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OPEN-LOOP OSCILLATORY CONTROL

Conventional control systems rely on feedback, feedforward,
or a combination of the two. In a feedback control system,
the controlled variable is usually compared with a reference
variable, and the difference between the two, the error, is
used to regulate the system. In a feedforward control system,
an appropriate additive control signal is introduced to com-
pensate for disturbances. While feedback and feedforward
rely on different principles, both methods require measure-
ments. In a feedback control system, the controlled variable
is measured. Likewise, in a feedforward control system the
measurement of disturbances is used in the implementation.
However, measurements of states or disturbances are often
costly, difficult, or even impossible to obtain. In these cases,
feedback and feedforward are not feasible means of control.

Consider the particle accelerator originally described in (1)
and later discussed in detail in (2). The control objective is
to focus a beam of particles along the accelerator. In cyclic
accelerators with azimuth symmetrical magnetic fields, the
plant, a beam of particles, is described by

d 2x
dθ2 + ω2(1 − n)x = 0

d 2z
dθ2 + ω2nz = 0 (1)
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where x and z are state coordinates representing small beta- where the averaged potential is used to study global structure
and stability of the periodically forced system. The main re-tron oscillations of the beam, � is the betatron wave number,

	 is an independent variable (azimuth), and n is the field in- sult is that for a given forcing amplitude, there is a unique
critical forcing frequency at which the inverted equilibriumdex of refraction. For proper operation, the field index of re-

fraction should satisfy 0 
 n 
 1. However, for this range of experiences a pitchfork bifurcation. For forcing frequencies
higher than the critical frequency, the inverted equilibrium isn, the beam focusing is often unacceptable. Feedback is usu-

ally not possible due to the difficulty of measuring x and z. stable. Reference 10 considers a generalization of the classic
problem, where the periodic forcing is directed along an in-Feedforward also has similar measurement difficulties.

In such cases, a natural question is whether control is pos- cline with respect to the horizontal. In this case, the pendu-
lum tends to stabilize in configurations aligned with the direc-sible for such ‘unmeasureable’ systems. For many systems,

one alternative is open-loop oscillatory control, sometimes re- tion of the forcing, and in fact this phenomenon holds in the
general n-link case as well (11).ferred to as vibrational control (not to be confused with vibra-

tion control where the idea is to reduce vibrations). Open-loop Open-loop oscillatory control has been applied to many sys-
tems, and new applications continue to emerge. In (12) theoscillatory control is a fairly recently developed control meth-

odology that does not require measurements of states or dis- technique was applied to exothermic chemical reactions in a
continuous stirred tank reactor (CSTR). In this work, it wasturbances. Instead, zero mean periodic excitation is used to

modify the plant behavior in such a way that control is shown that by modulating the input and exit chemical feed
rates of the CSTR, it is possible to operate in stabilized aver-achieved as the result of the system’s natural response to the

excitation. For example, oscillations in the cyclic accelerator aged conversion rates that would otherwise be unstable un-
less expensive feedback is applied. Although, on average, thecan be introduced by appropriately focusing and defocusing

sectors of the magnetic lens. This causes a suppression of same amount of input chemical has been used, the stable op-
erating regimes of the CSTR change substantially with thebetatron oscillations and thereby makes the focus beam more

acceptable. An early heuristic description of this phenomena use of an oscillatory control input. In similar work, the results
of (12) are analytically extended to include chemical reactionswas given by Livingston (1), but it was not until 1980 that the

heuristically controlled azimuth accelerator was explained in in a CSTR with delayed recycle stream (13,14). Historically,
all of this work on oscillatory open-loop control was promptedthe context of open-loop oscillatory control in (2).
by the work of periodic operation of chemical reactors using
the sometimes heuristic techniques of push-pull, periodic opti-Definition 1. Open-loop Oscillatory Control. The utiliza-

tion of periodic (or almost periodic) control laws, without the mization, and asynchronous quenching (12,15).
Experimental applications of open-loop oscillatory controluse of measurements in order to induce a desired dynamic

response in a system is referred to as open-loop oscillatory have also included laser illuminated thermochemical systems
(16), stabilization of plasma (17), and car parking algorithmscontrol or vibrational control.
(18). In (19), sufficient conditions are given for a periodic pro-
cess to minimize periodic paths. This approach generalizedThe simplicity of open-loop oscillatory control synthesis is

offset by the difficulty added in introducing explicit time de- the result in (20) that showed that periodic paths improve
aircraft fuel economy. Other analytic applications of open-looppendence in the state system models. In order to simplify the

analysis, open-loop oscillatory control algorithms may restrict oscillatory control include rotating chains (21,22), n-link pen-
dula (11), axial compressors (23), and population modelsthe control action so the controlled system admits a small pa-

rameter. One way to obtain a small parameter is to introduce (24,25).
In the work by Lehman et al. (13,25,26) the technique ofperiodic excitation whose frequency is an order of magnitude

larger than the highest system natural frequency. The small oscillatory open-loop control is developed for systems with
time-delays. Bentsman and Hong (27,28) have extended theparameter will then arise as the result of a rescaling of time.

For such systems, the time-varying open-loop controlled sys- technique to parabolic partial differential equations (PDEs).
The application of open-loop control to delay systems andtem can be approximated by the behavior of a time-invarient

averaged equation, to which the usual analytical techniques PDE’s shows interesting potential since these types of infinite
dimensional systems are often difficult to control when usingfor time-invariant systems may be applied. This result forms

the basis of classical averaging theory in applied mathematics feedback. Likewise, there has been success in combining the
benefits of open-loop oscillations with conventional feedbackand dynamical systems. Within the context of forced mechani-

cal systems and averaging, energy methods and a quantity in order to robustly stabilize systems with zeros in the open-
right half plane and systems with decentralized fixed zeroscalled the averaged potential provide the most direct method

of analysis. In the absence of distinct system time or length (29–32).
As with all other control algorithms, the important issuesscales, the local stability of an equilibrium or periodic orbit

can be studied by the analysis of the linearized system’s first of designing open-loop oscillatory control include stability,
transient response, and accuracy of the controlled system.return map, or monodromy matrix, obtained through Flo-

quet theory. Certainly, the most important issue is stability. Many classi-
cal results on stability of operating points for systems withOne of the most compelling examples of open-loop oscilla-

tory control is the stabilization of the simple pendulum’s in- oscillatory inputs depend on eigenvalues of the averaged sys-
tem lying in the left half plane, or equivalently the eigenval-verted equilibrium by high frequency vertical oscillation of

the pendulum’s suspension point. This discovery is usually ues of the monodromy matrix lying within the unit disk. How-
ever, there has been growing interest in the stabilization ofattributed to Bogoliubov (3,4) and Kapitsa (5), although ear-

lier references to similar phenomena exist (6). More recent systems to which such classical results do not apply. These
include the mechanical systems studied in (7,8,10,11,33),accounts of this stabilization may be found in (7,8,9,10),
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where eigenvalues locations are typically symmetric with re- equal to �0, it is hoped that the periodic forcing can impose a
stabilizing effect on the system.spect to the imaginary axis. Coron (34) has shown the exis-

tence of a time-varying feedback stabilizer for systems whose In this case, Eq. (2) becomes
averaged versions have eigenvalues on the imaginary axis.
Additional interest in this design derives from the observa- dx

dt
= f (x, λ0 + γ (t)) (3)

tion that it provides a method of smooth feedback stabiliza-
tion for systems which Brockett (35) had previously shown

