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on an ongoing basis from the observation process. The filter-
ing problem is to estimate the signal process at the same
time. The smoothing problem has a couple of variants: (1)
Given the observation process in a fixed time interval, esti-
mate the signal process at each element in the time interval,
and (2) estimate the signal process at a time that is a fixed lag
behind the observation process. The approach of Kolmogorov,
Krein, and Wiener to these problems assumed that the sto-
chastic processes are (wide-sense) stationary and that the in-
finite past of the observation process is available. Both of
these assumptions are not physically reasonable, so there was
a need to relax these assumptions.

In the late 1950s, control and system theory were undergo-
ing a significant change from the frequency-domain approach
to the state-space approach. Transfer function descriptions of
linear systems were replaced by ordinary differential equa-
tion descriptions of linear systems. This state-space approach
provided an impetus to reexamine the linear filtering prob-
lem. Using this approach the signal process is modeled as the
solution of a linear differential equation with a Gaussian
white noise input so the signal process is Gauss–Markov. The
differential of the observations process is a linear transforma-
tion of the signal process plus Gaussian white noise. This fil-
tering model does not require the infinite past of the observa-
tions. The signal and the observation processes can evolve
from some fixed time with a Gaussian random variable as the
initial condition for the differential equation that describes
the signal process. The processes are not required to be sta-
tionary; and, in fact, the coefficients of the differential equa-
tion for the signal process and the linear transformation for
the signal in the observation equation can be time-varying.
While it is not required that the ordinary differential equa-
tion for the signal process be stable, which is implicit in the
description for stationary processes, it is necessary to be ableFILTERING AND ESTIMATION, NONLINEAR
to model the signal process as the solution of an ordinary dif-
ferential equation with a white noise input. In general a sta-To have a historical perspective of the advent of nonlinear

filtering and estimation, initially the development of linear tionary Gaussian process may not have such a model.
With the success of these linear filtering results that werefiltering and estimation is described. The first studies of lin-

ear filtering or linear estimation for stochastic processes were developed particularly by Kalman (9) for discrete-time pro-
cesses and by Kalman-Bucy (10) for continuous-time pro-made by Kolmogorov (1,2), Krein (3,4) and Wiener (5). The

research of Kolmogorov and Krein and the research of Wiener cesses, an interest developed in trying to solve a filtering
problem where the signal is a solution to a nonlinear differen-were done independently. Kolmogorov, who was motivated by

Wold (6), gave a solution to the prediction problem for dis- tial equation with a white noise input. It is natural to call
such a problem a nonlinear filtering problem. The precise de-crete-time stochastic processes. Since Kolmogorov and Krein

were not motivated for their work by any specific applications, scription of such a problem required the introduction of a sig-
nificant amount of the modern theory of stochastic processes.the formulae for the optimum predictor did not play a special

role. However, Wiener was motivated for his work during The major technique for describing the signal process is the
theory of stochastic differential equations that was initiatedWorld War II by the analysis of anti-aircraft fire-control prob-

lems from ships. He solved the continuous-time linear predic- by K. Itô (11).
The Gaussian white noise processes that appear as inputstion problem and derived an explicit formula for the optimum

predictor. He also solved the filtering problem of estimating a in the nonlinear differential equations require more sophisti-
cated mathematical methods than do the inputs to linear dif-stochastic signal process that is corrupted by an additive

noise process. In this latter case Wiener expressed the solu- ferential equations. This occurs because the linear transfor-
mations of white noise have one natural interpretation buttion in terms of an integral equation, the Wiener–Hopf equa-

tion (7). Wiener had obtained this equation in his work on the nonlinear transformations of white noise have no single
natural interpretation.potential theory a number of years earlier. This relation al-

ludes to the probabilistic interpretation of potential theory us- Interestingly, it was Wiener (12) who first constructed the
basic sample path property of the integral of Gaussian whiteing Brownian motion (8). Wiener’s book (5) contains a number

of elementary, explicitly solvable examples. noise that is called the Wiener process or Brownian motion
and which provided the basis for the interpretations of nonlin-The sum of the signal process and the additive noise pro-

cess is called the observation process. The prediction problem ear transformations of white noise. Many important proper-
ties of Brownian motion were determined by P. Lévy (13). Theis to estimate the signal process at some future time usually
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solution of a stochastic differential equation (a nonlinear dif- Some methods from algebraic geometry have been used to
give necessary and sufficient conditions on the coefficients offerential equation with a white noise input) required the the-

ory of stochastic integrals (14), which depends on some mar- the stochastic equations for small state-space dimension, so
that the nonlinear filtering problem has finite-dimensionaltingale theory (15) associated with Brownian motion.

No one definition of stochastic integrals arises naturally filters.
Since the results for the existence of finite-dimensional fil-from the Riemann sum approximations to the stochastic inte-

gral. This phenomenon occurs because Brownian motion does ters for nonlinear filtering problems are generally negative,
many approximation methods have been developed for thenot have bounded variation. The definition of K. Itô (14) is

the most satisfying probabilistically because it preserves the numerical solution of the DMZ equation or the equations for
some associated conditional statistics. In their study of Wie-martingale property of Brownian motion and Wiener inte-

grals (stochastic integrals with deterministic integrands). ner space (the Banach space of continuous functions with the
uniform topology and the Wiener measure), Cameron andHowever, the calculus associated with the Itô definition of sto-

chastic integral is somewhat unusual. The Fisk–Stratonovich Martin (30) showed that any square integrable functional on
Wiener space could be represented as an infinite series ofdefinition of stochastic integral (16,17) preserves the usual

calculus properties, but the family of integrable functions is products of Hermite polynomials (Wick polynomials). K. Itô
(31) refined this expression by using an infinite series of mul-significantly smaller. An uncountable family of distinct defi-

nitions of stochastic integrals can be easily exhibited (18). tiple Wiener integrals. The relation between these two repre-
sentations is associated with including or excluding the diago-This choice or ambiguity in the definition of a stochastic inte-

gral has played an important role in nonlinear filtering be- nal in multiple integration. This relation carries over to
Stratonovich integrals, and the explicit relation betweencause initially some nonlinear filtering solutions were given

without specifying the interpretation or the definition of the these two stochastic integrals in this case is given by the Hu–
Meyer formula (32).stochastic integrals. This ambiguity often arose by a formal

passage to the limit from discrete time. For the solution of the linear filtering problem it was well
known from the early work that the observation process inIn general, to compute conditional statistics of the state

process given the observation process, it is necessary to com- the optimal filter appears with a linear transformation of the
estimate as a difference and that this difference is a processpute the conditional density of the state process given the ob-

servation process. For linear filtering the signal and the ob- that is white with respect to the observation process. Since a
family of square integrable zero mean random variables gen-servation processes are Gaussian, so the conditional density

is determined by the conditional mean and the conditional erates a vector space with an inner product that is the expec-
tation of a product of two of the random variables, the (linear)covariance. The conditional covariance is not random, so it

does not depend on the observation process. The conditional filtering problem can be posed as a projection problem in a
vector space (Hilbert space). The occurrence of a process thatmean can be shown to satisfy a stochastic differential equa-

