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PERIODIC CONTROL

The fact that a periodic operation may be advantageous has
been well known to humankind since time immemorial. All
farmers know that it is not advisable to grow the same prod-
uct repeatedly in the same field because the yield can be im-
proved by rotating crops. So, cycling is good.

More recently, similar concepts have been applied to in-
dustrial problems. Traditionally, almost every continuous in-
dustrial process was set and kept, in the presence of distur-
bances, at a suitable steady state. However, there are
circumstances under which a periodic time-varying action
proves to be better. This observation germinated in the field
of chemical engineering where it was seen that the perfor-
mance of a number of catalytic reactors improved by cycling;
see the pioneering contributions in Refs. 1–3. Unfortunately,
as pointed out in Ref. 4, periodic control was still considered
‘‘too advanced’’ in the industrial control scenario, in that ‘‘the
steady-state operation is the norm and unsteady process be-
haviour is taboo.’’ Its use was therefore confined to advanced
(aerospace or classified) applications, such as those treated in
Refs. 5 and 6. Today, however, the new possibilities offered
by current control technology, together with the theoretical
developments of the field, have opened the way for using peri-
odic controllers in place of the traditional stationary ones. In
fact, the term periodic control takes a wider significance in
the contemporary literature. In addition to the control prob-
lems that arise when operating a plant periodically, periodic
control also includes all situations where either the controller
or the plant is a proper periodic system. One of the reasons
behind such an extension is the possible improvement of the
performances, in terms of stability and robustness, of plants
described by time-invariant models, when using a periodic
controller (see Ref. 7).

The diffusion of digital apparatuses in control has also
contributed to the increasing importance of periodic control
because computer-controlled systems are often based on sam-
ple-and-hold devices for output measurements and input up-
dating. In multivariable control, it may also be necessary, for
technological or economical reasons, to adopt different sam-
pling and/or hold intervals for the various actuators or trans-
ducers. For example, certain variables may exhibit a much
slower dynamic than others so that different sampling inter-
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vals must be adopted. In such situations, we usually resort to in the bibliography, including survey papers (17–22) and
an internal clock for setting a synchronization mode; the digi- early reference books (23,24).
tal equipment complementing the plant performs the selec-
tion of the output sampling instants and the control updating
instants out of the clock time points. It turns out that these BASICS IN PERIODIC SYSTEMS ANALYSIS
sampling selection mechanisms are described by periodic
models in discrete time, with period equal to the least com- A basic classification of linear periodic systems depends on
mon factor of the ratios between the sampling and updating the nature of the time variable t. We focus our attention
intervals over the basic clock period. The overall control sys- herein on continuous-time or discrete-time periodic systems.
tem obtained in this way is known as a multirate sampled- In the former case t is a real variable, whereas in the latter t
data system (8,9). is an integer.

Finally, resorting to control laws that are subject to peri-
odic time variations is natural to govern phenomena that

State-Sampled Representationare intrinsically periodic. An important field where we en-
counter such dynamics is helicopter modeling and control, Nowadays, the most widely used mathematical modelization
as witnessed by the fact that a full chapter of the classical of dynamical systems hinges on the concept of state-variable.
reference book in the field (10) is devoted to periodic sys- The state variables are latent variables that establish a
tems. The main interest in this framework is rotor dynam- bridge between the input variables u(t) and the output vari-
ics modeling. Indeed, consider the case of level forward ables y(t). They are collected in a vector denoted by x(t), and
flight, when the velocity vector of the flying machine is the basic state-space model is the set of difference equations
constant and parallel to its body. Those flight conditions
are achieved by imposing a periodic pattern on the main
control variables of the helicopter (i.e., the pitch angles of
each blade). Consequently, the aerodynamic loads present a

x(t + 1) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
cyclic pattern, with period determined by the rotor revolu-
tion period, and any model of the rotor dynamics is periodic in discrete-time, or the set of differential equations
(see Refs. 11–13). The interest for periodic systems goes far
beyond these situations. Periodicity arises in the study of
nonlinear time-invariant systems dealing with closed orbit

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)operations. Classical examples of such situations are relay-
operated control plants, hysteretic oscillators, and processes
subject to seasonal-load effects. For the study of system in continuous time.
behavior against small perturbations, a linearized approxi- Matrices A( � ), B( � ), C( � ), and D( � ) are real matrices, of
mated model is often used. And, although the original sys- appropriate dimensions, that depend periodically on t:
tem is time-invariant, the linearization procedure generates
periodicity in the approximated linear model (see Refs.
14–16).

A(t + T ) = A(t), B(t + T ) = B(t)

C(t + T ) = C(t), D(t + T ) = D(t)
In this article, the most important techniques of periodic

control will be outlined, avoiding, however, overly technical
The smallest T for which these periodicity conditions are metdetails. The article is organized as follows. The first part deals
is called the system period.with the analysis of periodic systems. Initially, it is shown

These state-space models may be generalized and extendedhow state-space periodic models arise from multirate sam-
in various ways, among which are the class of descriptor mod-pling or linearization around closed orbits. The periodic
els (25).input/output representation is also introduced as an alterna-

tive to state-space modelization. Then, the possibility of ana-
lyzing a periodic system via time-invariant models is investi- Periodicity Induced by Linearization. As mentioned earlier,
gated and a number of techniques are introduced. Further, a linear periodic system can be used to describe the small
the frequency-response concept for periodic systems is out- perturbation behavior along a periodic regime. For example,
lined. The fundamental concept of stability comes next. It consider the continuous-time nonlinear system
calls for the definition of the monodromy matrix and involves
the theory of Floquet and Lyapunov. In passing, the notion of
cyclostationary stochastic process is touched on and briefly
discussed.

