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one may deduce the evolution of x. We will illustrate these
concepts for three different cases: (1) linear finite-dimensional
systems, (2) nonlinear systems, and (3) linear infinite dimen-
sional systems.

We remark that one could also study a more general type
of dynamic system, namely one given by implicit equations on
a set of abstract variables w:

f (σ nw, · · · , σw, w) = 0 (3)

Two examples are

w =
(

u
y

)
or w =


u

x
y




where u, x, and y are, as stated, the input, state, and output,
respectively. Let B denote the behavior of this system, that
is, the set of all time trajectories w which satisfy Eq. (3). This
leads to the so-called behavioral theory of dynamic systems
(1). Let w� and w� denote, respectively, the past and future
of a given trajectory with respect to some fixed time t0 (with
w restricted to t � t0 and t � t0). The system described by Eq.
(3) is said to be controllable, if for any w1, w2 belonging to B ,
any trajectory composed of the concatenation of (w1)� and
(w2)� belongs to B . This approach has actually been worked
out for the case where f is a linear and time-invariant func-
tion of its arguments. This provides a generalization of state
controllability for the case where states are not available, and
without distinguishing between inputs and outputs. It turns
out that this concept is indeed the generalization of the con-
cept of state controllability when Eq. (3) is Eq. (1). This will
be discussed briefly in a later section of this article.

CONTROLLABILITY AND OBSERVABILITY For reasons of brevity and space, the proofs of the various
results are omitted in the sections that follow. The interested

In this article, we will consider dynamic systems � described reader is referred to the original sources.
by a set of first order differential or difference equations, to-
gether with a set of algebraic equations:

LINEAR FINITE-DIMENSIONAL SYSTEMS

The system described by the state equations Eq. (1) is linear,
if f (x, u) � Fx � Gu:

σx = f (x, u) where (σx)(t) :=



d
dt

x(t), t ∈ R
x(t + 1), t ∈ Z

(1)

y = h(x, u) (2)
σx = Fx + Gu (4)

Here, u is the input or excitation function, and its values
where as in Eq. (1), � denotes the derivative operator for con-u(t) belong to a Euclidean space �m. The state at time t is
tinuous-time systems and the (backwards) shift operator forx(t) and, depending on the context, may belong to a finite or
discrete-time systems. The input u(t) and state x(t) of the sys-an infinite dimensional space. The output or measurement
tem at time t belong, respectively, to the input space U � �m

function y takes values y(t) � �p. When u(t) � 0, one inter-
and state space X � �n. Moreover,prets the equation �x � f (x, 0) as describing the evolution of

the system in the absence of inputs. Observe that, in contrast
G : U → X , F : X → Xto the classical study of dynamic systems, where inputs (or

forcing functions) are fixed, the object of control theory is to
are linear maps; the first is called the input map, while thestudy the effect of different input functions on the system �,
second describes the dynamics or internal evolution of thethat is, on the solutions of the difference or differential Eq.
system.(1).

The output Eq. (2), for both discrete- and continuous-timeIn the sequel questions of state controllability and state
linear systems, is composed of a set of linear algebraic equa-observability will be investigated. Roughly speaking, the for-
tionsmer questions have to do with the extent to which the choice

of u can influence the evolution of x, while the latter questions
y = Hx + Ju (5)are concerned with the extent to which by observing y and u
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where y(t) is the output (response) at time t, and belongs to then Eqs. (4) and (5) when expressed in terms of the new
state x̃, will becomethe output space Y � �p; furthermore:

H : X → Y, J : U → Y σ x̃ = TFT−1︸ ︷︷ ︸
F̃

x̃ + TG︸︷︷︸
G̃

u, y = HT−1︸ ︷︷ ︸
H̃

x̃ + Ju

are linear maps; H is called the output map. It describes how
the dynamics affect the output, while J describes how the in- where J remains unchanged. The corresponding triples are
put affects the output directly (i.e., without passing through called equivalent.
the state). For simplicity of exposition, we will assume that
the systems considered are time-invariant, that is to say, Remark. The material that follows was first introduced by
there is no explicit dependence of the system matrices on R. E. Kalman (2), (3); see also Refs. 4 and 5. For a more recent
time. Thus the term linear will be used in this section to de- treatment, we refer to the book by Sontag (6); see also Refs.
note a linear, time-invariant, continuous- or discrete-time sys- 7,8, and 9.
tem which is finite-dimensional. Linearity means: U, X, Y are
linear spaces, and F, G, H, J are linear maps; finite-dimen- The State Controllability Problem
sional means: U, X, Y are all finite dimensional; time-invari-

There are two fundamental concepts associated with the stateant means: F, G, H, J do not depend on time; their matrix
controllability problem: reachability and controllability.representations are constant n � n, n � m, p � n, p � m
These concepts allow us to answer questions concerning thematrices. We are now ready to give
extent to which the state of the system x can be manipulated
through the input u.

Definition 1. (a) A linear system in state space description We will first discuss the concept of state reachability for
is a quadruple of linear maps (matrices) linear systems. The related concept of controllability will also

be discussed. Both concepts involve only the state equations.
Consequently, for this subsection, H and J will be ignored.

∑
:=
(

F G
H J

)
, F ∈ Rn×n, G ∈ Rn×m, H ∈ Rp×n, J ∈ Rp×m

(6)
Definition 2. Given

The dimension of the system is defined as the dimension of
the associated state space:

∑ =
(

F G
)

dim
∑ = n (7)

F � �nxn, G � �nxm, a state x � X is reachable from the zero
state iff there exist an input function u(t) and a time T � �,(b) � is called (asymptotically) stable if the eigenvalues of F
such thathave negative real parts or lie strictly inside the unit disk,

depending on whether � is a continuous-time or a discrete- x = φ(u; 0;T )
time system.

