upon whether and how it can be computedfound that the vehicle mass and the adhesion between tires

and road surface are significant uncertain parameters. This both accurately and efficiently. Unfortunately, this is known
to be difficult. Recent studies have shown that computation ofis easily understandable. The vehicle mass certainly varies

with load, and in a more subtle sense, it varies with fuel con- � generally amounts to solving a so-called NP-hard decision
problem, which, in the language of computing theory, is onesumption. The adhesion changes with road condition, wearing

of tires, and weather condition. We can think of other uncer- that suffers from an exponential growth in its computational
complexity. Although this by no means implies that every �tain parameters by considering the human-vehicle system as

a whole or by considering a whole batch of vehicles as a family problem is computationally difficult, it nevertheless points to
the unfortunate conclusion that the computation of � in gen-of systems. In these scenarios, differences among individual

drivers and vehicles can all constitute significant uncertain eral poses an insurmountable difficulty in the worst case. In
retrospect, it thus comes as no surprise that the major prog-factors. Yet a more striking example is an aircraft, whose

aerodynamic coefficients vary in large magnitudes due to ress in computing � has been made by some forms of approxi-
mation, specifically, readily computable bounds. While no de-changes in altitude, maneuvering, and weather.

There is an inherent trade-off between fidelity and simplic- finitive conclusion has been drawn concerning the gap
between � and such bounds, it is reassuring that the boundsity in modeling uncertain systems. In a sense, unstructured

and parametric uncertainties may be considered the two ex- are often reasonably tight and that they have other interpre-
tations of engineering significance.tremes. While an unstructured perturbation furnishes a sim-

ple characterization and is useful for simplifying robustness The ‘‘Kharitonov’’ theory is another robustness analysis
approach, developed in parallel with �, which deals almostanalysis, it contains little information and may often be too

conservative. On the other hand, uncertain parameters often entirely with robust stability issues under parametric uncer-
tainty; only in rare cases is unstructured uncertainty alsoyield a more natural and accurate model, but such elaborate

descriptions tend to complicate analysis. The process of ro- taken into consideration. The research in this area has a nat-
ural heritage from such a classical stability test as the Routh-bustness analysis, therefore, calls for a judicious balance be-

tween uncertainty description and complexity of analysis. In Hurwitz criterion and was mainly triggered by a landmark
result published by V. L. Kharitonov (3) in 1978, later re-its full generality, however, the description of an uncertain

system should take into account both parametric variations ferred to as Kharitonov’s theorem. Kharitonov considered the
question of ‘‘stability’’ of parameterized families of polynomi-and unmodeled dynamics. Uncertainty descriptions of this

kind are called structured. als. Here polynomials are thought of as characteristic polyno-
mials of systems described by rational transfer functions andTo be sure, robustness is not entirely a new concept in con-

trol system analysis and design. In retrospect, the need for a thus are ‘‘stable’’ if their zeros all lie in the open left-half of
the complex plane (continuous time) or in the open unit diskcontrol system to tolerate unmodeled dynamics and parame-

ter variations is precisely what motivated feedback control, (discrete time). In the continuous-time case, Kharitonov
showed that, for an uncertain ‘‘interval’’ polynomial whose co-and it has been a primary goal in control system design since

its birth. This is well recognized in classical control design efficients each vary independently in a given interval, stabil-
ity of the entire family can be assessed by testing merely fourand, at least implicitly, is embedded in classical loop shaping

methods. Concepts such as gain and phase margins may well simply constructed extreme polynomials. From an aesthetic
point of view, Kharitonov’s theorem possesses remarkable ele-be regarded as elementary robustness measures. However, it

was not until the late 1970s that the term began to appear gance, reducing an otherwise seemingly impossible task to a
simple problem. From an engineering perspective, however,routinely in the control literature, when the need for ro-

bustness was reexamined and was gaining increasing recogni- the theorem is likely to find only limited utility because very
rarely would an uncertain system yield a family of character-tion. Robust control as a research direction soon thrived and

became a defining theme. After two decades of intense activ- istic polynomials of the form required in the problem descrip-
tion. Thus, Kharitonov’s work triggered a flurry of activitiesity, it has evolved into a broad research area rich in theory

and potential applications. The progress has been rapid and in the search for more realistic results, and soon came various
generalizations. Two notable features stand out from the ro-vast, leading to the development of a variety of key concepts

and techniques, among which notably are the H �/� theory, bust stability conditions available in this category. First, they
are stated either in terms of a finite number of polynomialsthe Kharitonov/polynomial approach, and analyses based on

state-space formulations and the Lyapunov theory. or as graphical tests requiring a frequency sweep. Second, the
main success to date pertains to uncertainty descriptions inThe structured singular value (2), also known as �, was

introduced in the early 1980s as a very general framework which polynomial coefficients depend linearly on uncertain
parameters.for studying structured uncertainty in linear time-invariant
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Robust stability analysis in state-space formulation often Thus each plant in the model set corresponds to the selec-
tion of one element in each of the uncertain blocks. The nomi-comes under the names of stability radius, interval matrix,

and stability bound problems. The key issue here is to deter- nal plant corresponds to the choice ‘‘0’’ for all elementary un-
certain blocks. Note that the assumption that all themine the largest uncertainty size under which stability is pre-

served. Unlike in the aforementioned two approaches, para- uncertainty balls have unity radius is made at no cost: any
size information can be embedded into known blocks (e.g.,metric uncertainty in state-space representation is defined in

terms of perturbations to system matrices, which can be ei- connected in cascade with the uncertain blocks). It turns out
that, for ‘‘uncertain’’ block diagrams of this type, the transferther unstructured or structured, but most often are only al-

lowed to be real. In a natural way, the robust stability prob- function (or transfer function matrix) between any two nodes
(or tuples of nodes) in the block diagram is given by a linearlem translates to one of how the perturbations may affect the

eigenvalues of the system matrix, the solution of which can fractional transformation (LFT). Similarly, when such an un-
certain plant is connected with a feedback compensator, thedraw upon rich theories from linear algebra and Lyapunov

analysis. Thus, unsurprisingly, most of the robustness condi- transfer function between any two nodes will also be an LFT.
LFTs have attractive mathematical properties that can betions have this flavor. Alternatively, the problem can also be

recast as one of � analysis or one of polynomial stability. In used to advantage at the modeling, analysis, and synthesis
stages. More on LFTs can be found, e.g., in Ref. 7.the former case, we need to compute � with respect to solely

real uncertainties, for which the � computation schemes are
Robust Stabilityknown to be conservative. In the latter case, the coefficients

in the resultant polynomial will depend on the unknown pa- It should be intuitively clear that block diagrams of the type
rameters in a multilinear or multinomial fashion. The Khari- just described can always be ‘‘redrawn’’ in the form of an
tonov approach cannot provide a satisfactory answer for such M–� loop as depicted in Fig. 1 (external input and outputs
polynomial families either. The problem thus appears to be a have been left out). Here M corresponds to the nominal sys-
very difficult one and is known to have been solved only for a tem, which is comprised of closed-loop transfer functions as
number of isolated cases. Most notably, recent progress has elements and has an input channel and an output channel for
made it possible to compute the stability radius in an efficient each elementary uncertain block, and � is a block-diagonal
manner when the matrix perturbation is unstructured. For matrix whose diagonal blocks are the elementary uncertain
structured uncertainty, unfortunately, the problem is com- blocks. For its generality, the M–� loop paradigm has found
pletely open; recent studies showed too that it is in general wide acceptance in robust control (see, for example, Refs. 2
NP-hard. Accordingly, the majority of results in the latter and 4–8).
class are sufficient conditions for robust stability. Throughout most of this article, we will assume that the

In conclusion, robustness is a key concept, vital for engi- nominal system, or equivalently M, is linear and time-invari-
neering design in general and for control system design in ant, as are all instances of the uncertainty blocks, equiva-
particular. Robust control has matured into a field rich in the- lently, of �. We will also assume that M and all instances of
ory and potential applications. By focusing on these three se- � are in H �. In this case, an immediate payoff of the LFT
lected areas, this chapter is limited only to robustness analy- uncertainty description and the ensuing representation of the
sis of linear time-invariant systems, that is, control of linear system via the M–� loop is the following strong form of the
time-invariant plants by linear time-invariant controllers, Small Gain Theorem, a necessary and sufficient condition for
which itself is condensed from a vast collection of results and well-posedness and stability of the M–� loop, in the case
techniques. Nevertheless, we should note that the concept where � consists of a single uncertainty block, ranging over
and theory of robust control goes far beyond the boundary of the unit ball in H �.
linear time-invariant systems and, in fact, has been quickly

Small Gain Theorem. Let M � H �. Then the M–� loop isbranching to the domains of nonlinear control, adaptive con-
well-posed and BIBO stable for all � � H � with ����� 1 iftrol, and the like. As a whole, it has been, and will continue
and only if �M�� � 1.to be, a driving force behind the evolution of control theory.