ξ̇ (t) = f (ξ (t), v(t))

η(t) = h(ξ (t),v(t))
The second part is devoted to periodic control, and dis-

cusses three main problems: (1) choice of the control signal in and let ṽ( � ), �̃( � ), �̃( � ) be an associated periodic regime of
order to force a periodic regime with better performance than period T. This means that �( � ) is a periodic solution of period
any possible steady state operation, (2) periodic control of T associated with the periodic input ṽ( � ) and that �̃( � ) is the
time-invariant plants, and (3) periodic control of periodic corresponding periodic output. The linearized equations re-
systems. sult in a linear continuous-time system with

The literature on the subject is so vast that it is impossible
to cover all aspects of theoretical and application interest. The
interested reader will find a rather detailed list of references u(t) = v(t) − ṽ(t), x(t) = ξ (t) − ξ̃ (t), y(t) = η(t) − η̃(t)
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and matrices The overall behavior of the obtained system is ruled by the
discrete-time output variables ỹi(k), i 	 1, 2 and the discrete-
time input variables ũj(k), j 	 1, 2 defined as

ỹi(k) = y(kτyi
), i = 1, 2

uj (t) = ũ j (k), t ∈ [kτu j
, kτu j

+ τu j
), j = 1,2

A(t) = ∂ f (ξ, v)

∂ξ

∣∣∣∣
ξ=ξ̃ ,v=ṽ

, B(t) = ∂ f (ξ, v)

∂v

∣∣∣∣
ξ=ξ̃ ,v=ṽ

C(t) = ∂h(ξ, v)

∂ξ

∣∣∣∣
ξ=ξ̃ ,v=ṽ

, D(t) = ∂h(ξ, v)

∂v

∣∣∣∣
ξ=ξ̃ ,v=ṽ

For the modelization, however, it is advisable to introduce theThese matrices are obviously periodic of period T. Mutatis
‘‘fast-rate’’ signalsmutandis, the same reasoning applies in discrete-time as

well. The linearization rationale is illustrated in Fig. 1.
ŷ(k) = y(k�), û(k) = u(k�)

Periodicity Induced by Multirate Sampling. Multirate
In contrast, ỹ(k) and ũ(k) can be considered as the ‘‘slow-rate’’schemes arise in digital control and digital signal processing
samples. The sampling selector, namely the device operatingwhenever it is necessary to sample the outputs and/or update
the passage from the fast sampled-output to the slow sam-the inputs with different rates. To explain in simple terms
pled-output, is described by the linear equationhow multirate sampled-data mechanisms generate periodic-

ity, consider a system with two inputs and two outputs de-
scribed by the time-invariant differential equations ỹ(k) = N(k)ŷ(k)

where

N(k) =
[

n1(k) 0
0 n2(k)

]ẋ(t) = Ax(t) + B

[
u1(t)
u2(t)

]
[

y1(t)
y2(t)

]
= Cx(t) + D

[
u1(t)
u2(t)

]

with
The two outputs yi( � ), i 	 1, 2, are sampled with sampling
intervals �yi

, i 	 1, 2, whereas the two inputs uj( � ), j 	 1, 2,
are updated at the end of intervals of length �uj

, j 	 1, 2, and
kept constant in between. The sampling and updating in-

ni(k) =
{

1 if k is a multiple of τyi
/�

0 otherwise
stants are denoted by tyi

(k), i 	 1, 2 and tuj
(k), j 	 1, 2, k

integer, respectively. Typically, these instants are taken as Note that matrix N( � ) is periodic with the period given by the
multiples of the basic clock period �. Moreover, for simplicity, integer Ty defined as the least common multiple of �y1

/� and
assume that �y2

/�.
As for the hold device, introduce the holding selector ma-

trixtyi
(k) = kτyi

, tu j
(k) = kτu j

S(k) =
[

s1(k) 0
0 s2(k)

]

with

s j (k) =
{

0 if k is a multiple of τu j
/�

1 otherwise

Then, the analog input signal u( � ) is given by

u(t) = û(k), t ∈ [k�,k� + �)

where the fast updated signal û(k) is obtained from the slow
one ũ(k) according to the holding selector mechanism

v(k + 1) = S(k)v(k) + (I − S(k))ũ(k)

û(k) = S(k)v(k) + (I − S(k))ũ(k)

η η

η

u = v – v~ ~y =    –

ξ
ξη

⋅ 
= f(  ,v)

= h (  ,v)

Periodic regime
u,x,y

u y

v

~ ~ ~

A( ), B( ), C( ), D( ). . . .

ξ

Time-invariant
nonlinear system

Periodic linear
system Matrix S(k) is periodic of period Tu given by the least common

multiple of �u1
/� and �u2

/�. This situation is schematically il-Figure 1. Linearization around a periodic orbit—the dynamics of the
lustrated in Fig. 2, where �u1

	 3�, �u2
	 4�, �y1

	 2�, �y2
	nonlinear system in the orbit vicinity is governed by a linear peri-

odic system. 5�, so that Tu 	 12 and Ty 	 10.
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Figure 2. A multirate sampled-data system with two inputs and two outputs. The symbol �
denotes the clock period. The first output signal y1 is sampled at rate �y

1
	 2� and the second y2

at rate �y
2
	 5�. Hence, the sampling selector is a periodic discrete-time system with period

Ty 	 10. Moreover, the first input signal u1 is updated at rate �u
1
	 3� and the second u2 at rate

�u
2
	 4�. The holding selector is a periodic discrete-time system with period Tu 	 12. The period

of the global system is therefore T 	 60.

The overall multirate sampled-data system is a discrete- where
time periodic system with state

x̂(k) =
[

x(k�)

v(k)

]

and equations

x̂(k + 1) = Â(k)x̂(t) + B̂(k)ũ(k)

ỹ(k) = Ĉ(k)x̂(k) + D̂(k)ũ(k)

Â(k) =

eA�

∫ �

0
eAσ dσBS(k)

0 S(k)




B̂(k) =



∫ �

0
eAσ dσB(I − S(k))

I − S(k)




Ĉ(k) = N(k)[C DS(k)]

D̂(k) = N(k)D(I − S(k))
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The so-obtained system is periodic with period T given by the suming that input u( � ) over the interval [�, t) is known]. This
least common multiple of Tu and Ty (T 	 60 in the example of is not true, in general, in discrete-time since the transition
Fig. 2). matrix is singular when A(i) is singular for some i.

Lagrange Formula. The free motion of the periodic system, Input-Output Representation
i.e., the solution of the homogeneous equation

Another mathematical representation of periodic systems is
based on a direct time-domain relationship between the input
and the output variables without using any intermediate la-

{
ẋ(t) = A(t)x(t) in continuous time

x(t + 1) = A(t)x(t) in discrete time
tent variables. In discrete time, this leads to a model of the
formstarting from state x(�) at time � is obtained as

x(t) = �A(t, τ )x(τ ) y(t) = F1(t)y(t − 1) + F2(t)y(t − 2) + · · · + Fr(t)y(t − r)

+ G1(t)u(t − 1) + G2(t)u(t − 2) + · · · + Gs(t)u(t − s)
where the transition matrix �A(t, �) is given by

where Fi( � ) and Gj( � ) are periodic real matrices. Such a repre-
sentation is frequently used whenever a cyclic model must be
estimated from data, as happens in model identification, data

�A(t, τ ) =
{

I t = τ

A(t − 1)A(t − 2) . . . A(τ ) t > τ

analysis, and signal processing. For the passage from a state-
in discrete time and by the solution of the differential matrix space periodic system to an input-output periodic model and
equation vice versa, see, for example, Refs. 26 and 27. Input-output

periodic models can also be introduced in continuous time by
means of differential equations with time-varying coefficients.