The reachable subspace Xreach � X of � is the set which con-
Let 	(u; x0; t) denote the solution of the state Eq. (4), that tains all reachable states of �. We will call the system �

is, the state of the system at time t attained starting from the (completely) reachable iff Xreach � X. Furthermore
initial state x0 at time t0, under the influence of the input u.
For the continuous-time, time-invariant state equations, Rn(F,G) := [G FG F2G · · · Fn−1G] (11)

will be called the reachability matrix of �.
φ(u;x0; t) = eF (t−t0 )x0 +

∫ t

t0

eF (t−τ )Gu(τ ) dτ, t ≥ t0 (8)

A useful concept is that of the reachability grammian.
Complex conjugation and transposition will be denoted by *.while for the discrete-time state equations,

Definition 3. The finite reachability Grammian at time
t � � is defined as follows. For continuous-time systems:φ(u;x0; t) = Ft−t0 x0 +

t−1∑
j=t0

Ft−1− jGu( j), t ≥ t0 (9)

For both discrete- and continuous-time systems the output is
P (t) :=

∫ t

0
eFτ GG∗eF ∗ τ dτ, t > 0 (12)

given by:
while for discrete-time systems

y(t) = Hφ(u; x(0); t) + Ju(t)

= Hφ(0; x0; t) + Hφ(u;0; t) + Ju(t)
(10)

P (t) := Rt (F,G)R∗
t (F, G) =

t−1∑
k=0

FkGG∗(F∗)k, t > 0 (13)

If we transform the state under a linear change of coordi-
nates, the corresponding matrices describing the system will

We will make use of the following inputchange. In particular, if the new state is

x̃ := Tx, det T �= 0 wξ ,T (t) := G∗eF ∗ (T−t)ξ , ξ ∈ Rn , t, T ∈ R, 0 ≤ t ≤ T (14)
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for the continuous-time case, and Proposition 1. The reachability Grammians have the follow-
ing properties: (a) P (t) � P *(t) � 0, and (b) their columns
span the reachability subspace, that iswξ ,T (t) := G∗(F∗)T−tξ, ξ ∈ Rn , t, T ∈ Z, 0 ≤ t ≤ T (15)

for the discrete-time case. im P (t) = im Rn(F, G)

A concept which is closely related to reachability is that of
This relationship holds for continuous-time systems for allcontrollability. Here, instead of driving the zero state to a de-
t 
 0, and for discrete-time systems (at least for t � n).sired state, a given nonzero state is steered to the zero state.

More precisely we have:
Corollary 2

Definition 4. Given ∑ =
(

F G
)

∑ =
(

F G
)

is reachable if and only if P (t) is positive definite for some
t 
 0.a (nonzero) state x � X is controllable to the zero state if and

only if there exist an input function u(t) and a time T � �,
The energy � f � of the vector function f , defined on an inter-such that

val I � � or �, is defined as
φ(u; x; T ) = 0

The controllable subspace Xcontr of � is the set of all controlla- ‖ f‖2 := 〈 f, f 〉 :=
{∑

τ∈I
f ∗(τ ) f (τ ), t ∈ Z∫

τ∈I
f ∗(τ ) f (τ ) dτ, t ∈ R

ble states. The system � is (completely) controllable if and
only if Xcontr � X.

The input function w�,T defined by Eqs. (14) and (15) has the
following property:The fundamental result concerning reachability is the fol-

lowing
Proposition 2. Given the reachable state x � Xreach, let
û be any input function which reaches x at time T, that is,Theorem 1. Given
	(û; 0; T) � x. There exists � � �n satisfying:

x = P (T )ξ (17)
∑ =

(
F G

)
It follows that w�,T defined by Eqs. (14) and (15) reaches x atfor both the continuous- and discrete-time case, Xreach is a lin-
time T; moreover this is the minimum energy input whichear subspace of X, given by the formula
achieves this:

X reach = im Rn(F, G) (16) ‖û‖ ≥ ‖wξ ,T‖ (18)

where imR n denotes the image (span of the columns) of R n.
The minimum energy required to reach the state x at time T
is equal to the energy of the input function w�,T. If the systemCorollary 1. (a) FXreach � Xreach. (b) � is (completely) reach-
is reachable this energy is equal to:able if, and only if, rank R n(F, G) � n. (c) Reachability is

basis independent. ‖wξ ,T‖ =
√

x∗P (T )−1x (19)

In general, reachability is an analytic concept. The previ-
ous theorem, however, shows that for linear, finite-dimen-

From the previous considerations the length of timesional, time-invariant systems, reachability reduces to an al-
needed to reach a given reachable state can be derived.gebraic concept depending only on properties of F, G and in

particular on the rank of the reachability matrix R n(F, G),
Proposition 3. Given isbut independent of time and the input function. It is also

worthwhile to note that Eq. (16) is valid for both continuous-
and discrete-time systems. This, together with a similar re-
sult on observability [see Eq. (23)], has as a consequence the

∑ =
(

F G
)

fact that many tools for studying linear systems are algebraic.
(a) For discrete-time systems, every reachable state can beIt should be noticed however that the physical significance of
reached in at most n time-steps. (b) For continuous-time sys-F and G is different for the discrete- and continuous-time
tems, every reachable state can be reached in any arbitrarycases; if for instance we discretize the continuous-time system
positive length of time.

The second part of the proposition shows that ideally, in
continuous-time linear systems, every reachable state can be

d
dt

x(t) = Fcontx(t) + Gcontu(t), to

x(t + 1) = Fdiscrx(t) + Gdiscru(t)
reached arbitrarily fast. In a practical situation, the extent to
which this is not possible gives a measure of how significantthen Fdiscr � eFcont.
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the nonlinearities of the system are. We conclude this subsec- ability of x1 implies the existence of u1, T1 such that x1 �
	(u1; 0; T1). The function u12 is then the concatenation of u2tion by stating a result on various equivalent conditions for

reachability. with u1, while T12 � T1 � T2. In general, if x1, x2 are not reach-
able, there is a trajectory passing through the two points if,
and only if,Theorem 2 Reachability Conditions. The following are

equivalent:
x2 − f (F, T )x1 ∈ X reach, for some T,

1.
where f (F, T) � eFT for continuous-time systems and f (F,
T) � FT for discrete-time systems. This shows that if we start
from a reachable state x1 � 0 the states that can be attained

∑ =
(

F G
)

are also within the reachable subspace.
F � �nxn, G � �n�m is reachable.

