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H INFINITY CONTROL

This article describes an optimal multivariable control system design technique for achieving robustness under
external disturbances and model uncertainties. We show that many robust control problems can be formulated
as H ∞ norm optimization problems, and we describe analytically their solutions. We also give guidelines to the
choice of design parameters and insights to this optimal and robust control theory.

One of the motivations for the original introduction of H ∞ methods by Zames (1) was to bring plant
uncertainty, specified in the frequency domain, back to the center stage as it had been in classical control, in
contrast to analytic methods such as linear quadratic Gaussian (LQG) control. The H ∞ norm was found to be
appropriate for specifying both the level of plant uncertainty and the signal gain from disturbance inputs to
error outputs in the controlled system.

The “standard” H ∞ optimal control problem is concerned with the feedback system shown in Fig. 1(a)
where w represents an external disturbance, y is the measurement available to the controller, u is the output
from the controller, and z is an error signal that should be kept small. The transfer function matrix G represents
not only the conventional plant to be controlled but also any weighting functions included to specify the desired
performance, which will be discussed in more detail later. Suppose that G is partitioned consistent with the
inputs w and u and outputs z and y as

The closed loop transfer function from w to z, denoted by Tzw, is defined to be the linear fractional transformation
(LFT) of G on K:

The H ∞ optimal control problem is then to design a stabilizing controller K, so as to minimize the H ∞ norm of
Tzw, which is defined in the next section and is denoted by ‖Tzw‖∞. The H ∞ norm gives the maximum energy
gain, or sinusoidal gain of the system. This is in contrast to the H 2 norm ‖Tzw‖2, which for example gives the
variance of the output given white noise disturbances. The important property of the H ∞ norm comes from
the application of the small gain theorem, which states that if ‖Tzw‖∞ ≤ γ, then the system in Fig. 1(b) will be
stable for all stable � with ‖�‖∞ < 1/γ. It is probably the case that this robust stability consequence was one
of the main motivations for the development of H ∞ methods. The synthesis of controllers that achieve an H ∞
norm specification hence gives a well-defined practical and mathematical problem.
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Fig. 1. Most control systems can be put in this unified framework where w represents an external disturbance, y is the
measurement available to the controller, u is the output from the controller, and z is an error signal that it is desired to
keep small.

H 2 and H ∞ Norms

We consider a q-input and p-output dynamical system with the matrix transfer function G(s). Let G(s) have
the following stabilizable and detectable state space realization:

We shall denote this state-space realization by

Many control design problems can be regarded as finding a suitable controller so that the undesirable responses
of the system are made small in some sense. There are obviously many ways to define the smallness for a given
control problem. Here we are mainly interested in one way of defining the smallness: the H ∞ norm. For
comparison we shall also mention another more classical way of defining the smallness in terms of the H 2
norm.

Let R H 2 denote the set of strictly proper and real rational stable transfer matrices. In terms of state-space
realizations, R H 2 is simply the set of finite dimensional systems with D = 0 and stable A. The H 2 norm of a
G(s) ∈ R H 2 is defined as
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where trace(M), M∗, and σi(M) denote, respectively, the trace, the complex conjugate transpose, and the ith
singular value of the matrix M. This norm can also be computed in the time domain as

where g(t) is the inverse Laplace transform of G(s). Thus the H 2 norm of a system is a measure of the total
energy of the system impulse response. It can be computed using state-space realization as

where Q and P are observability Gramian and controllability Gramian, which can be obtained from the following
Lyapunov equations

Let R H ∞ denote the set of proper (but not necessarily strictly proper) and real rational stable transfer
matrices. In terms of state-space realizations, R H ∞ includes all finite dimensional systems with stable A
matrices. The H ∞ norm of a transfer matrix G(s) ∈ R H ∞ is defined as

where σ̄(M) denotes the largest singular value of a matrix M. When G(s) is a single input and single output
system, the H ∞ norm of the G(s) is simply the peak value on the Bode magnitude plot of the frequency response
G(jω). It can also be regarded as the largest possible amplification factor of the system’s steady state response
to sinusoidal excitations. For example, the steady state response of the system with respect to a sinusoidal
input u(t) = U sin(ω0t + φ) is

and thus the maximum possible amplification factor is

which is precisely the H ∞ norm of the transfer function. As an example, consider a standard second-order
system

Then ωmax = ωn 1 − 2ξ2 and ‖G‖∞ = |G(jωmax)| = 1/(2ξ 1 − ξ2). If G(s) is the description of
a structure vibration, then ωmax would be the most dangerous exciting frequency.