∂

∂t
�A(t, τ ) = A(t)�A(t, τ ), 	(τ, τ ) = I

Note that state-space or input-output periodic models are
used in the stochastic modeling of cyclostationary processes, ain continuous time. Therefore, the state solution with a ge-
type of stochastic nonstationary processes with periodic char-neric initial state x(�) and input function u( � ) is
acteristics. In such a context, the input u( � ) is typically a re-
mote signal described as a white noise. Then, the input-out-
put models are known as PARMA models, where PARMAx(t) = �A(t, τ )x(τ ) +

t∑
j=τ+1

�A(t, j)B( j − 1)u( j − 1)

means periodic auto-regressive moving average.
In the following sections, the main attention will be fo-

in discrete time and cused on state-space models.

x(t) = �A(t, τ )x(τ ) +
∫ t

τ

�A(t, σ )B(σ )u(σ )

TIME-INVARIANT REPRESENTATIONS

in continuous time. These expressions are known as Lagrange
As seen before, periodicity is often the result of ad hoc opera-formulas (also called variations-of-constants formulas).
tions over time-invariant systems. On the other hand, in peri-We can easily see that the periodicity of the system entails
odic systems analysis and control, a major point is to addressthe ‘‘biperiodicity’’ of matrix �A(t, �), namely that
the ‘‘backward’’ problem of finding a way to ‘‘transform’’ a pe-
riodic system into a time-invariant one. In such a way, we can�A(t + T, τ + T ) = �A(t, τ )
resort to the results already available in the time-invariant
realm.The transition matrix over one period

	A(τ ) = �A(τ + T, τ ) Sample and Hold

The simplest way to achieve stationarity is to resort to a sam-plays a major role in the analysis of periodic systems and is
ple-and-hold procedure. Indeed, with reference to a continu-known as monodromy matrix at time �.
ous or a discrete-time periodic system, suppose that the input
is kept constant over a period, starting from an initial timeReversibility. In continuous time, there is no analytic ex-

pression for the transition matrix. However, its determinant point �. That is,
can be worked out from the so-called Jacobi formula. In other
words, u(t) = ũ(k), t ∈ [kT + τ, kT + T + τ )

Then the evolution of the system state sampled at � � kTdet[�A(t, τ )] = exp
[∫ t

τ

trace[A(σ )]dσ

]
[i.e., x�(k) 	 x(kT � �)] is governed by a time-invariant equa-
tion in discrete time. Precisely,Therefore, for any choice of t and �, the transition matrix is

invertible. This means that the system is reversible, in that
the state x(�) can be uniquely recovered from x(t), t � � [as- xτ (k + 1) = �A(T + τ, τ )xτ (k) + 
(τ )ũ(k)
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where The time-lifted reformulation can then be introduced:

xτ (k + 1) = Fτ xτ (k) + Gτ ũτ (k)

ỹτ (k) = Hτ xτ (k) + Eτ ũτ (k)

Note that if u( � ) is kept constant over the period, then the


(τ ) =




∫ T+τ

τ

�A(T + τ, σ )B(σ )dσ in continuous time

T+τ−1∑
i=τ

�A(T + τ, i + 1)B(i) in discrete time

state equation of this lifted reformulation boils down to the
sample-and-hold state equation.

Generalized Sample and Hold. It is possible to generalize In this reformulation, only the output and input vectors
the sample-and-hold representation by equipping the holding were enlarged, whereas the dimension of the state-space was
mechanism with a time-varying periodic modulating function

preserved. In the cyclic reformulation, (31,32), every system’sH( � ) acting over the period as follows:
signal, say v(t) of dimension q, is transformed into an en-
larged signal v�(t) of dimension qT. This transformation takesu(t) = H(t)ũ(k), t ∈ [kT + τ, kT + T + τ )
place according to the following rule (given over one period

In this way, the evolution of the sampled state x̃(k) is still starting from a given initial instant �):
governed by the previous equations provided that B(t) is re-
placed by B(t)H(t). Such a generalized sample-and-hold repre-
sentation allows for a further degree of freedom in the design
of periodic controllers. Indeed, function H( � ) is a free parame-
ter to be chosen by the designer; see Ref. 28.

Lifted and Cyclic Reformulations

Despite its interest, the sample-and-hold representation is by
no means an equivalent reformulation of the original periodic
system because the input function is constrained into the
class of piecewise constant signals. Truly equivalent reformul-
ations can be pursued in a number of ways, depending on the
transformations allowed, in frequency or in time, on the in-
put, state, and output signals.

For ease of explanation, it is advisable to focus on discrete
time, where the most important reformulations are time-
lifted, cyclic, and frequency-lifted representations.

The time-lifted reformulation goes back to early papers (29,
30). The underlying rationale is to sample the system state
with a sampling interval coincident with the system period T
and to organize the input and output signals in packed seg-

vτ (τ ) =




v(τ )

�

...
�

�




, vτ (τ + 1) =




�

v(τ + 1)

�

...
�




, . . .,

vτ (τ + T − 2) =




�

�

...
v(τ + T − 2)

�




,

vτ (τ + T − 1) =




�

�

...
�

v(τ + T − 1)




ments of subsequent intervals of length T, so as to form input
where � is any element, typically set to zero. Obviously, theand output vectors of enlarged dimensions. That is, let � be a
previous pattern repeats periodically for the other periods.sampling tag and introduce the ‘‘packed input’’ and ‘‘packed
This signal transformation is used for the input, output, andoutput’’ segments as follows:
state of the system. Then, we can relate the cyclic input to
the cyclic state by means of a time-invariant state-equation
and the cyclic output to the cyclic state via a time-invariant

ũτ (k) = [u(kT + τ )′ u(kT + τ + 1)′ . . . u(kT + τ + T − 1)′]′

ỹτ (k) = [y(kT + τ )′ y(kT + τ + 1)′ . . . y(kT + τ + T − 1)′]′

transformation. In this way, we obtain an nT-dimensional
The vectors ũ�( � ) and ỹ�( � ) are known as lifted input and lifted time-invariant system with mT inputs and pT outputs.
output signals. The introduction of the lifting concept enables Finally, the frequency-lifted reformulation is based on the
us to determine x�(k� 1) 	 x(kT � T � �) from x�(k) 	 following considerations. For a discrete-time (vector) signal
x(kT � �) and then to work out ỹ�(k) from x�(k). More precisely, v(t), let V(z) be its z-transform. Now, one can associate with
define F� � Rn�n, G� � Rn�mT, H� � RpT�n, and E� � RpT�mT as V(z) the frequency augmented vector Vf (z) as follows:

VVV f (z) =




V (z)

V (zφ)

V (zφ2)

...
V (zφT−1)




where � 	 e2j�/T. By applying this procedure to the z-trans-
forms of the input and output signals of the periodic system,
it is possible to establish an input-output correspondence de-
scribed by a matrix transfer function; see Ref. 33. Such a

Fτ = 	A(τ )

Gτ = [�A(τ + T, τ + 1)B(τ ) �A(τ + T, τ + 2)B(τ + 1) . . .