tion that models the signal process and that has the observa- is white with respect to the observations is natural from a
Gram–Schmidt orthogonalization procedure and projections.tions as the input. These two conditional statistics (i.e., func-

tion of the observations are called sufficient conditional This process has been historically called the innovation pro-
cess (6). For Wiener filtering, this innovations approach wasstatistics (19) because the conditional density can be recov-

ered from them. For nonlinear filtering the solution does not introduced in the engineering literature by Bode and Shan-
non (6a). For linear filtering it is straightforward to verifysimplify so easily. In general there is no finite family of suffi-

cient conditional statistics for a nonlinear filtering problem. that the observation process and the innovation process are
‘‘equivalent’’ (that is, there is a bijection between them) byThe conditional density can be shown to satisfy a nonlinear

stochastic partial differential equation (20,21). This equation showing that a linear operator is invertible.
For nonlinear filtering there is still an innovation process.is especially difficult to solve because it is a stochastic partial

differential equaton and it is nonlinear. Even approximations It is more subtle to verify that the observation process and
the innovation process are equivalent (33). Thus the nonlin-are difficult to obtain. The conditional density can be ex-

pressed using Bayes formula (22,23), so that it has the same ear filtering solution has a vector space interpretation via or-
thogonalization and projections as for the linear filtering solu-form as the Bayes formula in elementary probability though

it requires function space integrals. The numerator in the tion. However, this is not surprising because in both cases
there is a family of (square integrable) random variables andBayes formula expression for the conditional density is called

the unnormalized conditional density. This unnormalized con- the conditional expectation is a projection operator. This oc-
currence of the innovation process can be obtained by an abso-ditional density satisfies a stochastic partial differential equa-

tion that is linear. It is called the Duncan–Mortensen–Zakai lute continuity of measures (34). In information theory, the
mutual information for a signal and a signal plus noise can(DMZ) equation of nonlinear filtering (24–26).

In nonlinear filtering, the question of finite dimensional be computed similarly (35).
The expression for the conditional probability or the condi-filters describes the problem of finding finite dimensional so-

lutions to the DMZ equation or to finite families of conditional tional density, given the past of the observations as a ratio of
expectations, has a natural interpretation as a Bayes formulastatistics. A basic approach to this question on the existence

or the nonexistence of finite-dimensional filters is the estima- (22,23) that naturally generalizes the well-known Bayes for-
mula of elementary probability.tion algebra (27,28,28a), which is a Lie algebra of differential

operators that is generated by the differential operators in The stochastic partial differential equations for the condi-
tional probability density or the unnormalized conditionalthe DMZ equation. Some families of nonlinear filtering prob-

lems have been given that exhibit finite-dimensional filters probability density are obtained by the change of variables
formula of K. Itô (36).(e.g., see Ref. 29).
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The fact that the sample paths of Brownian motion (the spectively. The following assumptions are made on the coeffi-
cients of the stochastic differential equations (1) and (2) thatformal integral of Gaussian white noise) do not have bounded

variation has important implications concerning ‘‘robustness’’ describe the signal or state process and the observation pro-
cess, respectively.questions. Wong and Zakai (37) showed that if Brownian mo-

tion in a stochastic differential equation is replaced by a se- The stochastic processes are defined on a fixed probability
space (�, F , P) with a filtration (F t, t � 0). Often the spacequence of piecewise smooth processes that converge (uni-

formly) to Brownian motion, then the corresponding sequence � can be realized as a family of continuous functions. The

-algebras are assumed to be complete with respect to theof solutions of the ordinary differential equations obtained

from the stochastic differential equation by replacing the probability measure P.
Brownian motion by the piecewise smooth processes do not
converge to the solution of the stochastic differential equation A1. The drift vector a(t, x) in Eq. (1) is continuous in t and
for many nonlinear stochastic differential equations. This re- globally Lipschitz continuous in x. The vector �a(t, x)
sult of Wong and Zakai has important implications for nonlin- is continuous in t and globally Lipschitz continuous
ear filtering. If nonlinear filters are constructed from time dis- in x.
cretizations of the processes and a formal passage to the limit A2. The diffusion matrix b(t, x) in Eq. (1) is Hölder contin-
is made, then it may not be clear about the interpretation of uous in t, globally Lipschitz continuous in x, and glob-
the resulting solution. This question is closely related to the ally bounded. The symmetric matrix c � bTb is strictly
choice of the definition of stochastic integrals and the unusual positive definite uniformly in (t, x). The terms
calculus that is associated with K. Itô’s definition. In the early
development of nonlinear filtering theory, solutions were
given that did not address the question of the definition of

∂ci j (t, x)

∂xi
,

∂2ci j (t, x)

∂xi∂xj
, i, j ∈ {1, . . ., n}

stochastic integrals. Generally speaking, formal passages to
the limit from time discretizations require the Stratonovich

are continuous in t, globally Lipschitz continuous indefinition of stochastic integrals because these integrals sat-
x, and globally bounded.isfy the usual properties of calculus.

A3. The drift vector h(t, x, y) and the diffusion matrix g(t,One classical example of the use of nonlinear filtering in
y) in Eq. (2) are continuous in x. The symmetric ma-communication theory is the analysis of the phase-lock loop
trix f � gTg is strictly positive definite uniformly inproblem. This problem arises in the extraction of the signal
(t, x); that is, �fx, x� � c�x�2, where c � 0.in frequency modulation (FM) transmission. The process that

is received by the demodulator is a sum of a frequency modu-
lated sinusoid and white Gaussian noise. The phase-lock de- The global Lipschitz conditions on the coefficients of the
modulator is a suboptimal nonlinear filter whose performance stochastic differential equations in the ‘‘space’’ variables x and
is often quite good and which is used extensively in FM radio y ensure the existence and the uniqueness of the strong (i.e.,
demodulation circuits. sample path) solutions of these equations. The additional

If the state of an nth-order linear stochastic system is re- smoothness properties are used to verify properties of the
constructed from samples of the output by well-known numer- transition density of the Markov process (X(t), Y(t), t � 0).
ical differentiation schemes, then even in the limit as the Since the soluton of Eq. (1) is ‘‘generated’’ by x0 and (B(t), t �
sampling becomes arbitrarily fine, well-known computations 0), the process (X(t), t � 0) is independent of the Brownian
such as quadratic variation do not converge to the desired motion (B̃(t), t � 0) and the process (Z(t), t � 0) where
results (8). This phenomenon did not occur for linear stochas-
tic differential equations in the approach in Ref. 37. dZ(t) = g(t, Z(t))dB̃(t) (3)

