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Theoretically, a Kalman filter is an estimator for what is
called the linear quadratic Gaussian (LQG) problem, which
is the problem of estimating the instantaneous “state” of a
linear dynamic system perturbed by Gaussian white noise,
by using measurements linearly related to the state, but
corrupted by Gaussian white noise. The resulting estima-
tor is statistically optimal with respect to any quadratic
function of estimation error. R. E. Kalman introduced the
“filter” in 1960 (1).

Practically, the Kalman filter is certainly one of the
greater discoveries in the history of statistical estimation
theory, and one of the greatest discoveries in the twentieth
century. It has enabled humankind to do many things that
could not have been done without it, and it has become as
indispensable as silicon in the makeup of many electronic
systems. Its most immediate applications have been for
the control of complex dynamic systems such as continu-
ous manufacturing processes, aircraft, ships, or spacecraft.

In order to control a dynamic system, one must first
know what the system is doing. For these applications, it is
not always possible or desirable to measure every variable
that one wants to control. The Kalman filter provides a
means for inferring the missing information from indirect
(and noisy) measurements. In such situations, the Kalman
filter is used to estimate the complete state vector from
partial state measurements and is called an observer. The
Kalman filter is also used for predicting the outcome of
dynamic systems that people are not likely to control, such
as the flow of rivers during flood conditions, the trajectories
of celestial bodies, or the prices of traded commodities.

From a practical standpoint, this article will present the
following perspectives:

1. Kalman filtering is an algorithm made from mathe-
matical models. The Kalman filter makes it easier to
solve a problem, but it does not solve the problem all
by itself. As with any algorithm, it is important to un-
derstand its use and function before it can be applied
effectively. The purpose of this article is to ensure suf-
ficient familiarity with the use of the Kalman filter
that it can be applied correctly and efficiently.

2. The Kalman filter is a recursive algorithm. It has
been called “ideally suited to digital computer imple-
mentation,” in part because it uses a finite represen-
tation of the estimation problem—by a finite number
of variables (2). It does, however, assume that these
variables are real numbers with infinite precision.
Some of the problems encountered in its use arise
from the distinction between finite dimension and fi-

Figure 1. Foundational concepts in Kalman filtering.

nite information, and the distinction between finite
and manageable problem sizes. These are all issues
on the practical side of Kalman filtering that must be
considered along with the theory.

3. It is a complete statistical characterization of an esti-
mation problem. It is much more than an estimator,
because it propagates the entire probability distri-
bution of the variables it is tasked to estimate. This
is a complete characterization of the current state of
knowledge of the dynamic system, including the in-
fluence of all past measurements. These probability
distributions are also useful for statistical analysis
and predictive design of sensor systems.

4. In a limited context, the Kalman filter is a learn-
ing process. It uses a model of the estimation prob-
lem that distinguishes between phenomena (what we
are able to observe), noumena (what is really going
on), and the state of knowledge about the noumena
that we can deduce from the phenomena. That state
of knowledge is represented by probability distribu-
tions. To the extent that those probability distribu-
tions represent knowledge of the real world, and the
cumulative processing of knowledge is learning, this
is a learning process. It is a fairly simple one, but
quite effective in many applications.

Figure 1 depicts the essential subjects forming the foun-
dations for Kalman filtering theory. Although this shows
Kalman filtering as the apex of a pyramid, it is but part
of the foundations of another discipline—modern control
theory—and a proper subset of statistical decision theory
(3).

Applications of Kalman filtering encompass many fields.
As a tool, the algorithm is used almost exclusively for esti-
mation and performance analysis of estimators and as ob-
servers for control of a dynamical system. Except for a few
fundamental physical constants, there is hardly anything
in the universe that is truly constant. The orbital param-
eters of the asteroid Ceres are not constant, and even the
“fixed” stars and continents are moving. Nearly all physi-
cal systems are dynamic to some degree. If we want very
precise estimates of their characteristics over time, then
we must take their dynamics into consideration. Table 1
gives examples of common estimation problems.

We do not always know the dynamics very precisely.
Given this state of partial ignorance, the best we can do
is express ignorance more precisely—using probabilities.
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The Kalman filter allows us to estimate the state of such
systems with certain types of random behavior by using
such statistical information. A few examples of such sys-
tems are listed in Table 1.

The third column of Table 1 lists some sensor types that
we might use to estimate the state of the corresponding
dynamic systems. The objective of design analysis is to de-
termine how best to use these sensor types for a given set
of design criteria. These criteria are typically related to
estimation accuracy and system cost.

Because the Kalman filter uses a complete description
of the probability distribution of its estimation errors in de-
termining the optimal filtering gains, this probability dis-
tribution may be used in assessing its performance as a
function of the design parameters of an estimation system,
such as:

� The types of sensors to be used
� The locations and orientations of the various sensor

types with respect to the system to be estimated
� The allowable noise characteristics of the sensors
� The prefiltering methods for smoothing sensor noise
� The data sampling rates for the various sensor types
� The level of model simplification to reduce implemen-

tation requirements

This analytical capability of the Kalman filter enables
system designers to assign “error budgets” to subsystems
of an estimation system and to trade off the budget alloca-
tions to optimize cost or other measures of performance
while achieving a required level of estimation accuracy.
Furthermore, it acts like an observer by which all the states
not measured by the sensors can be constructed for use in
the control system applications.