In the multiple input and multiple output (MIMO) case, the H ∞ norm of a transfer matrix G ∈ R H ∞ is
the peak value on the largest singular value Bode plot of the frequency response G(jω). Analogous to the scalar
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case, the H ∞ norm of G(s) can also be regarded as the largest possible amplification factor of the system’s
steady state response to sinusoidal excitations in the following sense: Let the sinusoidal inputs be

Then the steady state response of the system can be written as

for some yi, θi, i = 1, 2, . . ., p. Furthermore,

where ‖·‖ is the Euclidean norm.
The H ∞ norm of a stable transfer matrix can also be thought of as the maximum amplification factor of

the input energy of the system at the output of the system. More precisely,

where ∗ denotes the time domain convolution and L 2[0, ∞) denotes the space of all square integrable functions

with the norm defined as ‖f‖2 : = . Thus it is important to make the H ∞ norm of all undesirable
transfer functions small in a feedback control system. That is one of the motivations for the development of
H ∞ control theory.

This discussion shows that the H ∞ norm of a transfer function can, in principle, be obtained either
graphically or experimentally. To get an estimate, set up a fine grid of frequency points, {ω1, . . ., ωN}. Then an
estimate for ‖G‖∞ is
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This value is usually read directly from a singular value Bode plot. The H ∞ norm can also be computed directly
using state-space representations. Let

Then

where

Hence, the H ∞ norm of a matrix transfer function can be calculated to the specified accuracy by a bisection
search.

Example. Consider a mass/spring/damper system as shown in Fig. 2. The dynamical system can be
described by the following differential equations:

Suppose that G(s) is the transfer matrix from (F1, F2) to (x1, x2) and suppose k1 = 1, k2 = 4, b1 = 0.2, b2 =
0.1, m1 = 1, and m2 = 2 with appropriate units. Then the H 2 norm of this transfer matrix is ‖G(s)‖2 = 2.56,
whereas the H ∞ norm of this transfer matrix is ‖G(s)‖∞ = 11.47, which is shown as the peak of the largest
singular value Bode plot in Fig. 3. Since the peak is achieved at ωmax = 0.8483, exciting the system using the
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Fig. 2. A two mass/spring/damper system with the external forces F1 and F2 as inputs and the positions of the two masses
as outputs.

Fig. 3. The singular value Bode plot of the two mass/spring/damper system. The H ∞ norm ‖G‖∞ is the peak of the largest
singular value plot of G(jω).

following sinusoidal input

gives the steady state response of the system as

This shows that the system response will be amplified 11.47 times for an input signal at the frequency ωmax,
which could be undesirable if F1 and F2 are disturbance force and x1 and x2 are the positions to be kept steady.
We will see later how to design an H ∞ feedback controller to suppress this kind of vibration.

We note that the state-space computational method is usually much more accurate than the graphical
method. Consider, for example, the standard second-order system again with ωn = 1 and ξ = 0.01. By the
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analytic formula or the state-space computational method, we get that the H ∞ norm is 50.0025. To estimate
the H ∞ norm graphically, we set up a frequency grid to compute the frequency response of G over a suitable
range of frequency. Take, for example, 200 points in the frequency range of [0.1, 10] uniformly on the log scale,
then we get an estimate of the norm ≈ 33.0743. This shows clearly that the graphical method may lead to a
wrong answer for a lightly damped system if the frequency grid is not sufficiently dense. Indeed, we would
get the H ∞ norm ≈ 43.5567, 48.1834, and 49.5608 from the graphical method if 400, 800, and 1600 frequency
points are used, respectively.

Weighted H ∞ Performance

We now consider how to formulate some performance objectives into mathematically tractable problems. It
is well known that the performance objectives of a feedback system can usually be specified in terms of
requirements on the sensitivity functions and/or complementary sensitivity functions or in terms of some other
closed-loop transfer functions. For instance, the performance criteria for a scalar system may be specified as
requiring

with S(jω) = 1/(1 + P(jω)K(jω)) where P is the plant and K is the controller. However, it is much more convenient
to reflect the system performance objectives by choosing appropriate weighting functions. For example, this
performance objective can be written as

with

In order to use We in control design, a rational transfer function We(s) is usually used to approximate this
frequency response.