Definition 2. Vibrationally Stabilizable. An equilibriumwere not stabilizable by smooth, time-invariant feedback.
point xs of Eq. (2) is said to be vibrationally stabilizable if forStability of a system is concerned with the asymptotic be-
any � � 0 there exists a PAZ vector �(t) such that Eq. (3) hashavior of the system. Often it is important to study trajector-
an asymptotically stable periodic solution, x*(t), characterizedies of systems as steady-state behavior is being approached.
byAnalysis of such trajectories when there is an oscillatory con-

trol input is a difficult task. The oscillatory control is usually
designed to be high frequency. As a result, the controlled sys- ‖x ∗ − xs‖ ≤ δ; x ∗ = 1

T

∫ T

0
x∗(t) dt

tem is composed of a fast zero average oscillatory trajectory
superimposed on a slow trajectory. Therefore, the designer
must attempt to control the slow part of the trajectory and It is often preferable that Eq. (3) has a fixed equilibrium
ignore (or filter out) the high frequency component. point, xs. However, this is not usually the case since the right

One disadvantage of open-loop oscillatory control is its ac- hand side of Eq. (3) is time varying and periodic. Therefore,
curacy. It is well known that driving a nonlinear system with the technique of vibrational stabilization is to determine vi-
a periodic signal generally excites an array of resonances, and brations �(t) such that the (possibly unstable) equilibrium
under appropriate conditions chaos in the homoclinic tangles point xs bifurcates into a stable periodic solution whose aver-
of unstable resonances [See (36) for a complete exposition on age is close to xs.
this topic]. While subharmonic resonances and chaos tend to The engineering aspects of the problem consist of:
be suppressed at high forcing frequencies, 1 : 1 resonances

1. Finding conditions for the existence of stabilizing peri-(primary resonances, or periodic orbits), whose averages cor-
odic inputsrespond to fixed points of an averaged representation of the

dynamics, persist. If a stable 1 : 1 resonance has no associa- 2. Determining which oscillatory inputs, u( 
 ), are physi-
tion with a fixed point of the time-varying system (i.e., it cally realizable and
arises through a bifurcation), it is called a hovering motion. 3. Determining the shape (waveform type, amplitude,
These high frequency responses limit the utility of open-loop phase) of the oscillations to be inserted which will en-
oscillatory control when control accuracy is important. sure the desired response

At this time, it may be useful to explain why it is necessary
PROBLEMS IN OPEN-LOOP OSCILLATORY CONTROL to use time-varying control inputs as opposed to simply using

classical time-invariant open-loop control techniques. Sup-
Classes of Systems pose that there is a single-input single-output linear time-

invariant (LTI) system with proper transfer function Y(s)/This section considers systems of ordinary differential equa-
U(s) � n(s)/d(s), where Y and U are the Laplace transform oftions, with inputs, of the form
the output and the input, respectively, and n and d are poly-
nomials in s. If all the roots of d(s) � 0 have negative realẋ = f (x, u) (2)
parts, then open-loop control can be used to arbitrarily place
system poles simply by letting U(s) � d(s)/p(s), where p(s) �where x � �n and u � �m. The function f : �n � �m � �n will
0 has the desired system pole location and the degree of p isalways be assumed sufficiently continuous so that solutions to
greater or equal to the degree of d. At times, this pole–zeroEq. (2) exist. Models of this form describe most of the systems
cancellation open-loop control strategy might give desired sys-appearing in the recent engineering literature on open-loop
tem performance, especially if there is no need for feedbackoscillatory control, as discussed in detail in (37).
(perhaps because there are no disturbances).

Unfortunately, though, perfect pole–zero cancellation isStabilization
not possible. This may not be worrisome if all the roots are in

Here we introduce the problem of vibrational stabilization, as the left-half plane, but when there exists at least one root of
found in (24,38). Suppose that (39) has an unstable equilib- d(s) � 0 with positive real part, LTI open-loop control cannot
rium point, xs when u � constant � �0, and the goal is to stabilize a system. On the other hand, when u(t) is an oscilla-
determine a control input u(t) that stabilizes this operating tory open-loop control input, stabilization is often possible,
point. In addition, suppose this stabilization is to be per- even when there is a pole in the right-half plane. Indeed, os-
formed without any state or disturbance measurements. cillatory open-loop controls have also shown a remarkable ro-

For the stabilization problem being considered, the meth- bustness to disturbances in many experimental applications
ods of oscillatory open-loop control are as follows. Introduce (12,37). This is a quality that is absent in LTI open-loop
into Eq. (2) oscillatory inputs according to the law u(t) � control.
�0 � �(t) where �0 is a constant vector and �(t) is a periodic
average zero (PAZ) vector, that is, �(t) � �(t � T) with Remark 1. This subsection has attempted to state the prob-

lem of stabilization in its broadest terms. There are classes of�T

0 �(t)dt � 0. Even though the average value of u(t) remains
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systems, however, for which discussion of stabilization and where, once again, w approximates x. The oscillatory open-
loop control results in a superposition of fast oscillatory tra-stability is problematic. Such systems include conservative

systems, or more specifically, Hamiltonian systems. Hamilto- jectories on slow trajectories. The slow dynamics are repre-
sented by y, and h can be a fast periodic function. In either ofnian systems include dissipation-free mechanical systems,

and include many electrical and optical systems as well. The the above two cases, it is hoped to find oscillatory control in-
put u(t) such that the transient performance of w meets de-primary defect of Hamiltonian systems as far as control the-

ory is concerned is that the strongest stability these systems sired objectives. Since the state equation of the approxima-
tions are time-invariant, the analysis becomes simpler. Incan possess is neutral stability; that is, eigenvalues/poles on

the imaginary axis. For this reason, standard concepts from fact, even though Eq. (5) is time-varying, it is only the output
equation which explicitly depends on t. Therefore, many ofcontrol theory seldom yield strong stability results. Progress

has recently been made in developing techniques for the sta- the well established tools can be applied directly to the state
equation. In particular, when P(y) � Ay � B, then the eigen-bility analysis of these systems. The new techniques make

use of the system energy, and in the case of periodically forced values of matrix A help determine the qualitative features of
transient behavior.systems the averaged potential, to assess the stability of equi-

libriums. A technique for the equilibrium and stability analy-
Steering and Path Planning for Kinematicallysis of a large class of periodically forced Hamiltonian systems
Nonholonomic Systemsis presented later in this article.

An application of open-loop oscillatory control which lies
Transient Behavior and Performance largely outside the boundaries of this chapter is the use of

periodic functions in path generation for so-called kinemati-Once a system is determined to be stable, the next issue in
cally nonholonomic systems. Such systems include wheeledevaluating its performance is to determine how quickly the
vehicles such as the unicycle, autonomous wheeled robots,solutions decay to their steady state. This finite time tran-
and cars with or without trailers. More generally, kinemati-sient behavior is sometimes crucial to system performance.
cally nonholonomic systems are systems which possess nonin-For LTI systems, there are several methods that can be used
tegrable constraints, and typically the state equations do notto obtain estimates for the transient behavior of the output.
include dynamic effects, such as torques, accelerations, andFor example, an estimated output trajectory is obtained from
forces. Since this class of problems does not involve the arti-information on the location of the dominant system eigenval-
cle’s central themes of stabilization and improvement of tran-ues. Even for nonlinear time-invariant systems, it is common
sient performance, only a brief description is given.to examine the eigenvalues of a Jacobian linearization in or-

Consider the special case of Eq. (2) in whichder to examine the rates of decay of solutions.
For systems subject to oscillatory open-loop control, the

analysis techniques are not so straightforward. As previously f (x, u) =
m∑

i=1

ui gi(x)

mentioned, the control inputs cause Eq. (3) to be time-vary-
ing, and analysis of time-varying systems remains an open

A large body of literature has been published on the use of
area of research. However, since it has been assumed that the

oscillatory inputs designed to force such systems along pre-
control inputs have a special structure, that is, periodic and

scribed paths. The reader is referred to (37) and its references
high-frequency, it will be possible to apply the method of aver-

for details of these types of problems. The types of problems
aging to find approximations of the system transient be-

encountered in this application include the following:
havior.