WHITE NOISE

It is common engineering practice to model uncertainty in
terms of Gaussian probability distributions and dynamic
uncertainty in terms of linear dynamic systems disturbed
by uncorrelated (white noise) processes—even though em-
pirical analysis may indicate that the probability distribu-
tions are not truly Gaussian, the random processes are not
truly white, or the relationships are not truly linear. Al-
though this approach may discard useful information, we
continue the practice for the following reasons:

1. Approximation Probability distributions may not be
precisely Gaussian, but it is close enough. Nonlinear
systems are often smooth enough that local lineariza-
tion is adequate. Even though the “flicker” noise ob-
served in electronic systems cannot be modeled pre-
cisely using only white noise, it can often be done
closely enough for practical purposes.

2. Simplicity These models have few parameters to be
estimated. Gaussian distributions are characterized
by their means and variances, and white noise pro-
cesses are characterized by their variances.

3. Consistency Linearity preserves Gaussianity. That
is, Gaussian probability distributions remain Gaus-
sian under linear transformations of the variates.

4. Tractability These models allow us to derive estima-
tors minimizing expected squared errors.

5. Good Performance The resulting estimators have
performed well for many important applications, de-
spite apparent discrepancies between models and re-
ality.

6. Adaptability These estimators can often be extended
to estimate parameters of the model or to track slow
random variations in parameters.

7. Extendability The variances used for calculating
feedback gains can also be used for comparing perfor-
mance to modeled performance, detecting anomalous
behavior, and rejecting anomalous sensor data.

Vector-valued random processes x(t) and y(t) are called
uncorrelated if their cross-covariance matrix is identically
zero for all times t1 and t2:

where E is the expected value operator and T is the trans-
pose of the vector.

The random process x(t) is called uncorrelated if

where δ(t) is the Dirac delta “function” (actually, a general-
ized function), defined by

Similarly, a random sequence xk in discrete time is called
uncorrelated if

where �(·) is the Kronecker delta function, defined by

Q1(t) and Q2(k) are the intensity matrices of the white noise
process and sequence. If Q1(t) and Q2(t) are constant, the
processes and sequences are stationary. If the probability
distribution of a white noise process at each instant of time
is Gaussian, then it is completely defined by its first two
moments, mean and variance. If Ex(t) = 0, the process is
called zero mean.

A white noise process or sequence is an example of an
uncorrelated process or sequence. Generally, a white noise
process has no time structure. In other words, knowledge
of the white process value at one instant of time provides
no knowledge of what its value will be (or was) at any other
time point.
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LINEAR ESTIMATION

Linear estimation addresses the problem of estimating the
state of a linear stochastic system by using measurements
or sensor outputs that are linear functions of the state. We
suppose that the stochastic systems can be represented by
the types of plant and measurement models (for continu-
ous and discrete time) shown as equations in Table 2, with
dimensions of the vector and matrix quantities. The mea-
surement and plant noise vk and wk, respectively, are as-
sumed to be zero-mean Gaussian processes, and the initial
value xo is a Gaussian random variable with known mean
x0 and known covariance matrix Po. Although the noise se-
quences wk and vk are assumed to be uncorrelated, this
restriction can be removed, modifying the estimator equa-
tions accordingly.

The objective of statistical optimization is to find an es-
timate of the n state vector xk represented by x̂k, a linear
function of the measurements zi, . . . , zk, which minimizes
the weighted mean-squared error

where M is any symmetric nonnegative definite weighting
matrix.

We will now derive the mathematical form of an optimal
linear estimator for the states of linear stochastic systems
given in Table 2. This is called the linear quadratic Gaus-
sian estimation problem. The dynamic systems are linear,
the performance cost functions are quadratic, and the ran-
dom processes are Gaussian.

Let us consider similar types of estimators for the LQG
problem:

� Filters use observations up to the time that the state
of the dynamic system is to be estimated:

� Predictors estimate the state of the dynamic system
beyond the time of the observations:

This is a relatively minor distinction, and the differences
between the respective estimators are correspondingly
slight.

A straightforward and simple approach using orthog-
onality principles is used in the derivation of estimators.
These estimators will have minimum variance and the un-
biased and consistent. Interested readers may refer to Refs.
2–12.

The Kalman filter can be characterized as an algorithm
for computing the conditional mean and covariance of the
probability distribution of the state of a linear stochas-
tic system with uncorrelated Gaussian process and mea-
surement noise. The conditional mean is the unique un-
biased estimate. It is propagated in feedback form by a
system of linear differential equations or by the corre-
sponding discrete-time equations. The conditional covari-
ance is propagated by a nonlinear differential equation

or its discrete-time equivalent. This implementation au-
tomatically minimizes the expected risk associated with
any quadratic loss function of the estimation error.

The statistical performance of the estimator can be pre-
dicted a priori (i.e., before it is actually used) by solving
the nonlinear differential (or difference) equations used
in computing the optimal feedback gains of the estima-
tor. These are called Riccati equations, named in 1763 by
Jean le Rond D’Alembert (1717–1783) for Count Jacopo
Francesco Riccati (1676–1754), who had studied a second-
order scalar differential equation, although not the form
that we have here (13, 14). Kalman gives credit to Richard
S. Bucy for the discovery that the Riccati differential equa-
tion serves the same role as the Wiener-Hopf integral equa-
tion in defining optimal gains. The Riccati equation also
arises naturally in the problem of separation of variables
in ordinary differential equations and in the transforma-
tion of two-point boundary value problems to initial value
problems (15). The behavior of their solutions can be shown
analytically in trivial cases. These equations also provide
a means for verifying the proper performance of the actual
estimator when it is running.