As alluded to earlier, the H � norm of a causal, stable, con-
tinuous-time transfer function matrix M is defined as

THE STRUCTURED SINGULAR VALUE
‖M‖∞ = sup

ω∈R
σ (M( jω))

Uncertain Systems

where � denotes the largest singular value.Throughout this article, we consider model sets P with the
following property: P can be represented by a block diagram
with some of the blocks being fully known systems, and others
being ‘‘elementary uncertain blocks.’’ The latter are elemen-
tary sets, namely, unit balls in ‘‘simple’’ vector spaces. For
example, some uncertainty blocks might be the real interval
[�1, 1] and others might be the unit ball of H �, the set of
transfer function matrices (linear time-invariant systems)
that are causal and bounded-input bounded-output (BIBO)
stable; the size or ‘‘H �-norm’’ of � � H � is defined to be the

M

∆

supremum of its largest singular value over the imaginary
axis (continuous time) or unit disk (discrete time). Figure 1. M–� loop.
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As an example consider a model set of the ‘‘output multipli- namics, consider now the model set (1 � w1�
c)Pa with Pa ex-

cative uncertainty’’ type. Specifically, let plicitly given as

P = (I + w�)P0
Pa(s) = 1

s − a
where P0 is the transfer matrix of a linear, time-invariant
nominal model, w is a scalar ‘‘weighting’’ transfer function,

where a can take any value in the interval [�0.9,1.1]. We mayand � ranges over the unit ball in H �. The weight w is intro-
write a � 1 � w2�

r with w2 � 0.1 and ��r� � 1, and Pa can beduced to account for the fact that the amount of uncertainty
represented as a loop with P0(s) � 1/(s � 1) in the forwardis usually frequency-dependent; in particular, system dynam-
path and �w2�

r in the feedback path (again using the nega-ics are often poorly known at high frequencies. Suppose that
tive feedback convention). Let K be a feedback controller (stilla feedback controller K has been tentatively selected to stabi-
with the negative feedback convention) that stabilizes P0. Bylize the nominal system P0. (We use the negative feedback
‘‘extracting’’ the uncertainty blocks �c and �r, we obtain anconvention, i.e., the loop transfer function is �KP0.) Isolating
M—� loop with� from the nominal closed-loop system, we obtain an M–�

loop with

M = −wKP0(I + KP0)−1

Since K stabilizes P0, M is stable.
As a note of interest, we expect a keen connection between

M =
[

w2P0(I + P0K)−1 −w2KP0(I + P0K)−1

w1P0(I + P0K)−1 −w1KP0(I + P0K)−1

]

� =
[
�r 0
0 �c

]

the Small Gain Theorem and the classical Nyquist criterion.
Indeed, this can be best observed by examining single-input/ where �r is a real number ranging over [�1,1] and �c is a
single-output systems. In such case P and K are scalar, and scalar transfer function ranging over the unit ball in H �.
thus so is M. Since both M and � are stable, Nyquist’s cri- Clearly, the condition �M�� � 1 in the Small Gain Theorem
terion implies that the M—� loop is stable whenever the Ny- remains sufficient for robust stability when � is restricted to
quist plot of M� does not encircle the critical point �1 � j0.

be block-diagonal. However, it is in general no longer neces-
Clearly, this will be the case for every � satisfying ��( jw)� � 1

sary. A refinement of the Small Gain Theorem for the struc-for all w if and only if �M( jw)� � 1 holds at all frequencies
tured uncertainty case was proposed by Doyle and Safonov in(including �).
the early 1980s (2,4). We adopt here the framework intro-The Small Gain Theorem suggests that one way to obtain
duced by Doyle, that of the structured singular value alsoa robustly stable system, or more generally to obtain a robust
known as �. The Small � Theorem states that, if the uncer-design, is to make sure that the H � norm of a certain system
tainty is restricted to be block-diagonal, then the correct re-transfer function is small enough. This has triggered an en-
finement is essentially (see Ref. 9 for a precise statement) totire field of research known as H � design, which is discussed
replace �M�� with �M��, where for a continuous-time transferelsewhere in this encyclopedia. The focus of the present arti-
function matrix M,cle is the case when � is block-diagonal (i.e., when the uncer-

tainty model consists of several blocks or, in other words,
when the uncertainty is structured). Typically, two types of ‖M‖µ = sup

ω∈Re

µ(M( jω))

uncertainty blocks are considered in the literature: (i) the set
of real, constant scalar multiples of the identity, with the sca-

and �( � ) denotes the structured singular value of its matrixlar having magnitude no larger than one, and (ii) the set of
argument with respect to the block-structure under consider-causal and BIBO stable (H �) transfer function matrices, with
ation. The set �e � � � ��� is the extended real line; if noH �-norm no larger than one. The latter corresponds to un-
parametric uncertainty is present, however, �( � ) is continu-modeled dynamics. The former, on the other hand, is used to
ous and �e can be replaced by �. Similarly, for a discrete-timerepresent parametric uncertainty, particularly when a same

uncertain parameter affects more than one coefficients in a system,
transfer function. For example, concurrent variation as a
function of temperature (e.g., dilation) of multiple quantities
in a mechanical system can result in such a block. This de-

‖M‖µ = sup
θ∈[0,2π )

µ(M(e jθ ))

scription is more general than the simpler ‘‘scalar nonre-
peated blocks.’’ But what specifically is �? This is discussed next.

Examples with structured uncertainty arise with plants
modeled as being affected by uncertainty at more than one

The Structured Singular Valuephysical location, e.g.,
Let us denote by � the set of values taken by �( j�) [or �(ej�)]

P = (I + w1�1)P0(I + w2�2) as � ranges over the set of block diagonal transfer function
matrices of interest, with the ‘‘unit ball’’ restriction lifted,

where both input and output uncertainty are accounted for. namely let
Another instance arises in the context of the robust perfor-
mance problem, discussed in a later section. For an example
including both parametric uncertainty and unmodeled dy- ��� = {diag(�r, �c, �C) : �r ∈ ���r, �

c ∈ ���c, �
C ∈ ���C}
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with tightened to the following (12):

max
Q∈Q

ρR(MQ) ≤ µ(M) ≤ inf
D∈D+ ,G∈G

{γ ≥ 0: MDMH + GMH − MG − γ 2D < 0} (2)

Here the superscript H indicates complex conjugate trans-

���r := {diag(γ r
1 Ik1

, . . ., γ r
mr

Ikmr
) : γ r

i ∈ R}
���c := {diag(γ c

1 Ikmr +1
, . . ., γ c

mc
Ikmr +mc

) : γ c
i ∈ C }

���C := {diag(�C
1 , . . ., �C

mC
) : �c

i ∈ C
kmr +mc+i×kmr+mc+i }

pose, Q is the subset of � consisting of matrices whose com-
The first and third block types, often referred to as repeated plex blocks are unitary, D � is the subset of D consisting of
real and full complex blocks, correspond to values of paramet- Hermitian positive definite matrices, G is the subset of D

ric and dynamic uncertainty, respectively. The second block consisting of skew-Hermitian matrices (i.e., GH � �G) with
type, known as repeated complex, often arises in analyzing zero blocks in correspondence with repeated real blocks in �,
multidimensional (10) and time-delay systems (11), and is and the � sign indicates that the matrix expression is con-
also used sometimes when an LFT state-space representation strained to be negative definite. The lower bound in condition
of transfer functions is sought (5). It is worth noting that (2) is always equal to �(M). The upper bound is never greater
while � as just defined is usually adequate for representing than that in condition (1) (it reduces to it when G � 0 is im-
uncertainties frequently encountered, it can be extended fur- posed) and, as was the case for condition (1), can be computed
ther to accommodate more general situations. For example, by solving an LMI problem. See, for example, Section 8.12 in
full real blocks (i.e., unknown real matrices) may be added Ref. 8.
whenever desired. For the class of problems where the matrix M has rank