Essentially the problem of controlling the transient behav- 1. The prescribed endpoint steering problem requires that
ior of time-varying system Eq. (2) is to given any pair of points x0, x1 � �n, a vector of piecewise

analytic control inputs u( 
 ) � (u1( 
 ), . . ., um( 
 )) is to
1. Determine control inputs, �(t) in Eq. (3) so that the so- be determined to steer from some state x0 at time t � 0

lutions to Eq. (3) can be approximated by the solutions to x1 at time t � T � 0.
of a simpler equation 2. The trajectory approximation steering problem requires

2. Control the transient behavior of the approximate that given any sufficiently regular curve � : [0, T] � �n,
equation a sequence [uj( 
 )] of control input vectors is found such

that the corresponding sequence of trajectories con-
verges (uniformly) to �.Sometimes this simpler equation turns out to be purely time-

invariant and in the form of
Several authors have suggested constructive methods for pe-
riodic controllers in this context, and further details may be
found in (37,39–44).

dy
dt

= P(y), w = q(y) (4)

STABILIZATION BY OSCILLATORY CONTROLS:where w and y are both vectors in �n, and w approximates x,
METHODS AND SOLUTIONSthe solution to Eq. (3). Often, though, a time-varying output

equation is used and the approximate equation becomes
Applications of Classical Averaging Theory

The goal of the open-loop oscillatory control is usually to sta-
bilize an unstable equilibrium xs of Eq. (2). This is performed

dy
dt

= P(y), w = h(t, y) (5)
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Figure 1. Flow graph of typical open loop
oscillatory control design procedure.
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by selecting the �(t) in Eq. (3) to be periodic zero average sig- form Eq. (1.1) in Appendix 1. To make this desired transfor-
mation, consider the so called generating equation given asnals, such as sinusoidal inputs or zero average square waves.

The frequency of the input is selected to be large, or equiva-
lently, as Fig. 1 shows, the period is small. The periodic sys-
tem, in the form of Eq. (3) can then be transformed into the

dx
dt

= f2(x(t), ũ(t))

form of Eq. (1.1) in Appendix 1, where � turns out to be pro-
Suppose that this generating equation has a period T generalportional to the period. At this point, the transformed system
solution h(t, c), for some ũ( 
 ) and t � t0, where h : � � �n �can be averaged. If the averaged system has a uniformly
�n and c � �n is uniquely defined for every initial conditionasymptotically stable equilibrium point, then this implies
x(t0) � � � �n.that there will be a uniformly asymptotically stable periodic

Introduce into Eq. (7) the Lyapunov substitution x(t) �orbit of the transformed time-varying system in the vicinity
h(�t, z(t)) to obtainof the equilibrium point. The final criteria for vibrational sta-

bilization is that the periodic orbit satisfying Eq. (3) remain
in the vicinity of xs (even though a transformation is used
prior to averaging). This is the reason for introducing the

dz
dt

=
[

∂h(ωt, z(t))
∂z

]−1

f1(h(ωt, z(t)) (8)

definition of x*, which is the average value of the periodic
solution of Eq. (3). If time is rescaled by letting � � �t, � � 1/�, then using the

What follows is a step-by-step procedure for the analysis standard abuse of notation of letting znew(�) � zold(�/�), Eq. (8)
of open-loop oscillatory control laws by the classical method becomes
of averaging. A brief introduction to the topic of averaging
and references to more comprehensive accountings may be
found in Appendix A.1. Many summaries of this procedure

dz
dτ

= ε

[
∂h(τ , z(τ ))

∂z

]−1

f1(h(τ , z(τ )) (9)

detailed in this section can also be found in the literature
(e.g. see Refs. 13,24,25,37). The following discussion is based Equation (9) is a periodic differential equation in standard
on (37). form with normalized period T � 2� and averaging can be

Assume that f in Eq. (3) has a special structure so that Eq. applied. The averaged equation (autonomous) corresponding
(3) can be rewritten as to Eq. (9) is given as

dx
dt

= f1(x(t)) + f2(x(t), γ (t)) (6) dy
dτ

= εP(y(τ )); P(c) = 1
2π

∫ 2π

0

[
∂h(τ , c)

∂c

]−1

f1(h(τ , c)) dτ

(10)
where f 1(x(t)) � f 1(�0, x(t)) and the function f 2(x(t), �(t)) is lin-
ear with respect to its second argument. Additionally, assume It is now possible to convert the averaged equation back to
that �(t) is periodic of period T (0 
 T � 1) and of the form fast time to obtain
�(t) � �ũ(�t), where � � 2�/T, and ũ( 
 ) is some fixed period-
2� function. Since the primary interest is high frequency forc-
ing, the usual implication is that the amplitude of �(t) is

dy
dt

= P(y(t)) (11)

large. It is possible, however, that ũ( 
 ) has small amplitude,
making the amplitude of �(t) small also. By the theory of averaging, there exists an �0 � 0 such that

Then Eq. (6) can be rewritten as for 0 
 � � �0, the hyperbolic stability properties of Eqs. (9)
and (10) are the same. This also implies that for � sufficiently
large, the hyperbolic stability properties of Eqs. (8) and (11)
are also the same. Specifically, if ys is an asymptotically stable

dx
dt

= f1(x(t)) + ω f2(x(t), ũ(ωt)) (7)

equilibrium point of Eq. (11) (it will also be an asymptotically
stable equilibrium point of Eq. (10)), this implies that, for �In order to proceed with the stability analysis, Eq. (7) will be

transformed to an ordinary differential equation in standard sufficiently large, there exists a unique T-periodic solution,
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�*(t) satisfying Eq. (8), in the vicinity of ys that is asymptoti- Example 2. Oscillatory stabilization of a second-order LTI
system in state space. This example is a slight modificationcally stable also. Furthermore, T is known to be equal to 2�/

�. Since the transform x(t) � h(�t, z(t)) is a homeomorphism, of the problem discussed by (46). Consider the second-order
systemthere will exist an asymptotically stable T-periodic solution to

Eq. (7) given by x*(t) � h(�t, �*(t)). Equation (2) is said to be
vibrationally stabilized provided that x* � 1/T �T

0 x*(t)dt re-
mains in the vicinity of xs. ẋ =

((
0.6 1.3
0.8 −1.6

)
+
(

0 1
0 0

)
u(t)

)
x (15)

Example 1. Oscillatory stabilization of scalar differential
where u is the scalar control. It is easy to verify that whenequations. Consider the scalar linear differential equation
u � 0 the equilibrium point xs � 0 is unstable (check the
eigenvalues of the system).x(n) + (a1 + u1(t))x(n−1) + . . . + (an + un(t))x = 0 (12)

Suppose u(t) � �� cos(�t). Then
In (45), the problem of stabilizing Eq. (12) is studied using
zero average periodic control inputs in the form dx

dt
=
(

0.6 1.3
0.8 −1.6

)
x +

(
0 βω cos(ωt)
0 0

)
x (16)

ui(t) = kiω sin(ωt + φi) i = 1,2, . . ., n (13)

which is in the form of Eq. (7). The generating equation iswhere ki are constants. Furthermore, the results determined
thereforein (45) show that the impact of the control u1 for stabilization

is nonexistent. Hence, assume that k1 � 0.
This system can easily be rewritten in state space form of

q̇ � Aq � �m
i�1 ui(t)Biq. However, due to the results determined

ẋ =
(

0 β cos(t)
0 0

)
x

in (45) there is no need for this. For sufficiently large � the
hyperbolic stability properties of xs � 0 in Eq. (12) are the which has solution x2 � c2 and x1 � c1 � � sin(t)c2.
same as the hyperbolic stability properties of the equilibrium Now introduce the substitutions x2 � z2 and x1 � z1 � �
point ys � 0 of the corresponding differential equation with sin(�t)z2 into Eq. (16) and convert time to � � �t with � � 1/
constant coefficients given by � to obtain

y(n) + (a1 + σ1)y(n−1) + . . . + (an + σn)y = 0 (14)

where

dz
dτ

= ε

(
1 −β sin(τ )