The advantage of using weighted performance specifications is obvious in multivariable system design.
First, some components of a vector signal are usually more important than others. Second, each component of
the signal may not be measured in the same units; for example, some components of the output error signal
may be measured in terms of length, and the others may be measured in terms of voltage. Weighting functions
are essential to make these components comparable. Also, we might be primarily interested in rejecting errors
in a certain frequency range (e.g., low frequencies); hence, some frequency-dependent weights must be chosen.

Consider a standard feedback diagram in Fig. 4. The weighting functions in Fig. 4 are chosen to reflect
the design objectives and knowledge on the disturbances and sensor noise. For example, Wd and Wi may be
chosen to reflect the frequency contents of the disturbances d and di. The weighting matrix Wn is used to model
the frequency contents of the sensor noise, whereas We may be used to reflect the requirements on the shape
of certain closed-loop transfer functions (e.g., the shape of the output sensitivity function). Similarly, Wu may
be used to reflect some restrictions on the control or actuator signals, and the dashed precompensator Wr is an
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Fig. 4. Standard feedback configuration with disturbance weights and performance weights. Wi, Wd, and Wn represent
the frequency contents of the input disturbance, output disturbance, and the sensor noise. We represents the disturbance
rejection requirement, and Wu puts the limit on the control effort. Wr shapes the input signal.

optional element used to achieve deliberate command shaping or to represent a nonunity feedback system in
equivalent unity feedback form.

A typical control design may involve making the sensitivity function small over a suitable frequency
range while keeping the control effort within a reasonable limit. This may be mathematically formulated as
minimizing

subject to some restrictions on the control energy or control bandwidth:

Or more frequently, one may introduce a parameter ρ and a mixed criterion

Note that ρ can be absorbed into Wu, so there is no loss of generality in assuming ρ = 1. Finding a controller
so that the H ∞ norm of a certain closed-loop transfer function, such as the preceding one, is minimized is the
H ∞ control problem.

Similar H 2 norm minimization problems can be formulated if the disturbance is modeled as white noise
and the performance is measured in terms of output power.
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Robust Stabilization

Another way that a weighted H ∞ norm minimization problem can arise naturally is when we consider robust
stability and robust performance of a closed-loop system with model uncertainties. For example, consider a
unity feedback system with a family of additively perturbed uncertain dynamical systems:

and assume that K stabilizes the nominal plant P. Then by the small gain theorem, the uncertain system is
stable for all admissible � with ‖�‖∞ < 1/γ if and only if

Therefore, a related synthesis problem is to find a controller K so that this inequality holds.
As another example, let P = M̃− 1Ñ be a normalized coprime factorization, that is,

Now consider a family of coprime factor perturbed uncertain systems:

A controller K stabilizing the nominal system P will robustly stabilize the family Fp if and only if

Similarly, many other robust stability problems can be formulated. It should be noted that the H 2 norm cannot
be used in the robust stability test because it does not satisfy a key multiplicative property (i.e., ‖G1G2‖2 �
‖G1‖2‖G2‖2 in general).

Selection of Weighting Functions

As we mentioned previously, a very important step in the H ∞ control design process is to choose the appropriate
weights. The appropriate choice of weights for a particular problem is not trivial. On many occasions, the
weights are chosen purely as a design parameter without any physical bases, so these weights may be treated
as tuning parameters that are chosen by the designer to achieve the best compromise between the conflicting
objectives. Hence, the selection of weighting functions for a specific design problem often involves ad hoc fixing,
iterations, and fine-tuning. It should be guided by the expected system inputs and the relative importance of
the outputs. It is very hard to give a general formula for the weighting functions that will work in every case.
Nevertheless, we shall try to give some guidelines in this section by looking at a typical single input single
output (SISO) problem.



10 H INFINITY CONTROL

Fig. 5. The desired shapes of S and KS and their upper bounds.