The structured singular value �(M) of a matrix M with re- one, Young (13) showed that the right-hand side in inequali-
spect to the block structure � is defined to be 0 if there is no ties [Eq. (2)] is equal to �(M). In that case, Chen et al. (14)
� � � such that det(I � �M) � 0, and obtained an explicit formula for �(M). Let M � baH, where a

and b are column vectors. Let also a and b be partitioned into
subvectors ai and bi compatibly with �. For i � 1, . . ., mr �µ(M) = �

min
�∈���

{σ (�) : det(I − �M) = 0}�−1

mc, let 
i � aH
i bi. Moreover, define

otherwise. It can be checked that for structures simply con-
sisting of one full complex block as in the Small Gain Theo-
rem, �(M(j�) becomes the largest singular value of M(j�),

γ =
mr+mc∑
i=mr+1

|φi| +
mr+mc+mC∑
i=mr+mc+1

‖ai‖2‖bi‖2

and �M�� is thus equal to �M��.
Then,Given a matrix M and a block structure �, computing

�(M) is generally not an easy task. Indeed, this computation
is known to be NP-hard, even when � is simplified to a struc-
ture containing only full complex blocks. Thus estimates of µ(M) = inf

x∈R

�
mr∑
i=1

|Re(φi) + x Im(φi)| + γ
p

1 + x2

�
(3)

�(M), e.g., upper and lower bounds on �(M), are often used
instead. These, as well as other properties of �, are dis- Furthermore, if we assume with no loss of generality that for
cussed next. some l � mr, Im(
i) � 0 for 1 � i � l, and Im(
i) � 0 for i �

Let U be the set of unitary matrices in � and D be the set l, and that
of nonsingular matrices that commute with every � � �. The
latter consist of block-diagonal matrices with scalar multiples
of the identity in correspondence with full complex blocks − Re(φ1)

Im(φ1)
≤ · · · ≤ − Re(φl )

Im(φl )(�C), and with arbitrary blocks in correspondence with those
constrained to be scalar multiples of the identity (�r, �c). Then

then the infimum is achieved at one of the following points:the following result holds:

max
U∈U

ρR(MU ) ≤ µ(M) ≤ inf
D∈D

σ (DMD−1) (1)

Here �R is the largest absolute value of a real eigenvalue of
its matrix argument. Inequalities [see Eq. (1)] are of special
interest in the case of purely complex uncertainty structures.
In that case, (i) the lower bound is equal to �(M) and �R can
be replaced by the spectral radius �, and (ii) the upper bound

xk = − Re(φk)

Im(φk)
, k = 1, . . ., l

x ′
0 = ±

∑l
i=1 |Im(φi)|�

γ 2 − �∑l
i=1 |Im(φi)|

�2

x ′
k = ±

∑k
i=1 |Im(φi)| − ∑l

i=k+1 |Im(φi)|�
γ 2 − �∑k

i=1 |Im(φi)| − ∑l
i=k+1 |Im(φi)|

�2

is equal to �(M) whenever mC � 2mc is no greater than 3, and
extensive numerical experimentation suggests that it is never Finally, the infimum cannot be achieved at x�0 unless x�0 �

(��, x1], and for k � 1, . . ., l, it cannot be achieved at x�k(or at least ‘‘seldom’’) much larger. Moreover, the upper bound
can be computed efficiently by solving a convex optimization unless x�k � [xk, xk�1].

The rank-one case just alluded to is one of the rare in-problem, in fact, a linear matrix inequality (LMI) problem.
LMIs define a special class of convex optimization problems stances for which one can obtain an explicit expression for

�(M). This expression not only simplifies the computation ofand are discussed elsewhere in this encyclopedia.
For uncertainty structures where real (scalar multiple of the upper bound in condition (2) but also was found useful in

studying robust stability of uncertain polynomials. Indeed, asthe identity) blocks are present, inequalities [Eq. (1)] can be
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blocks �p(s) such that ��p�� � 1. It thus follows that robust
performance holds if and only if

sup
ω∈Re

µ(M( jω)) < 1

where � now denotes the structured singular value corre-
sponding to the ‘‘augmented’’ block structure diag(�kp�kp, �)

M

∆

1

2

1

2

(i.e., the block-structure � corresponding to the actual uncer-
tainty, augmented with a full complex block).Figure 2. Robust performance setup.

For an example of a typical robust performance problem,
consider an uncertain plant described by the multiplicative
uncertainty model setwill be discovered shortly, an important class of stability

problems for uncertain polynomials can be formulated in
P = (I + w1�)P0terms of a rank-one � problem. Consequently, the result fur-

nishes a unifying tool for the stability problems and a link
with a fixed feedback controller K. It is desired to determinebetween � analysis and the Kharitonov approach to ro-
whether �w2S�� � 1 for all possible � in a possibly structuredbustness analysis.
unit uncertainty ball, where S is the sensitivity function (i.e.,
using the negative feedback convention, S � (I � PK)�1).Robust Performance
Here w1 and w2 are stable transfer functions introduced for

A key reason for the popularity of the � framework is that it frequency-weighting purposes. For simplicity, w1 and w2 are
encompasses not only the robust stability problem but also assumed to be scalars. Using the transformation just out-
the following robust performance problem: determine lined, we obtain
whether, for all plants in the given model set, the energy (in-
tegral of the square of the magnitude) in a specified error out-
put signal remains below a specified threshold whenever the
disturbance input’s energy is less than a specified value.

M =
[

w2(I + P0K)−1 w2(I + P0K)−1P0

−w1(I + KP0)−1K −w1(I + KP0)−1KP0

]
(5)

Consider the block diagram of Fig. 2 where, as compared
In the single-input/single-output case, M has rank one. In theto Fig. 1, external (disturbance) input and (error) output are
present case mr � mc � 0, so the right-hand side of Eq. (3) ismade explicit. Given a block diagram such as the one of Fig.
simply � and the right-hand side of the expression defining �2, the input-output transfer function in the continuous-time
reduces to its second term. Thuscase is given by the linear-fractional transformation

F�(M(s),�(s))= M11(s)+M12(s)�(s)(I−M22(s)�(s))−1M21(s) µ(M( jω)) = |w2( jω)(1 + P0( jω)K( jω))−1|
+ |w1( jω)(1 + K( jω)P0( jω))−1K( jω)P0( jω)|

where Mij(s) is the transfer function from input j to output i
of M(s), i,j � 1,2, when the feedback connection through �(s)

and the condition for robust performance can be expressed asis removed. [Thus M22(s) is the transfer function matrix for-
merly denoted M(s).] |w2( jω)| + |w1( jω)K( jω)P0( jω)| < |1 + P0( jω)K( jω)| ∀ω ∈ ReThe issue at hand is to determine, under the assumption
that M(s) � H �, whether robust performance holds, that is,

Extensionswhether it is the case that, for all �(s) in our unit uncertainty
ball, The structured singular value may be further generalized in

many directions, depending on uncertainty descriptions and‖F�(M(s),�(s))‖∞ < 1 (4)
characterizations. Some of these generalizations are summa-
rized next.This is readily handled by noting that, in view of the Small

Gain Theorem, for any fixed �(s) such that the system is sta-
• Nondiagonal uncertainty structure. The uncertaintyble, condition (4) is equivalent to the stability of the aug-

structure need not be diagonal. It can contain unknown,mented system depicted in Fig. 3 for all fictitious uncertainty
independently bounded blocks in every entry. Doyle (2)
and Kouvaritakis and Latchman (15) showed that the
analysis may be converted into one based on the stan-
dard �, but this may lead to a substantial increase in
computational effort. Chen et al. (16,17) proposed a com-
putational scheme that renders the computation growth
insignificant.