THE LINEAR OPTIMAL ESTIMATOR IN DISCRETE TIME
(KALMAN FILTER)

Suppose that a measurement has been made at time tk and
that the information that it provides is to be applied in
updating the estimate of the state x of a stochastic system
at time tk. It is assumed that the measurement is linearly
related to the state by an equation of the form zk = Hxk + vk,
where H is the measurement sensitivity matrix and vk is
the measurement noise.

The optimal linear estimate is equivalent to the gen-
eral (nonlinear) optimal estimator if the random variables
x and z are jointly Gaussian. Therefore, it suffices to seek
an updated estimate x̂k(+) (observation zk is included in the
estimate) that is a linear function of the a priori estimate
and the measurement z:

where x̂k(−) is the a priori estimate (observation zk is not
included in the estimate) of xk and x̂k(+) is the a posteriori
value of the estimate.

The weighting matrices K1
k and K̄k are as yet unknown.

We seek those values of K1
k and K̄k such that the new es-

timate x̂k(+) will satisfy the orthogonality principle. This
orthogonality condition can be written in the form

Equations Table 2 and for x̂k(+) from Eq. (9) into Eq. (10),
then we will observe from Eqs. 1 and 2 that the data z1, . . . ,
zk do not involve the noise term wk. Therefore, because the
random sequences wk and vk are uncorrelated, it follows
that EwkzT

i = 0 for 1 ≤ i ≤ k.
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Using this result, we can obtain the following relation:

It can be shown that E(wk−1zT
i) = 0 because wk is a white

noise sequence. But because zk = Hkxk + vk, Eq. (12) can be
rewritten as

We also know that Eq. (11) holds at the previous step, that
is

and

because vk is a white noise sequence uncorrelated with wk

white noise i = 1, . . . k − 1. Then Eq. (13) can be reduced to
the form

Equation (16) can be satisfied for any given xk if

Clearly, this choice of K1
k causes Eq. (9) to satisfy a portion

of the condition given by Eq. (10) where K̄k is chosen such
that Eq. (11) is satisfied.

Let

Vectors x¬k(+) and x¬k(−) are the estimation errors after
and before updates, respectively.

From Eq. (11)

and also [subtract Eq. (11) from Eq. (21)]

Substitute for xk, x̂k(+) and z¬k from Eqs. <xref
target="W1020-mdis-0001 W1020-mdis-0009"/>, and <xref
target="W1020-mdis-0020"/>, respectively. Then

However, by the system structure

Substituting for K1
k, zk, and x¬k(−),

Let

be the error covariance matrix before update. Then

and therefore

Let

be the error covariance matrix after update.
Substituting Eq. (17) into Eq. (9), we obtain

Subtract xk from both sides to obtain

Substituting Eq. (31) into Eq. (29),
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Substituting for K̄k from Eq. (28),

Therefore,

Let

Subtract xk from both sides

Postmultiply by x¬T
k(−) both sides and take the expected

value:

Summary of Equations for the Discrete-Time Kalman
Estimator

The equations derived in the previous section are summa-
rized in Table 3. In this formulation of the filter equations,
G has been combined with the plant covariance by multi-
plying Gk−1 and GT

k−1, for example,

The relation of the filter to the system is illustrated in the
block diagram of Fig. 2. The computational procedure for
the discrete-time Kalman estimator follows:

1. Compute Pk(−) with Pk−1(+), �k−1, Qk−1 given to ini-
tialize the procedure.

2. Compute K̄k with Pk(−) computed from step 1 and
Hk, Rk given to initialize the procedure.

3. Compute Pk(+) with K̄k computed from step 2 and
Pk(−) from step 1.

4. Compute x̂k(+) with computed values of K̄k from step
3 and with given initial estimate x0 and data set zk.

Figure 3 shows a typical time sequence of values as-
sumed by the ith component of the estimated state vector
(plotted with solid circles) and its corresponding variance
of estimation uncertainty (plotted with open circles). The

arrows show the successive values assumed by the vari-
ables, with the annotation (in parentheses) on the arrows
indicating which input variables define the indicated tran-
sitions.

Note that each variable assumes two distinct values at
each discrete time: its a priori value corresponding to the
value before the information in the measurement is used
and the a posteriori value corresponding to the value after
the information is used.

At the beginning of the design phase of a measurement
and estimation system, when neither real nor simulated
data are available, just the covariance calculations can
be used to obtain preliminary indications of filter perfor-
mance. Covariance calculations consist of solving the esti-
mator equations with steps 1–3, repeatedly. It is important
to notice that the covariance calculations are independent
of data zk. Covariance calculations will involve the plant
noise matrix Q, measurement noise matrix R, state transi-
tion matrix �, measurement matrix H, and initial covari-
ance matrix Po.

Step 4 of the Kalman filter implementation [computa-
tion of x̂k(+)] can be implemented only for state vector prop-
agation where simulator or real data sets are available.