0 1

)(
0.6 1.3
0.8 −1.6

)(
1 β sin(τ )

0 1

)
z(τ ) (17)

which is now in a form that averaging can take place. Taking
the average of Eq. (17) and converting back to regular time t

σi = k2ki

2
cos(φ2 − φi) i = 1,2, . . ., n

leads to the equation corresponding to Eq. (11) of
The impact of the above result is that it presents a calculation
formula for the system. Without knowledge of any periodic
transformations or mathematical analysis, it is possible to se-
lect the gain and phase of each oscillatory control to stabilize

dy
dt

=
(

0.6 1.3 − 0.4β2

0.8 −1.6

)
y(t) (18)

the zero equilibrium of Eq. (12) based on the stability proper-
The eigenvalues of Eq. (18) have negative real part when � �ties of Eq. (14), for sufficiently large �. Since all the coeffi-
2.5. The equilibrium point at zero remains unchanged. There-cients in Eq. (14) are known, the analysis becomes simple.
fore, for sufficiently large � (equivalently sufficiently smallSome important comments on Eq. (14) need to be made.
� � 0) and for � � 2.5 the equilibrium xs � 0 of Eq. (15) isFirst, notice that since �1 � 0, this implies that the coefficient
vibrationally stabilized.of the n � 1th derivative in Eq. (14) cannot be changed. This

coefficient is equal to the negative of the sum of all system
Example 3. Oscillatory stabilization of a simple pendulum:eigenvalues (� �trace[A]). Hence, for vibrational stabilization
Classical Averaging. Consider a simple pendulum consistingto take place, it must be that a1 � 0. Reference 45 shows this
of a massless but rigid link of length � to which a tip of massto be a necessary and sufficient condition for scalar differen-
m and inertia I is attached, and let 	 denote the counterclock-tial equations. (In fact, for all systems q̇ � Aq � �m

i�1 ui(t)Biq
wise rotation about the vertical hanging configuration. Sup-with ui(t) zero average, the trace[A] must always be less than
pose the hinge point of the pendulum is forced to oscillatezero for vibrational stabilization to be possible.) This trace
vertically, where the elevation of the hinge above some refer-condition is never satisfied for linearized versions of the me-
ence height at time t is given by R(t). An illustration of suchchanical systems treated in the following section, indicating
a system is given in Fig. 2. Accounting for Rayleigh dampingone direction in which the theory has been considerably ex-
b	̇ and gravitational forces, the pendulum dynamics can betended in recent years. Next, note that �2 is always positive,
writtenand therefore, the coefficient of the n � 2th derivative in Eq.

(14) can only be increased. The quantitites �i, i � 3 can be
made either positive or negative; however, they depend on Iθ̈ + bθ̇ + m�R̈ sin θ + mg� sin θ = 0 (19)
k2. Therefore, oscillatory control must enter through the a2

coefficient or else all �i will be zero and vibrational stabiliza- Suppose R(t) � � sin �t. Then R̈(t) � ��� sin �t, where � �
�(�) � ��. Writing Eq. (19) as a system of first order equa-tion will not take place.
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the averaged equation, then for sufficiently large forcing fre-
quencies � there exists an asymptotically stable periodic orbit
near the inverted equilibrium. A simple linearization of the
averaged equation reveals that the stability condition for the
inverted equilibrium is given by �2�2 � 2Ig/m�.

Remark 2. Note that in the absence of dissipative forces that
the linearized averaged system will possess eigenvalues ei-
ther of the form �1,2 � �� where � � �, or of the form �1,2 �
�i�, where i� � �. Hence the system is never asymptotically
stable in the absence of damping, and stability results in this
case are weak. The lack of asymptotic stability is a character-
istic of Hamiltonian, and more generally, conservative sys-
tems. The averaging technique of the next subsection is more
suited to such systems and yields stronger stability results.

R(t)

l

g

m

θ

Remark 3. Simple nonquantitative experiments demonstra-
Figure 2. A simple pendulum whose hinge point undergoes vertical ting the stabilization described in this example are not diffi-
motion.

cult to build and work remarkably well. Such an experiment
is shown in Fig. 3. In this experiment, the rotary motion of a
dc motor is rectified to periodic linear motion by the mecha-

tions where x1 � 	 and x2 � 	̇, it is clear that the first order nism shown in the left frame of Fig. 3. Note that by virtue of
system can be written in the form of Eq. (7). Following the the construction, the forcing amplitude is fixed and the forc-
steps detailed in the previous section, the generating equation ing frequency can vary. It is observed that when current is
is found to be applied to the motor, the inverted equilibrium is unstable un-

til the forcing frequency reaches a critical frequency at which
the inverted equilibrium experiences a bifurcation which ren-
ders it stable, as depicted in the right frame of Fig. 3. The

ẋ1 = 0,

ẋ2 = ηm�

I
sin t sin x1

inverted equilibrium is then stable for all higher frequencies.

which has the solution
Remark 4. To this point, the main goal has been to use aver-
aging as a means of studying the local stability properties of
periodically excited systems. Under certain conditions, how-
ever, the averaged system gives far more information about

x1 = c1 = h1(t, c),

x2 = −ηm�

I
cos t sin c1 + c2 = h2(t, c)

the global structure of the periodically excited system. As es-
sentially a perturbation technique, averaging theorems asIntroducing the transformation
found in (36,47,48) give no clues as to how large the small
parameter � can be perturbed off zero before the averaged
dynamics fail to describe the forced dynamics. For � suffi-
ciently large, a variety of undesirable nonlinear effects arise,

x1 = z1,

x2 = −ηm�

I
cos ωt sin z1 + z2

such as subharmonic resonance and stochasticity, which are
not captured in any way by the simple averaging of the non-letting � � �t, and letting � � 1/�, Eq. (9) specializes to
autonomous dynamics. Because of the inherent difficulty of
the analysis, theory for the prediction of nonlinear effects in
this range has been slow to emerge. A later section briefly
illustrates some of the features of periodically excited systems
exhibit when � is allowed to vary.

Averaging for Mechanical Systems

Recently, interest has emerged in using high frequency oscil-

ż1 = ε

[
−ηm�

I
cos τ sin z1 + z2

]

ż2 = ε

[
−
(

ηm�

I

)2

cos2 τ cos z1 sin z1 − mg�

I
sin z1

+ ηm�

I
z2 cos τ cos z1 + ηm�b

I 2 cos τ sin z1 − b
I

z2

]

latory forcing to control the dynamics of mechanical systems.
Therefore the averaged equations, given by Eq. (11), are The typical applications setting is a controlled Lagrangian

system where only some of the degrees of freedom are directly
controlled:ẏ1 = y2,

ẏ2 = −1
2

(
ηm�

I

)2

cos y1 sin y1 − mg�

I
sin y1 − b

I
y2 d

dt
∂L

∂q̇1
− ∂L

∂q1
= u (20)

Notice that the averaging preserves the upper equilibrium,
and xs � 1/T �T

0 h(t, ys)dt. Therefore, by the previous discus-
sion, if the inverted equilibrium is asymptotically stable for

d
dt

∂L

∂q̇2
− ∂L

∂q2
= 0 (21)
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where it is assumed dim q1 � m and dim q2 � n, and u is an
m-vector of controls. (Systems of this form have been called
super-articulated in the literature, and the reader is referred
to (49) for details and references.) Within this class of models,
it is further assumed that there is enough control authority
to always be able to completely specify any trajectory q1( 
 )
over an interval of interest. When this is the case, q1( 
 ),
q̇1( 
 ), and q̈1( 
 ) are viewed collectively as generalized inputs,
and are used to control the dynamics of the configuration vari-
ables q2( 
 ). The starting point may thus be taken to be a (gen-
eralized) control system [see Fliess (50) for an introduction to
generalized control systems] prescribed by a Lagrangian

L (q, q̇; x, v) = 1
2

q̇TM (q,x)q̇ + vTA (q, x)q̇ − Va(q; x, v) (22)

If

L (q1, q̇1; q2, q̇2) = 1
2 (q̇T

1 , q̇T
2 )

(
M11 M12

MT
12 M22

)(
q̇1

q̇2

)
− V (q1, q2)

is the Lagrangian associated with Eqs. (20) and (21), then
with the identifications q1 � x, q̇1 � v, q2 � q, M22 � M ,
M12 � A , and V a(q;x,v) � V (x,qV ) � ��VTM11V, the connection
between the Lagrangian dynamics prescribed by Eq. (22) and
Eq. (21) is clear.