• Uncertainty with phase information. Tits et al. (18)
adopted a notion of � with phase, in which not only are
uncertainties known to be bounded by given quantities,

M

∆p

∆

1

2

1

2

but also their phases are known to vary in given ranges.
The formulation gives a more detailed uncertainty de-Figure 3. Fictitious uncertainty for robust performance.
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scription, and it requires extensions of the concept of where q is an unknown vector that may or may not represent
physical parameters. When q varies over a bounded set Q �phase and of �.
�m, a family of polynomials are generated:• �1-norm bounded uncertainty. Khammash and Pearson

(19,20) studied structured uncertainties bounded in �1

norm, which is another active research area in robust P = { p(s,q) : q ∈ Q} (7)

control, concerning peak-to-peak system response. They
The problem of concern is to determine if the polynomial fam-showed that robust stability can be assessed by comput-
ily P is robustly Hurwitz stable, by which we mean that ev-ing the spectral radius of a positive matrix constructed
ery member in P is Hurwitz stable. We shall assume that thefrom the impulse response of the nominal system.
coefficients ak(q) are continuous functions of q. Furthemore,• Time-varying uncertainty. Shamma (21) and Megretsky
we assume that an(q) � 0 for all q � Q (i.e., all polynomials(22) examined the robust stability problem with respect
in P have the same degree). For control system analysis, it isto structured time-varying uncertainties. They showed
typical to restrict the polynomial family P to the followingthat if the uncertainty is allowed to vary arbitrarily over
classes, arranged by order of increased complexity.time, robust stability holds if and only if for some D �

D , �DM(s)D�� � 1. It is readily checked that the left-
1. P a: the coefficients ak(q) are affine functions of q. Forhand side (known as scaled H �-norm), is similar to the

example,right-hand side in condition (1), except that here the
same D must be used at all frequencies. Subsequently,
Poolla and Tikku (23) showed that, if the time variation p(s,q) = s2 + (q1 + 2q2 + 3)s + (4q1 + 5q2 + 6)

of the uncertainty is arbitrarily slow, then robust stabil-
ity holds if and only if the right-hand side in condition 2. P m: the coefficients ak(q) are multiaffine functions of q.
(1) is less than 1 at all frequencies. For example,

Finally, while � may be custom made and seems to be an
all-encompassing paradigm when extended appropriately, it

p(s, q) = s3 + (2q1q2 + 2q1q3 + q3 + 1)s2

+ (4q2q3 + 5)s + (q1q2q3 + 1)

cannot be applied to models in which the uncertainty block �
is allowed to be unstable. An effective robustness measure for 3. P p: the coefficients ak(q) are multivariate polynomials
the latter situation is furnished by the gap metric, a concept in q. For example,
discussed elsewhere in this encyclopedia.

p(s,q) = s3 + (2q2
1q2 + 2q1q2

3 + q1q3 + 1)s2

+ (4q2q3 + 5)s + (q2
1q2

2q2
3 + 1)THE KHARITONOV APPROACH

It should be rather evident that P a � P m � P p and henceThe Kharitonov approach, named after Russian mathemati-
that the complexity in analysis increases in that same order.cian V. L. Kharitonov whose celebrated 1978 theorem is often
At present, the only available methods for tackling P m andconsidered to be the cornerstone of the field, is largely con-
P p are largely ad hoc, via either local optimization or graphi-cerned with the issue of determining zero locations for a fam-
cal approaches, and they are either conservative or computa-ily of polynomials whose coefficients vary in a bounded set.
tionally formidable. In particular, when Q is an �� ball [i.e., aHence, by nature, it can be best presented in a framework
hyperrectangle (‘‘box’’) parallel to the coordinate axes], thedifferent from that of the M–� loop, or �, namely, directly as
problem of testing the stability of P m is known to be NP-hard.a polynomial stability problem. This issue, however, is con-

The class P a, as the sole tractable case, merits a particu-nected to the M–� loop paradigm in an intimate fashion. To
larly thorough study. A polynomial family P in this class con-see this, simply consider a model set comprising proper real
sists of all polynomials of the formrational functions whose coefficients take values in certain

bounded intervals. To determine robust stability of such a
plant together with any compensator will then amount to
checking whether the set of all resultant closed-loop charac-

p(s, q) = p(s,q0) +
m∑

k=0

(qk − q0
k)pk(s) (8)

teristic polynomials have zeros in the ‘‘stability region.’’ For
continuous-time systems, our main focus, the stability region Here q0 belongs to Q and may be regarded as the ‘‘nominal’’
of interest, is the open left half of the complex plane. Other value of uncertain parameter vector q, and the pk(s)’s are fixed
regions of interest include the open unit disk, a shifted left polynomials. Evidently, one can assume with no loss of gener-
half plane, and a sector; these regions can be imposed to ality that p(s, q0) is Hurwitz stable, which is necessary for P
study stability of discrete-time systems or to enforce pole to be robustly Hurwitz stable as q varies over Q.
placement constraints. A polynomial is generally said to be Let p � [1, �], and let � � �p be the standard �p Hölder norm
Hurwitz stable, or is referred to as a Hurwitz polynomial, if defined on the Euclidean space �m. That is,
its zeros lie in the open left half plane.

A general description for a set of polynomials of interest is

p(s,q) =
n∑

k=0

ak(q)sk, (6)
‖q‖p =




�
m∑

i=1

|qi|p

�1/p

, 1 ≤ p < ∞

max
1≤i≤m

|qi|, p = ∞
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Then a common description for Q adopts the notion of unit Because p(s, q0) is stable and by assumption an(q) never van-
ishes on Q, we can conclude from the continuity properties of�p balls centered at q0, defined as
the zeros of polynomials that if some member in P is not
Hurwitz stable, then some polynomial in P must have a zeroQ = {q : ‖q − q0‖p ≤ 1} (9)
on the imaginary axis. Thus the entire family P is Hurwitz

When the coefficient ak(q) depends on qk alone [i.e., when stable if and only if
pk(s) is a constant multiple of sk], the �p ball description gives
rise to a class of most studied polynomial families. Such fami- 0 /∈ p( jω, Q), ∀ω

lies can be expressed as
that is, the value set never contains the origin. This is a
rather straightforward fact known as early as in 1929 and is
generally referred to in the literature as the zero exclusionP =

{
n∑

k=0

γkqksk : ‖q − q0‖p ≤ 1

}
(10)

principle. Note, in particular, that for a polynomial p(s, q) in
the family described by Eq. (11), for any q � Q, the real and

for some (possibly different) q0 and some fixed scalars �k. In imaginary parts of p( j�, q) are respectively given by
particular, for p � �, 1, 2, such P is referred to as an interval
polynomial, a diamond polynomial, and a spherical polyno- Re p( jω, q) = q0 − q2ω

2 + q4ω
4 − · · ·

mial, respectively.
Arguably, the entire success of the Kharitonov approach and

may be best summarized as a triumph over the polynomial
family in Eq. (8) with the �p norm characterization in Eq. (9), Im p( jω,q) = jω(q1 − q3ω

2 + q5ω
4 − · · · )

but not beyond, of which the most shining example is Kharito-
nov’s celebrated theorem. Thus the real part (resp. imaginary part) of p( j�, q) depends

only on the parameters with even (resp. odd) subscript. For
Interval Polynomials an interval polynomial, therefore, it becomes clear that
An interval polynomial can be equivalently expressed as

Re K1( jω) = Re K2( jω)≤ Re p( jω, q)≤Re K3( jω)= Re K4( jω)

Im K1( jω) = Im K4( jω)≤ Im p( jω, q)≤ Im K3( jω)= Im K2( jω)
P =

{
n∑

k=0

qksk : q k ≤ qk ≤ qk

}
(11)

Because the four Kharitonov polynomials are themselves in
P , it follows that, at each �, the value set is a rectangle in

where the qks and the qks are fixed. Kharitonov’s original the complex plane with vertices Ki( j�), as depicted in Fig. 4.
treatment of the interval polynomial problem is of an alge- As � increases, the rectangle evolves in a continuous fash-
braic nature. He constructed four extremal members of P , ion. Its dimensions vary, but its edges remain parallel to the

axes, and the relative positions of the Ki( j�)s do not change.
Now, a polynomial p(s) of degree n with positive coefficients
is Hurwitz stable if and only if the phase of p( j�) monotoni-
cally increases from 0 to n�/2 as � goes from 0 to �. This is
best seen by noting that p(s) can always be factorized as
p(s) � an�(s � si) in terms of its zeros si, and by considering