B(τ + T − 1)]

Hτ = [C(τ )′ �A(τ + 1, τ )′C(τ + 1)′ . . .

�A(τ + T − 1, τ )′C(τ + T − 1)′]′

Eτ = {(Eτ )ij}, i, j = 1, 2, . . ., T

(Eτ )ij =




0 i < j

D(τ + i − 1) i = j

C(τ + i − 1)�A(τ + i − 1, τ + j)B(τ + j − 1) i > j



PERIODIC CONTROL 65

transfer function is referred to as the frequency-lifted repre- Consider now the Fourier series for the periodic matrix coef-
ficients. That is,sentation.

The three reformulations are input-output equivalents of
each other. Indeed, for any pair of them it is possible to work
out a one-to-one correspondence between the input-output

A(t) =
∑
k∈Z

Ake jk�t

signals. For the correspondence between the cyclic and the
and similarly for B(t), C(t), and D(t), and plug the expansionstime-lifted reformulations, see Ref. 22.
of the signals x(t), u(t), ẋ(t) and the matrices A(t), B(t), C(t),
D(t) into the system equations. By equating all terms at the

Lifting and Cycling in Continuous Time same frequency, we obtain an infinite-dimensional matrix
equation of the following kind:In continuous time, the frequency-lifted reformulation can be

appropriately worked out as well leading to infinite-dimen-
sional time-invariant systems. For example, the time-lifted
reformulation appears as in discrete time, but now G�, H�,

sXXX = (AAA − NNN )XXX + BUBUBU

YYY = CXCXCX + DUDUDU

and E� are linear operators on/from Hilbert spaces. On this
where XXX, UUU, and YYY, are doubly infinite vectors found with thetopic, the interested reader is referred to Refs. 34 and 35.
harmonics of x, u and y respectively, organized in the follow-
ing fashion:

PERIODIC SYSTEMS IN FREQUENCY DOMAIN
XXX T = [. . ., xT

−2, xT
−1, xT

0 , xT
1 , xT

2 , . . .]

The frequency domain representation is a fundamental tool
and similarly for UUU and YYY. AAA, BBB, CCC, and DDD are doubly infinitein the analysis and control of time-invariant linear systems.
Toeplitz matrices formed with the harmonics of A( � ), B( � ),It is related to the well-known property that, for this class of
C( � ), and D( � ), respectively, assystems, sinusoidal inputs result into sinusoidal outputs at

the same frequency and different amplitude and phase.
A similar tool can be worked out for periodic systems by

making reference to their response to the so-called exponen-
tially modulated periodic (EMP) signals. Herein, we limit our
attention to continuous-time systems. Then, given any com-
plex number s, a (complex) signal u(t) is said to be EMP of
period T and modulation s if

u(t) =
∑
k∈Z

uke sk t

AAA =




. . .
...

...
...

...
...

· · · A0 A−1 A−2 A−3 A−4 · · ·
· · · A1 A0 A−1 A−2 A−3 · · ·
· · · A2 A1 A0 A−1 A−2 · · ·
· · · A3 A2 A1 A0 A−1 · · ·
· · · A4 A3 A2 A1 A0 · · ·

...
...

...
...

...
. . .




and similarly for BBB, CCC, and DDD. As for matrix NNN, it is the blockwhere
diagonal matrix

sk = s + jk�
NNN = blkdiag{ jk�I}, k ∈ Z

The quantity T 	 2�/� is the named period of the EMP sig- Then, we can define the harmonic transfer function as the
nal. The class of EMP signals is a generalization of the class operator
of T-periodic signals. As a matter of fact, an EMP signal with
s 	 0 is just an ordinary time-periodic signal. Indeed, as it is ĜGG (s) = CCC [sIII − (AAA − NNN )]−1BBB + DDD
easy to verify, an EMP signal is such that

Such an operator provides a most useful connection between
the input harmonics and the output harmonics (organized inu(t + T ) = λu(t), λ = esT

the infinite vectors UUU and YYY, respectively). In particular, if we
take s 	 0 (so considering the truly periodic regimes), theIn much the same way as a time-invariant system subject
appropriate input/output operator isto a (complex) exponential input admits an exponential re-

gime, a periodic system of period T subject to an EMP input
ĜGG (0) = CCC [NNN − AAA ]−1BBB + DDDof the same period admits an EMP regime. In such a regime,

all signals of interest can be expanded as EMP signals as fol-
If u( � ) is a sinusoid, this expression enables us to computelows:
the amplitudes and phases of the harmonics constituting the
output signal y( � ) in a periodic regime.

In general, the input/output operator representation of a
periodic system may be somewhat impractical, given that it
is infinite-dimensional. From an engineering viewpoint, any-
way, this model can be satisfactorily replaced by a finite-
dimensional approximation obtained by truncation of the
Fourier series of the system matrices, which in turn implies

x(t) =
∑
k∈Z

xke skt

ẋ(t) =
∑
k∈Z

skxke skt

y(t) =
∑
k∈Z

yke skt
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that matrices AAA, BBB, CCC, DDD, and NNN also are truncated and have region (i.e., the left half plane in continuous time and the unit
disk in discrete time) and nevertheless the system is unsta-therefore finite dimensions.

Analyzing the frequency domain behavior of a continuous- ble. Notable exceptions in continuous time are slowing-vary-
ing matrices or high-frequency perturbed matrices, see Refs.time periodic system in terms of the Fourier expansion of its

coefficients is a long-standing idea in the field; see Ref. 36 for 38 and 39, respectively.
A celebrated stability condition can be formulated in termsa classical reference and a more recent paper (37).

Interestingly enough, it can be shown that the discrete- of the so-called Lyapunov equation.
There are two possible formulations of such an equation,time version of this rationale leads to a finite-dimensional

time-invariant system whose transfer function coincides with known as filtering Lyapunov equations and control Lyapunov
equation, reflecting the fact that Lyapunov equations maythat of the frequency-lifted reformulation.
arise in the analysis of both filtering and control problems. In
continuous time, the filtering Lyapunov equation takes the

MONODROMY MATRIX AND STABILITY form

The monodromy matrix �A(�) relates the value of the state in
Ṗ(t) = P(t)A(t)′ + A(t)P(t) + Q(t)free motion at a given time-point � to the value after one pe-

riod � � T. Precisely, if u( � ) 	 0 over the considered interval
and the control Lyapunov equation isof time,

x(τ + T ) = 	A(τ )x(τ ) −Ṗ(t) = A(t)′P(t) + P(t)A(t) + Q(t)

Therefore, the sampled state x�(k) 	 x(� � kT) is governed in where Q( � ) is a periodic [Q(t� T) 	 Q(t), �t] and positive
the free motion by the time-invariant discrete-time equation definite [x�Q(t)x � 0, �t, �x � 0] matrix.