To simplify averaging, perform the usual Legendre trans-
form H � pq̇ � L , where p � �L /�q̇, and write the resulting
Hamiltonian in terms of the variables q, p; x, v

H (q, p; x, v) = 1
2

(p − A T v)T M −1(p − M T v) + Va (23)

This quantity is not a proper Hamiltonian since in general
�H /�t � 0. It is remarkable that if the (generalized) input
functions x( 
 ), and v( 
 ) � ẋ( 
 ) are restricted to be periodic
and the simple average of H over one period is computed, (i)
the resulting quantity H will itself be a proper Hamiltonian,
and (ii) in many cases the dynamics associated with H will
closely approximate the dynamics of the nonautonomous sys-
tem prescribed by Eq. (23). Recall that the simple average is
the time average over one period of H (q, p; x(t), v(t)) where q
and p are viewed as variables which do not depend on the
time t. The averaged Hamiltonian Eq. (23) can be written

Figure 3. A simple experiment to demonstrate the stabilization of
the inverted equilibrium of the vertically forced pendulum. The pic-

H (q, p)

= 1
2

pT M −1 p − vT AM −1 p + 1
2

vT AM −1(M −1)−1M −1A T v

+ 1
2

vT AM −1A v − 1
2

vT AM −1(M −1)−1M −1A T v + V

= 1
2

(M −1 p − M −1A T v)T (M −1)−1(M −1 p − M −1A T v)︸ ︷︷ ︸
averaged kinetic energy

+ 1
2

vT AM −1A T v − 1
2

vT AM −1(M −1)−1M −1A T v + V︸ ︷︷ ︸
averaged potential

(24)
ture on the left (a) shows the mechanism which rectifies the rotary

The averaged potential given in Eq. (24) is an energy-likemotion of the dc motor into periodic linear motion. The picture on the
right (b) shows the pendulum stabilized in the inverted equilibrium. function of the generalized coordinates q which is abbrevi-
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ated V A(q). A complete understanding of the relationship be-
tween the dynamics of nonautonomous Hamiltonian systems
of Eq. (23) and the appropriate counterparts for averaged
Hamiltonian S of Eq. (24) does not presently exist. There are
very broad classes of such systems, however, for which it is
possible to prove the validity of the following:

Averaging Principle for Periodically Forced Hamiltonian Sys-
tems. The dynamics associated with Eq. (23) under periodic
forcing (x(t), v(t)) are locally determined in neighborhoods of
critical points of the averaged potential V A(q) as follows:

q0

l
g

m

θ

α

Figure 4. Periodically forced pendulum where the forcing is directed
• If q* is a strict local minimum of V A( 
 ), then provided along a line of angle � with respect to the horizontal.

the frequency of the periodic forcing (x( 
 ), v( 
 )) is suffi-
ciently high, the system will execute motions confined to
a neighborhood of q*. This equation may be derived from a Lagrangian of the form

• If (q, p) � (q*, 0) is a hyperbolic fixed point of the corre-
sponding averaged system (i.e., the Hamiltonian system
determined by Eq. (24)), then there is a corresponding

L (θ, θ̇ , v) = 1
2

Iθ̇ 2 + m� cos(θ − α)v(t)θ̇ + mg� cos θ

periodic orbit of the forced system such that the asymp-
where v(t) � �� cos �t. The averaged potential for this systemtotic stability properties of the fixed point (q*, 0) of the
isaveraged system coincide with the asymptotic stability

properties of the periodic orbit for the forced system.
VA(θ ) = (m�ωβ)2

4I
cos2(θ − α) − mg� cos θ

This type of averaging for the analysis of periodically forced
mechanical systems has been treated in (7) in the case in When � � �/2, the hinge of the pendulum undergoes the ver-
which M and A in Eq. (22) do not depend explicitly on the tical oscillation described in the previous example. The aver-
variable x. A detailed stability analysis based on Floquet the- aged potential has two or four critical points in the interval
ory appears in (8), but this is restricted to the case in which [0, 2�) depending on whether or not �2�2 is less than or larger
local minima of the averaged potential correspond to rest than 2Ig/m�. Clearly the equilibrium 	 � � is a strict local
point of the nonautonomous dynamics. In the more general minimum of the averaged potential if and only if �2�2 �
case, the motion of systems defined by Eq. (23) are organized 2Ig/m�. According to the theory of averaging presented in (7)
around local minima of the averaged potential which are not and (8), the pendulum will execute stable motions confined to
rest points of Eq. (23). The theory is less well developed for a neighborhood of this equilibrium for sufficiently large val-
this case, but (33) and (10) analyzes the class of single input ues of �. This also recovers the result obtained in the previ-
systems and presents detailed results on the correspondence ous example.
between averaged system phase portraits and the correspond-
ing Poincaré maps of the nonautonomous system defined by Remark 5. This example illustrates nonclassical behavior in
Eq. (23). the case � � �/2. For this case there will be, for sufficiently

large values of �, strict local minima of the averaged potential
which are not equilibrium points of the nonautonomous Eq.Example 4. Oscillatory stabilization of a simple pendulum:
(25). Nevertheless, the pendulum will still execute motionsAveraged potential. This example illustrates the use of the
confined to neighborhoods of such local minima. For detailsaveraged potential in analyzing the dynamics of a pendulum
on this type of emergent behavior, see (33) and (10).whose hinge point is forced to undergo oscillatory linear mo-

tion which is not necessarily vertical as in the last example.
Remark 6. The strategy behind the very simple (open loop)Suppose (x, y) gives the coordinates of the horizontal and ver-
control designs associated with the averaged potential (andtical displacement of the hinge point of a pendulum attached
more generally with systems having oscillatory control in-to a sliding block which is controlled to execute the oscillatory
puts) is to produce robustly stable emergent behavior whichmotion
is related to the critical point structure of the averaged poten-
tial. The design method for control laws in this category in-
volves designing the averaged potential functions themselves
by means of appropriately chosen inputs. The guiding theory

(
x(t)
y(t)

)
=
(

cos α

sinα

)
sinωt

for this approach remains very much under development.
where � prescribes the direction of the oscillatory motion, and

Floquet Theory� is the frequency. This system is illustrated in Fig. 4. If, as
in the last example, the pendulum has total mass m and iner- Another body of theory used in the study of the stability of
tia I about its hinge point, the motion under this oscillatory equilibriums and periodic orbits of systems controlled by
forcing is described by a second order differential equation open-loop oscillatory inputs is Floquet theory. As described in

Appendix 2, the central idea behind the theory is that the
local stability of an equilibrium or periodic orbit may be deter-Iθ̈ − m�ω2β cos(θ − α) sinωt + mg� sin θ = 0 (25)
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mined from the eigenvalues of the monodromy matrix M. The
monodromy matrix represents the growth or decay of solu-
tions of the linearized system, where the linearization is
about that equilibrium or periodic orbit. In general, comput-
ing the monodromy matrix is not straightforward. The calcu-
lation is relatively easy, however, if the linearization of the
system state equations is piecewise constant in t. For exam-
ple, suppose that the linearized time-varying system is

ẋ = A(t)x

where A(t) � A1 on 0 � t 
 t�, and A(t) � A2 on t� � t 
 T,
such that A1A2 � A2A1. Then the monodromy matrix M can be
obtained by computing the state transition matrix � on the

0.500

0.000
 0.000  10.000

β

α

interval [0, T]; that is
Figure 5. Regions of stability (darkened) and instability (light) for
the vertically forced simple pendulum. In this figure, m � g � � �

I � 1.