K1(s) = q
0
+ q

1
s + q2s2 + q3s3 + q

4
s4 + q

5
s5 + · · ·

K2(s) = q
0
+ q1s + q2s2 + q

3
s3 + q

4
s4 + q5s5 + · · ·

K3(s) = q0 + q1s + q
2
s2 + q

3
s3 + q4s4 + q5s5 + · · ·

K4(s) = q0 + q
1
s + q

2
s2 + q3s3 + q4s4 + q

5
s5 + · · ·

the phase of each factor separately. When this is understood,
Kharitonov’s Theorem becomes self-evident. Indeed, if thelater dubbed Kharitonov polynomials. In a remarkable fash-
Kis are Hurwitz stable, then the phase of each Ki( j�) in-ion, Kharitonov showed that the stability of the entire inter-
creases monotonically from 0 to n�/2 and the entire Kharito-val polynomial family can be ascertained by testing merely
nov rectangle rotates around the origin by a total angle ofthese four.
n�/2 without ever touching it. Stability of P then follows from
the zero exclusion principle.Kharitonov’s Theorem. The interval polynomial is Hurwitz

Kharitonov’s Theorem opened an era epitomized by thestable if and only if K1(s), K2(s), K3(s), and K4(s) are all Hur-
search for so-called vertex results in robust stability analysis,witz stable.
as manifested by the construction of the four Kharitonov poly-
nomials at the vertices of the hyperrectangle Q. This themeSubsequent development showed that for polynomials of de-

gree 5, 4, and 3, the test can be further simplified, requiring
checking only 3, 2, and 1 of the four Kharitonov polynomials,
respectively.

Dasgupta (24) gave a geometrical interpretation to Khari-
tonov’s Theorem in frequency domain, which sheds light on
why such a puzzling result would hold. The interpretation
makes use of the concept of value set. The idea is to examine
the image of the polynomial family when s lies on the bound-
ary of the stability region, namely

Im

K2(j  )

K1(j  )

ω

ω

K3(j  )

K4(j  )

ω

ω

Re

p( jω,Q) = {p( jω,q) : q ∈ Q} Figure 4. Kharitonov rectangle.
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persisted in much of the subsequent work. Although Kharito- the polytope because some of these segments are not edges.
In some cases, however, it is not an easy task to check whichnov’s Theorem is without question a milestone in control the-

ory, and perhaps a measured intellectual triumph in general, such segments are edges and which are not.
The Edge Theorem generalizes Kharitonov’s Theorem inwe should note that the interval polynomial family is never-

theless a very special instance of an affine uncertainty class, two important aspects. First, it is applicable to general affine
polynomial families, with Q an arbitrary polytope. Secondly,and hence the theorem has a rather limited scope in applica-

tion. The quest thus continues. the stability region may be any open, simply connected set
(27,28), although only stated here in terms of the open left
half plane. In contrast, Kharitonov’s Theorem addresses onlyEdge Theorem
Hurwitz stability. On the other hand, as the number of pa-

In light of Kharitonov’s Theorem, it is tempting to contem- rameters increases, the computation effort required in the
plate the possibility that a similar vertex result would hold Edge Theorem can be enormous. For example, when Q is a
for the general affine polynomial family with Q a hyperrec- box in �m, with 2m vertices, the number of edges is m2m�1, a
tangle. This, unfortunately, turns out to be false; a counterex- very large number even for moderate values of m. Finally, to
ample can be readily constructed to demonstrate the opposite. a lesser extent, the Edge Theorem is not applicable to situa-
What can be said about a polynomial family P in class P a? tions where the boundary of Q is curved, of which the spheri-
Bartlett et al. (25) provided an answer. In what is now known cal polynomial family is an example.
as the Edge Theorem, they took the bounding set Q to be a
convex polytope in �m. Let qi, i � 1, . . ., l, be the vertices of

Graphical TestsQ. Then, it is well known that Q can be represented as a
convex hull of the vertices. That is, The complexity of the Edge Theorem provides a direct motiva-

tion to search for computationally more tractable stability cri-
teria, and graphical conditions become a natural avenue to
explore. Not only are graphical criteria time-honored tools in

Q = conv{q1, . . ., ql} =
{

l∑
i=1

λi qi :
l∑

i=0

λi = 1, λi ≥ 0

}

classical stability analysis, but the zero exclusion principle,
with all its simplicity and transparency, also prompts aBecause ak(q) is an affine function of q, it follows that
deeper investigation of such tools. We can generally feel that
an important asset of the zero exclusion principle is its gener-P = conv{ p(s, q1), . . ., p(s, q l )}
ality, both in terms of uncertain polynomial families and in
terms of stability regions.This implies that the value set p( j�, Q) is a polygon, gener-

Barmish (29) studied the issue systematically; earlier con-ated by the vertex polynomials p(s, qi). It should be rather
ditions had appeared sporadically on stability of perturbedclear that the interval polynomial family is generated by a
polynomials in isolated cases. Barmish’s approach stems frompolytope—a hyperrectangle—and so is the diamond polyno-
a geometrical argument: a convex polygon in the complexmial family.
plane does not intersect the origin as long as it can be sepa-
rated from it by a straight line or, equivalently, as long as theEdge Theorem. The affine polynomial family (polytope of
vertices can be separated, as a whole, from the origin by suchpolynomials) P a is Hurwitz stable if and only if for each edge
a line. This observation led to his construction of a testingpoint q of Q, p(s, q) is Hurwitz stable.
function, which is to be evaluated along the boundary of the
stability region. After this is accomplished, we can determineLet qi and qj be two vertices of Q connected by an edge. When
stability by plotting the testing function. Barmish’s test is cer-	 varies from 0 to 1, the polynomial
tainly one step forward compared to a pure brute-force com-
putation; however, it remains somewhat ad hoc and is compu-pij(s, λ) = λp(s,q i ) + (1 − λ)p(s, q j )

tationally overwhelming. Because it requires evaluations at
all vertices, it does not clear the hurdle of exponential growthdefines a line segment (of polynomials) connecting p(s, qi) and
in complexity.p(s, qj). The theorem shows that—quoting directly from Ref.

On a lesser scale, Tsypkin and Polyak (30) obtained a25—it suffices to check the edges. Because an edge polynomial
graphical test for a simpler problem. They examined the poly-involves only one parameter, its stability can be readily
nomial family in Eq. (10). Let p � [1, �] be given. Further-tested, by resorting to either a graphical test based upon a
more, for r � [1, �] such that (1/p) � (1/r) � 1, defineroot locus, or the numerical solution of a generalized eigen-

value problem (see, for example, Chapter 4 in Ref. 26).
The heuristics behind the Edge Theorem are simple. Be-

cause for large values of �, the value set does not contain the
origin (this is easy to see), the polynomial family will be Hur-
witz stable if and only if there is no frequency � at which the
origin belongs to the boundary of the (polygonal) value set. It

Xr(ω) = (γ r
0 + (γ2ω

2)r + (γ4ω
4)r + · · · )1/r

Yr(ω) = (γ r
1 + (γ3ω

2)r + (γ5ω
4)r + · · · )1/r

R(ω) = γ0q0
0 − γ2q0

2ω
2 + γ4q0

4ω
4 + · · ·

I(ω) = γ1q0
1 − γ3q0

3ω
2 + γ5q0

5ω
4 + · · ·

should be intuitively clear that every point on the boundary
of the value set must be the image of a point on an edge of

Note that R(�) � Re(p( j�, q0)) and �I(�) � Im(p( j�, q0)).the polytope of polynomials. Thus, if for some � the origin
does belong to this boundary, the corresponding edge polyno-
mial must be unstable. Note that it is wasteful to check the Tsypkin-Polyak Criterion. The polynomial family P of Eq.