It turns out that the continuous-time periodic system isxτ (k + 1) = 	A(τ )xτ (k)
stable if and only if the Lyapunov equation (in any of the
two forms above) admits a (unique) periodic positive-definite

This is why the eigenvalues of �A(�) play a major role in the solution P( � ).
modal analysis of periodic systems. In the literature, such ei- An analogous result holds in discrete time, by making ref-
genvalues are referred to as the characteristic multipliers of erence to
A( � ). Note that, although the monodromy matrix may depend
upon �, the characteristic multipliers are constant (21). More-
over, in continuous time, all characteristic multipliers are dif-
ferent from zero as can be easily seen from the Jacobi for-

P(t + 1) = A(t)P(t)A(t)′ + Q(t)

P(t) = A(t)′P(t + 1)A(t) + Q(t)
mula. Conversely, a discrete-time system may exhibit null
characteristic multipliers. This happens when at least one as filtering and control Lyapunov equations, respectively. As
among matrices A(i), i 	 0, 1, . . ., T � 1 is singular, so that before, Q( � ) is periodic and positive definite.
the system is nonreversible. The Lyapunov stability theorem can be expressed in a

Obviously the family of periodic systems includes that of more general form by referring to positive semidefinite matri-
time-invariant ones, in which case the monodromy matrix ces Q( � ) provided that further technical assumptions on the
takes the expression pair (A( � ), Q( � )) are met with; see Ref. 40 for more details on

the theoretical aspects and Ref. 41 for the numerical issues.
It is useful to point out that the above Lyapunov stability

condition can also be stated in a variety of different forms. In	A(τ ) =
{

eAT in continuous time
AT in discrete time

particular, it is worth mentioning that one can resort to the
Lyapunov inequality, i.e., in continuous timeTherefore, denoting by � an eigenvalue of A, the characteristic

multipliers of a time-invariant system seen as a periodic sys-
tem of period T are given by e�T and �T in continuous time and
discrete time, respectively.

Ṗ(t) > A(t)P(t) + P(t)A(t)′ (filtering)

−Ṗ(t) > A(t)′P(t) + P(t)A(t) (control)
In general, the monodromy matrix is the basic tool in the

stability analysis of periodic systems. Indeed, any free motion and in discrete time
goes to zero asymptotically if and only if all characteristic
multipliers have modulus lower than one. Hence, a periodic
system (in continuous or discrete time) is stable if and only if
its characteristic multipliers belong to the open unit disk.

P(t + 1) > A(t)P(t)A(t)′ (filtering)

P(t) > A(t)′P(t + 1)A(t) (control)
To be more precise, this stability concept is usually re-

ferred to as asymptotic stability. However, there is no need Here it is meant that, given two square matrices M and N,
M � N is equivalent to saying that M � N is positive definite.for this article to introduce all possible notions of stability, so

the attribute asymptotic is omitted for the sake of con- Then, an equivalent stability condition is that the system is
stable if and only if the Lyapunov inequality admits a periodicciseness.

Notice that there is no direct relation between the eigen- positive definite solution. The advantage of expressing the
condition in this form is that no auxiliary matrix Q( � ) is re-values of A(t) and the system stability. In particular, it may

well happen that all eigenvalues of A(t) belong to the stable quired.
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Cyclostationary Processes tion, as can easily be seen in the simple case T 	 2, A(0) 	
0, A(1) 	 1, for which the equation S(t � 1)A(t)S(t)�1 	 con-

In the stochastic realm, the so-called cyclostationary processes
stant does not admit any solution.

are well suited to deal with pulsatile random phenomena and
In the reversible case, such a representation always exists,

are the subject of intense investigation in signal processing;
and matrix Â can be obtained by solving ÂT 	 �A(�) and the

see Ref. 42. Specifically, a stochastic process with periodic
transformation S( � ) is given by

mean and covariance function �(t, �) satisfying the biperiodic-
ity condition �(t � T, � � T) 	 �(t, �) is said to be a cyclosta- S(t) = Ât−τ �(t, τ )−1

tionary process. In particular, its variance �(t, t) is T-periodic.
The periodic Lyapunov equation serves as a fundamental Again, it can be seen that such S( � ) is periodic of period T

tool in the analysis of these processes. Assume that the initial and satisfies the linear difference equation
state x(0) of the system is a random variable with zero mean
and covariance matrix P0, and assume also that the input of S(t + 1) = ÂS(t)A(t)−1

the system is a white-noise process, independent of x(0), with
with initial condition S(�) 	 I.zero mean and unitary intensity. Then (21), under the stabil-

Whenever a Floquet representation exists, the eigenvaluesity assumption, the state of the periodic system asymptoti-
of Â are named characteristic exponents. In continuous time,cally converges to a zero mean cyclostationary process with
the correspondence between a characteristic multiplier z andvariance �(t, t), which can be computed via the periodic filter-
a characteristic exponent s is z 	 esT, whereas in discrete time,ing Lyapunov equation by letting Q(t) 	 B(t)B(t)� and P(0) 	
such a correspondence is z 	 sT.P0. It turns out that

Main references for the Floquet theory and stability issues
are Refs. 24, 36, 44, and 45. It should be emphasized thatlim

t→∞
{γ (t, t) − P(t)} = 0

Floquet theory does not consider systems driven by external
inputs. This nontrivial extension is touched upon in theFloquet Theory
sequel.

One of the long-standing issues in periodic systems is
whether it is possible to find a state-coordinate transforma- PERIODIC CONTROL
tion leading to a periodic system with constant dynamic ma-
trix. In this way, the eigenvalues of such a dynamic matrix The early developments of periodic control were concentrated
would determine the modes of the system. With reference to on the problem of forcing a periodic regime in order to im-
linear differential equations, this issue was considered by var- prove the performance of an industrial plant (periodic optimi-
ious mathematicians of the nineteenth century. Among them, zation). At present, the term periodic control has taken a
a prominent role was played by the French scientist Gaston wider sense, so as to include the design of control systems
Floquet (1847–1920) who worked out a theory to solve linear where the controller and/or the plant are described by peri-
homogeneous periodic systems, which is now named after odic models.
him (43).