The State Observation Problem2. The rank of the reachability matrix is full: rank R n(F,
G) � n. In order to be able to modify the dynamics of a system, very

often the state x needs to be available. Typically however the3. The reachability Grammian is positive definite, that is,
state variables are inaccessible and only certain linear combi-P (t) 
 0, for some t 
 0.
nations y, given by the output Eqs. (5), are known. Thus, the4. No left eigenvector v* of F is in the left kernel of G:
problem of reconstructing the state x(T) from observations
y(�), where � is in some appropriate interval, arises. If � �v∗F = λv∗ ⇒ v∗G �= 0
[T, T � t], we have the state observation problem, while if
� � [T � t, T] we have the state reconstruction problem.5. rank(�In � F G) � n, for all � � �

We will first discuss the observation problem. Without loss6. The polynomial matrices sI � F and G are left coprime.
of generality we will assume that T � 0. Recall Eqs. (8), (9),
and (10). Since the input u is known, the latter two terms inThe fourth and fifth conditions in this theorem are known
Eq. (10) are also known. Therefore, in determining x(0) weas the PHB or Popov–Hautus–Belevich tests for reachability.
may assume without loss of generality that u( 
 ) � 0. Thus,The equivalence of the fifth and sixth conditions is a straight-
the observation problem reduces to the following: givenforward consequence of the theory of polynomial matrices; it
H	(0; x(0); t) for t � 0 or t � 0, find x(0). Since G and J arewill not be discussed in this article.
irrelevant, for this subsection

Remark. Reachability is a generic property. This means in-
tuitively that almost every n � n, n � m pair of matrices F,

∑ =
(

F
H

)
, F ∈ Rn×m , H ∈ Rpxn

G satisfies

Definition 5. A state x � X is unobservable iff y(t) � H	(0;rank Rn(F,G) = n
x; t) � 0, for all t � 0, that is, iff x is indistinguishable from
the zero state for all t � 0. The unobservable subspace Xunobs

Put in a different way, in the space of all n � n, n � m pairs
of X is the set of all unobservable states of �. � is (com-of matrices, the unreachable pairs form a hypersurface of
pletely) observable iff Xunobs � 0. The observability matrix ofmeasure zero. � is

The next theorem shows that for continuous-time systems,
the concepts of reachability and controllability are equivalent
while for discrete-time systems the latter is weaker. This is
easily seen by considering the system with state equation:
x(t � 1) � 0. Clearly, for this system all states are controlla-
ble, while none is reachable. Often for this reason, only the
notion of reachability is used.

On(H, F ) :=




H
HF
HF2

...
HFn−1




(20)

Theorem 3. Given is
Definition 6. Let∑ =

(
F G

) ∑ =
(

F
H

)
(a) For continuous-time systems Xcontr � Xreach. (b) For discrete-

The finite observability Grammians at time t � � are:time systems Xreach. � Xcontr; in particular Xcontr � Xreach �
ker Fn.

Q(t) :=
∫ t

0
eF ∗ τ H∗HeFτ dτ, t > 0 (21)

Remark. It follows from the previous results that for any
two states x1, x2 � Xreach there exist u12, T12 such that x1 � Q(t) := O ∗

t (H, F )Ot (H, F ), t > 0 (22)
	(u12; x2; T12). Since x2 is reachable it is also controllable; thus
there exist u2, T2 such that 	(u2; x2; T2) � 0. Finally, the reach- for continuous- and discrete-time systems, respectively.
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Definition 7. A state x � X is unreconstructible iff y(t) � (a) For t � �, Xunrecon � Xunobs. (b) For t � �, Xunrecon � Xunobs, in
particular, Xunrecon � Xunobs � im Fn.H	(0; x; t) � 0, for all t � 0, that is, iff x is indistinguishable

from the zero state for all t � 0. The unreconstructible sub-
The Duality Principle in Linear Systemsspace Xunrecon of X is the set of all unreconstructible states of

�. � is (completely) reconstructible iff Xunrecon � 0. The dual of a linear system

We are now ready to state the main theorem ∑ =
(

F G
H J

)
Theorem 4. Given

is defined as follows. Let U*, X*, Y* be the dual spaces of the
input U, state X, output Y spaces of �. Let∑ =

(
F
H

)
F∗ : X ∗ → X ∗, G∗ : X ∗ → U∗, H∗ : Y ∗ → X ∗, J∗ : Y ∗ → U∗

for both continuous- and discrete-time systems, Xunobs is a lin-
be the dual maps to F, G, H, J. The dual system �* of � isear subspace of X given by

X unobs = ker On(H, F ) = {x ∈ X : HFi−1x = 0, i > 0} (23)
∑∗ :=

(
F∗ H∗
G∗ J∗

)
∈ R(n+m)×(n+p) (25)

that is, the input map is given by H*, the output map by G*,
As an immediate consequence of the last formula we have and the dynamics are given by F*. Correspondingly the input,

state, and output spaces of �* are Y*, X*, U*. The matrix
Corollary 3. (a) The unobservable subspace Xunobs is F-invari- representations of F*, H*, G*, J* are the complex conjugate
ant. (b) � is observable iff, rank O n(H, F) � n. (c) Observabil- transposes of F, H, G, J, respectively, computed in appro-
ity is basis independent. priate dual bases. One may think of the dual system �* as

the system � where the role of the inputs and the outputs
Remark. Given y(t), t � 0, let Y0 denote the following np � has been interchanged, or the flow of causality has been re-
1 vector: versed. The main result is the duality principle.

Theorem 5. The orthogonal complement of the reachable
subspace of � is equal to the unobservable subspace of its

Y0 := (y∗(0) y∗(1) · · · y∗(n − 1))∗, t ∈ Z
Y0 := (y∗(0) Dy∗(0) · · · Dn−1y∗(0))∗, t ∈ R

dual �*:

where D :� d/dt. The observability problem reduces to the
(X reach∑ )⊥ = X unobs∑∗

solution of the linear set of equations

On(H, F )x(0) = Y0 Corollary 4. The system � is reachable iff its dual �* is ob-
servable.

This set of equations is solvable for all initial conditions x(0),
that is, it has a unique solution iff, � is observable. Other- It can also be shown that controllability and reconstructi-
wise x(0) can only be determined modulo Xunobs, that is, up to bility are dual concepts. We conclude this subsection by stat-
an arbitrary linear combination of unobservable states. ing the dual to theorem 2.