�(T, 0) = �(t ′, 0)�(T, t ′)

= e
∫ t ′
0 A1dte

∫ T
t ′ A2dt

= M

While in mechanical problems the assumption of piecewise where �2
1 � �1/I [mg� � m��2�] � 0 and �2

2 � 1/I [mg� �
constant forcing is somewhat nonphysical, such approxima- m��2�] � 0. Stability of the fixed point may be determined
tions are often useful when the forcing frequency is suffi- from the eigenvalues �1, �2 of �(0, 1/�), which are the roots of
ciently large. Piecewise constant forcing is often not a prob- the characteristic polynomial
lem in the analysis electrical and electronic systems, where
such forcing is common.

Example 5. Oscillatory stabilization of a simple pendulum:
λ2 −

[(
�2

�1
− �1

�2

)
sin

�1

2ω
sinh

�2

2ω
+ 2 cos

�1

2ω
cosh

�2

2ω

]
λ + 1 = 0

Floquet theory. In the previous examples, it was shown that
and the usual stability condition is that both eigenvaluesthe inverted pendulum may be stabilized with high frequency
must lie within the unit disk in the complex plane. Given thevertical oscillation by averaging the time-varying equations
form of the characteristic polynomial, an equivalent conditionand studying the stability of the inverted equilibrium with
for stability is trace �(0, 1/�) � 2, which in this case may bethe averaged system. In this example, stabilization is inferred
writtenby linearizing the pendulum dynamics about the inverted

equilibrium and studying the eigenvalues of the monodromy
matrix. To facilitate the calculation, assume that the pendu-
lum is forced by square wave forcing, that is, in Eq. (19)

2 cos
�1

2ω
cosh

�2

2ω
+
(

�2

�1
− �1

�2

)
sin

�1

2ω
sinh

�2

2ω
< 2

R̈(t) � �2�u(�t) where u(t) � u(t � 1/�) is a square wave
which switches periodically between �1 and �1. Also, assume The boundary between regions of stability and instability may
that the damping term b � 0. This assumption simplifies the be approximated by expanding the trigonometric functions in
following calculations and more importantly allows us to Taylor series around zero and solving a truncated inequality
show that pendulum stabilization does not require dissipa- for � in terms of �. Note beforehand that in doing so, it has
tion. Linearizing Eq. (19) about the inverted equilibrium gives been implicitly assumed that �1/2� � 0 and �2/2� which im-
rise to the linear system plies � is large. For the present example, the stability regions

displayed in Fig. 5 have been obtained by numerically calcu-
lating �1 and �2 over the indicated ranges of � and �.

(
θ̇1

θ̇2

)
=

 0 1

1
I

[mg� − m�ω2βu(ωt)] 0


(θ1

θ2

)
Remark 7. Note that in the absence of damping, �(0, 1/�) is

Because the input u(t) is piecewise constant, the state transi- an area-preserving map. This fact implies that �1 and �2 are
tion matrix �(t, 0) over one period of u(t) may be computed constrained to either lie on the real axis such that �2 � 1/�1,
as follows: or lie on the unit disk in the complex plane. In this case, sta-

bility results are fairly weak (lack of asymptotic stability), but
are typical of Hamiltonian, and more generally, conservative
systems. In the presence of dissipation, the eigenvalues may
occur as conjugate pairs inside the unit disk, implying asymp-
totic stability.

Remark 8. Note that results obtained through Floquet the-
ory are strictly local results. In the case where the controlled
system is nonlinear, proofs of stability and instability are
strictly for the equilibrium or periodic orbit, and no informa-
tion is given about the asymptotic behavior of solutions
nearby. This remark is not surprising for neutrally stable
equilibria, but it is in fact sometimes true for unstable equi-
libria as well. As an example, the reader is referred to the
parametrically excited pendulum example later in this article,

�(0,1/ω)

= �(0, 1/2ω)�(1/2ω,1ω)

=


 cos

�1

2ω

1
�1

sin
�1

2ω

−�1 sin
�1

2ω
cos

�1

2ω




 cosh

�2

2ω

1
�2

sinh
�2

2ω

�2 sinh
�2

2ω
cosh

�2

2ω




=


 cos

�1

2ω
cosh

�2

2ω
+ �2

�1
sin

�1

2ω
sinh

�1

2ω

−�1 sin
�1

2ω
cosh

�2

2ω
+ �2 cos

�1

2ω
sinh

�2

2ω

1
�2

cos
�1

2ω
sinh

�2

2ω
+ 1

�1
sin

�1

2ω
cosh

�2

2ω

cos
�1

2ω
cosh

�2

2ω
− �1

�2
sin

�1

2ω
sinh

�1

2ω



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where in Fig. 8(b) it is seen that while the origin is unstable, It is seen that the net effect was to increase both the
�2(1 � n) and the �2n terms, which as a result, improved sys-orbits which pass arbitrarily close to the origin are in fact

bounded by KAM (for Kolmogorov, Arnold, and Maser) tori tem performance by suppressing the betatron oscillations in
both the x and z directions (this simplified model did not takeand subharmonic resonance bands. Understanding when

proofs of instability obtained by Floquet theory imply un- into account the interaction of oscillations along x and z).
Hence, performance has been improved via the introductionbounded solutions for such systems is a current topic of re-

search. of oscillatory open-loop control, provided that � is sufficiently
large. This example demonstrates that the benefits of intro-
ducing oscillations can, at times, help system performance
even when stabilization is not an issue.

PERFORMANCE IMPROVEMENTS AND TRANSIENT BEHAVIOR
Analysis Method For Transient Behavior

Sometimes stability in a system is not in question, but certain From the theory presented above, it is possible to approxi-
performance specifications are the design constraints. This mate the transient behavior of Eqs. (7) and (9), using the
section begins by revisiting the particle accelerator. Then a techniques found in Refs. (38) and (25). Assume that Eq. (11)
method to analyze the transient behavior of a system is given has an asymptotically stable equilibrium point, zs, in the vi-
and followed by an example. cinity of the equilibrium point of Eq. (2), xs, with u �

constant � �0.
Example 6. Suppression of betatron oscillations in cyclic ac-
celerators. Consider the cyclic accelerator subject to oscilla- • By the method of averaging, for sufficiently large �, the
tions of focusing and defocusing sectors of the magnetic lens solutions of Eqs. (8) and (11) remain arbitrarily close to
given in Eq. (1). The work of (1) describes an experimental each other provided they have the same initial condi-
method of betatron oscillations by alternating gradient focus- tions. That is, y(t) � z(t) for all time.
ing. To make the focusing improve, it is desirable that both • The solution to Eq. (7) is given by x(t) � h(�t, z(t)),
the �2(1 � n) and the �2n terms increase simultaneously, with where z(t) is the solution to Eq. (8). This transformation
0 
 n 
 1. Clearly, though, if n is viewed as the control vari- is a homeomorphism.
able, then it is not possible to both increase and decrease n
and 1 � n simultaneously. Instead, the technique of focusing Therefore, the quantities in Eq. (5) can be selected so that
and defocusing a lens is introduced, which, according to (2) is h(t, c) is the solution to the generating equation and P is as
modelled defined in Eq. (11). Now define w � h(�t, y(t)) where y(t) is

the solution to ẏ(t) � P(y(t)) in Eq. (11). For sufficiently large
�,

x(t) ≈ h(ωt,y(t)) = w(t)

d2x
dθ2 + ω2[1 − (n + K(�, θ ))]x = 0

d2z
dθ2 + ω2[n + K(�, θ )]z = 0

(26)