A transition probability measure or a transition probabil-NONLINEAR FILTERING PROBLEM
ity function for a Markov process is a function P(s, x; t, �) forFORMULATION AND MAIN RESULTS
s � [0, t), x � �d, and � � B�

d the Borel 
-algebra on �d that
satisfies the following:In this section a nonlinear filtering problem is formulated

mathematically and many of the main results of nonlinear
1. P(s, x; t, � ) is a probability measure on (�d, B�

d) for allfiltering are described.
s � [0, t).A basic nonlinear filtering problem is described by two sto-

chastic processes: (X(t), t � 0), which is called the signal or 2. P(s, � ; t, �) is B�
d-measurable for all s � [0, t) and � �

state process; and (Y(t), t � 0), which is called the observation B�d.
process. These two processes satisfy the following stochastic 3. If s � [0, t), u � t and � � B�

d, then
differential equations:

dX (t) = a(t, X (t)) dt + b(t,X (t)) dB(t) (1) P(s, x; u, 	) =
∫

P(t, y; u, 	)P(s,x; t, dy) (4)

dY (T ) = h(t,X (t),Y (t)) dt + g(t,Y (t)) dB̃(t) (2)
With the notion of transition probability measure (func-

tion), a Markov process can be defined.where t � 0, X(0) � x0, Y(0) � 0, X(t) � �n, Y(t) � �m, a:
�� � �n � �n, b: �� � �n � L (�n, �n), h: �� � �n � �m �
�m, g: �� � �m � L (�m, �m), (B(t), t � 0), and (B̃(t), t � 0) are Definition. Let P(s, x; t, � ) be a transition probability mea-

sure and � be a probability measure on (�d, B�
d). A probabilityindependent, standard Brownian motions in �n and �m, re-



FILTERING AND ESTIMATION, NONLINEAR 483

measure P on ((�d)�t, B(�d)�
t) is called a Markov process with where

transition function P(s, x; t, � ) and initial distribution � if

P(X (0) ∈ 	) = µ(	), 	 ∈ B
Rd

L =
∑

ai
∂

∂xi
+ 1

2

∑
ci j

∂2

∂xi∂xj
(10)

and for each s � [0, t) and � � B�
d In the filtering solution the formal adjoint of L, L*, appears;

that is,
P(x(t) ∈ 	|σ (X (u),0 ≤ u ≤ s)) = P(s, X (s); t, 	) (5)

The random variable X(t) is the evaluation of an element L∗ =
∑ ∂

∂xi
(ai·) + 1

2

∑ ∂2

∂xi∂xj
(ci j ·) (11)

on (�d)�t at t � ��. Usually the Markov process is identified
as (X(t), t � 0) and the Markov property (5) is described as The operator L is often called backward operator, and L* is

called the forward operator.P(X (t) ∈ 	|X (u),0 ≤ u ≤ s) = P(s, X (s); t, 	) (6)
The stochastic integrals that occur in the solution of Eq.

(1) are interpreted using the definition of K. Itô (14). For a
If P(s, x; t, � ) � P(t � s, x, � ), then the Markov process is said smooth integrand the integral is the limit of Riemann sums
to be (time) homogeneous. where the integrand is evaluated at the left endpoint assum-

If (X(t), t � 0) is a homogeneous Markov process, then ing that the integrand is suitably measurable. This definition
there is a semigroup of operators (Pt, t � 0) acting on the preserves the martingale property of Brownian motion.
bounded Borel measurable functions (39), which is given by Let (M(t), t � 0) be an Itô process or a semimartingale,

that is
(Ptψ)(x) = Ex[ψ(X (t))] =

∫
ψ(y)P(0,x; t, dy) (7)

dM(t) = α(t) dt + β(t) dB(t) (12)

Consider the restriction of (Pt, t � 0) to the bounded, continu- or
ous functions that vanish at infinity which is a Banach space
in the uniform topology. If (X(t), t � 0) is a Markov process dM(t) = dA(t) + dN(t) (13)
that is the solution of the stochastic differential equation

where (A(t), t �) is a process of bounded variation and (N(t),
dX (t) = a(X (t))dt + b(X (t))dB(t) t � 0) is a martingale. The Fisk–Stratonovich or Stratonovich

integral (16,17) of a suitable stochastic process (�(t), t � 0) is
where a( � ) and b( � ) satisfy a global Lipschitz condition, then denoted as
the semigroup (Pt, t � 0) has an infinitesimal generator that
is easily computed from Itô’s formula (36); that is, ∫ t

0
γ (s) ◦ dM(s) (14)

L f = lim
t↓0

Pt f − f
t

(8)
This integral is defined from the limit of finite sums that are
formed from partitions as in Riemann–Stieltjes integration

for where the function � is evaluated at the midpoint of each in-
terval formed from the partition. Recall that the Itô integral
is formed by evaluating the integrand at the left endpoint off ∈ D(L) =

{
f : lim

t↓0

Pt f − f
t

exists
}

each of the subintervals formed from the partition (40).
For the linear filtering problem of Gauss–Markov pro-

It is straightforward to verify that cesses it is elementary to show that the conditional probabil-
ity density is Gaussian so that only the conditional mean and
the conditional covariance have to be determined. Further-
more, the estimate of the state, given the observations that

L =
d∑

i=1

ai
∂

∂xi
+ 1

2

∑
ci j

∂2

∂xi∂xj
(9)

minimizes the variance, is the conditional mean. Thus one
approach to the nonlinear filtering problem is to obtain a sto-where c � bTb.
chastic equation for the conditional mean or for other condi-An analogous result holds if the Markov process is not ho-
tional statistics. The difficulty with this approach is that typi-mogeneous, so that
cally no finite family of equations for the conditional statistics
is closed; that is, any finite family of equations depends ondX (t) = a(t, X (t)) dt + b(t,X (t))dB(t)
other conditional statistics.

where the theory of two-parameter semigroups is used so that The conditional probability density of the state X(t), given
the observations (Y(u), 0 � u � t), is the density for the condi-
tional probability that represents all of the probabilistic infor-Ps,t f (x) = EX (s)=x[ f (X (t))]
mation about X(t) from the observations (Y(u), 0 � u � t). A

and conditional statistic can be computed by integrating the con-
ditional density with a suitable function of the state.

To obtain a useful expression for the conditional probabil-
ity measure, it is necessary to use a result for the absolute

dPs,t f
dt

= L f
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continuity of measures on the Borel 
-algebra of the space of A result for the absolute continuity of measures is given
that follows from the result of Girsanov (44). For conveniencecontinuous functions with the uniform topology. These results

center around the absolute continuity for Wiener measure, it is stated that �X � �V, though it easily follows that �XY �
�V�Z and in fact there is mutual absolute continuity.the measure for Brownian motion. The first systematic inves-

tigation of Wiener measure in this context was done by Cam-
Theorem. Let �V and �X be the probability measures on (�,eron and Martin (30), who initiated a calculus for Wiener
F ) for the process (V(t), t � [0, T]) and (X(t), t � [0, T]), re-measure. Subsequently, much work was done on general
spectively, that are solutions of Eqs. (18) and (1). Then �X isGaussian measures (e.g., see Ref. 41).
absolutely continuous with respect to �V, denoted �X � �V,For Wiener measure and some related measures, a more
andgeneral probabilistic approach was given by Skorokhod

(42,43) and Girsanov (44). The following result is a version of
Girsanov’s result. dµX

dµV
= ϕ(T )

Theorem. Let (�, F , P) be a probability space with a filtra-
where � is given by Eq. (19).tion (F t, t � [0, T]). Let (�(t), t � [0, T]) be an �n-valued

process that is adapted to (F t, t � [0, T]) and let (B(t), t � [0, Corollary. Let (V(t), t � [0, T]) satisfy (18) on (�, F , �V).
T]) be an �n-valued standard Brownian motion. Assume that Then

E[M(T )] = 1 (15)
B̂(t) = B(t) −

∫ t

s
b−1(s, B(s))a(s,B(s)) ds

where

is a Brownian motion on (�, F , �X).