Consider the SISO feedback system shown in Fig. 4. Then the tracking error is

where S = (I + PK)− 1 is the output sensitivity function and T = I − S = PK(I + PK)− 1 is the output
complementary sensitivity function. Note that tracking error is closely related to the low-frequency gain of S.
In particular, we must keep |S| small over the range of frequencies, typically low frequencies where r and d
are significant. For example, if we need the steady state error with respect to a step input to be no greater
than ε, then we need |S(0)| ≤ ε. Hence, the steady state tracking requirement can be fulfilled by constraining
the low-frequency gain of S. From classical control theory, we know that the dynamical quality of the system
time response can be quantified by rise time, settling time, and percent overshoot. Furthermore, the speed
of the system response is inversely proportional to the closed-loop bandwidth and the overshoot of the system
response increases with the resonant peak sensitivity defined as Ms := ‖S‖∞. Let ωb = min {ω:|S(jω)| ≥ 1}.
Then we can regard ωb as the closed-loop bandwidth because, beyond this frequency, the closed-loop system
will not be able to track the reference and the disturbance will actually be amplified.

Now suppose that we are given the time domain performance specifications. Then we can determine the
corresponding requirements in frequency domain in terms of the low-frequency gain, the bandwidth ωb, and
the peak sensitivity Ms. Hence, a good control design should result in a sensitivity function S satisfying all
these requirements as shown in Fig. 5. These requirements can be approximately represented as

If a steeper transition between low frequency and high frequency is desired, the weight We can be modified as
follows:

for some integer k ≥ 1.
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The selection of control weighting function Wu follows similarly from the preceding discussion by consid-
ering the control signal equation

The magnitude of |KS| in the low-frequency range is essentially limited by the allowable cost of control effort
and saturation limit of the actuators; hence, in general the maximum gain Mu of KS can be fairly large,
whereas the high-frequency gain is essentially limited by the controller bandwidth ωbc and the (sensor) noise
frequencies. Ideally, we would like to roll off as fast as possible beyond the desired control bandwidth so that
the high-frequency noises are attenuated as much as possible. Hence, a candidate weight Wu would be

However, the standard H ∞ control design techniques cannot be applied directly to a problem with an improper
control weighting function. Hence, we shall introduce a faraway pole to make Wu proper:

for a small ε1 > 0 as shown in Fig. 5. Similarly, if a faster rolloff is desired, we may choose

for some integer k ≥ 1.
The weights for MIMO problems can be initially chosen as diagonal matrices with each diagonal term

chosen in the preceding form.

General Problem Formulation and Solutions

All the disturbance rejection problems and robust stabilization problems discussed in the previous sections can
be put in a unified framework of linear fractional transformation as shown in Fig. 1(a). For example,
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and

For the following discussion, let us assume that state-space models of G and K are available and that their
realizations are assumed to be stabilizable and detectable. We say that a controller is admissible if it internally
stabilizes the system.

Optimal H 2 Control:
Find an admissible controller K(s) such that ‖Tzw‖2 is minimized.

Optimal H ∞ Control:
Find an admissible controller K(s) such that ‖Tzw‖∞ is minimized.

It should be noted that the optimal H ∞ controllers as defined here are generally not unique for MIMO sys-
tems. Furthermore, finding an optimal H ∞ controller is often both numerically and theoretically complicated.
This is certainly in contrast to the standard LQG or H 2 theory, in which the optimal controller is unique and can
be obtained by solving two Riccati equations without iterations. Knowing the achievable optimal (minimum)
H ∞ norm may be useful theoretically because it sets a limit on what we can achieve. In practice, however, it
is often not necessary and sometimes even undesirable to design an optimal controller, and it is usually much
cheaper to obtain controllers that are very close in the norm sense to the optimal ones, which will be called
suboptimal controllers. A suboptimal controller may also have other nice properties (e.g., lower bandwidth)
over the optimal ones.

Suboptimal H ∞ Control:
Given γ > 0, find an admissible controller K(s), if there are any, such that ‖Tzw‖∞ < γ.

For these reasons mentioned, we shall focus our attention on the suboptimal H ∞ control. We shall assume
that the realization of the transfer matrix G takes the following form:

which is compatible with the dimensions of z(t) ∈ Rp
1, y(t) ∈ Rp

2, w(t) ∈ Rm1, and u(t) ∈ Rm2 and the state x(t) ∈
Rn. We make the following assumptions:
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Assumption 1 is necessary for the existence of stabilizing controllers. Assumption 2 means that the penalty
on z = C1x + D12u includes a nonsingular penalty on the control u, that the exogenous signal w includes
both plant disturbance and sensor noise, and that the sensor noise weighting is nonsingular. Relaxation of
assumption 2 leads to singular control problems.