It readily follows that ker Q (t) � ker O n(H, F). As in the Theorem 6. Observability conditions. The following are
case of reachability, this relationship holds for continuous- equivalent:
time systems for t 
 0 and for discrete-time systems, at least

1.for t � n. The energy of the output function y at time T, gener-
ated from the initial state x will be denoted by �y�. In terms
of the observability Grammian this energy can be expressed

∑ =
(

F
H

)
as

H � �p�n, F � �n�n is observable.
2. The rank of the observability matrix is full: rank‖y‖ =

√
x∗Q(T )x (24)

O n(H, F) � n.
3. The observability Grammian is positive definite Q (t) 
We now briefly turn our attention to the reconstructibility

0, for some t 
 0.problem. The main result which follows shows that while for
continuous-time systems the concepts of observability and re- 4. No right eigenvector v of F is in the right kernel of H:
constructibility are equivalent, for discrete-time systems the
latter is weaker. For this reason, the concept of observability Fv = λv ⇒ Hv �= 0
is used most of the time.

5.
Proposition 4. Given is rank

(
µIn − F

H

)
= n

for all � � �

∑ =
(

F
H

)
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6. The polynomial matrices sI � F and H are right co- Lemma 2 Observable canonical decomposition. Given is
prime. ∑ =

(
F
H

)
Canonical Forms

There exists a basis in X such that F, H have the followingA nonreachable system can be decomposed in a canonical way
matrix representationsinto two subsystems; one whose states are all reachable and

a second whose states are all unreachable. The precise result
is stated next.

Lemma 1. Reachable canonical decomposition. Given is

(
F
H

)
=

 Fo Foo

0 Fo
0 Ho




where∑ =
(

F G
)

There exists a basis in X such that F, G have the following

∑
o =

(
Fo
Ho

)
matrix representations:

is observable.

The reachable and observable canonical decompositions
given in lemmas 1 and 2 can be combined to obtain the follow-

(
F G

)
=

 Fr Frr Gr

0 Fr 0


 (26)

ing decomposition of the triple (H, F, G):

where the subsystem
Lemma 3. Reachable-observable canonical decomposition.
Given∑

r :=
(

Fr Gr
)

∑ =
(

F G
H

)
is reachable.

there exists a basis in X such that F, G, and H have the fol-
Thus every system lowing matrix representations

∑ =
(

F G
)

can be decomposed in a subsystem

∑ =
(

F G
H

)
=




Fro F12 F13 F14 Gro
0 Fro 0 F24 Gro

0 0 Fro F34 0
0 0 0 Fro 0
0 Hro 0 Hro


 (27)

∑
r =

(
Fr Gr

)
where the triple

which is reachable, and in a subsystem ∑
ro :=

(
Fro Gro
Hro

)
∑

r =
(

Fr 0
)

is both reachable and observable.

which is completely unreachable, that is, it cannot be influ- A concept related to, but weaker than reachability, is that
enced by outside forces. The interaction between �r and �r is of stabilizability. Its dual is detectability.
given by Frr. Since Frr � 0, it follows that the unreachable
subsystem �r influences the reachable subsystem �r but not Definition 8. The pair
vice versa. It should be noticed that although the direct com-
plement X� of Xreach is not unique, the form of the reachable
decomposition of Eq. (26) is unique.

(
F G

)
Since by duality

is stabilizable iff in the reachable canonical decomposition,
Fr is stable, that is, all its eigenvalues have either negative
real parts or are inside the unit disk, depending on whether

(
F G

)
we are dealing with continuous- or discrete-time systems.

is reachable if, and only if, (
F
H

)(
F∗
G∗

)
is detectable iff in the observable canonical decomposition, Fo

is stable.is observable, we obtain the following results.
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The Infinite Grammians and is equal to:

Consider a continuous-time linear system
E 2

o = x∗Qx (34)

We summarize these results in the following proposition
∑

c =
(

F G
H

)
which is important in the theory of balanced representations
and Hankel-norm model reduction.

which is stable, that is, all eigenvalues of F have negative
real parts. In this case both Eqs. (12) as well as (21) are de- Lemma 4. Let P and Q denote the infinite grammians of a
fined for t � �; linear stable system.

(a) The minimal energy required to steer the state of theP :=
∫ ∞

0
eFτ GG∗eF ∗ τ dτ, Q :=

∫ ∞

0
eF ∗ τ H∗HeF τ dτ (28)

system from 0 to x is given by Eq. (33).
(b) The maximal energy produced by observing the outputP , Q are the infinite reachability and infinite observability

of the system whose initial state is x is given by Eq.grammians associated with �c. These grammians satisfy the
(34).following linear matrix equations, called Lyapunov equations.

(c) The states which are difficult to reach, that is, require
large amounts of energy, are in the span of those eigen-Proposition 5. Given the stable, continuous-time system �c
vectors of P which correspond to large eigenvalues.as stated, the associated infinite grammians P , Q satisfy the
Furthermore, the states which are difficult to observe,continuous-time Lyapunov equations
that is, produce small observation energy, are in the
span of those eigenvectors of Q which correspond toFP + P F∗ + GG∗ = 0, F∗Q + QF + H∗H = 0 (29)
small eigenvalues.

(d) The eigenvalues of the product of the reachability and
If the discrete-time system of the observability grammians are input-output in-

variants called Hankel singular values of �.

Controllability in the Behavioral Framework

∑
d =

(
F G
H

)

A dynamical system in the classical framework is a mappingis stable, that is, all eigenvalues of F are inside the unit disk,
which transforms inputs u into outputs y. In many cases how-the grammian Eqs. (13) as well as (22) are defined for t � �
ever, the distinction between inputs and outputs is not a pri-
ori clear. Consider for example the RLC (Resistor–Inductor–
Capacitor) network presented in the next section, and

P :=
∑
t>0

Ft−1GG∗(F∗ )t−1, Q :=
∑
t>0

(F∗)t−1H∗HFt−1 (30)

suppose that we are interested in the relationship between
the current through the resistor RC and the voltage across theNotice that P can be written as P � GG* � FP F*; moreover
capacitor C. Is the voltage causing the current or vice versa?Q � H*H � F*Q F. These are the so-called discrete Lyapunov
Other than the often encountered inherent difficulty in distin-or Stein equations:
guishing between inputs and outputs, it is desirable to have
a framework in which the different representations of a givenProposition 6. Given the stable, discrete-time system �d as
system (for example: input-output and input-state-output) arestated, the associated infinite grammians P , Q satisfy the
treated in a unified way.discrete-time Lyapunov equations