It can be shown that the linear growth of the coefficients
M(t) = exp

[∫ t

0
〈ϕ(s), dB(s)〉 − 1

2

∫ t

0
|ϕ(s)|2 ds

]
(16)

ensures that there is absolute continuity, so that Eq. (15) is
Then the process (Y(t), t � [0, T]) given by satisfied (45).

The following result gives the conditional probability mea-
sure in function space (22,23).Y (t) = B(t) −

∫ t

0
ϕ(s) ds (17)

Proposition. For t � 0 the conditional probability measure
of X(t), given (Y(u), 0 � u � t), is given byis a standard Brownian motion for the probability P̃, where

dP̃ � M(T) dP.

Let �Z be the probability measure on the Borel 
-algebra
P(�, t | x0,Yu, 0 ≤ u ≤ t) = EµZ

[1�ϕtψt]

EµZ
[ϕtψt]

(21)

of �m-valued continuous functions for the process (Z(t), t � 0)
for � � 
(X(t)), the 
-algebra generated by X(t).that is the solution of Eq. (3). Let (V(t), t � 0) be the process

that is the solution of
The absolute continuity of measures and the associated

Radon–Nikodym derivatives are important objects even in el-
ementary probability and statistics. In this latter context

dV (t) = b(t,V (t)) dB(t)

V (0) = x0
(18)

there is usually a finite family of random variables that have
a joint density with respect to Lebesgue measure. The likeli-

Let �XY be the measure on the Borel 
-algebra of �n�m-valued hood function in statistical tests is an example of a computa-
continuous functions for the process (X(t), Y(t), t � 0) that tion of a Radon–Nikodym derivative.
satisfy Eqs. (1) and (2). It follows from Girsanov’s Theorem The conditional probability measure Eq. (21) is specialized
above that �XY � �V � �Z. The Radon–Nikodym derivative to the conditional probability distribution and a density is
�(t) � �(t)�(t) � E[d�XY/d(�V��Z) � F t] is given for this function. The conditional density is shown to

satisfy a stochastic partial differential equation (17, 20, 46).

Theorem. Let (X(t), Y(t), t � 0) be the processes that satisfy
Eqs. (1) and (2). If A1–A5 are satisfied, then

ϕ(t) = exp
[∫ t

0
〈c−1(s, X (s))a(s,X (s)), dX (s)〉

−1
2

∫ t

0
〈c−1(s, X (s))a(s,X (s)), a(s, X (s))〉 ds

] (19)

dp(t) = L∗ p + 〈 f −1(t,Y (t))(g(t) − ĝ(t)), dY (t) − ĝ(t)〉p(t)
(22)

where

p(t) = p(X (t), t | x0,Y (u),0 ≤ u ≤ t) (23)

ψ(t) = exp
[∫ t

0
〈 f −1(s,Y (s))g(s,X (s),Y (s)), dY (s)〉

−1
2

∫ t

0
〈 f −1(s,Y (s))g(s, X (s),Y (s)),g(s, X (s),Y (s))〉 ds

]
(20)

g(t) = g(t,X (t),Y (t)) (24)

To indicate the expectation with respect to one of the function
space measures, E is subscripted by the measure—for exam-
ple, E�X.

ĝ(t) = EµX
[ψ(t)g(t)]

EµX
[ψ(t)]

(25)
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Equation (22) is a nonlinear stochastic partial differential where pX is the transition density for the Markov process
(X(t), t � 0).equation. The nonlinearity occurs from the terms ĝ(t)p(t), and

the partial differential operator L* is the forward differential Assume that A1–A3 are satisfied. Then r satisfies the fol-
lowing linear stochastic partial differential equations:operator for the Markov process (X(t), t � 0).

Often only some conditional statistics of the state given the
observations are desired for the nonlinear filtering problem
solution. However, such equations are usually coupled to an

dr(X (t), t | x0,Y (u),0 ≤ u ≤ t)

= L∗r + 〈 f −1(t,Y (t))g(t,X (t),Y (t)), dY (t)〉r (32)
infinite family of conditional statistics. The following theorem
describes a result for conditional statistics (47,48). The normalization factor for r is

Theorem. Let (X(t), Y(t), t � 0) satisfy Eqs. (1) and (2). As- q(t) = EµX
[ψ(t)] (33)

sume that a(t, x) and b(t, x) in Eq. (1) are continuous in t and
globally Lipschitz continuous in x, h(t, x, y) is continuous in t so that
and globally Lipschitz continuous in x and y, and g(t, y) is
continuous in t and globally Lipschitz continuous in y and p(x, t | x0,Y (u),0 ≤ u ≤ t) = r(t)q−1(t)
f � gTg is strictly positive definite uniformly in (t, y). If � �
C2(�n, �) such that

It is elementary to obtain a stochastic equation for q�1(t)
using Itô’s formula; that is,

∫ T

0
E|γ (X (t))|2 dt < ∞ (26)

E
∫ T

0
|〈Dγ (X (t)),X (t)〉|2 dt < ∞ (27)

dq−1(t) = − q−2(t) dq(t)

+ q−3(t)〈 f −1(t)EµX
[ψ(t)g(t)],EµX

[ψ(t)g(t)]〉dt
(34)

E
∫ T

0
|〈D2γ (X (t))X (t),X (t)〉|2 dt < ∞ (28)

where

then the conditional expectation of �(X(t)), given the observa- dq(t) = 〈 f −1(t)ψ(t)g(t),dY (t)〉 (35)
tions (Y(u), u � t),

To apply algebro-geometric methods to the nonlinear fil-γ̂ (t) = E[γ (X (t)) | x0,Y (u),0 ≤ u ≤ t]
tering problem the following form of the DMZ equation is
usedsatisfies the stochastic equation

drt = [L∗ − (1/2)〈gt, gt〉]rt dt + rtg
T
t ◦ dY (t) (36)

Recall that the symbol � in Eq. (36) indicates the Stratonovich

dγ̂ (t) = Lγ (X (t))dt + 〈 f −1(t,Y (t))γ̂g(t, X (t),Y (t))

− γ̂ (X (t))ĝ(t, X (t),Y (t)),dY (t) − ĝ(t,X (t),Y (t))dt〉
(29)

integral. The reason that this form of the DMZ equation is
sometimes more useful is that it satisfies the usual rules ofwhere L is the backward differential operator for the Markov
calculus. Thus the Lie algebras can be computed in the sameprocess (X(t), t � 0) and �̂ is conditional expectation— for
way that would be used for smooth vector fields.example,