Assumptions 3 and 4 are made for a technical reason: together with assumption 1 they guarantee that the
two algebraic Riccati equations in the corresponding LQG or H 2 problem have the desired solutions. Dropping
assumptions 3 and 4 would make the solution very complicated.

Define

The following H 2 and H ∞ control results can be found in Refs. 2 and 3.

Theorem 1. There exists a unique optimal controller

that minimizes ‖Tzw‖2 where

X2 ≥ 0 and Y2 ≥ 0 are the solutions to

such that both Ax − B2R− 1
1BT

2X2 and Ay − Y2CT
2R− 1

2C2 are stable. Moreover,

Theorem 2. Suppose G satisfies assumptions 1–4. Then there exists an admissible controller K∞ such that
‖F 
(G, K∞)‖∞ < γ (i.e., ‖Tzw‖∞ < γ) if and only if

(1) there exists an X∞ ≥ 0 such that

and Ax + (B1BT
1/γ2 − B2R− 1

1BT
2)X∞ is stable;

(2) there exists a Y∞ ≥ 0 such that

and Ay + Y∞(CT
1C1/γ2 − CT

2R− 1
2C2) is stable;

(3) ρ(X∞Y∞) < γ2 where ρ(·) denotes the spectral radius.
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Furthermore, if these conditions are satisfied, all internally stabilizing controllers K∞(s) satisfying ‖F 
(G,
K∞)‖∞ < γ can be parameterized as

for any Q ∈ R H ∞ such that ‖Q‖∞ < γ where

The controller obtained by setting Q = 0

is called the central controller. Comparing the H ∞ central controller to the H 2 optimal controller, we can see
that the H ∞ central controller will approach the optimal H 2 controller as γ → ∞.

Example. Consider again the two mass/spring/damper system shown in Fig. 2. Assume that F1 is the
control force, F2 is the disturbance force, and the measurements of x1 and x2 are corrupted by measurement
noise:

Our objective is to design a control law so that the effect of the disturbance force F2 on the positions of the two
masses x1 and x2 are reduced in a frequency range 0 ≤ ω ≤ 2. The problem can be set up as shown in Fig. 6,
where
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Fig. 6. Rejecting the disturbance force F2 of the two mass/spring/damper system by a feedback control of F1.

is the performance weight and Wu is the control weight. In order to limit the control force, we shall choose

Now let u = F1,

then the problem can be formulated in a LFT form with

where P1 and P2 denote the transfer matrices from F1 and F2 to

respectively. Let

that is, we want to reject only the effect of the disturbance force F2 on the position x1. Then the optimal H 2
performance is ‖F 
(G, K2)‖2 = 2.6584, and the H ∞ performance with the optimal H 2 controller is ‖F 
(G, K2)‖∞
= 2.6079, whereas the optimal H ∞ performance with an H ∞ controller is ‖F 
(G, K∞)‖∞ = 1.6101. This means
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Fig. 7. The largest singular value Bode plot of the closed-loop two mass/spring/damper system with an H 2 controller and
an H ∞ controller.

that the effect of the disturbance force F2 in the desired frequency range 0 ≤ ω ≤ 2 will be effectively reduced
with the H ∞ controller K∞ by 5/1.6101 = 3.1054 times at x1. On the other hand, let

that is, we want to reject only the effect of the disturbance force F2 on the position x2. Then the optimal H 2
performance is ‖F 
(G, K2)‖2 = 0.1659, and the H ∞ performance with the optimal H 2 controller is ‖F 
(G, K2)‖∞
= 0.5202, whereas the optimal H ∞ performance with an H ∞ controller is ‖F 
(G, K∞)‖∞ = 0.5189. This means
that the effect of the disturbance force F2 in the desired frequency range 0 ≤ ω ≤ 2 will be effectively reduced
with the H ∞ controller K∞ by 5/0.5189 = 9.6358 times at x2. Finally, set