The need for a framework at a more abstract level than
is provided by the input–output framework gave rise to theFP F∗ + GG∗ = P , F∗QF + H∗H = Q (31)
behavioral framework. For a tutorial account see Refs. (1) and
(10). The variables considered are the external or manifest
variables w and (possibly) a second set of variables, the so-Recall Eqs. (18), (19), and (24), valid for both discrete- and
called latent variables a. The manifest variables consist of ucontinuous-time systems. From the definition of the grammi-
and y, without distinguishing between them. In the behav-ans follows that:
ioral theory, a dynamical system is defined as a collection B

of trajectories w. This set B , called the behavior of the sys-P (t2) ≥ P (t1), Q(t2) ≥ Q(t1), t2 ≥ t1 (32)
tem, is the primary object of study for system and control the-
oretic issues.irrespective of whether we are dealing with discrete- or con-

In this section we will provide an overview of controllabil-tinuous-time systems. Hence from Eq. (19) it follows that the
ity in the behavioral framework. For further details andminimal energy Er, required for the transfer of state 0 to x, is
proofs, see Polderman and Willems (1).obtained as the alloted time T tends to infinity. Assuming

The trajectories w composing the behavior B are most of-reachability, this minimal energy is:
ten represented as solutions of appropriate equations, called
behavioral equations; these are equations providing relation-E 2

r = x∗P −1x (33)
ships between w and �w, where � is defined by Eq. (1). The
most important type of such equations are the annihilatingSimilarly, the largest observation energy Eo, produced by the

state x is also obtained for an infinite observation interval, behavioral equations. An important special case of such be-
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havioral equations are: state variable (SV) equations; SV
equations, in addition to w, make use of the latent variables www(t) =

{
www1(t) for t < 0

www2(t) for t > t ′
a � x, which can be assigned the property of state, and are
called state variables. Another is the input–output equation

In terms of annihilating behavioral equation representationsrepresentation, which thus appears as a special case of a more
such as Eq. (35), the corresponding system is controllable if,general system representation.

For linear, time-invariant systems, annihilating behav- and only if, the rank of the (constant) matrix
ioral equations representing � have the following form. Let
�[s] denote the ring of polynomials in the indeterminate s rank [R(λ) −M(λ)] = constant, ∀λ ∈ C (36)
with coefficients in �, and �n1�n2[s] denote the n1 � n2 polyno-
mial matrices. The resulting equation has the form: From this follows the condition for controllability of the SV

and input/output models. There holds, respectively:
R(σ )w = M(σ )a, R ∈ Rp×q[s], M ∈ Rp×r[s] (35)

It relates
rank [µI − F G] = constant = n,

rank [N(µ) D(µ)] = constant = p, ∀µ ∈ C

Notice that the first condition stated here is the same as con-

(
w
a

)
∈ B

dition 5 of theorem 2. Thus the behavioral definition of con-
trollability provides a generalization of the classic concept.

to its shifts or derivatives. This equation can be written ex- Furthermore the second condition provides a way of defining
plicitly in terms of the coefficient matrices of R and M. Let controllability without the definition of state.

ExamplesR(s) :=
�1∑

i=0

Ris
i, Ri ∈ Rp×q, M(s) :=

�2∑
i=0

Mis
i, Mi ∈ Rp×r

1. The previous issues are illustrated by means of two ex-
amples. First, consider an RLC circuit composed of theEquation (35) becomes:
parallel connection of two branches: the first branch is
composed of an inductor L in series with a resistor RL;
the second is composed of a capacitor C in series with a
resistor RC. The driving force u is a voltage source ap-

�1∑
i=0

Ri(σ
iw)(t) =

�2∑
i=0

Mi(σ
ia)(t)

plied to the two branches. Let the state variables x1, x2

be the current through the inductor, the voltage acrossSince the differential or difference operator [R(�) �M(�)]
annihilates all trajectories the capacitor respectively. The state equations are

(
w
a

)
∈ B

Eq. (35) is referred to as an annihilating behavioral equation.
The special case of SV Eq. (4) is described by w � u, a � x,
R(�) � G and M(s) � �I � F; while that of input/output equa-
tions is described by

d
dt

x1 = −RL

L
x1 + 1

L
u

d
dt

x2 = − 1
RCC

x2 + 1
RCC

u


⇒ F =




− RL

L
0

0 − 1
RCC




G =




1
L
1

RCC




w =
(

u
y

)
Since this is a continuous-time system, reachability and
controllability are equivalent notions. The reachability

a is nonexistent, and R(�) � [N(�) �D(�)], where D is a matrix is
square, nonsingular polynomial matrix of size p.

A further important aspect at which the behavioral formal-
ism departs from, and generalizes, the classical formalism is
that related to controllability; controllability becomes namely
an attribute of the system (i.e., of a collection of trajectories)
as opposed to an attribute of a system representation (i.e., of

R2 = [G FG] =




1
L

−RL

L2

1
RCC

− 1
R2

CC2




equations generating these trajectories).
Roughly speaking, a system is controllable if its behavior Thus, reachability of this system is equivalent with the

has the property: whatever the past history (trajectory), it can nonsingularity of R2, that is,
always be steered to any desired future trajectory. More pre-
cisely, a dynamical system with behavior B is said to be con-
trollable, if for any w1, w2 � B , there exists a t� 
 0 and a
w � B such that

det R2 = 1
RCCL

(
RL

L
− 1

RCC

)
�= 0
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It readily follows that the reachability Grammian is Controllability: Continuous-Time

In continuous time, we consider systems of differential equa-
tions of the following general form:

d
dt

x(t) = f (x(t), u(t)) (37)

where f : �n � �m � �n is a vector function which specifies,
for the current state variables x(t) � �n and the current val-
ues of the control variables u(t) � �m, the direction of instan-

P (T ) =




g2
1

2τL
(1 − e−2τLT )

g1g2

τL + τC
(1 − e−(τL+τC )T )

g1g2

τL + τC
(1 − e−(τL+τC )T )

g2
2

2τC
(1 − e−2τCT )




taneous movement. For each fixed vector u � �m, f ( 
 , u) is
thought of as a vector field. Linear (time-invariant) systemswhere
are a particular case, namely those systems for which f is a
linear map,

τL = RL

L
, τC = 1

RCC
, g1 = 1

L
, g2 = τC

f (x, u) = Fx + Gu
Hence the infinite reachability grammian is

for some matrices F of size n � n and some matrix G of size
n � m.