(10) is Hurwitz stable if and only if p(s, q0) is Hurwitz stable,entire set of all polynomial ‘‘segments’’ joining two vertices of
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�q0
n� � 1, �q0

0� � 1, and with respect to the block structure � � �diag(�1, . . ., �m): �i

� ��. In light of the formula for rank-one �, an explicit condi-
tion can then be stated. Such a result clearly applies to gen-
eral stability regions, and it furnishes a frequency sweeping

� |R(ω)|
Xr(ω)

�p

+
� |I(ω)|

Yr(ω)

�p

> 1, ∀ω ∈ (0,∞) (12)

condition for robust stability. Note that we may interpret this
This condition was independently obtained by Hinrichsen and result alternatively based upon the zero exclusion principle.
Pritchard (31). Indeed, under the condition that Q is the unit �� ball centered

at q0, all the polynomials in P will have zeros in a specified
Up to this point, we could assert that the stability problem region if and only if the zeros of p(s, q0) are in that region

for affine polynomial families remains largely unresolved. and �(M(s)) � 1 for all s on the boundary of the region. This
However, as yet another observation, we find that at each �, follows because, according to the zero exclusion principle, it is
the zero exclusion condition defines two linear constraints in both necessary and sufficient that
terms of perturbed coefficients, imposed on the real and imag-
inary parts of p( j�, q), respectively. These constraints, to-
gether with a convex bounding set Q, define in turn a convex min

{
‖q − q0‖∞ : p(s, q0) +

m∑
k=0

(qk − q0
k)pk(s) = 0

}
> 1

feasibility condition; when the parameters vary indepen-
dently, it reduces further to a linear program. This is a simple in order for the polynomial family p(s, q) in Eq. (8) to have no
but conceptually appealing observation. It led to a reformula- zero on or exterior to the boundary of the region, for all possi-
tion via linear programming, due to Saridereli and Kern (32) ble q � Q.
and to Tesi and Vicino (33), which can be solved readily for More generally, it is possible to extend the definition of �
each � and then plotted graphically. Qiu and Davison (34) by means of more general norms and to use this extended �
went further to demonstrate that for very general bounding to study the robust stability of an affine family P with a more
sets it suffices to solve an optimization problem with one vari- general bounding set Q. Such a generalization also leads to a
able only, and the problem can be solved explicitly in special similar expression when the M matrix in question has rank
cases. Finally, Chen et al. (14,35) recognized that the problem one (14,35). In particular, when the stability region is re-
can be reformulated as a special rank-one � problem for each stricted to the open left half plane, and Q is the unit �p ball
�, and showed that stability can be ascertained by evaluating centered at q0 with ak(q) � �kqk, the expression for the gener-
an explicit formula. These results led to the final resolution alized rank-one �, denoted as �p( � ) for purpose of distinction,
of the affine polynomial family. is found to be

� and the Kharitonov Approach

Indeed, there is an inherent linkage between � analysis and
Kharitonov approach, whenever the latter applies, in that
both approaches yield necessary and sufficient conditions for
problems of the same nature. However, for a rather long time

µp(M( jω)) =




Yr(ω)/|I(ω)| if R(ω) = 0

Xr(ω)/|R(ω)| if ωI(ω) = 0
Xr(ω)Yr(ω)

(X p
r (ω)|I(ω)|p + Y p

r (ω)|R(ω)|p )1/p

otherwise
a clear link seemed elusive. The main cause, it seems, lay in
how to reconcile an optimization-based formulation such as �,

which leads to a similar condition for robust Hurwitz stabil-and explicit results from the Kharitonov approach. Can one,
ity. This condition is slightly more general than, but essen-for example, derive Kharitonov’s theorem from �, or vice
tially replicates, the graphical criterion by Tsypkin and Po-versa?
lyak. Note that for p � �, the polynomial family becomes anThe explicit formula of rank-one � given earlier lends an
interval polynomial, and the stability condition reduces toanswer. Specifically, for a general affine polynomial family
checking whether p(s, q0) is Hurwitz stable, �q0� � 1, and

P a [(Eq. (8)] with Q the unit �� ball, robust stability can be
checked by computing �, with a rank-one matrix M(s) con-
structed as min

{
X1(ω)

|R(ω)| ,
Y1(ω)

|I(ω)|
}

< 1, ∀ω ∈ (0,∞)

A little thought reveals that the latter is equivalent to de-
termining whether one of the four conditions Re(K1( j�)) � 0,
Re(K3( j�)) � 0, Im(K1( j�)) � 0, and Im(K3( j�)) � 0 holds.

M(s) =




1
...
1




[
p1(s)

p(s, q0)
· · · pm(s)

p(s, q0)

]

Clearly, this is further equivalent to the requirement that the
rectangular value set in Fig. 4 never contains the origin.To see this, observe that p(s, q) in Eq. (8) is the characteristic

polynomial of the M–� loop of Fig. 1 with � � �diag(q1 �
Extensionsq0

1, . . ., qm � q0
m). Indeed,

There is an immense body of literature devoted to polynomial
stability problems. Various extensions to Kharitonov’s Theo-
rem have been obtained. They generally fall into the catego-

det(I − �M(s)) = 1 +
m∑

k=0

pk(s)
p(s,q0)

(qk − q0
k) = p(s, q)

p(s,q0)

ries of vertex results and frequency-sweeping conditions, con-
sisting of delicate studies and intricate technical details. WeThus, stability of p(s, q) for all q � Q is equivalent to stability

of the M–� loop for all diagonal matrices � with real (para- summarize some of the highlights next. A recent and compre-
hensive account can be found in the books by Barmish (26)metric) entries lying in [�1, 1]. The condition for this is that

�M�� �1 where the structured singular value is computed and by Bhattacharyya et al. (36).
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Vertex and Edge Results. Much of the work in this direction • Unstructured Uncertainty. Unmodeled dynamics may be
included along with parametric uncertainties. They maycontinues the thread in Kharitonov’s Theorem, focusing on
be accommodated either in the rank-one � formula or bysimple uncertainty descriptions and leading to stability tests
small gain-type conditions involving vertex and edgebased on vertex and/or edge polynomials. Some notable exam-
plants.ples follow.

• Nonlinear Systems. In a system consisting of an interval
• Complex Interval Polynomials. The polynomial family plant and a static, sector bounded nonlinear component,

has complex coefficients whose real and imaginary parts stability conditions similar to the Popov and circle crite-
are allowed to vary independently in given intervals. ria have been obtained, which also require the testing of
Eight vertex polynomials need to be tested to ascertain vertex and edge plants.
stability. • Multilinear Uncertainty Structure. The entire success in

the Kharitonov approach relies on the key assumption• Diamond Polynomials. This polynomial family is de-
that polynomial coefficients depend linearly on uncertainscribed in Eq. (10), with p � 1. Eight vertex polynomials
parameters, and the utility of all the results in this areaare required as well.
is thus measured by how much the uncertainty can devi-• Stabilization of Interval Plants via First-Order Compensa-
ate from this description. Little success has beentors. The numerator and denominator of the plant trans-
achieved in this endeavor. A fundamental barrier, as im-fer function are interval polynomials, and it is to be sta-
plicated by the zero exclusion principle, is that the stabil-bilized by a first-order compensator in closed loop. It
ity problem is one of optimization subject to nonlinear,suffices to stabilize 16 vertex plants, constructed based
nonconvex constraints.upon the vertex numerator and denominator polynomi-

als.
STATE-SPACE APPROACH• Generalized Kharitonov Theorem. It concerns linear com-

bination of interval polynomials and requires checking
Dynamical systems are often described by state-space equa-certain polynomial segments in addition to vertices.
tions. Accordingly, it is common to model system uncertainty
as perturbations to system matrices. An uncertain continu-Other stability conditions based on vertex polynomials are
ous-time system in this spirit may be described byalso available. As the complexity of uncertainty structure in-

creases slightly, they usually require testing more (e.g., 32 or ẋ(t) = (A + B�C)x(t) (13)
64) vertex polynomials. A clear insight concerning uncer-
tainty structure and the required number of vertices, how- Here A, B, and C are known matrices of appropriate dimen-
ever, remains unavailable. sions. The matrix A is assumed to be stable. The system un-

certainty is represented by a set � of allowed values for the
Performance Issues. The entire Kharitonov theory is largely real matrix �, which may be unstructured or structured. Typi-

successful for determining stability of uncertain polynomials. cal perturbation classes considered in the literature are as
However, a number of results are also available regarding follows, arranged in increasing order of generality. In all
properties of transfer functions, which have implications to- cases, � � 0 is given.
ward performance issues. Some examples follow.