that is, we want to reject the effect of the disturbance force F2 on both x1 and x2. Then the optimal H 2
performance is ‖F 
(G, K2)‖2 = 4.087, and the H ∞ performance with the optimal H 2 controller is ‖F 
(G, K2)‖∞
= 6.0921, whereas the optimal H ∞ performance with an H ∞ controller is ‖F 
(G, K∞)‖∞ = 4.3611. This means
that the effect of the disturbance force F2 in the desired frequency range 0 ≤ ω ≤ 2 will be effectively reduced
only with the H ∞ controller K∞ by 5/4.3611 = 1.1465 times at both x1 and x2. This result shows clearly that it
is very hard to reject the disturbance effect on both positions at the same time. The largest singular value Bode
plots of the closed-loop system are shown in Fig. 7. We note that the H ∞ controller typically gives a relatively
flat frequency response because it tries to minimize the peak of the frequency response. On the other hand, the
H 2 controller typically produces a frequency response that rolls off fast in the high-frequency range but with
a large peak in the low-frequency range.



H INFINITY CONTROL 17

H ∞ Filtering

In this section we shall illustrate how an H ∞ filtering problem can be converted to a special H ∞ control
problem. Suppose that a dynamic system is described by the following equations:

The filtering problem is to find an estimate ẑ of z in some sense using the measurement of y. The restriction on
the filtering problem is that the filter has to be causal so that it can be realized (i.e., ẑ must be generated by a
causal system acting on the measurements). We will further restrict our filter to be unbiased, that is, given T
> 0, the estimate ẑ(t) = 0 ∀t ∈ [0, T] if y(t) = 0, ∀t ∈ [0, T]. Now we can state our H ∞ filtering problem.

H ∞ Filtering:
Given a γ > 0, find a causal filter F(s) ∈ R H ∞ if it exists such that

with ẑ = F(s)y.

This H ∞ filtering problem can also be formulated in an LFT framework because

Hence, the filtering problem can be regarded as a special H ∞ problem. However, comparing this filtering
problem to the control problems, we can see that there is no internal stability requirement in the filtering
problem. Hence, the solution to this filtering problem can be obtained from the H ∞ solution in the last section
by setting B2 = 0 and dropping the internal stability requirement. Thus, a rational causal filter F(s) is given
by

Understanding H ∞ Control

Most existing derivations and proofs of the H ∞ control results given in Theorem 2 are mathematically quite
complex. Some algebraic derivations are simple but they provide no insight to the theory for control engineers.
In this section, we shall present an intuitive but nonrigorous derivation of the H ∞ results by using only
some basic system theoretic concept such as state feedback and state estimation. In fact, we shall construct
intuitively the output feedback H ∞ central controller by combining an H ∞ state feedback and an observer.



18 H INFINITY CONTROL

A key fact we shall use is the so-called bounded real lemma, which states that for a system z = G(s)w with
state space realization G(s) = C(sI − A)− 1 B ∈ H ∞, ‖G‖∞ < γ, which is essentially equivalent to

if and only if there is an X = X ′ ≥ 0 such that

and A + BB′X/γ2 is stable. Dually, there is a Y = Y ′ ≥ 0 such that

and A + YC′C/γ2 is stable.
Note that the system has the following state space realization:

To keep the presentation simple, we shall make some additional assumptions: D
′
12C1 = 0, B1D

′
21 = 0, D

′
12D12

= I, and D21D
′
21 = I.

We shall first consider state feedback u = Fx. Then the closed-loop system becomes

By the bounded real lemma, ‖Tzw‖∞ < γ implies that there exists an X = X ′ ≥ 0 such that

which is equivalent, by completing the square with respect to F, to

Intuition suggests that we can take

which gives

This is exactly the X∞ Riccati equation under the preceding simplified conditions. Hence, we can take F = F∞
and X = X∞.
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Next, suppose that there is an output feedback stabilizing controller such that ‖Tzw‖∞ < γ. Then x(∞) =
0 because the closed-loop system is stable. Consequently, we have

Substituting ẋ = Ax + B1w + B2u and z = C1x + D12u into the above integral and using the X∞ equation, and
finally completing the squares with respect to u and w, we get

where v = u + B
′
2X∞ x = u − F∞x and r = w − γ − 2 B

′
1X∞x. Substituting w into the system equations, we have

the new system equations

Hence the original H ∞ control problem is equivalent to finding a controller so that ‖Tvr‖∞ < γ or