In the design tradeoffs, the covariance matrix update
(steps 1 and 3) should be checked for symmetry and posi-
tive definiteness. Failure to attain either condition is a sign
that something is wrong. One possibility is that it is an ill-
conditioned problem. In order to overcome ill-conditioning,
another equivalent expression for Pk(+) is called the Joseph
form, as shown Eq. (32)

Note that the right-hand side of this equation is the sum-
mation of two symmetric matrices. The first of these is posi-
tive definite and the second is nonnegative definite, thereby
making Pk(+) a positive definite matrix. Other techniques
are described in the implementation methods to alleviate
the ill-conditioning.

Other forms for K̄k and Pk(+) are not that useful (8–17).
It can be shown that state vector update, Kalman gain,
and error covariance equations represent an asymptoti-
cally stable system; therefore, the estimate of state x̂k be-
comes independent of the initial estimate x̂o, Po as k is in-
creased. It is also obvious that the Kalman gain and error
covariance equations are independent of the observation.
These equations are used for covariance analysis purposes.

THE CONTINUOUS-TIME OPTIMAL ESTIMATOR
(KALMAN-BUCY FILTER)

Analogous to the discrete-time case, the continuous-time
random process x(t) and the observation z(t) are given by
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Figure 2. Block diagram of discrete-time Kalman filter.

Figure 3. Sequence of values of filter variable in discrete time.

where F(t), G(t), H(t), Q(t), and R(t) are n × n, n × n, l × n,
n × n, and l × l matrices, respectively. The covariance ma-
trices Q and R are positive definite.

It is desired to find the estimate of n state vector x(t)
represented by x̂(t), which is a linear function of the mea-
surements z(t)o ≤ t ≤T which minimizes the scalar equa-
tion

where M is a symmetric positive definite matrix. The initial
estimate and covariance matrix are x̂0 and P0.

This section provides a formal derivation of the
continuous-time Kalman estimator. A rigorous derivation
can be achieved by using the orthogonality principle as in
the discrete-time case. In view of the main objective (to
obtain efficient and practical estimators), less emphasis is
placed on continuous-time estimators, except in academia.

Let �t be the time interval [tk − tk−1]. The following re-
lationships are used:

where 0(�t2) consists of terms with powers of �t greater
than and equal to two.

Discrete measurement noise covariance in terms of con-
tinuous covariance is given by

Discrete process noise covariance in terms of continuous
covariance is given by

Equations <xref target="W1020-mdis-0034"/> and <xref
target="W1020-mdis-0037"/> can be combined. By substi-
tuting these relations, we can get the result

The Kalman gain of Eq. (28) becomes, in the limit,
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Substituting Eq. (50) into Eq. (51) and taking the limit as
�t → 0, we obtain the desired result

with P(t0) as the initial condition. This is called the matrix
Riccati differential equation. Methods for solving it will be
discussed in the next section. The differential equation can
be rewritten by using the identity

to transform Eq. (52) to the form

In similar fashion, the state vector update equation can
be derived from Eqs. 30 and 35 by taking the limit as �t → 0
to obtain the differential equation for the estimate:

with initial condition x̂(0). Equations <xref
target="W1020-mdis-0051 W1020-mdis-0054"/>, and <xref
target="W1020-mdis-0055"/> define the continuous-time
Kalman estimator, which is also called the Kalman-Bucy
filter (1–19).

The Wiener filter is defined for stationary systems in
continuous time, and the Kalman filter is defined for ei-
ther stationary or nonstationary systems in either discrete
time or continuous time, but finite state dimension. To
demonstrate the connections on problems satisfying both
sets of constraints, like the continuous-time Kalman Bucy
estimator Eqs. <xref target="W1020-mdis-0051"/>, <xref
target="W1020-mdis-0054"/>, and <xref target="W1020-
mdis-0055"/>, letting F, G, H be constants; the noises be
stationary (Q and R constants), and the filter reach steady
state (P constant). That is, as t → ∞, then P²(xt) → 0. The
Riccati differential Eq. (54) becomes the algebraic Riccati
equation for continuous time systems. Taking the Laplace
of Eq. (55) leads in a transfer function with constant gain K̄

and represents the steady state Kalman-Bucy filter, which
is identical to the Wiener filter (3).

NONLINEAR ESTIMATION

Linear estimators for discrete and continuous systems
have been derived. The combination of functional linearity,
quadratic performance criteria, and Gaussian statistics is
essential to this development. The resulting optimal esti-
mators are simple in form and powerful in effect.

Many dynamic systems and sensors are not absolutely
linear, but they are not far from it. Following the consider-
able success enjoyed by linear estimation methods on liner
problems, extensions of these methods were applied to such
nonlinear problems. This section investigates the model ex-
tensions and approximation methods used for applying the
methodology of Kalman filtering to these “slightly nonlin-
ear” problems. More formal derivations of these nonlinear

filters and predictors can be found in References 2, 4, and
7–9.

Suppose that a continuous or discrete stochastic system
can be represented by nonliner plant and measurement
models as shown in Table 4. Although affine (i.e., linear
and additive) transformations of Gaussian random vari-
ables have Gaussian distributions, the same is not always
true in the nonlinear case. Consequently, it is not neces-
sary that w and v be gaussian. They may be included as
arguments of the nonlinear functions f and h, respectively.
However, the initial value x0 may be assumed to be a gaus-
sian random variate with known mean and known n × n
covariance matrix P0. The objective is to estimate xk or x(t)
to satisfy a specified performance criterion (as given previ-
ously).Applying linearization techniques (comparison with
Taylor series expansion and discarding the 2nd and higher
order terms) to get simple approximate solutions to non-
linear estimation problems requires that f and h are twice
continuously differentiable (7, 20).