A more elementary nonlinear filtering problem than the
one for diffusion processes that is important for applications
is the case where the signal or state process is a finite-stateγ̂ (X (t)) = EµX

[γ (X (t))ψ(t)]

EµX
[ψ(t)]

(30)

Markov process (in continuous time). The finite-state space
for the process significantly reduces the mathematical diffi-The stochastic equation for the condition probability den-
culties. Let S � �s1, . . ., sn� be the state space for the finitesity is a nonlinear stochastic partial differential equation. The
state Markov process and p̃i(t) � P(X(t) � si) and p̃(t) �stochastic equation for a conditional statistic is typically cou-
[p̃1(t), . . ., p̃n(t)]T. It follows thatpled to an infinite famiily of such equations. The conditional

density is more useful because it represents all of the probabi-
listic information about the state given the observations, but

d
dt

p̃(t) = Ap̃(t) (37)
it is a nonlinear equation. If the so-called unnormalized condi-
tional density is used, then the stochastic partial differential where A is the intensity matrix or the transpose of the gener-
equation is linear. This unnormalized conditional density was ator of the Markov process (X(t), t � 0). The dependence of p̃
given by Duncan (24), Mortensen (25), and Zakai (26). The on the initial value X(0) has been suppressed for notational
equation is usually called the Duncan–Mortensen–Zakai convenience. By analogy with the DMZ equations (31) and
(DMZ) equation. (36) in this case for the finite-state Markov process (49) it

follows that the unnormalized conditional density �(t) satis-Theorem. Let (X(t), Y(t), t � 0) be the processes that are the
fiessolutions to Eqs. (1) and (2). Let r be given by

r(x, t | x0,Y (u),0 ≤ u ≤ t) = EµX
[ψ(t) | X (t) = x]pX (0,x0; t, x)

(31)
ρ(t) = ρ(0) +

∫ s

0
Aρ(s)ds +

∫ t

0
Bρ(s) dY (s) (38)
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or The system (41) and (42) is said to be observable under the
following condition: If x1, x2 � M and x1 � x2, then there is an
input (control) function u such that the outputs associated
with x1 and x2 are not identical.ρ(t) = ρ(0) +

∫ s

0
(A − (1/2)B2)ρ(s) ds +

∫ t

0
Bρ(s) ◦ dY (s)

(39)
By analogy to the structure theory of linear systems, there

is a ‘‘state-space’’ isomorphism theorem; that is, given twowhere B � diag(s1, . . ., sn) and �(t) � [�1(t), � , �n(t)]T. These
systems of the form (41) and (42) on two analytic manifoldsequations are a finite family of bilinear stochastic differential
such that the coefficients are complete analytic vector fields,equations for the unnormalized conditional probabilities. The
the systems are observable and dim L (x) is minimal, and theconditional expectation of the statistic �:S � �, denoted
two systems realize the same input–output map, then there�t(�), is
is an analytic map between the manifolds that preserves tra-
jectories (50). Associated with the equivalence of systems of
the form (41) and (42) there is a realization of such systemsπt (ϕ) =

∑n
i=1 ϕ(si)ρ

i(t)∑n
i=1 ρi(t)

(40)

that is observable and dim L (x) � n; that is, the Lie algebra
of vector fields evaluated at each point in the manifold hasA Lie algebra associated with the DMZ equation (36) plays
maximal dimension.a basic role in determining the existence or the nonexistence

In general, the DMZ equation (36) can be viewed as theof finite-dimensional filters for conditional statistics of the sig-
state equation of an infinite-dimensional system for �(t) withnal (or state) process. To introduce Lie algebras, its definition
the ‘‘input’’ function from the observation Y and the outputis given.
�t(�) (27,51). An investigation of the existence or the nonexis-
tence of a finite dimensional realization of the input–output

Definition. A Lie algebra V over a field k is a vector space map is the investigation of the existence of finite-dimen-
over k with a bilinear form [�]:V � V � V (the Lie bracket) sional filters.
that satisfies for v1, v2, v3 � V the following: A finite-dimensional (recursive) filter for �t(�) is a stochas-

tic equation
1. [v1, v2] � �[v2, v1],
2. [v1, [v2, v3]] � [v2, [v3, v1]] � [v3, [v1, v2]] � 0. dη(t) = a(η(t)) dt + b(η(t)) ◦ dY (s) (43)

πt (ϕ) = γ (η(t)) (44)
A Lie subalgebra of a Lie algebra V is a linear subspace of

V that is a Lie algebra. If I, a subalgebra of V, is an ideal of where �(t) � �n.
V, then the quotient algebra is V/I, a vector space with the The application of the Lie algebraic methods described
induced Lie bracket. A Lie algebra homomorphism �:V1 � V2 above and the use of nonlinear system theory presupposed a
of the Lie algebras V1 and V2 is a linear map that commutes finite-dimensional manifold. For the DMZ equation (36) the
with the bracket operations, �([u, v]) � [�(u), �(v)]. solution evolves in an infinite-dimensional manifold. Thus it

The algebro-geometric methods for the nonlinear filtering is necessary to be precise when translating these finite-di-
problem arose from the system theory for finite-dimensional, mensional algebro-geometric results to the DMZ equation. If
nonlinear, affine, deterministic control systems. Consider a this approach can be applied to the DMZ equation, then the
deterministic control system of the form questions of the existence or the nonexistence of finite-dimen-

sional stochastic equations for conditional statistics and the
equivalence of two nonlinear filtering problems can be re-
solved. Even for finite-state Markov processes it can be deter-

dx
dt

= f (x(t)) +
m∑

i=1

ui(t)gi(x(t)) (41)

mined if some conditional statistics are the solutions of sto-
chastic equations whose dimension is significantly smallerwhere x(t) � M, a smooth d-dimensional manifold. A control-
than the number of states of the Markov process (52).lability property has local significance in analogy to its global

For the DMZ equation (36) by analogy with the finite-di-significance for linear control systems.
mensional input–output systems (41) and (42), the Lie alge-
bra generated by the operators L* � (1/2)�h, h� and �h, � �Definition. The controllability Lie algebra of Eq. (41) is the
acting on smooth (C�) functions is called the estimation alge-Lie algebra L generated by �f , g1, . . ., gm�.L (x) is the linear
bra associated with Eqs. (41) and (42) (53,54,54a).space of vectors in TxM, the tangent space of M at x, spanned

To identify equivalent filtering problems it is important toby the vector fields of L at x. The dimension of L (x) has im-
investigate transformations that induce isomorphic estima-plication for the local reachable set starting at x � M.
tion algebras. A simple, important transformation is a changeAnother basic notion in system theory is observability.
of scale of the unnormalized conditional probability densityThis condition implies that different ‘‘states’’—that is, differ-
r( � ). Let �:�n � � be a strictly positive, smooth function andent points in M—can be distinguished using an appropriate
let r̃(t) � �r(t). This transformation acts on the generators ofcontrol.
the estimation algebra as

Definition. Consider the control system (41). Let h �
C�(M, �) give the observation as ηL∗η−1 − 1

2
〈h, h〉

y(t) = h(x(t)) (42) 〈ηgη−1, ·〉
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Thus the estimation algebras are formally isomorphic. Fur- It can be verified that the Lie algebra of the linear filtering
equations of Kalman and Bucy is isomorphic to the oscillatorthermore, a smooth homeomorphism of the state space in-

duces an estimation algebra that is formally isomorphic to the algebra.
A well-known example of a filtering problem given byinitial estimation algebra. The above two operations on the

estimation algebra have been called the estimation formal Benes̆ (29) has a finite-dimensional filter and it is closely re-
lated to the linear filtering problem. Consider the scalar fil-equivalence group (55).