An Example. A simplified model of a front-wheel drive auto-
P =




g2
1

2τL

g1g2

τL + τC
g1g2

τL + τC

g2
2

2τC




mobile uses a four-dimensional state space. The coordinates
of the state

and it can be verified that FP � P F* � GG* � 0.
Assume now that the variable observed y is the sum

of the voltages across the capacitor and across the resis-
tor RL:

y = RLx1 + x2 ⇒ H = [RL 1]

x =




x1

x2

x3

x4


 =




x1

x2

ϕ

θ




The observability matrix is
denote, respectively, the position of the center of the front
axle (coordinates (x1, x2)), the orientation of the car (angle �,
measured counterclockwise from the positive x-axis), and the
angle of the front wheels relative to the orientation of the car
(�, also counterclockwise); see Figure 1.

O2 =


 RL 1

−R2
L

L
− 1

RCC


⇒ det O2 = RLRCLC det R2

As controls, we take two-dimensional vectors u � col (u1,
u2), whose coordinates are proportional to the steering wheelThus reachability and observability are lost simultane-
velocity (u1) and the engine speed (u2) at each instant. Thus,ously. If this happens, then one can reach any given
a control u2(t) � 0 corresponds to a pure steering move, whilestate x1 and x2 � L/RL x1; while only the linear combina-
one with u1(t) � 0 models a pure driving move in which thetion RLx1 � x2 can be deduced, but not x1 or x2 individu-
steering wheel is fixed in one position. In general, a control isally.
a function u(t) which indicates, at each time t, the current2. Consider the system given in input/output form by the
steering velocity and engine speed.equation

Using elementary trigonometry, the following equations
are obtained (choosing units so that the distance between thed

dt
y = d

dt
u, u(t), y(t) ∈ R

We will show that this system is not controllable.
This equation can be rewritten as d/dt v � 0, where

v � y � u. All trajectories composing the behavior of
this system are constants. But a trajectory defined by
v(t) � c1, t � T, and v(t) � c2, t � T, c1 � c2, does not
belong to the behavior, as its derivative is not zero.
Hence, since the trajectories of this system are not con-
catenable, the conclusion follows.

NONLINEAR FINITE-DIMENSIONAL SYSTEMS

θ

(x1,x2)

x2

x1
We turn attention now to nonlinear systems. Both continu-
ous- and discrete-time systems will be discussed. Figure 1. Four-dimensional car model.
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front and rear axles is unity): ample, consider the system with equation d/dt x � u2 (having
dimension n � 1 and input space also of dimension m � 1).
Take any initial state � (for instance, � � 0). Clearly, R (�) �
[�, ��) [because d/dt x(t) � 0, no matter which control func-
tion is applied]. Thus the system is accessible from every
state. Observe that, as illustrated by this example, accessibil-

d
dt

x = u1




0
0
0
1


+ u2




cos(ϕ + θ )

sin(ϕ + θ )

sin θ

0


 (38)

ity does not mean that � must be in the interior of the set
R (�) (local controllability), even for an equilibrium state.This is of the form of Eq. (37), where f : �4 � �2 � �4.

The reason that the accessibility question is studied is thatNote that, in practice, the angle � would be restricted to
it is far easier to characterize than controllability.some maximal interval (��0, �0). For simplicity of exposition,

we do not impose this constraint. Similarly, the orientation
Accessibility Rank Condition. Given any two vector fields fangle � only makes sense as a number modulo 2�, that is,

and g, one can associate the new vector fieldangles differing by 2� correspond to the same physical orien-
tation. Nonlinear control theory is usually developed in far
more generality than we do here. The more general formalism [ f, g]

allows states to evolve in general differentiable manifolds, in-
defined by the formulastead of insisting, as we do here, in Euclidean state spaces.

Thus, for instance, a more natural state space than �4 would
be, for this example, �2 � �1 � (��0, �0), that is, the angle � [ f, g](x) := g∗[x] f (x) − f∗[x] g(x)

is thought of as an element of the unit circle. Analogously, we
where, in general, the notation h�[x] means the Jacobian of aassume here that the controls may attain arbitrary values in
vector field h, evaluated at the point x. This is called the Lie�2; of course, a more realistic model would also incorporate
bracket of f and g.constraints on their magnitude.

The Lie bracket of f and g can be interpreted in terms of
certain trajectories that arise from integrating f and g, as fol-Technical Assumptions. We will assume, for simplicity of ex-
lows. We let eth� denote the solution at time t (possibly nega-position, that the function f is real-analytic. This means that
tive) of the differential equation d/dt x � h(x) with initialf (x, u) can be expressed, around each point (x, u) � �n � �m,
value x(0) � �. (When the differential equation is linear, i.e.,as a locally convergent power series. Analyticity is a condition
d/dt x � Fx and F is a matrix, eth� is precisely the same aswhich is satisfied in models derived from physical principles.
etF�, where etF is the exponential of the matrix F. In general,The assumption of analyticity allows stating results in an ele-
for nonlinear differential equations, eth� is merely a conve-gant necessary and sufficient, rather than merely sufficient,
nient notation for the flow associated to the vector field h.)manner. A control (or input) function is by definition of
Then, for any two vector fields f and g,Lebesgue-measurable essentially bounded function u( 
 ) de-

fined on some interval of the form [0, T] and taking values in
�m (the reader may substitute ‘‘piecewise continuous func- e−tge−t f etget f ξ = et2 [ f,g]ξ + o(t2)(ξ ) (40)
tion’’ without much loss of generality). We let Inp be the set
of such controls. as t � 0, as a simple computation shows. Therefore, one may

understand the Lie bracket of f and g as the infinitesimal
Accessibility. Consider any state � � �n. For each control direction that results from following solutions of f and g in

u : [0, T] � �m, we consider the solution of the initial problem positive time, followed by f and g in negative time. Another
d/dt x(t) � f (x(t), u(t)), x(0) � �. If this solution is well-defined way to state this fact is by introducing the curve
on the interval t � [0, T], we denote the final state x(T) as
	(�, u). [If the solution does not exist on the entire interval,

γ (t) := e−√
tge−√

t f e
√

tge
√

t f ξ
we do not define 	(�, u)]. The reachable set from �, denoted
as R (�), is by definition the set of states reachable from the

Observe that �(0) � � and that the values of �(t) are all in theorigin, that is, the set of states of the form
set of points S attainable by positive and negative time solu-
tions of the differential equations corresponding to f and g;{φ(ξ,u) ∈ Rn |u ∈ Inp}
the above expansion implies that d/dt �(0) � [f , g](�), that is,
there is a curve in S whose tangent is the Lie bracket of theDefinition. The system Eq. (37) is accessible from the state
two vector fields. Thus, Lie brackets provide new directions of� if the reachable set R (�) contains an open subset of �n (that
infinitesimal movement in addition to those corresponding tois, it has a nonempty interior).
f and g themselves (and their linear combinations).