Obviously, this also suggests intuitively that the state feedback control can be u = F∞x and a worst state
feedback disturbance would be w∗ = γ − 2 B

′
1X∞x. Since full state is not available for feedback, we have to

implement the control law using estimated state:

where x̂ is the estimate of x. A standard observer can be constructed from the new system equations as

where L is the observer gain to be determined. Let e := x − x̂ Then
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Since it is assumed that ‖Tvr‖∞ < γ, it follows from the dual version of the bounded real lemma that there
exists a Y ≥ 0 such that

The above equation can be written as

Again, intuition suggests that we can take

which gives

It is easy to verify that

where Y∞ is as given in Theorem 2. Since Y ≥ 0, we must have

Hence the controller is given by

which is exactly the H ∞ central controller given in Theorem 2 under the simplified conditions.
We can see that the H ∞ central controller can be obtained by connecting a state feedback with a state

estimate under the worst state feedback disturbance.

H ∞ Loop Shaping

Consider the family of uncertain systems Fp again. It is now clear that finding a controller K such that
it robustly stabilizes the family Fp is a standard H ∞ norm minimization problem. Now suppose P has a
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stabilizable and detectable state-space realization given by

and let Y ≥ 0 be the solution to

Then the left coprime factorization (M̃, Ñ) given by

is a normalized left coprime factorization. Furthermore,

Define

Then bP,K > 0 implies that K also stabilizes robustly the following family of uncertain systems:

(1) P̃ = P + �a such that P and P̃ have the same number of unstable poles and ‖�a‖∞ < bP,K .
(2) P̃ = (I + �m)P such that P and P̃ have the same number of unstable poles and ‖�m‖∞ < bP,K .
(3) P̃ = (I + �f )− 1P such that P and P̃ have the same number of unstable poles and ‖�f ‖∞ < bP,K .

These conclusions also hold when the roles of plant and controller are interchanged. The number bP,K can
also be related to the classical gain and phase margins of a SISO system:

Hence, bP,K is a good measure of a system’s robustness. Define
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Obviously, bopt is the largest admissible size of perturbation ε so that the system is stable. It follows from the
standard H ∞ solution that

where Q is the solution to the following Lyapunov equation

Moreover, for any γ > 1/bopt(P), a controller achieving bP,K > 1/γ is given by

where

This stabilization solution can be used to devise an H ∞ loop-sharing design method. The objective of this
approach is to incorporate the simple performance/robustness trade-off obtained in the loop shaping with the
guaranteed stability properties of H ∞ design methods. Recall that good performance controller design requires
that

particularly in some low-frequency range where σ (PK) denotes the smallest singular value. And good robust-
ness requires that

particularly in some high-frequency range.
The H ∞ loop-shaping design procedure is developed by McFarlane and Glover (4) and is stated in the next

section.
Loop-Shaping Design Procedure.

(1) Loop Shaping: The singular values of the nominal plant are shaped, using a precompensator W1 and/or a
postcompensator W2, to give a desired open-loop shape. The nominal plant P and the shaping functions W1,
W2 are combined to form the shaped plant Ps, where Ps = W2PW1. We assume that W1 and W2 are such
that Ps contains no hidden modes.

(2) Robust Stabilization: (a) If bopt(P) � 1 return to (1) and adjust W1 and W2. (b) Select ε ≤ bopt(Ps); then
synthesize a stabilizing controller K∞, which satisfies bPs,K∞ ≥ ε.

(3) The final feedback controller K is then constructed by combining the H ∞ controller K∞ with the shaping
functions W1 and W2 such that K = W1K∞W2.
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A typical design works as follows: the designer inspects the open-loop singular values of the nominal plant,
and shapes these by pre- and/or postcompensation until nominal performance (and possibly robust stability)
specifications are met. (Recall that the open-loop shape is related to closed-loop objectives.) A feedback controller
K∞ with associated stability margin (for the shaped plant) ε ≤ bopt(Ps) is then synthesized. If bopt(Ps) is small,
then the specified loop shape is incompatible with robust stability requirements, and should be adjusted
accordingly; then K∞ is reevaluated.