If for some distribution of X(0) a conditional statistic, tering problem
�t(�), can be described by a minimal finite-dimensional (re-
cursive) filter of the form (43) and (44), then the Lie algebra dX (t) = f (X (t)) dt + dB(t) (49)

of this system should be a homomorphism of the estimation dY (t) = X (t)dt + dB̃(t) (50)
algebra for this filtering problem. This property has been
called the homomorphism principle for the filtering problem where f satisfies the differential equation
(56). This homomorphism principle can be a guide in the in-
vestigation of the existence of finite-dimensional filters.

A specific example of this homomorphism property occurs
d f
dx

+ f 2(x) = ax2 + bx + c

when the estimation algebra is one of the Weyl algebras. The
for some a, b, c � �. It is assumed that this Riccati equationWeyl algebra Wn is the algebra of polynomial differential op-
has a global solution, so that either a � 0 or a � b � 0 anderators over � with operators x1, . . ., xn, �/�x1, . . ., �/�xn.
c � 0. The unnormalized conditional density can be computedThe Lie bracket is the usual commutator for differential oper-
to verify that there is a ten-dimensional sufficient conditionalators. This Lie algebra has a one-dimensional center and the
statistic. However, Benes̆ (29) showed that a two-dimensionalquotient Wn/� is simple; that is, it contains no nontrivial ide-
filter provides a sufficient conditional statistic. The estima-als. For the estimation algebra these two properties imply
tion algebra L̃ for (49)–(50) is generated bythat if Wn is the estimation algebra for a filtering problem,

then either the unnormalized conditional density can be com-
puted by a finite-dimensional filter or no conditional statistic 1

2
∂2

∂x2 − ∂

∂x
f − 1

2
x2, x

can be computed by a finite-dimensional filter of the form (43)
and (44). More specifically, for n � 0 there are no nonconstant

and is four-dimensional and solvable. The estimation algebrahomomorphisms from Wn or Wn/� to the Lie algebra of smooth
L̂ for (47)–(48) arises for the algebra L̃ by letting f � 0. Tovector fields on a smooth manifold (57).
associate L̃ with the estimation algebra L̂ let F(x) � �x

f ,As an example of a Weyl algebra occurring as an estima-
�(x) � exp(�F(x)) and r̃(t, x) � �(x)r(t, x). Then the DMZ equa-tion algebra, consider
tion for (47) and (48) is transformed by the gauge transforma-
tion � asdX (t) = dB(t) (45)

dY (t) = X 3(t) dt + dB̃(t) (46) dr̃ =
(

1
2

∂2

∂x2 − 1
2

[(a + 1)x2 + bx + c]
)

r̃ + xr̃ ◦ dY (51)

It is straightforward to verify that the estimation algebra for
This has the same form as the DMZ equation for (49) andthis filtering problem is the Weyl algebra W1. The homomor-
(50). Thus the nonlinear filtering problem (49) and (50) is ob-phism principle that has been described can be verified in
tained from the linear filtering problem (47) and (48) by aprinciple for this estimation algebra to show that there are
gauge transformation of the conditional density. Variousno nontrivial conditional statistics that can be computed with
other examples of finite-dimensional filters are available (e.g.,finite-dimensional filters of the form (43) and (44) (58).
see Refs. 59–61).It is natural to consider the linear filtering problem using

Ocone (62) showed that for a scalar filtering problem withthe estimation algebra method. Consider the following scalar
the observation equation of the form (50) the two examplesmodel:
(47)–(48) and (49)–(50) are the only ones that give a finite-
dimensional estimation algebra. This result is given in thedX (t) = dB(t) (47)
following theorem.

dY (t) = X (t) dt + dB̃(t) (48)
Theorem. Let n � m � 1 in (49)–(50) and let g � 1 in the
observation equation (2). Then the dimension of the estima-The estimation algebra is a four-dimensional Lie algebra with
tion algebra is finite only if:the basis

1. h(x) � ax and1
2

∂2

∂x2 − 1
2

x2, x,
∂

∂x
, 1

d f
dx

+ f 2 = ax2 + bx + c
This algebra is called the oscillator algebra in physics (27,28).
The oscillator algebra is the semidirect product of � �1 and or
the Heisenberg algebra that is generated by 2. h(x) � ax2 � �x, a � 0 and

d f
dx

+ f 2(x) = −h2(x) + a(2ax + β)2 + b + c(2ax + β)−11
2

∂2

∂x2 − 1
2

x2, x, and
∂

∂x
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or and

d f
dx

+ f 2(x) = −h2(x) + ax2 + bx + c

Some multidimensional results are discussed in the section
entitled ‘‘Some Recent Areas of Nonlinear Filtering.’’

Another family of nonlinear filtering problems given by
Liptser and Shiryayev (63,64) that can be solved by the
Gaussian methods is the conditional linear models. Let (X(t),
Y(t), t � 0) satisfy

dR̃(t) =
[

B(t,Y )B(t,Y )∗ + A(t,Y )R̃(t) + R̃(t)A(t,Y )∗

+
∑

j

Gj (t,Y )R̃(t)Gj (t,Y )∗

− R̃(t)H(t,Y )∗H(t,Y )R̃(t)

]
dt

+
∑

j

[Gj (t,Y )R̃(t) + R̃(t)Gj(t,Y )∗] dY j (t)

(56)

where m̃(0) � m0 and R̃(0) � R0.

dX (t) = [A(t,Y )X (t) + a(t,Y )] dt + B(t,Y ) dB(t)

+
d∑

j=1

[Gj (t,Y )X (t) + gj (t,Y )] dY j (t)
(52)

dY (t) = [H(t,Y )X (t) + h(t,Y )] dt + dB̃(t) (53) SOME RECENT AREAS OF NONLINEAR FILTERING

where X(0) is a Gaussian random variable, Y(0) � 0. The ran-
A generalization of the filtering problem occurs when some or

dom variable X(t), given Y (t) � 
(Y(u), u � t), is conditionally
all of the processes take values in an infinite-dimensional