It is possible to analyze the transient behavior of Eq. (7) in
two different manners:where K is a PAZ function with frequency �; for example,

K(�, 	) � �(�) sin �	.
1. Analyze the transient behavior of y(t) and then examineSuppose that the oscillatory control input is given by K(�,

the behavior of x(t) through the direct relation x(t) �	) � �� sin(�	), that is, �(�) � ��, where � is a constant.
w(t). This technique predicts many of the fast oscilla-Define x1 � x, x2 � ẋ, x3 � z and x4 � ż. Then the state space
tory parts of the trajectory x.representation of Eq. (26) becomes

2. Analyze a moving average of x(t), given by x(t) where

x(t) ≡ H(z(t)); H(c) ≡ 1
T

∫ T

0
h(λ, c) dλ (29)

and T is the period of h(t, 
 ). This is done by approxi-
mating x(t) � H(y(t)) and once again, analyzing the
transient behavior of y (making this technique more
typical of Eq. (4)). Since the fast dynamics in h are aver-

dx1

dθ
= x2

dx2

dθ
= −ω2(1 − n)x1 + βω2� sin(�θ )x1

dx3

dθ
= x4

dx4

dθ
= ω2nx3 − βω2� sin(�θ )x3

(27)

aged out, this technique introduces some error. On the
other hand, since H does not explicitly depend on t, the

which is precisely the form of Eq. (7). Using the previously analysis becomes simpler.
discussed techniques, the equation corresponding to Eq. (11)
becomes In either of the two methods, controlling y(t) in Eq. (11) gov-

erns how to control x(t).

Example 7. Transient behavior of the vertically oscillating
pendulum. Referring back to Example 3 and using the same
notation, it is possible to now approximate the trajectories of

d 2y
dθ2 + ω2(1 − n + 0.5β2)y = 0

d 2ζ

dθ2 + ω2(n + 0.5β2)ζ = 0
(28)
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	, the angular position, and 	̇, the pendulum’s angular veloc- where
ity. The averaged equations of the system are

H(y) ≡ 1
2π

∫ 2π

0

[
−ηm�

I
cos s sin y1 + y2

]
ds

= y2

ẏ1 = y2

ẏ2 = −1
2

(
ηm�

I

)2

cos y1 sin y1 − mg�

I
sin y1 − b

I
y2

Note that the approximation obtained by Method 2 is merely
the averaged system. The approximation obtained by MethodThe transformations utilized are
1, as well as the transient solution obtained from the original
equation of motion, are compared to the averaged solution in
Fig. 6. It is clear from the figure that the averaged system
accurately captures the averaged behavior of the system as it

x1 = z1

x2 = −ηm�

I
cos ω t sin z1 + z2

stabilizes. The phase plot in the lower left of the figure shows
some discrepancies between the trajectory obtained byTherefore, it is possible to obtain estimates on the transient
Method 1 with the trajectory of the original system, but inbehavior of the vertically oscillating pendulum using one of
the lower right figure it is seen that the Method 1 approxima-the two following methods:
tion of 	̇ is actually quite close to the velocity of the original
system. As Fig. 6 shows, Method 1 is more accurate thanMethod 1. The estimate on 	 is given by 	 � y1. The esti-
Method 2. However, Method 1 utilizes a time-varying outputmate on 	̇ is given by
equation, making it a more complicated technique.

θ̇ ≈ −ηm�

I
cos ωt sin y1 + y2

RESONANCE PHENOMENA IN
Method 2. The estimate on 	 is given by 	 � y1. The esti- PERIODICALLY FORCED SYSTEMS

mate on 	̇ is given by

Resonances arise as the natural result of subjecting any sys-
tem to periodic excitation. The resonances produced varyθ̇ ≈ H(y)
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Figure 6. A comparison of the behaviors of the averaged/Method 2 system, the Method 1 system,
and the original system. In these plots, m � g � � � I � 1, b � 0.5, � � 0.2, and � � 10.
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which, if � � 1/�2 and � � �/�2, is recognizable as a nonlinear
version of Mathieu’s equation

q′′ + (α + β sin t)q = 0

Note also that by letting � � �2�, Eq. (30) is merely the equa-
tion of the motion of the vertically forced pendulum discussed
in Examples 3, 4, and 5. In this example, however, it is as-

l(t) =    +    cos    t 

F0cos   t 
g

m

mk

q

α  ω

ω

γ

sumed that � 
 1.Figure 7. The periodically forced spring–mass system (left) and the
parametrically excited pendulum (right).

The natural tool for visualizing the global dynamics of sin-
gle-degree-of-freedom periodically forced system is the Poin-

based on the type of system being excited; for example the caré map, where Poincaré sections are taken at the end of
simple resonance produced by exciting the spring-mass sys- every forcing period. Features of the phase portrait typically
tem illustrated in the left frame of Fig. 7 is different from the have equivalent features in the Poincaré map. For example,
parametric resonance exhibited by the parametrically excited fixed points and periodic orbits in the phase portrait are asso-
pendulum illustrated on the right. The difference in the reso- ciated with periodic points of the Poincaré map. The Poincaré
nant behavior exhibited by the two systems is that the forced map also preserves hyperbolic structures of the phase por-
mass-spring system has a resonance at a single frequency, trait; for example, normally hyperbolic periodic points of the
where the parametrically excited pendulum has resonances Poincaré map reflect the normally hyperbolic structure of the
at subharmonics of the natural frequency, similar to those of corresponding equilibriums and periodic orbits of the phase
Mathieu’s equation. As a nonlinear system, the parametri- portrait. Poincaré maps clearly show the bands of stochas-
cally excited pendulum also has resonances which form as the ticity, indicating the presence of chaotic behavior and subhar-
result of the breaking and tangling separatrix solutions, as monic resonances, which are periodic orbits periodic of some
visualized with the period-1 return map or Poincaré map. rational multiple of the forcing period.

In designing open-loop oscillatory controls for the type of The results of simple simulations of the PEP are shown in
stabilization described in this article, a primary objective Figs. 8(a–f). Using averaging techniques described pre-
should be to choose the forcing frequencies such that undesir-

viously, it can be shown that the averaged system is merelyable resonances are avoided. The main obstacle to prevent the
the unperturbed (� � 0) system, the phase portrait of whichcontrol theorist from ensuring this using the methods pre-
is shown in Fig. 8(a). In general, in implementing an open-sented in this article is that (i) averaging techniques do not
loop oscillatory control law, an objective is to choose the forc-generally capture phenomena of periods different than the pe-
ing parameters so that the Poincaré map closely resemblesriod over which the system is averaged, and (ii) Floquet the-
the averaged phase portrait. In the present examples, thereory gives only local stability information for a single equilib-
are three ways to systematically adjust � and �: (i) fix � andrium or periodic orbit. Experience and the application of more
let � vary, (ii) fix � and let � vary, or (iii) let � � �(�) or � �powerful tools in the analysis of such systems has shown that
�(�) and adjust the independent variable. Physically, it is of-these effects are often avoided by choosing the forcing fre-
ten most reasonable to fix the forcing amplitude and controlquency to be sufficiently large (10). This observation is very
the frequency, hence for the current example attention is re-consistent with the ‘‘� sufficiently small’’ conditions imposed
stricted to this case.by averaging theory, although the arguments used by averag-