This theory can be outlined in a simple form as follows. If Periodic Optimization
S( � ) is a T-periodic invertible state-space transformation,

In the 1970s, it was observed that ‘‘there is evidence that peri-x̂(t) 	 S(t)x(t), then, in the new coordinates, the dynamic Â(t)
odic operation [of catalytic reactors] can produce more reac-is given by
tion products or more valuable distribution of products, [and
that] the production of wastes can perhaps be suppressed by
cycling’’ (4). Ever since, the same idea has been further elabo-Â(t) =

{
S(t)A(t)S(t)−1 + Ṡ(t)S(t)−1 in continuous time

S(t + 1)A(t)S(t)−1 in discrete time rated in other application fields, such as aeronautics
(5,46,47), solar energy control (48), and social and economic

The Floquet problem is then to find S(t) (if any) in order to sciences (49). This list of papers is largely incomplete, but in
obtain a constant dynamic matrix Â(t) 	 Â. the bibliography the interested reader can find many more

In continuous time, it can be shown that such a transfor- useful references.
mation S( � ) does exist, and the Floquet problem can be In continuous time, the basic periodic optimization prob-
solved. Indeed, Â can be obtained by solving eÂT 	 �A(�), lem can be stated as follows. Consider the system
where � is any given time point. The appropriate transforma-
tion S( � ) is simply given by ẋ(t) = f (x(t), u(t))

y(t) = h(x(t))
S(t) = e Â(t−τ )�A(τ , t)

subject to the periodicity constant
Such a matrix is indeed periodic of period T and satisfies the
linear differential equation x(T ) = x(0)

and to further constraints of integral or pathwise type. TheṠ(t) = ÂS(t) − S(t)A(t)
performance index to be maximized is

with initial condition S(�) 	 I.
The discrete-time case is rather involved. Indeed, certain

nonreversible systems do not admit any Floquet representa-
J = 1

T

∫ T

0
g(x(t),u(t)) dt
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If we limit the desired operation to steady-state conditions, is that of maximizing the output power
then an algebraic optimization problem arises, which can be
tackled with mathematical programming techniques. Indeed,
letting u(t) 	 const 	 u and x(t) 	 const 	 x, the problem

J = 1
T

∫ T

0
y(t)′y(t) dt

becomes that of maximizing J 	 g(x, u) under the constraint
f (x, u) 	 0. When passing from steady-state to periodic opera- under the periodicity state constraint
tions, an important preliminary question is whether the opti-
mal steady-state regime can be improved by cycling or not. x(0) = x(T )

Denoting by u0 the optimal input at the steady state, consider
and the input power constraintthe perturbed signal

u(t) = u 0 + δu
1
T

∫ T

0
u(t)′u(t) dt ≤ 1

where �u(t) is a periodic perturbation. A problem for which then the optimal input function is given by a sinusoidal signal
there exists a (nonzero) periodic perturbation with a better of suitable frequency. In the single-input single-output case,
performance is said to be proper. The issue of proper periodic- denoting by G(s) the system transfer function, the optimal fre-
ity was originally dealt with in Refs. 50 and 51, by means of quency � is that associated with the peak value of the Bode
calculus of variation concepts. The underlying rationale is to diagram
express �u( � ) in its Fourier expansion:

|G( jω| ≥ |G( jω)|,∀ω

(In modern jargon, � is the value of the frequency associatedδu =
∞∑

k=−∞
Uke jk�t , � = 2π

T
with the H� norm of the system.) In particular, the problem
is proper if � � 0. Otherwise, the optimal steady-state opera-

By means of variational techniques, it is possible to work out tion cannot be improved by cycling.
a quadratic expression for the second variation of the perfor-
mance index Periodic Control of Time-Invariant Systems

The application of periodic controllers to time-invariant linear
plants has been treated in an extensive literature. Again, the
basic concern is to solve problems otherwise unsolvable with

δ2J =
∞∑

k=−∞
U∗

k �(k�)Uk

time-invariant controllers or to improve the achievable con-
trol performances.where U*k is the conjugate transpose of Uk. Matrix �(�) is a

A typical line of reasoning adopted in this context can becomplex square matrix defined on the basis of the system
explained by referring to the classical output stabilizationequations linearized around the optimal steady-state regime
problem, namely the problem of finding an algebraic feedbackand on the basis of the second derivatives of the so-called
control law based on the measurements of the output signal inHamiltonian function associated with the optimal control
order to stabilize the overall control system. If the system isproblem, again evaluated at the optimal steady-state regime.

Notice that �(�) turns out to be a Hermitian matrix, namely
it coincides with its conjugate transpose [�*(�) 	 �(�)].
Thanks to the preceding expression of �2J, it is possible to

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
work out a proper periodicity condition in the frequency do-

with the control lawmain, known as �-test. Basically, this test says that the opti-
mal control problem is proper if, for some � � 0, �(�) is ‘‘par-

u(t) = Fy(t)tially positive’’ [i.e., there exists a vector x � 0 such that
x*�(�)x � 0]. The partial positivity of �(�) is also a necessary

the problem is to find a matrix F (if any) such that the closed-
condition for proper periodicity if we consider the weak varia- loop system
tions �u( � ). In the single-input single-output case, the test
can be given a graphical interpretation in the form of a ‘‘cir- ẋ(t) = (A + BFC)x(t)
cle criterion.’’

Variational tools have been used in periodic control by is stable. Although a number of necessary and sufficient con-
many authors (see Refs. 52–57). Moreover, along a similar ditions concerning the existence of a stabilizing matrix F have
line, it is worth mentioning the area of vibrational control (see been provided in the literature, no effective algorithms are
Ref. 58), dealing with the problem of forcing a time-invariant available for its determination, as discussed in Ref. 61. More-
system to undertake a periodic movement in order to achieve over, it may be difficult or impossible to stabilize three linear
a better stabilization property or a better performance speci- time-invariant plants (62). Periodic sampled control seems to
fication. offer a practical way to tackle this problem. Indeed, consider

In general, if we leave the area of weak variations, periodic the time-varying control law based on the sampled measure-
ments of y( � )optimization problems do not admit closed-form solutions.