Gaussian. More precisely, it is assumed that (X(t), t � 0) is
space such as a Hilbert, Banach, or Fréchet space. A basic

an �n-valued (F t)-adapted process, (Y(t), t � 0) is an �m-val-
question is the existence of a probability measure on one of

ued (F t)-adapted process, (B(t), t � 0) and (B̃(t), t � 0) are
these infinite-dimensional spaces. For example, for the exis-

independent standard �n- and �m-valued Brownian motions,
tence of a zero mean Gaussian measure in a Hilbert space it

respectively, in the filtered probability space (�, F , (F t), P),
is necessary and sufficient that the covariance is nuclear

and X(0) is N(m0, R0). The functions A, a, B, Gj, gj, H, and h
(trace class). The usual Daniell–Kolmogorov construction of a

are defined on �� � C(��, �m) with values in a suitable Eu-
probability measure from a projective family of measures on

clidean space, and they are progressively measurable. The
finite-dimensional subspaces (finite dimensional distribu-

functions �A�2, �a�, �B�2, �Gj�2, �H�, and �h� are in L1
loc(��) for each

tions) does not guarantee a measurable space with a ‘‘nice’’ to-
y � C(��, �m). For each T � 0, E��1(T) � 1 where

pology.
However, in some cases in infinite-dimensional spaces it

is possible to use a cylindrical noise (e.g., the covariance of
the Gaussian process is the identify) and have it ‘‘regular-
ized’’ by the system so that the stochastic integral in the
variation of parameters formula is a nice process. To de-

�(T ) = exp

[∫ T

0
〈H(s,Y )X (t) + h(s,Y ), dY (s)〉

− 1
2

∫ T

0
|H(s,Y )X (s) + h(s,Y )|2 ds

] (54)

scribe this approach consider a semilinear stochastic differ-
ential equation

Haussmann and Pardoux (65) proved the following result.

Theorem. Consider the filtering problem (52) and (53). For sX (t) = −AX (t) dt + f (X (t))dt + Q1/2 dW (t) (57)

each T � 0 the conditional distribution of X(t), given Y (T) �

(Y(u), u � T), is Gaussian. where X(0), X(t) � H, a separable, infinite-dimensional Hil-

bert space, and (W(t), t � 0) is a standard cylindrical Wiener
Furthermore, if it is assumed that �a�, �gj�, �h�, �h� �gj�, �A�, process. A standard cylindrical Wiener process means that if

�B�, �Gj�2, �H�2�, �h� �Gj�, �gj� �H�, and �H(t, Y)X(t) � h(t, Y)� are in �1, �2 � H � H*, ��1, �2� � 0, and ��1, �1� � ��2, �2� � 1 where
L2([0, T] � �) for all T � ��, then the following result for the � � , � � is the inner product in H, then (��1, W(t)�, t � 0) and
conditional mean m̃(t) and the conditional covariance R(t) can (��2, W(t)�, t � 0) are independent standard Wiener processes.
be verified (65) If �A is the generator of an analytic semigroup (S(t), t � 0)

and S(r)Q1/2 is Hilbert–Schmidt for each r � 0 and
Theorem. Consider the filtering problem (52) and (53). The
conditional mean m̃(t) and the conditional covariance R̃(t) sat-
isfy the following equations:

∫ t

0
|S(r)Q1/2|2L2 (H ) dr < ∞ (58)

where � � �L2(H) is the norm for the Hilbert–Schmidt operators,
then the process (Z(t), t � 0) where

Z(t) =
∫ t

0
S(t − r)Q1/2 dW (r) (59)

is an H-valued process that has a version with continuous
sample paths. Thus, the solution of Eq. (57) with some suit-

dm̃(t) =
[

A(t,Y )m̃(t) + a(t,Y )

− R̃(t)H(t,Y )∗[H(t,Y )m̃(t) + h(t,Y )]

+
∑

j

Gj (t,Y )R̃(t)H j (t,Y )

]
dt

+
∑

j

[Gj (t,Y )m̃(t) + gj (t,Y ) + R̃(t)H j (t,Y )∗dY j (t)]

(55)
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able assumptions on f (66) can be given by the mild solution Assume that n � 4, where X(t) � �n and Y(t) � �. If E is the
(67) finite-dimensional estimation algebra of maximal rank, then

the drift term f must be a linear vector field plus a gradient
vector field and E is a real vector space of dimension 2n � 2.

Another basic question is to find necessary conditions for

X (t) = S(t)X (0) +
∫ t

0
S(t − r) f (X (r))dr

+
∫ t

0
S(t − r)Q1/2 dW (r)

(60)

finite-dimensional estimation algebras. It was conjectured by
Mitter (28) that the observation terms are polynomials of de-This semigroup approach can be used to model stochastic
gree at most one. An important result related to this conjec-partial differential equations arising from elliptic operators
ture is the following result of Ocone (62,78) that describesand delay-time ordinary differential equations. Some prob-
polynomials in the estimation algebra.lems of ergodic control and stochastic adaptive control are de-

scribed in Refs. 66 and 68.
For the stochastic partial differential equations it is natu- Theorem. Let E be a finite-dimensional estimation algebra.

ral to consider noise on the boundary of the domain or at dis- If � is a function in E , then � is a polynomial of degree at
crete points in the domain. Furthermore, signal processes can most two.
be considered to be on the boundary or at discrete points in
the domain. Some of the descriptions of these noise processes

The following result of Chen and Yau (79) verifies the Mit-can be found in Refs. 66 and 68.
ter conjecture for a large family of estimation algebras.For the nonlinear filtering problem it can be assumed that

the signal process is infinite-dimensional and that the obser-
vation process is finite-dimensional; or perhaps more interest- Theorem. If E is a finite-dimensional estimation algebra of
ingly it can be assumed that the signal process is finite-di- maximal rank, then the polynomials in the drift of the obser-
mensional, occurring at distinct points of the domain or the vation equation (6) are degree-one polynomials.
boundary, and that the observation process is infinite-dimen-
sional in the domain.

Two basic approaches to the problem of finite-dimensionalAnother nonlinear filtering formulation occurs when the
filters for nonlinear filtering problems are the Wei–Normanprocesses evolve on manifolds. This approach requires the
approach and the symmetry (or invariance) group approachtheory of stochastic integration in manifolds (69). Many well-
(e.g., see Ref. 80). Wei and Norman (81) provided a globalknown manifolds arise naturally in the modeling of physical
representation of a solution of a linear differential equationsystems such as spheres and positive definite matrices. To
as a product of exponentials. The Wei–Norman approach re-justify the conditional mean as the minimum variance esti-
quires an extension of the Wei–Norman results to semi-mate and to compare the estimate and the signal, it is useful
groups. This has been done by introducing some functionto model the signal process as evolving in a linear space or a
spaces or using some results for the solutions of partial differ-family of linear spaces. The observation process can evolve in
ential equations (82,83). This result is important for the con-a manifold and have the drift vector field depend on the signal
struction of finite-dimensional filters from finite dimensionalprocess, or the observation process can be the process in the
estimation algebras (e.g., see Refs. 82 and 83).base of a vector bundle; for example, the tangent bundle and

Recall the problem of the existence of finite-dimensionalthe signal can evolve in the fibers of the vector bundle (70,71).
filters for a linear filtering problem with a non-Gaussian ini-These formulations allow for some methods similar to filter-
tial condition. The question of finite-dimensional filters foring problems in linear spaces. An estimation problem in Lie

groups is solved in Ref. 72. The DMZ equation for a nonlinear nonlinear filtering problems can be formulated in different
filtering problem in a manifold is given in Ref. 73. A descrip- ways. In one formulation the probability law of the initial con-
tion of the stochastic calculus on manifolds with applications dition is fixed. It has been shown (82) that a necessary condi-
is given in Ref. 74. tion for a finite-dimensional filter is the existence of a nontriv-