Linearization About a Nominal Trajectory

A trajectory is a particular solution of a stochastic system,
with a particular instantiation of the random variates in-
volved. The trajectory is a vector-valued sequence {xk|k = 0,
1, 2, 3, . . . } for discrete-time systems, and a vector-valued
function x(t), 0 ≤ t, for continuous-time systems.

The term nominal in this case refers to that trajectory
obtained when the random variates assume their expected
values. For example, the sequence {xN

k} obtained as a so-
lution of the equation

with zero process noise and with the mean xN
0 as the initial

condition would be a nominal trajectory for a discrete-time
system.

The word perturbation has been used by astronomers
to describe a minor change in the trajectory of a planet
(or any free-falling body) due to secondary forces—such as
those produced by other gravitational bodies. Astronomers
had learned long ago that the actual trajectory can be accu-
rately modeled as the sum of the solution of the two-body
problem (which is available in closed form) and a linear
dynamic model for the perturbations due to the secondary
forces. This technique also works well for many other non-
linear problems, including the problem at hand. In this
case, the perturbations are due to the presence of random
process noise and errors in the assumed initial conditions.

If the function f in the previous example is continuous,
then the state vector xk at any instant on the trajectory will
vary smoothly with small perturbations of the state vector
xk−1 at the previous instant. These perturbations are the
result of “off-nominal” (i.e., off-mean) values of the random
variates involved. These random variates include the ini-
tial value of the state vector x0, the process noise wk, and
(in the case of the estimated trajectory) the measurement
noise vk.

If f is continuously differentiable, then the influence of
the perturbations on the trajectory can be represented by a
Taylor series expansion about the nominal trajectory. The
likely magnitudes of the perturbations are determined by
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the variances of the variates involved. If these perturba-
tions are sufficiently small relative to the higher-order coef-
ficients of the expansion, then we can obtain a good approx-
imation by ignoring terms beyond some order. (However,
we must usually evaluate the magnitudes of the higher-
order coefficients before making such an assumption.)

Let the symbol δ denote perturbations from the nominal

so that the Taylor series expansion of f(x, k − 1) with respect
to x at x = xN

k−1 is

or

If the higher-order terms in δx can be neglected, then

where the first-order approximation coefficients are given
by

a n × n constant matrix.

Let h be sufficiently differentiable, then the measure-
ment can be represented by a Taylor series:

or

If the higher-order terms in this expansion can be ignored,
then we can represent the perturbation in zk as

where the first-order variational term is

which is an l × n constant matrix.
In the continuous case, the corresponding nonlinear dif-

ferential equations for plant and observation are

with the dimensions of the vector quantities the same as
in the discrete case.

Similar to the case of the discrete system, the linearized
differential equations can be derived as

Equations <xref target="W1020-mdis-0075"/> and <xref
target="W1020-mdis-0077"/> represent linearized contin-
uous model equations. The variables δx(t) and δz(t) are the
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perturbations about the nominal values as in the discrete
case (3).

Linearization About the Estimated Trajectory

The problem with linearization about the nominal trajec-
tory is that the deviation of the actual trajectory from the
nominal trajectory tends to increase with time. As the devi-
ation increases, the significance of the higher-order terms
in the Taylor series expansion of the trajectory also in-
creases.

A simple but effective remedy for the deviation prob-
lem is to replace the nominal trajectory with the estimated
trajectory—that is, to evaluate the Taylor series expansion
about the estimated trajectory. If the problem is observable
(as evidenced by the covariance of estimation uncertainty
getting smaller until it reaches a steady state), then the
deviations between the estimated trajectory (along which
the expansion is made) and the actual trajectory will re-
main sufficiently small that the linearization assumption
is valid (7, 20).

The principal drawback to this approach is that it tends
to increase the real-time computational burden. Even
though �, H, and K̄ for linearization about a nominal tra-
jectory may have been precomputed offline, they must be
computed in real time as functions of the estimate for lin-
earization about the estimated trajectory.

The only modification required is to replace xN
k−1 by

x̂k−1 and xN
k by x̂k in the evaluations of partial derivatives.

Now the matrices of partial derivatives become

and

The matrices have the same general form as for lineariza-
tion about a nominal trajectory, except for the evaluations
of the partial derivatives:

and

Linearized and Extended Kalman Filters. The block dia-
gram of Fig. 4 shows the data flow of the estimator lin-
earized about a nominal trajectory of the state dynamics.
Note that the operations within the dashed box have no
inputs. These are the computations for the nominal trajec-
tory. Because they have no inputs from the rest of the esti-
mator, they can be precomputed offline. The models and im-
plementation equations for the linearized discrete Kalman
filter are summarized in Table 5. Note that the last three
equations in this table are identical to those of the “stan-
dard” Kalman filter.

Figure 4. Estimator linearized about a “nominal” state.

The models and implementation equations of the ex-
tended Kalman filter are summarized in Table 6. The last
three equations in this table are the same as those for the
“standard” Kalman filter, but the other equations are no-
ticeably different from those of the linearized Kalman filter
in Table 5.