There is, however, a notable exception, as pointed out in Refs.
u(t) = F(t)y(kT ), t ∈ [kT,kT + T )59 and 60. With reference to a linear system, if the problem
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The modulating function F( � ) and the sampling period T have Periodic Control of Periodic Systems
to be selected in order to stabilize the closed-loop system, now

A typical way to control a plant described by a linear periodic
governed by the equation

model is to impose

x(kT + T ) = Ac x(kT ) u(t) = K(t)x(t) + S(t)v(t)

where where K( � ) is a periodic feedback gain [K(t � T) 	 K(t), �t],
S( � ) is a periodic feedforward gain [S(t � T) 	 S(t), �t], and
v(t) is a new exogenous signal. The associated closed-loop sys-
tem is thenAc =

[
eAT +

∫ T

0
eA(T−σ )BF(σ )C dσ

]

ẋ(t) = (A(t) + B(t)K(t))x(t) + B(t)S(t)v(t)
The crucial point is the selection of matrix F( � ) for a given
period T. A possibility, originally proposed in Ref. 28, is to in continuous time and
consider an F( � ) given by the following expression

x(t + 1) = (A(t) + B(t)K(t))x(t) + B(t)S(t)v(t)

in discrete time. In particular, the closed-loop dynamic matrix
is the periodic matrix A(t) � B(t)K(t).

F(t) = B′eA′ (T−t)

[∫ T

0
eA(T−σ )BB′eA′ (T−σ ) dσ

]−1

Z

The main problems considered in the literature follow:
with matrix Z still to be specified. Note that this formula is

1. Stabilization. Find a periodic feedback gain in such avalid provided that the matrix inversion can be performed
way that the closed-loop system is stable [any K( � )(this is indeed the case under the so-called reachability condi-
meeting such a requirement is named stabilizing gain].tion). In this way, the closed-loop matrix Ac takes the form

2. Pole Assignment. Find a periodic feedback gain so as
to position the closed-loop characteristic multipliers inAc = eAT + ZC
given locations in the complex plane.

3. Optimal Control. Set v( � ) 	 0 and find a periodic feed-Then, provided that some weak condition on the pair (A, C) is
back gain so as to minimize the quadratic performancemet, period T and matrix Z can be selected so as to stabilize
indexAc, (or, even, to assign its eigenvalues). The generalized sam-

ple-and-hold philosophy outlined previously in the simple
problem of stabilization has been pursued in many other con-
texts, ranging from the problem of simultaneous stabilization
of a finite number of plants (28) to that of fixed poles removal
in decentralized control (63), from the issue of pole and/or

J =




∫ ∞

0
[x(t)′Q(t)x(t)+ u(t)′R(t)u(t)] dt in continuous time

∞∑
k=0

x(k)′Q(k)x(k) + u(k)′R(k)u(k) in discrete time

zero-assignment (64–69), to that of gain margin or robustness
improvement (7,70), from adaptive control (71) to model

4. Invariantization. Find a feedback control law such that
matching (28), and so on.

the closed-loop system is time-invariant up to a periodic
When using generalized sample-data control, however, the

state-space coordinate change.
intersample behavior can present some critical aspects, as

5. Exact Model Matching. Let y(t) 	 C(t)x(t) be a systempointed out in several papers, such as Refs. 72 and 73. Indeed,
output variable. Find a feedback control law such thatthe action of the generalized sample-and-hold function is a
the closed loop input-output relation [from v( � ) to y( � )]sort of amplitude modulation, which, in the frequency do-
matches the input-output behavior of a given periodicmain, may lead to additional high-frequency components cen-
system.tered on multiples of the sampling frequency. Consequently,

6. Tracking and Regulation. Find a periodic controller inthere are nonnegligible high-frequency components both in
order to guarantee closed-loop stability and robust zero-the output and control signals. To smooth out these ripples,
ing of the tracking errors for a given class of referenceremedies have been studied, see Refs. 9 and 74. An obvious
signals.possibility is to continuously monitor the output signal and to

adopt the feedback control strategy u(t) 	 F(t)y(t), with a peri-
odic gain F(t), in place of the sampled strategy before seen. We now briefly elaborate on these problems by reviewing the

main results available in the literature.This point of view is adopted in Ref. in 75, where a pole-
assignment problem in discrete time is considered. As a paradigm problem in control, the stabilization issue

is the starting point of further performance requirement prob-In the control of time-invariant systems, linear-quadratic
optimal control theory represents a cornerstone achievement lems. A general parametrization of all periodic stabilizing

gains can be worked out by means of a suitable matrix in-of the second half of the twentieth century. We can wonder
whether, by enlarging the family of controllers from the time- equality. Specifically, by making reference to discrete time,

the filtering Lyapunov inequality seen in the section devotedinvariant class to the class of periodic controllers, the achiev-
able performance can be improved. To this question, the reply to the monodromy matrix and stability enables us to conclude

that the closed-loop system associated with a periodic gainmay be negative, even in the presence of bounded distur-
bances, as argued in Ref. 76. K( � ) is stable if and only if there exists a positive definite
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periodic matrix Q( � ) satisfying the inequality: where C̃(t) and D̃(t) are to be tuned by the designer. In this
way, the performance index can also be written in the (per-
haps more popular) formQ(t + 1) > (A(t) + B(t)K(t))Q(t)(A(t) + B(t)K(t))′,∀t

Then, it is possible to show that a periodic gain is stabilizing
if and only if it can be written in the form:

J(t, tf , xt ) = x(tf )
′Ptf

x(tf ) +
∫ tf

t
{x(τ )′Q(τ )x(τ )

+ 2u(τ )′S(τ )x(τ ) + u(τ )′R(τ )u(τ )}dτ
K(t) = W (t)′Q(t)−1

where Q(�) 	 C̃(�)�C̃(�), S(�) 	 D̃(�)�C̃(�), and R(�) 	
D̃(�)�D̃(�). We will assume for simplicity that the problem iswhere W( � ) and Q( � ) � 0 are periodic matrices (of dimensions
nonsingular [i.e., R(�) � 0, ��].m � n and n � n, respectively), solving the matrix inequality

This problem is known as the linear quadratic (LQ) opti-
mal control problem. To solve it, the auxiliary matrix equa-
tion

Q(t + 1) > A(t)Q(t)A(t)′ + B(t)W (t)′A(t)′ + A(t)W (t)B(t)′

+ B(t)W (t)′Q(t)−1W (t)B(t)′,∀t

−Ṗ(t) = Ã(t)′P(t) + P(t)Ã(t) − P(t)B(t)R(t)−1B(t)′P(t) + Q̃(t)that can be equivalently given in a linear matrix inequality
(LMI) form. The pole assignment problem (by state feedback)

where
is somehow strictly related to the invariantization problem.
Both problems have been considered in an early paper (77), Ã(t) = A(t) − B(t)R(t)−1S(t), Q̃(t) = Q(t) − S(t)′R(t)−1S(t)
where continuous-time systems are treated, and subsequently
in Refs. 78–80. The basic idea is to render the system algebra- is introduced. This is the well-known differential Riccati equa-
ically equivalent to a time-invariant one by means of a first tion, in one of its many equivalent forms. More precisely, be-
periodic state feedback (invariantization) and then to resort cause the coefficients are periodic, the equation is referred to
to the pole assignment theory for time-invariant systems in as the periodic differential Riccati equation.
order to locate the characteristic multipliers. Thus, the con- Let �( � , tf) be the backward solution of the periodic Riccati
trol scheme comprises two feedback loops, the inner for in- equation with terminal condition �(tf, tf) 	 Ptf

. Assuming that
variantization and the outer for pole placement. the state x( � ) can be measured, the solution to the minimiza-

Analogous considerations can be applied in the discrete- tion problem can be easily written in terms of �( � , tf) as fol-
time case (81), with some care for the possible nonreversibil- lows
ity of the system.