Given now a system by Eq. (37), we consider, for each pos-For linear systems d/dt x � Fx � Gu, and the zero initial
sible control value u � �m, the following vector field:state � � 0,

fu : Rn → R
n : x �→ f (x, u)R(0) = im (G, FG, . . ., Fn−1G) (39)

(where ‘‘im’’ indicates the span of the columns of the matrix) The accessibility Lie algebra L associated to the system given
by Eq. (37) is the linear span of the set of all vector fields thatis a linear subspace. so accessibility from 0 is equivalent to

complete controllability, that is, R (0) � �n. However, for non- can be obtained, starting with the fu’s and taking all possible
iterated Lie brackets of them. For instance, if u1, u2, u3, u4 arelinear systems, the accessibility property is weaker. For ex-
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any four control values, the vector field ing (11)) ‘‘steer’’ and ‘‘drive’’ respectively:

[[ fu1
, [ fu2

, fu3
]], [ fu3

, fu4
]]

is in L . The system Eq. (37) satisfies the accessibility rank
condition at the state � if the vector space

g1 =




0
0
0
1


 , g2 =




cos(ϕ + θ )

sin(ϕ + θ )

sin θ

0




Computing some brackets, we get the two new vector fieldsL (ξ ) := {X (ξ ),X ∈ L } ⊆ R
n

[again, we borrow our terminology from (11)]:

has the maximal possible dimension, that is, n.
There is a special case, of interest because it appears very

often in applications, especially to mechanical systems. This
is the class consisting of systems for which f (x, u) is affine in
u. That is, the equations can be written as

d
dt

x = g0(x) +
m∑

i=1

uigi(x) (41)

for some vector fields gi’s. It is easy to verify that, for such
systems, L is the Lie algebra generated by taking all possible
iterated Lie brackets starting from the gi’s.

For example, consider a linear system

wriggle := [steer, drive] =




− sin(ϕ + θ )

cos(ϕ + θ )

cos θ

0




and

slide := [wriggle, drive] =




− sinϕ

cos ϕ

0
0




(The bracket [wriggle, steer] equals drive, so it is redundant,
in so far as checking the accessibility rank condition is con-

d
dt

x = Fx + Gu

cerned.) It turns out that these four brackets are enough to
satisfy the accessibility test. Indeed, one computesHere g0(x) � Fx is a linear vector field and the gi(x)’s are the

constant vector fields defined by the m columns of the matrix det(steer, drive, wriggle, slide) ≡ 1
G. It then follows that, for each state �, L (�) is the span of
the vector F� together with the columns of G, FG, . . .,

so there is accessibility from every state. Moreover, since thisFn�1G. In particular, for � � 0, one has that L (0) is the same
system is affine without drift, it is completely controllable. (Ofas the right-hand side of Eq. (39). Seen in that context, the
course, it is quite obvious from physical reasoning, for thisfollowing result, which is valid in general, is not surprising:
example, that complete controllability holds.)

Consider in particular the problem of accessibility starting
Theorem. The system Eq. (37) is accessible from � if and from the special state � � 0 (corresponding to the problem of
only if the accessibility rank condition holds at �. exiting from a ‘‘parallel parked’’ spot). For 	 � � � 0, wriggle

is the vector (0, 1, 1, 0), a mix of sliding in the x2 direction
and a rotation, and slide is the vector (0, 1, 0, 0) correspond-There is a subclass of systems for which far stronger con-
ing to sliding in the x2 direction. This means that one can inclusions can be drawn. This subclass includes all purely kine-
principle implement infinitesimally both of these motions.matic mechanical models. It is the class of affine systems
The wriggling motion is, based on the characterization of Liewithout drift, that is, systems affine in u (as in Eq. 41, but
brackets mentioned earlier, the one that arises, in a limitingfor which, in addition, g0 � 0). We say that a system is com-
sense, from fast repetitions of the following sequence of fourpletely controllable if R (�) � �n for every � � �n, that is to
basic actions:say, every state can be steered to every other state by means

of an appropriate control action.
steer − drive − reverse steer − reverse drive (∗)

Theorem. A system affine without drift is completely con-
This is, essentially, what one does in order to get out of atrollable if and only if the accessibility rank condition holds
tight parking space. Observe that wriggle(0) equals the sumat every state.
of slide and rotate [a pure rotation, col(0, 0, 1, 0)]. Interest-
ingly enough, one could also approximate the pure sliding mo-

This characterization of controllability for systems without tion in the x2 direction: wriggle, drive, reverse wriggle, reverse
drift belongs more properly to classical Lie theory and differ- drive, repeat corresponds to the last vector field.
ential geometry. As far as control theory is concerned, most Note that the term t2 in Eq. (40) explains why many itera-
interesting questions concern more general classes of systems tions of basic motions (*) are required in order to obtain a
as well as the design of explicit algorithms for controllability, displacement in the wriggling direction: the order of magni-
sometimes imposing optimality constraints. tude t2 of a displacement in time t is much smaller than t.

Remark. If the right-hand side f in Eq. (37) is assumedThe Car Example. In the notations for systems affine in con-
trols, we have the vector fields g1 and g2, which we call (follow- merely to be infinitely differentiable, instead of analytic, the
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accessibility rank condition is still sufficient for accessibility, where ei denotes the ith coordinate vector, and more generally
for all u, i and each integer k � 0 letbut it is not a necessary condition. Consider for instance the

system on �2, with �2 also as control space, and having equa-
tions as follows: (Adk

0Xu,i)(x) := ∂

∂ε

∣∣∣∣
ε=0

f k
0 ◦ fu ◦ f −1

u+εei
◦ f −k

0 (x)

The accessibility Lie algebra is now defined in terms of iter-
ated Lie brackets of these vector fields, and the accessibility

d
dt

x = u1

(
1
0

)
+ u2

(
0

α(x1)

)

rank condition is defined in terms of this, analogously to the
continuous time case. The main fact is, then, as follows.where � is the function defined by

Theorem. The system Eq. (36) is accessible from zero if and
α(x) = e−1/x2

only if the accessibility rank condition holds at zero.

for x 
 0, and �(x) � 0 for x � 0. This system is easily shown As in the continuous-time case, for linear (discrete time)
to be accessible—in fact, it is completely controllable (any systems, the condition reduces to the usual reachability test.
state can be steered to any other state)—but the accessibility The vectors Adk

0Xu,i are in fact all of the type FkGu, for vectors
rank condition does not hold. u � �m.