• Unstructured Perturbation. The set � consist of all real
matrices with spectral norm less than a given number:• H � Norm of Interval Transfer Functions. When the nu-

merator and denominator of a transfer function are both
���U = {� real : σ (�) ≤ γ }interval polynomials, the H � norm of the transfer func-

tion can be computed over 16 vertex transfer functions, • Element-by-Element Perturbation. Each element in �
provided that the four Kharitonov polynomials associ- varies in a given interval. Let rij � 0 be given. The set
ated with the denominator are stable. � is defined as

• Peak Magnitudes of Closed-Loop Transfer Functions. The
peak H � norm of closed-loop transfer functions can be
computed over the edges of the plant family, when it is
an interval plant.

• Nyquist and Bode Envelopes. The Nyquist and Bode plots
of open or closed-loop transfer functions associated with
an interval plant lie in envelopes determined by plots
generated by vertex and edge plants.

���E =


� real : � =




r11δ11 · · · r1mδ1m

...
...

...
rn1δn1 · · · rnmδnm


 ,

‖�‖ = max
i, j

{|δij| : rij > 0} ≤ γ




Other Extensions. Additional extensions may be found in
• Linear Combination. The allowable set of perturbationsthe following categories.

is described by
• Schur Stability. The Kharitonov theory has been ex-

tended with varying degrees of success to other stability
regions, such as the unit circle. These results are useful

���L =
{

� real: � =
k∑

i=1

δi Ei, ‖�‖ = max
i

|δi| ≤ γ

}
for studying stability of discrete-time systems and for ad-
dressing other performance issues. where the Eis are given.
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Evidently, an uncertain discrete-time system can be described There essentially exists no result for the structured stabil-
ity radius other than those already known for �. For the un-in exactly the same manner.

The problem of interest is to determine the size of the per- structured stability radius, much of the early work was de-
voted to derivation of bounds. One representative example isturbation matrix, measured by a norm of choice, so that the

system remains stable. This issue naturally translates into
one concerning how the eigenvalues of a stable matrix A
would vary when it is perturbed by �. More specifically, would

r(A, B,C) ≥ 1
‖C(sI − A)−1B‖∞

(14)

the eigenvalues cross the stability boundary? And if they do,
This, of course, is a rather straightforward consequence of thewhat is the minimal � such that at least one of the eigenval-
Small Gain Theorem. Recently, however, Qiu et al. (37) ob-ues leaves the stability region? These questions may be ad-
tained the following exact, readily computable formula.dressed by examining the characteristic polynomial

Real Stability Radius. Let G(s) � C(sI � A)�1B, and �2( � )�(s, �) = det(sI − A − B�C)

be the second largest singular value. Then,
or equivalently, the characteristic equation

det(I − C(sI − A)−1B�) = 0 r(A,B,C)−1 = sup
s∈∂D

inf
γ ∈(0,1]

σ2

�
 Re[G(s)] −γ Im[G(s)]

1
γ

Im[G(s)] Re[G(s)]



�

Thus, it becomes clear at the outset that the problem may be
tackled in principle by using a polynomial approach. Simi-

The significance of this result lies in that for any s � ��, thelarly, it can also be analyzed as a � problem. The latter can
function �2( � ) is unimodal in � over (0, 1), and hence its infi-be easily seen with respect to �E and �L, by rearranging the
mum can be computed effectively. Furthermore, when � iselements of these sets into diagonal matrices and by defining
the open left half plane or the open unit disk, that is, whenthe M matrix appropriately. For �U, we may simply adopt a
Hurwitz or Schur stability is of concern, Sreedhar et al. (38)full real block structure and define � accordingly. It should
developed a fast-converging algorithm for the maximizationbe pointed out, nevertheless, that both � and the polynomial
with respect to s. Consequently, from a computational stand-approach will lead to complications in the present context. On
point, the unstructured stability radius problem can be con-the one hand, the computation of � with respect to a real � is
sidered largely resolved.generally very difficult, and approximation by its upper bound

can be very conservative. On the other hand, the characteris-
Interval Matricestic polynomial �(s, �) will generally exhibit a multilinear or

multinomial dependence of its coefficients on �, for which the An interval matrix is a family of real matrices in which all
Kharitonov theory is ill-equipped; indeed, it is not difficult to elements are known only within certain closed intervals. In
see that the coefficients of �(s, �) are multilinear in �ij if � � precise terms, the interval matrix AI � [A, A] is the set of
�E, and are multinomial functions of �k if � � �L. In summary, matrices defined by
both approaches are ineffective and conservative.

By far this uncertainty description poses the most difficult AI = {A : aij ≤ aij ≤ aij}
challenge in robust stability analysis, and the state-space ap-

that is, each aij of A is confined elementwise to lie within anproach is the least developed. Results are scarce, and only in
interval determined by aij and aij, the corresponding elementsrare cases are they nonconservative.
of A and A, respectively. An interval matrix AI is said to be
stable if every A � AI is stable. Evidently, interval matrix andStability Radius
set �E share the same uncertainty description.

A notion frequently encountered in studying the state-space Interval matrices are direct matrix analogues of interval
uncertainty description is that of stability radius. This notion polynomials, and hence there has been a lingering temptation
is closely related to �, but it is less developed. Let � be a for extension of Kharitonov’s Theorem to the former. Unfortu-
stability region of concern, and �� be its boundary. Further- nately, neither vertex nor edge results exist for interval ma-
more, denote by �(A) � � the spectrum of A. Then for any trices. In fact, more recent studies showed that in order to
norm � � � of interest, the stability radius associated with the determine stability of an interval matrix, we must solve an
triple (A, B, C) is defined by NP-hard decision problem. This in a way explains why only

sufficient stability conditions are available.r(A, B,C) = inf{‖�‖ : � ∈ ���,σ (A + B�C) ∩ ∂D 
= ∅}
One approach of attack is to analyze eigenvalue distribu-

tion. Heinen (39) and Argoun (40) examined the problem onIn other words, it defines the minimal perturbation size lead-
the basis of Gershgorin’s Theorem, and their developmentsing to instability, or the ‘‘distance’’ of A to the set of unstable
culminated in a subsequent work of Chen (41), leading to amatrices. By definition, it thus follows directly that the ma-
number of simple, albeit conservative, stability conditions. Astrix family �A � B�C: � � �, ��� � �� has all eigenvalues in
a representative example of these results, consider an inter-

� whenever r(A, B, C) � �. Moreover, in view of the preceding
val matrix AI such that aii � 0. Let W be constructed asdiscussion, we may regard the stability radius as the recipro-

cal of the maximum of a certain �, with respect to an appro-
priate block structure and a matrix M. For further distinction,
the stability radius is said to be unstructured if � is unstruc-
tured and structured otherwise.