Note that in contrast to the classical loop-sharing approach, the loop shaping here is done without explicit
regard for the nominal plant phase information. That is, closed-loop stability requirements are disregarded at
this stage. Also in contrast with conventional H ∞ design, the robust stabilization is done without frequency
weighting.

In fact, the preceding robust stabilization objective can also be interpreted as the more standard H ∞
problem formulation of minimizing the H ∞ norm of the frequency weighted gain from disturbances on the
plant input and output to the controller input and output as follows:

This shows that the H ∞ loop-shaping design is equivalent to a standard H ∞ design with the shaping functions
as weighting functions.

µ Synthesis

As we discussed at the beginning of this article, ‖F 
(G, K)‖∞ ≤ γ guarantees the robust stability of the uncertain
system shown in Fig. 1(b) for any �(s) ∈ R H ∞ with ‖�‖∞ < 1/γ. However, if a system is built from components,
which are themselves uncertain, then, in general, the uncertainty in the system level is structured, and this
robust stability guarantee may be overly conservative. Because the interconnection model G can always be
chosen so that �(s) is block diagonal, and, by absorbing any weights, ‖�‖∞ < 1. Thus we can assume that �(s)
takes the form of

with ‖δi‖∞ < 1 and ‖�j‖∞ < 1. The robust stability analysis for systems with such structured uncertainty is
not as simple but can be formally characterized by using the structured singular value, see Ref. 5.

Define � ⊂ Cn×n as
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Then for M ∈ Cn×n, the structured singular value of M, µ�(M), is defined as

The µ itself is not easy to compute. But good bounds can be obtained efficiently. Let

Then for any � ∈ � and D ∈ D, D� = �D and

and the equality holds if 2S + F ≤ 3. This bound can be used frequency by frequency to determine the system
robust stability and performance with structured uncertainties. For example, the system in Fig. 1(b) is well
posed, internally stable for all stable �(s) with �(s0) ∈ �, ∀ Re(s0) ≥ 0, and ‖�‖∞ < 1/γ if and only if

This result leads us to the following synthesis problem:

This synthesis problem is not yet fully solved in the general case. A reasonable approach is to obtain a solution
to an upper bound:

by iteratively solving for K and D. This is the so-called D-K iteration. The stable and minimum phase scaling
matrix D(s) is chosen such that D(s)�(s) = �(s)D(s). For a fixed scaling transfer matrix D, minK ‖DF 
(G,
K)D− 1‖∞ is a standard H ∞ optimization problem because

For a given stabilizing controller K, infD,D
− 1∈H ∞ ‖DF 
(G, K)D− 1‖∞ is a standard convex optimization problem,

and it can be solved pointwise in the frequency domain:

Then a D(s) is found to approximate the magnitude frequency response Dω uniformly (usually by curve fitting).
D-K iterations proceed by performing this two-parameter minimization in sequential fashion: minimizing over
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K with D(s) fixed, minimizing pointwise over D with K fixed, minimizing again over K, and then again over D,
and so on. With either K or D fixed, the global optimum in the other variable may be found using the µ and
H ∞ solutions. Although the joint optimization of D and K is generally not convex and the global convergence
is not guaranteed, many designs have shown that this approach works very well. In fact, this is probably the
most effective design methodology available today for dealing with such complicated problems.

Additional Applications

There are many additional extensions and development in the H ∞ control theory. Here are some of them:

H ∞ loop-shaping techniques using ν-gap metric, see Ref. 6.
Robust control design in the gap metric, see Robust control and Ref. 6.
Linear matrix inequality (LMI) approach to H ∞ control, see Convex optimization.
Time-varying and finite horizon H ∞ control and game theoretical approach to H ∞ control, see Refs. 7 and 8.
Operator theoretic approach to H ∞ control, see Ref. 9.
Chain-scattering approach to H ∞ control, see Ref. 10.
H ∞ control with pole placement, see Ref. 11.
H ∞ controller reduction, see Refs. 12 and 13.
Linear parameter varying H ∞ control, see Ref. 14.
Sampled-Data H ∞ control, see Ref. 15.
H ∞ control for infinite dimensional systems, see Refs. 16 and 17.
H ∞ control for nonlinear systems, see Ref. 18.
Software and applications, see Ref. 19.

A comprehensive treatment of H ∞ control theory can be found in Refs. 13 and 20.
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