It has been said that modeling is the “hardest” part of
Kalman filtering. This is especially true when there are
nonlinearities in the physical equation that must be lin-
earized. Developing a good Kalman filter model is partly
“art” and partly “science.” As a general rule, we look for
models that are simple enough to be implemented but, at
the same time, still represent the physical situation with
a reasonable degree of accuracy (3).

THE MATRIX RICCATI DIFFERENTIAL EQUATION

In order to implement a Kalman filter, the Riccati equation
must be solved. This section presents a brief discussion of
solution methods for the Riccati differential equation for
the Kalman-Bucy filter. A more thorough treatment of the
Riccati equation can be found in Ref. 21.

Transformation to a Linear Equation

The Riccati differential equation was first studied in the
eighteenth century as a nonlinear scalar differential equa-
tion, and a method was derived for transforming it to a lin-
ear matrix differential equation. That same method works
when the dependent variable of the original Riccati differ-
ential equation is a matrix. That solution method is de-
rived here for the matrix Riccati differential equation of
the Kalman-Bucy filter. An analogous solution method for
the discrete-time matrix Riccati equation of the Kalman
filter is derived in the next section.

A matrix product of the sort AB−1 is called a matrix frac-
tion, and a representation of a matrix N in the form

will be called a fraction decomposition of N. The matrix A
is the numerator of the fraction, and the matrix B is its
denominator. It is necessary that the matrix denominator
be nonsingular.

The Riccati differential equation is nonlinear. However,
a fraction decomposition of the covariance matrix results
in a linear differential equation for the numerator and
denominator matrices. The numerator and denominator
matrices will be functions of time, such that the product
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A(t)B−1(t) satisfies the matrix Riccati differential equation
and its boundary conditions.

By taking the derivative of the matrix fraction A(t)B−1(t)
with respect to t and using the fact that

we can arrive at the following decomposition of the matrix
Riccati differential equation:

Combining Eqs. 88 and 89 gives

The last equation is a linear first-order matrix differential
equation. The dependent variable is a 2n × n matrix, where
n is the dimension of the underlying state variable.

The “Hamiltonian matrix” is given by

the initial values of A(t) and B(t) must also be constrained
by the initial value of P(t). This is easily satisfied by taking
A(t0) = P(t0) and B(t0) = I, the identity matrix.

In the time-invariant case, the Hamiltonian matrix � is
also time-invariant. As a consequence, the solution for the
numerator A and denominator B of the matrix fraction can
be represented in matrix form as the product

where e�t is a 2n × 2n matrix.

Solution of the Algebraic Riccati Equation

We have seen in the previous subsections the difficulty
of obtaining a solution of the general Riccati differential
equation in “closed form” (i.e., as a formula in the param-
eters of the mode), even for the simplest (scalar) problem.
There is no general formula for solving higher-order poly-
nomial equations (i.e., beyond quartic).This is at the limit
of complexity for finding closed-form solutions to algebraic
Riccati equations by purely algebraic means. Beyond this
relatively low level of complexity, it is necessary to employ
numerical solution methods. Numbers do not always pro-
vide us as much insight into the characteristics of the so-
lution as formulas do, but they are all we can get for most
problems of practical significance.

The MacFarlane-Potter-Fath Eigenstructure Method

MacFarlane, Potter, and Fath discovered (independently)
that the solution P(∞) of the continuous-time form of the
steady state matrix Riccati differential equation can be ex-
pressed in the form (22)

where the matrices A and B are n × n and the 2n-vectors
eik are characteristic vectors of the continuous-time system
Hamiltonian matrix

This can be formalized in somewhat greater generality as
a lemma.

Lemma 1 If A and B are n × n matrices such that B is
nonsingular and

for a n × n matrix D, then P =AB−1 satisfies the steady state
matrix Riccati differential equation

Proof Equation (95) can be written as two equations,

If we multiply both of these on the right by B−1 and the
last of these on the left by AB−1, we obtain the equivalent
equations
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or taking the differences of the left-hand sides and substi-
tuting P for AB−1

which was to be proved.

In the case that A and B are formed in this way from
n characteristic vectors of �c, the matrix D will be a di-
agonal matrix of the corresponding characteristic values.
Therefore, to obtain the steady state solution of the matrix
Riccati differential equation by this method, it suffices to
find n characteristic vectors of �c such that the correspond-
ing B-matrix is nonsingular. As will be shown in the next
section, the same trick works for the discrete-time matrix
Riccati equation.

The Matrix Riccati Equation in Discrete Time

The representation of the covariance matrix as a ma-
trix fraction is also sufficient to transform the nonlinear
discrete-time Riccati equation for the estimation uncer-
tainty into a linear form. The discrete-time problem dif-
fers from the continuous-time problem in two important
aspects:

1. The numerator and denominator matrices will be
propagated by a 2n × 2n transition matrix, and not
by differential equations. The approach is other-
wise similar to that for the continuous-time Riccati
equation, but the resulting 2n × 2n state transition
matrix for the recursive updates of the numerator
and denominator matrices is a bit more complicated
than the coefficient matrix for the linear form of the
continuous-time matrix Riccati equation.

2. There are two distinct values of the discrete-time co-
variance matrix at any discrete time-step—the a pri-
ori value and the a posteriori value. The a priori value
is of interest in computing Kalman gains, and the a
posteriori value is of interest in the analysis of esti-
mation uncertainty.