W = [wij], wij =



0 i = j
max{|aij|, |aij|}

|aii|
i 
= j
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Then a sufficient condition for Hurwitz stability of AI is found Furthermore, Zhou and Khargonekar (42) observed that the
uncertainty description �E can be regarded as a special caseby Chen (41) to be
of �L, for which they provided the stronger Hurwitz stability
conditionρ(W ) < 1

A useful feature of this result, and more generally of condi-
tions obtained by using Gershgorin’s Theorem, is that it lends σ

�
1
2

k∑
i=1

(|PEi + ET
i P|)

�
< 1/γ (18)

a ready characterization via the so-called M-matrices. The
latter aspect makes it possible to unify a number of sufficient

where, again, P � 0 is the unique solution to Eq. (17). Subse-stability conditions in different forms.
quent developments led to further extensions for problemsAlternatively, Yedavalli and others studied interval matri-
with even more detailed uncertainty descriptions. For exam-ces from a Lyapunov analysis standpoint. This is collectively
ple, the �ks may be allowed to vary in asymmetric intervals.inspected next.
Moreover, because rather obviously any interval matrix can
be represented alternatively in the form of �A � �: � � �E�,

Lyapunov Analysis these conditions can be applied to determine the Hurwitz sta-
bility of an interval matrix as well.The Lyapunov theory, as anticipated, is widely employed in

Yet another issue clearly of interest is whether it is possi-robust stability analysis pertaining to state-space formula-
ble to derive vertex versions of these sufficient conditions.tion, yielding various results concerning stability radius and
Boyd and Yang (44) examined stability problems for matrixinterval matrices. One common thread in this approach is to
polytopes. Specifically, they postulated the uncertainty de-find a single quadratic Lyapunov function applicable to the
scriptionentire family of the perturbed matrices; the technique is often

referred to in the literature as quadratic stability. Another
lies in the simplicity of the stability conditions. A = conv{A1, . . ., Ak}

Let us begin with the unstructured uncertainty set �U. By
A sufficient condition for A to be Hurwitz stable can be easilyconstructing the usual Lyapunov function
found to be the existence of a P � 0 such that

V (x) = 1
2 xTPx

PAi + AT
i P < 0, i = 1, . . ., k (19)

we find that the entire family of matrices �A � B�C: � � �U�
Similarly, for the uncertainty set �L, a vertex condition canis Hurwitz stable if there exists a positive definite matrix
be obtained asP � 0 such that

PA + ATP + γ 2BBT + CTC < 0 (15)
σ

�
1
2

k∑
i=1

εi(PEi + ET
i P)

�
< 1/γ (20)

This, of course, does not come as a surprise. According to the
well-known Bounded Real Lemma (42), it is equivalent to for all combinations of the �i in ��1, �1�. It should be rather

evident that this condition improves upon inequality (18).‖C(sI − A)−1B‖∞ < 1/γ Both conditions (19) and (20) may be regarded as vertex re-
sults in the matrix perturbation case, and both can be posed

The latter condition clearly coincides with condition (14). and solved as LMI problems.
More results are available for the special case when B �

C � I. For the structured uncertainty set �E, Yedavalli (43)
CONCLUSIONgave the sufficient condition

Summary

For the past two decades, modeling uncertainty and ro-
σ

� |P|R + RT|P|
2

�
< 1/γ (16)

bustness has resurfaced as a dominating theme in control the-
for the Hurwitz stability of the matrix family �A � �: � � ory and application and is now held unanimously by theoreti-
�E�. Here P � 0 is the unique solution to the Lyapunov equa- cians and practitioners as the most important concern in
tion control system design. For both its intrinsic appeal and prac-

tical significance, robust control as a whole attracted consid-
PA + ATP = −2I (17) erable interest and underwent a period of immense develop-

ment, bringing control theory to a new height. Many
�P� denotes the modulus matrix of P (i.e., each entry of �P� is important issues have been addressed. Many remain unre-
the absolute value of the corresponding entry of P) and R is solved. The ultimate puzzle, it now appears, lies in the funda-
given by mental conflict between problem complexity and computa-

tional tractability.
Of the three main research areas surveyed in this article,

the structured singular value provides the most general for-
mulation for uncertainty modeling and is the most systemati-
cally developed tool in robustness analysis. The major issues

R =




r11 · · · r1n

...
...

...
rn1 · · · rnn



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in � analysis are clearly generality of uncertainty description, • � with Real and Complex Uncertainties. Braatz et al. (46)
and Toker and Ozbay (47) both showed that the computa-conservatism of analysis, and ease of computation. The main

success achieved with this approach, unquestionably, lies in tion of � is NP-hard.
the progress in computing �. While it cannot be computed • The � Bounds. Toker (48) and Fu (49) showed that the
exactly in general, various computational schemes have been problem of finding an accurate bound for � is NP-hard.
developed for computing it approximately, and commercial

• Interval Matrix. Coxson and DeMarco (50) showed thatsoftware programs are now available. This paves the way for
stability of interval matrices amounts to an NP-hardits application to a series of engineering design problems,
problem.ranging from disk drive control to flight control. Successful

applications to other potential areas, including robot manipu-
These results indicate that a worst-case instance exists inlators, flexible structures, magnetic bearings, and chemical
each class of the problems, for which it is rather unlikely thatprocesses, have also been reported in laboratory experiments.
computational complexity can be bounded via a polynomialThe Kharitonov approach, unlike � analysis, was more re-
function of the problem dimension. It thus comes as no sur-strictive in scope in its early phase of development. However,
prise that the problems are difficult, and indeed are intrac-it has undergone a ‘‘bottom-up’’ growth pattern as the uncer-
table in general.tainty descriptions become progressively more general and so-

From a technical standpoint, the computational difficultyphisticated. Overall, the Kharitonov and state-space methods
in question may be best seen as an outcome of nonlinear, non-may be broadly classified as a parametric approach toward
convex optimization problems. Although only explored sys-robustness analysis, originating from interval polynomials
tematically in recent years, complexity issues have been un-and culminating at state-space uncertainty descriptions. The
der contemplation for a long time and have led to alternative,main appeal of this approach, it appears, lies in its quest for
computationally tractable approximations and formulations.analytical solutions, more appealing than mere computation-
One notable remedy is to resort to formulations based uponbased tools. The main success in the entire parametric ap-
LMIs, and problems in this class include those that can beproach, which remains the state-of-the-art today, is the reso-
described via integral quadratic constraints (IQC). Both LMIslution of the affine uncertain polynomial family case, for
and IQCs offer in essence an energy-based perspective towardwhich necessary and sufficient stability conditions are avail-
system analysis, and they draw heavily upon concepts in clas-able, in terms of both edge tests and graphical conditions. On
sical passivity and dissipativity theory, leading to readilythe other hand, the multilinear/multinomial polynomial fam-
computable, albeit only sufficient, robust stability conditions.ily and the state-space uncertainty description are the weak-
For a comprehensive treatment of control-relevant LMI andest link, for which only sufficient stability conditions are
convex programming problems, see Ref. 51, or the relevantavailable with unknown conservatism, and more systematic,
chapter in this encyclopedia. Megretsky and Rantzer (52) pro-efficient, computation-based approximate tests are called for.
vided a detailed account of the IQC technique.At present, only a few applications of the Kharitonov theory

The computational complexity results just discussed areare reported in the literature, including Ackermann’s car
strongly linked to the worst-case nature of the robustnesssteering problem and an automotive engine control problem
problems; that is, the requirement of robustness must be metinvestigated by Abate et al. (45) (see also Chapter 3 in Ref.
for all possible instances. Is so stringent a requirement truly26). It should be rather evident that the fundamental bottle-
necessary? This question prompted a reexamination of ro-neck in all robustness analysis methods, be it � analysis or
bustness issues, and it led to a recent venture departing al-Kharitonov approach, lies in computational complexity, and
most entirely from the worst-case formulation. A number ofthe ultimate challenge is in the conquest over the ‘‘curse of
researchers argued that worst-case scenarios hardly occur indimensionality.’’ No matter whether this can be achieved or
practice, that a worst-case analysis is not only overly de-not, we should be consciously aware that the dilemma is the
manding but also too pessimistic, and that, after all, worst-natural cause of problem generality and hence complexity and
case analysis problems are often intractable. The argumentresults from the search of optimal solutions. In engineering
thus motivated the description of uncertainty via probabilisticsystem design, we should therefore reconcile and seek a judi-
measures, and accordingly probabilistic approaches to ro-cious trade-off between these conflicting requirements.
bustness analysis. In this new thinking, the deterministic un-
certainty description is discarded altogether and is replaced

To Probe Further by a probability description characterizing the likelihood that
the uncertainty may lie in a bounded set. The robustness con-In light of the difficulties encountered in robustness analysis
dition then amounts to determining the probability underwith respect to structured and/or parametric uncertainties, a
which the system may become unstable. Recent studies (53–number of researchers recently examined complexity issues
56) show that a variety of problems, which are NP-hard infrom a computational standpoint, drawing upon concepts and
the deterministic setting, become readily solvable computa-techniques from computing science and operation research.
tionally when formulated probabilistically. The area, how-The main discoveries are in the following areas.
ever, is entirely open and is not without obstacles of its own.

• � with Real Uncertainties. Braatz et al. (46) showed that
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