The five other plots in Fig. 8 reflect the changes which takeing theory are for purely analytical reasons. The literature
place in the Poincaré map when � is fixed at 0.5 and � in-concerning the global dynamics of nonlinear systems excited
creases from 1 to 9. Passing from the upper right frame [(b),by periodic inputs is vast, fairly technical, and tends to lie
� � 1)] to the frames in the middle row [(c, d), � � 3, 5] tocompletely outside the boundaries of conventional control the-
the lower frames [(e, f), � � 7, 9], the general trend is clearlyory. In this section, only broad concepts and observations are
that subharmonic resonances and separatrix splitting is sup-presented in the form of an example, and the reader is re-
pressed as � increases. In Fig. 8(b), the origin is unstable,ferred to such texts as (36,51,52) for extensive overviews of
and this instability would be predicted by a Floquet analysisthe field.
of the origin. In Figs. 8(c)–(f), the origin is stable, as indicated

Example 8. Qualitative features of parametrically excited by the presence of KAM tori. What varies with the excitation
pendulum dynamics. To illustrate the kind of responses which is the minimum radius at which subharmonic resonance
might arise in subjecting a nonlinear system to periodic exci- bands exist. Progressing from Figs. 8(b) to (f), observe that
tation, consider the parametrically excited pendulum (PEP) the inner resonance bands are being pushed out towards the
with no damping, which is often described by the differential separatrix as frequency increases. As a consequence, the re-
equation gion in which regular quasiperiodic flow dominates increases.

In addition to pushing subharmonic resonance bands out,q̈ + (1 + γ sinωt) sin q = 0 (30)
increasing frequency also has the effect of reducing the area
of lobes formed by the intersection of stable and unstable
manifolds of the two periodic points. The significance of thisRemark 9. Note that after a rescaling of time � � �t, Eq.
observation is that as frequency increases, the set of initial(30) takes the form
conditions which are transported out of the region between
the separatrices of the averaged system decreases. This is an
important observation, because the averaged phase portrait

q′′ +
(

1
ω2 + γ

ω2 sin τ

)
sin q = 0
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(e) Gamma = 0.5, omega = 7 (f) Gamma = 0.5, omega = 9

(c) Gamma = 0.5, omega = 3 (d) Gamma = 0.5, omega = 5
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(a) Averaged phase portrait (b) Gamma = 0.5, omega = 1

Figure 8. Poincaré maps showing separatrix splitting and resonance bands for the parametri-
cally excited pendulum. The phase portrait for the unperturbed simple pendulum is shown in
the upper left frame, with Poincaré maps of the forced system to the right and underneath.
Forcing parameters used in the Poincaré maps are indicated in each plot. Note that the Poincaré
maps of the forced system more closely resemble the averaged phase portrait as the forcing
frequency becomes large.

provides no information whatsoever on the existence of a set Remark 10. The example gives somewhat anecdotal evi-
dence that choosing a sufficiently high forcing frequencyof initial conditions which lies inside the separatrices but are

transported out. In (f), it is unlikely that any subharmonic tends to suppress the negative features of periodic excitation.
This has also been found to be the case in the cart and pendu-resonances exist, and the stable and unstable manifolds of the

periodic points have closed to form a barrier to transport as lum problem described in Examples 3, 4, and 5 [see (10)], the
vertically forced rotating chain (33), and in an entire class ofindicated by the averaged phase portrait in (a).
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periodically forced single-degree-of-freedom systems (33). ing theory addresses the relationship between the original,
time-varying Eq. (1.1) and the autonomous averaged systemCurrent work revolves around extending this understanding

to other classes of single-degree-of-freedom systems and given by
multi-degree-of-freedom systems.

ẏ = ε f0(y) (1.2)
Remark 11. It has also been observed that dissipation tends

where f 0 : �n � �n is definedto have beneficial effects beyond guaranteeing the asymptotic
stability of certain equilibriums. Dissipation generally has
the effect of breaking phase space separatrices and imposing
hyperbolicity on systems with elliptic structures. As a result,

f0(y) ≡ 1
T

∫ T

0
f (s, y) ds

elliptic structures, such as KAM tori and resonance bands,
are destroyed and initial conditions which, in the absence of and where y is treated as a constant in the integration. For
dissipation, belong to a KAM torus or resonance limit on a sufficiently small �, solutions of Eq. (1.2) provide good approx-
fixed point or periodic orbit. In addition, with sufficient dissi- imations to solutions of Eq. (1.1). Since there are many math-
pation, intersecting stable and unstable manifolds completely ematical tools that can be used to analyze and control the
separate, giving rise to distinct basins of attraction. As with time-invariant system Eq. (1.2), the problem of determining
frequency, the extent to which dissipation helps eliminate un- the behavior of time-varying periodic system Eq. (1.1) has
desirable nonlinear effects is largely dependent on its magni- been greatly simplified.
tude. In (10), it was seen for the cart and pendulum problem Specifically, if it is assumed that x(t0) � y(t0) then for suffi-
of Example 4 that there exists a minimum damping coeffi- ciently small �, the following statements hold:
cient such that for all values less than this minimum value,
manifold intersections and resonances persist. Recent work • On any finite time interval, assuming the same initial
has suggested that the same issue arises in multi-degree-of- conditions at time t0, the solutions to Eqs. (1.1) and (1.2)
freedom systems. remain close to each other. As � becomes smaller, then

the approximation becomes better and tends to zero in
Remark 12. Unfortunately, there is no known generally ap- the limit.
plicable rule-of-thumb for deciding what constitutes a suffi- • If the solution to Eq. (1.2) approaches a uniformly
ciently large forcing frequency. Experiments, simulation, and asymptotically stable equilibrium point, then, under ad-
preliminary analysis suggest that for many systems, a rule of ditional mild assumptions, the solutions to Eqs. (1.2) and
thumb might be for the forcing frequency to be an order of (1.1) remain close to each other on infinite time intervals.
magnitude larger than the largest natural frequency of the As � becomes smaller, then the approximation becomes
controlled system. This rule of thumb presents a problem for better and tends to zero in the limit.
many-degree-of-freedom systems like rotating chains or infi-

• If Eq. (1.2) has a uniformly asymptotically stable equilib-
nite dimensional systems like strings and beams, where natu- rium point, then Eq. (1.1) has an asymptotically stable
ral frequencies tend to be very large. In addition, there exist periodic solution in the vicinity of this equilibrium point.
counterexamples where the averaged phase portrait and
Poincaré map resemble each other for small forcing frequen-

For a detailed discussion on the theoretical framework of av-cies, but possess completely different features at high fre-
eraging, the reader is referred to (36,47,53,54).quencies. These topics represent the current focus of much of

the research in this field.
APPENDIX 2. FLOQUET THEORY
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which Floquet theory is built is that the fundamental matrix
solution of Eq. (2.1) can be written as the product of a periodicAPPENDIX 1. CLASSICAL AVERAGING THEORY
matrix P(t) and a constant exponential growth or decay; that
is,The classical method of averaging was originally developed

for periodic systems of the form
�(t) = P(t)eBt

ẋ = ε f (t, x) (1.1)
where �(t) is a fundamental matrix associated with Eq. (2.1),
P(t) is a n � n matrix periodic in t of period T, and eBt is thewhere x � �n, f : �n � � � �n, f (t � T, 
 ) � f (t, 
 ) and 0 


� � 1. For simplicity, assume that f has continuous second matrix exponential of a constant n � n matrix B. By the peri-
odicity of A(t), if �(t) is a fundamental matrix, so is �(t � T)partial derivatives in its second argument. Classical averag-
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