The linear equations for matrix fraction propagation of the
a priori covariance matrix are derived later. The method is
then applied to obtain a closed-form solution for the scalar
time-invariant Riccati equation in discrete time and to ob-
tain a method for exponential speedup of convergence to
the asymptotic solution.

Lemma 2 If the state transition matrices �k are nonsin-
gular and

is a nonsingular matrix solution of the discrete-time Riccati
equation at time tk, then

is a solution at time tk+1, where

Proof The following annotated sequence of equalities
starts with the product Ak+1B−1

k+1 as defined and proves
that it equals Pk+1:

where the “Hemes inversion formula” is given in Ref. 3.
This completes the proof.

This lemma is used later to derive a closed-form solution
for the steady state Riccati equation in the scalar time-
invariant case.

The MacFarlane-Potter-Fath Eigenstructure Method

The method presented for the steady state solution of the
time-invariant matrix Riccati differential equation (i.e., in
continuous time) also applies to the Riccati equation in dis-
crete time (22). As before, it is formalized as a lemma.

Lemma 3 If A and B are n × n matrices such that B is
nonsingular and
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for a n × n nonsingular matrix D, then P∞ =AB−1 satisfies
the steady state discrete-time matrix Riccati equation

Proof If Pk =AB−1, then it was shown in Lemma 2 that
Pk+1 = ÁB′−1 where

Consequently,

That is, AB−1 is a steady state solution, which was to be
proved.

In practice, A and B are formed from n characteristic
vectors of �d. The matrix D will be a diagonal matrix of
the corresponding nonzero characteristic values.

The algebraic Riccati equation can be solved by using
MATLAB. The algebraic matrix Riccati equation for the
continuous case uses Schur’s method which is slower, but
more robust when the system is not able to be diagonalized
(3, 23).

The matrix Riccati equation for the continuous case can
be converted to vector nonlinear coupled differential equa-
tions. Fourth-order Runge-Kutta (self-starting), fourth-
order Adams method (non-self-starting), and Adams-
Moulton’s predictor corrector can be used to solve these
equations (24).

CONTROLLERS, OBSERVERS, AND THE SEPARATION
PRINCIPLE

Optimal control theory was developed under the influence
of such great researchers as Pontryagin, Bellman, Kalman,
and Bucy (25–30). Kalman introduced a number of state
variable concepts. Among these were controllability, ob-
servability, optimal linear quadratic regulator (LQR), state
feedback, and optimal state estimation (Kalman filtering).

In LQR problems, the dynamics of the system to be con-
trolled are represented by the state-space model, a set of

linear first-order differential equations. We deal with only
continuous and linear differential equation models. Non-
linear models can be linearized as shown previously:

where x(t) represents the n-dimensional state vector and u
is r-dimensional deterministic control input. F(t) and G(t)
are known time-varying matrices. The objective of control
is to keep x(t) close to zero without excessive control effort.
This objective is to be achieved by minimizing the quadratic
cost function.

where

The solution is provided by the optimal state feedback con-
trol

where K̄0(t) is an r × n time-varying control gain matrix.
The value of K̄0(t) is given by

where the n × n matrix P0(t) is the solution of the Riccati
matrix differential equation

subject to boundary conditions at the terminal time T,
P0(T) = M0.

The same solving techniques can be applied as devel-
oped previously. This Riccati equation has boundary con-
ditions given as compared to initial condition in the case
of estimation problems. For time-invariant cases, x(t) → 0
as t → ∞. For this reason, a terminal weighing matrix M0

need not be included in Eq. (110) and F(t) = F, C(t) = C,
Q0(t) = Q0, R0(t) = R0. The optimal control correction is

and P0 is a constant symmetric position definite n × n ma-
trix, which is the solution of the algebraic matrix Riccati
equation

The same solving technique can be applied as developed
previously.

In implementation, the state variables, which are gen-
erally unavailable for direct measurement, would be sub-
stituted by their estimates (see Fig. 5) by an observer or
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Figure 5. Block diagram of separation principle.

Kalman filter. The remarkable property of the LQG control
problem is that the optimal control u(t) is generated from
the estimated state x̂(t), generated by the Kalman filter by
means of the relationship

where the gain matrix K̄0 is precisely the one determined
in the solution of the deterministic LQR [see Eq. (116)]
problem. That is, u(t) = −K̄0(t) x(t) under the assumption
that the complete state vector is measured exactly. The
LQG problem solution separates into the solution of a lin-
ear quadratic deterministic problem and the solution of a
linear Gaussian estimation problem. The key theorem that
shows this property is often called the separation theorem.

The importance of the separation principle is that the
LQG regulator design procedures can be accomplished in
two separate stages: (1) the Kalman filter design and (2)
the control feedback design. This means that all results de-
rived separately for the deterministic optimal control prob-
lem and the optimal estimation problems are still valid (20,
26).

IMPLEMENTATION METHODS

We have discussed what Kalman filters are and how they
are supposed to behave. Their theoretical performance has
been shown to be characterized by the covariance matrix
of estimation uncertainty, which is computed as the solu-
tion of a matrix Riccati differential and difference equa-
tion. A relationship between optimal deterministic control
and optimal estimation problems has been described via
the separation principle.

Soon after the Kalman filter was first implemented
on computers, it was discovered that the observed mean-
square estimation errors were often much larger than the
values predicted by the covariance matrix, even with sim-
ulated data. The variances of the filter estimation errors
were observed to diverge from their theoretical values, and
the solutions obtained for the Riccati equations were ob-
served to have negative variances. Riccati equations should
have positive or zero variances.