The model matching and the tracking problems are dealt u(τ ) = �o(τ , tf )x(τ )

with in Refs. 82 and 83, respectively.
Finally, the optimal control approach to periodic control where

deserves an extensive presentation and therefore is treated in
the next section. �o(τ , tf ) = −R(τ )−1[B(τ )′�(τ, tf ) + S(τ )]

Moreover, the value of the performance index associated with
PERIODIC OPTIMAL CONTROL the optimal solution is

As for the vast area of optimal control, attention focuses Jo(t, tf , xt ) = x′
t�(t, tf )xt

herein on two main design methodologies, namely (i) linear
quadratic control and (ii) receding horizon control. Both will The passage from the finite horizon to the infinite horizon
be presented by making reference to continuous time. problem (tf � �) can be performed provided that �(t, tf) re-

mains bounded for each tf � t and converges as tf � �: In
Linear Quadratic Periodic Control other words, if there exists P(t) such that

For a continuous-time periodic system, the classical finite ho-
rizon optimal control problem is that of minimizing the qua-

lim
tf →∞

�(t, tf ) = P(t),∀t

dratic performance index over the time interval (t, tf):
Under suitable assumptions concerning the matrices [A( � ),
B( � ), Q( � ), S( � )], the limit matrix P( � ) exists and is the
unique positive semidefinite and T-periodic solution of the pe-

J(t, tf , xt ) = x(tf )
′Ptf

x(tf ) +
∫ tf

t
z(τ )′z(τ ) dτ

riodic differential Riccati equation. The optimal control action
is given bywhere xt is the system initial state at time t, Ptf

� 0 is the
matrix weighting the final state x(tf), and z( � ) is a ‘‘perfor-

u(τ ) = Ko(τ )x(τ )mance evaluation variable.’’ Considering that the second term
of J(t, tf, xt) is the ‘‘energy’’ of z( � ), the definition of such a

where Ko(�) is the periodic matrix obtained from �o(�, tf) byvariable reflects a main design specification. A common choice
letting tf � �. Finally, the optimal infinite horizon perfor-is to select z(t) as a linear combination of x(t) and u(t), such
mance index takes on the valuethat

z(t) = C̃(t)x(t) + D̃(t)u(t)
lim

tf →∞
Jo(t, tf , xt ) = x′

tP(t)xt
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If the state is not accessible, we must rely instead on the mea- systems in Ref. 98. The problem can be stated as follows.
Consider the optimal control problem with S( � ) 	 0 andsurable output
R( � ) 	 I, and write the performance index over the interval
(tf � T, tf) asy(t) = C(t)x(t) + D(t)u(t)

A first task of the controller is then to infer the actual value
of the state x(t) from the past observation of y( � ) and u( � ) up J = x(tf )

′Ptf
x(tf ) +

∫ tf

tf −T
{x(τ )′Q(τ )x(τ ) + u(τ )′u(τ )} dτ

to time t. This leads to the problem of finding an estimate
x̂(t) of x(t) as the output of a linear system (filter) fed by the

Assume that the solution �( � , tf) of the Riccati equation withavailable measurements. The design of such a filter can be
terminal condition �(tf, tf) 	 Ptf

is such thatcarried out in a variety of ways, among which it is worth men-
tioning the celebrated Kalman filter, the implementation of
which requires the solution of another matrix Riccati equa- �tf

= Ptf
− �(t f − T, tf ) ≥ 0

tion with periodic coefficients. When x̂(t) is available, the con-
This condition is usually referred to as cyclomonotonicity con-trol action is typically obtained as
dition. Now, consider the periodic extension Pe( � ) of �( � , tf)

u(τ ) = Ko(τ )x̂(τ )

Pe(t + kT ) = �(t, tf ), t ∈ (tf − T, tf ], ∀ integer k
Thus, the control scheme of the controller takes the form of a
cascade of two blocks, as can be seen in Fig. 3. Periodic opti- Then, under mild assumptions on [A( � ), B( � ), Q( � )], it turns
mal filtering and control problems for periodic systems have out that the receding horizon control law
been intensively investigated (see Refs. 84–93). For numeri-
cal issues see, for example, Ref. 94. u(τ ) = −B(τ )′Pe(τ )x(τ )

Receding Horizon Periodic Control is stabilizing. Although such a control law is suboptimal, it
has the advantage of requiring the integration of the RiccatiThe infinite horizon optimal control law can be implemented
equation over a finite interval (precisely over an interval ofprovided that the periodic solution of the matrix Riccati equa-
length T, which must be selected by the designer in the casetion is available. Finding such a solution may be computation-
of time-invariant plants and coincides with the system pe-ally demanding so that the development of simpler control
riod—or a multiple—in the periodic case). However, for feed-design tools has been considered. Among them, an interesting
back stability, it is fundamental to check if the cyclomonotoni-approach is provided by the so-called receding horizon control
city condition is met. If not, we are led to consider a differentstrategy, which has its roots in optimal control theory and
selection of matrix Ptf

. Some general guidelines for the choiceremarkable connections with the field of adaptive and pre-
of Ptf

can be found in the literature. The simplest way is todictive control (see Refs. 95 and 96). Among the many re-
choose Ptf

‘‘indefinitely large,’’ ideally such that P�1
tf
	 0. In-search streams considered in such a context, the periodic sta-

deed, as is well known in optimal control theory, such condi-bilization of time-invariant systems is dealt with in Ref. 97
tion guarantees that the solution of the differential Riccatiunder the heading of ‘‘intervalwise receding horizon control’’;
equation enjoys the required monotonicity property.see also Ref. 96. The approach was then extended to periodic

CONCLUSION

Optimal control ideas have been used in a variety of contexts,
and have been adequately shaped for the needs of the specific
problem dealt with. In particular, ad hoc control design tech-
niques have been developed for the rejection or attenuation of
periodic disturbances, a problem of major importance in the
emerging field of active control of vibrations and noise; see
Refs. 99 and 100.
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