The study of estimation algebras for nonlinear filtering ial homomorphism from the estimation algebra into the Lie
problems has been a recent active area for nonlinear filtering. algebra of vector fields on a manifold.
A number of questions naturally arise for estimation alge- Another formulation of the finite-dimensional filter prob-
bras. A fundamental question is the classification of finite- lem is the requirement that a filter exist for all Dirac mea-
dimensional estimation algebras. This classification would sures of the initial condition. It has been shown (82) that if a
clearly provide some important insight into the nonlinear fil- finite-dimensional filter has a regularity property with re-
tering problem. This classification has been done for finite- spect to initial conditions and dynamics, then the estimation
dimensional algebras of maximal rank that correspond to algebra is finite-dimensional.
state-space dimensions less than or equal to four (60,75–77). For linear filtering it is elementary to verify that minimiz-
The result is described in the following theorem. ing a quadratic form which is the negative of the formal expo-

nent in a likelihood function gives the solution of the linearTheorem. Consider the filtering problem described by the
filtering problem. By analogy, an approach to the nonlinearfollowing stochastic differential equations:
filtering problem based on minimizing a formal likelihood
function in function space was introduced in the 1960s
(84,85). This approach has been generalized and made rigor-

dX (t) = f (X (t)) dt + g(X (t))dV (t)

X (0) = x0
(61)

ous by Fleming and Mitter (86) by relating a filtering problem
to a stochastic control problem. This method uses a logarith-
mic transformation.

dY (t) = h(X (t))dt + dW (t)

Y (0) = 0
(62)
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For an example of this method of logarithmic transforma- probability zero often plays a more important role than the
Banach space of continuous functions that has probabilitytion consider the following linear parabolic partial differential

equation: one. This Hilbert space (or Sobolev space) alludes to the fact
that there are some natural relations between stochastic and
deterministic disturbances. In recent years the study of risk
sensitive control problems has occupied an important place in
stochastic control. Risk sensitive control problems (i.e., con-

pt = 1
2

tr a(x)pxx + 〈g(x, t), px〉 + V (x, t)p

p(x, 0) = p0(x)

(63)

trol problems with an exponential cost) have been used with
It is assumed that there is a C2,1 solution. If this solution is the maximum likelihood methods in (85,87d) to obtain robust
positive, then S � �log p satisfies the nonlinear parabolic nonlinear filters, that is, filters that are effective for square
equation: integrable disturbances as well as Gaussian white noise (87e).

These ideas are related to the approach of H control as a ro-
bust control approach. The robust nonlinear filter can be nat-St = 1

2
tr a(x)Sxx + H(x, t, Sx) (64)

urally related to a robust nonlinear observer. For a number
of problems there is a natural relation between estimation forS(x, 0) = −log p0(x) = S0(x) (65)
deterministic and stochastic systems. For example, a
weighted least squares algorithm can be used for the identifi-H(x, t, Sx) = 〈g(x, t), Sx〉 − 1

2
〈a(x), Sx, Sx〉 − V (x, t) (66)

cation of parameters for both deterministic and stochastic
systems.

This type of transformation is well known. For example, it Since it is usually not feasible to solve explicitly the sto-
transforms the heat equation (g � V � 0) into Burger’s chastic equation for the conditional mean or the conditional
equation. covariance for a nonlinear filtering problem it is important to

The nonlinear PDE (64) is the dynamic programming obtain lower and upper bounds on the filtering error. These
(Hamilton–Jacobi–Bellman) equation for a stochastic control bounds enable an effective comparison of the suboptimal fil-
problem. For example, let (X(t), t � 0) satisfy ters with the optimal filter. The bounds have typically been

obtained as the noise approaches zero (87f).
An important theoretical and practical problem in nonlin-

dX (t) = (g(X (t), t) + u(X (t), t)) dt + σ (X (t))dB(t)

X (0) = x
(67)

ear filtering is the infinite time stability or continuity of the
filter with respect to the initial conditions and the parameters

and let the cost functional be of the filter. The problem of stability of the optimal nonlinear
filter with respect to initial conditions is investigated in (87g)
for two different cases. Stability of the Riccati equation for
linear filtering is used to obtain almost sure asymptotic sta-

J(x, t, u) = Ex

[∫ t

0
L(X (s), t − s, u(s))ds + S0(X (t))

]
(68)

bility for linear filters with possible non-Gaussian initial con-
ditions. For signals that are ergodic diffusions it is shown thatwhere
the optimal filter is asymptotically stable in the sense of weak
convergence of measures for incorrect initial conditions. An-
other stability property that is important for the optimal filterL(x, t, u) = 1

2
〈a−1(x)u,u〉 − V (x, t) (69)

is asymptotic stability with respect to the parameters of the
filter.With suitable assumptions on the family of admissible con-

trols and conditions on the terms in the model it can be shown Another important question in nonlinear filtering is to de-
velop numerical methods for the DMZ equation. One numeri-from the Verification Theorem (87) that Eq. (63) is the dy-

namic programming equation for this stochastic control prob- cal approach to the solution of the DMZ equation is to con-
sider that it is a stochastic partial differential equation of alem. This approach can provide a rigorous basis for the formal

maximization of a likelihood function in function space. See special form and use numerical methods from PDE for the
numerical discretization of the problem (e.g., finite-differenceRef. 87a.

An approach to the robustness of the nonlinear filter schemes). There has been some success with this approach
(88–90), but it is limited to small space dimension and also(87b,87c) is to obtain a so-called pathwise solution to the Dun-

can–Mortensen–Zakai (DMZ) equation by expressing the so- often to the small intervals of time.
Another approach is to use the Wiener chaos expansionlution as an (observation) path dependent semigroup. The in-

finitesimal generator of this semigroup is the conjugation of that is based on an orthogonal expansion of a square integ-
rable functional on Wiener space (30,31,91). The solution, r,the generator of the signal process by the observation path

multiplied by the drift in the observation where the Strato- of the DMZ equation is expressed in the following expansion
(92):novich form of the DMZ equation is used. The fact that the

observation path appears explicitly rather than its differen-
tial implies the robustness of the solution of the DMZ
equation.

r(t, x) =
∑ 1√

α!
ϕα(t, x)ψα(y) (70)

It is important to obtain estimation methods that are ap-
plicable to both stochastic disturbances (noise) and determin- where �	 are Wick polynomials (special products of Hermite

polynomials) formed from Wiener integrals and �	 are Her-istic disturbances. For Brownian motion, a Hilbert (or Sobolev
space) of functions that are functions that are absolutely con- mite–Fourier coefficients in the orthogonal expansion. The

separation of x and y in the expansion (70) implies a splittingtinuous and whose derivatives are square integrable having



FILTERING AND ESTIMATION, NONLINEAR 491
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