Current work on the Kalman filter primarily focuses on
development of robust and numerically stable implemen-
tation methods. Numerical stability refers to robustness

against roundoff errors. Numerically stable implementa-
tion methods are called square root filtering because they
use factors of the covariance matrix of estimation uncer-
tainty or its inverse, called the information matrix.

Numerical solution of the Riccati equation tends to be
more robust against roundoff errors if Cholesky factors of
a symmetrical nonnegative definite matrix P is a matrix
C such that CCT = P. Cholesky decomposition algorithms
solve for C that is either upper triangular or lower triangu-
lar. Another method is modified Cholesky decomposition.
Algorithms solve for diagonal factors and either a lower tri-
angular factor L or an upper triangular factor U such that
P = UDuUT = LDLLT where DL and Du are diagonal factors
with nonnegative diagonal elements. Another implementa-
tion method uses square root information filters that use a
symmetric product factorization of the information matrix
P−1.

Alternative Kalman filter implementations use these
factors of the covariance matrix (or its inverse) in three
types of filter operations: (1) temporal updates, (2) obser-
vation updates, and (3) combined updates (temporal and
observation). The basic algorithm methods used in these
alternative Kalman filter implementations fall into four
general categories. The first three of these categories are
concerned with decomposing matrices into triangular fac-
tors and maintaining the triangular form of the factors
through all the Kalman filtering operation. The fourth
category includes standard matrix operations (multiplica-
tion, inversion, etc.) that have been specialized for trian-
gular matrices. These implementation methods have suc-
ceeded where the conventional Kalman filter implementa-
tions have failed (3, 31).

Even though uses are being explored in virtually ev-
ery discipline, research is particularly intense on success-
ful implementation of Kalman filtering to global position-
ing systems (GPS), inertial navigation systems (INS), and
guidance and navigation. GPS is a satellite-based system
that has demonstrated unprecedented levels of position-
ing accuracy, leading to its extensive use in both military
and civil arenas. The central problem for GPS receivers is
the precise estimation of position, velocity, and time based
on noisy observations of satellite signals. This provides an
ideal setting for the use of Kalman filtering. GPS technol-
ogy is used in automobile, aircraft, missiles, ships, agricul-
ture, and surveying.

In 1995 the United States began development of the
Wide Area Augmentation System (WAAS) under the aus-
pices of the Federal Aviation Administration (FAA) and
the Department of Transportation (DOT), to provide preci-
sion approach capability for aircraft. Without WAAS, iono-
spheric disturbances, satellite clock drift, and satellite or-
bit errors cause too much error in the GPS signal for air-
craft to perform a precision landing approach. Additionally,
signal integrity information as broadcast by the satellites
is insufficient for the demanding needs of public safety in
aviation. WAAS provides additional integrity messages to
aircraft to meet these needs.

WAAS includes a core of approximately twenty-five wide
area ground reference stations (WRS) positioned through-
out the United States which have precisely surveyed coor-
dinates. These stations compare the GPS signal measure-
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ments with the measurements that should be obtained at
the known coordinates. The WRS send their findings to a
WAAS master station (WMS) using a land-based commu-
nications network, and theWMS calculates correction algo-
rithms and assesses the integrity of the system. The WMS
then sends correction messages via a ground uplink system
(GUC) to geostationary (GEO) WAAS satellites covering
the United States. The satellites in turn broadcast the cor-
rections on a per-GPS satellite basis at the same L, 1575.42
MHz frequency as GPS. WAAS-enabled GPS receivers re-
ceive the corrections and use them to derive corrected GPS
signals which enable highly accurate positioning.

On July 10, 2003, the WAAS system was activated
for general aviation, covering 95% of the United States
and portions of Alaska. In September 2003, improvements
enabled WAAS-enabled aircraft to approach runways to
within 250 feet altitude before requiring visual control.
Currently, there are two Inmarsat III GEO satellites serv-
ing the WAAS area, the Pacific Ocean Region (POR) satel-
lite, and the East Atlantic Ocean Region (AOR-W) satellite.

In March 2005, two additional WAAS GEO satellites
were launched (PanAmSat Galaxy XV and Telesat (Anik
F1R), and are planned to be operational in 2006. These
satellites plus the two existing satellites will improve cov-
erage of North America and all but the northwest part of
Alaska. The four GEO satellites will be positioned at 54◦,
107◦, and 133◦ West longitude, and at 178◦ East longitude.

In 2006, WAAS is projected to be available over 99% of
the time, and its coverage will include the full continen-
tal United States and most of Alaska. Although primar-
ily intended for aviation applications, WAAS will be use-
ful for improving the accuracy of any WAAS-enabled GPS
receiver. Such receivers are already available in low-cost
handheld versions for consumer use.

Positioning accuracy using WAAS is currently quoted at
less than 2 meters of lateral error and less than 3 meters
of vertical error, which meets the aviation Category I pre-
cision approach requirement of 16 meters lateral error and
4 meters vertical error. Kalman filters are an integral part
of the WAAS system (32).

Kalman filters are used in bioengineering, traffic sys-
tems, photogrammetry, and myriad process controls. The
Kalman filter is observer, parameter identifier in model-
ing, predictor, filter, and smoother in a wide variety of ap-
plications. It has become integral to twenty-first century
technology.
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