Accessibility and Controllability of Linearized SystemsControllability: Discrete-Time

It is easy to prove that, for both continuous and discrete timeWe next consider discrete time systems. These are described
systems, if the linearization about an equilibrium point � isby difference equations analogous to those for Eq. (37):
controllable as a linear system, then the accessibility condi-
tion holds, and, in fact, the system is locally controllable, thatx(t + 1) = f (x(t), u(t)) (42)
is, � is in the interior of R (�); see for example, Ref. 6. For
instance, each state near zero can be reached from zero, for

where f : �n � �m � �n is a function. This function now plays the system
the role of specifying the state at time t � 1, provided that
the state at time t was x(t) and the control vector u(t) was
applied at that instant.

We again suppose that the function f is real-analytic. Now
the set of controls, denoted again Inp, is the set of all possible

d
dt

x1 = x2
1x2 + sin x1

d
dt

x1 = −x1ex2 + u cos x1

sequences u(0), . . ., u(T) consisting of vectors in �m. An addi-
tional assumption which we make for the discrete time sys- because, up to first order around � � 0 one has x2

1x2 � sin
tem of Eq. (42) is that it is invertible, meaning that the map x1 � x1 � h1, �x1ex2 � u cos x1 � �x1 � u � h1, where h1 and

h2 are higher-order terms in states and controls, which means
that the linearization at the equilibrium � � 0 is the linearf (·, u)

system with matrices
is a diffeomorphism for each fixed u; in other words, this map
is bijective and has a nonsingular differential at each point.
Imposing invertibility simplifies matters considerably, and is

F =
(

0 1
−1 0

)
, G =

(
0
1

)
a natural condition for equations that arise from the sampling
of continuous time systems, which is one of the main ways in which is controllable. This is only a sufficient condition. the
which discrete time systems appear in practice. system d/dt x � u3, in dimension one, is clearly (even) com-

Accessibility is defined as in the continuous-time case, us- pletely controllable, but its linearization at � � 0 gives the
ing the analogous definition of R (�). We discuss only the spe- noncontrollable linear system d/dt x � 0. A necessary and
cial case � � 0 (the general case is a bit more complicated), sufficient condition does exist linking accessibility and linear
assuming that this state is in equilibrium for the system, that controllability, but it is more subtle. It is illustrated next, for
is, simplicity, only for discrete-time systems. In continuous time,

an analogous result holds, but it is slightly more complicated
to state and prove (12).f (0, 0) = 0

Observe that accessibility from � corresponds to the re-
quirement that the union of the images of the composed mapsThere is an analogue of the accessibility rank condition for

discrete time systems, and this is discussed next.
The notation fu is as stated earlier, and in particular f 0 is fk(ξ, ·) : (Rm )k → R

n k ≥ 0

the map f ( 
 , 0). Recall that in the discrete case one assumes
cover an open subset, where we are denotinginvertibility, so that the inverse maps f�1

u are well-defined and
again analytic. For each i � 1, . . ., m and each u � �m let fk(x, (u1, . . ., uk)) := f ( f (. . . f ( f (x, u1), u2), . . ., uk−1), uk)

for every state x and sequence of controls u1, . . . uk. A simple
argument, based on a standard result in analysis (Sard’s the-

Xu,i(x) := ∂

∂ε

∣∣∣∣
ε=0

fu ◦ f −1
u+εei

(x)
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orem) gives that accessibility is equivalent to the following if the initial state is �. It follows that the derivatives with
respect to the ti’s of this output are also equal, for �1 and �2,property: there exists some positive integer k and some se-

quence of controls u1, . . . uk so that the Jacobian of f k(�, 
 ) and for every such piecewise constant control. One may prove
by induction thatevaluated at that input sequence,

fk(ξ, ·)∗[u1, . . . uk],

has rank n. Consequently, accessibility is equivalent to acces-

∂k

∂t1 . . . ∂tk

∣∣∣∣
t1=t2=...=0

hj (t1, t2, . . ., tk, u1, u2, . . ., uk, ξ )

= LX1
LX2

. . . LXk
hj (ξ )

sibility in time exactly k. This Jacobian condition can be re-
stated as follows: Consider the linearization of the system Eq.

where Xl(x) � g0(x) � �m
i�1 ul

igi(x). This expression is a multilin-
(42) along the trajectory

ear function of the ul
i’s, and a further derivation with respect

to these control value coordinates shows that the generatorsx1 = ξ, x2 = f (x1, u1), x3 = f (x2, u2), . . .
in Eq. (43) must coincide at x1 and x2. It turns out that (for
analytic vector fields, as considered in this exposition), sepa-that is, the linear time-varying system
rability by O is necessary as well as sufficient, because Eq.
(44) can be expressed as a power series in terms of the gener-
ators of Eq. (43). Thus, observability is equivalent to separa-
tion by the functions in O .

The observability rank condition at a state � is the condi-
tion that the dimension of the span of

x(t + 1) = Ftx(t) + Gtu(t)

with

Ft = ∂

∂x
f [xt, ut], Gt = ∂

∂u
f [xt, ut]

Then, accessibility is equivalent to the existence of some se- {∇Lgi1
. . . Lgik

h j(ξ )|i1, . . ., ik ∈ {0, . . ., m}, j = 1, . . ., p} ⊆ R
n

quence of controls u1, . . . uk for which this linearization is
controllable as a time-varying linear system. be n. An application of the implicit function theorem shows

that this is sufficient for the distinguishability of states
Observability: Continuous-Time near �.

We present a brief outline of a nonlinear observability test, Remarks
for the special case of continuous-time systems affine in Eq.

The early 1970s saw the beginnings of the systematic study(41), with an output map h : �n � �p added to the system de-
of controllability and observability questions for continuousscription. Two states � and � are distinguishable by input/
time nonlinear systems. Building upon previous work (13,14)output experiments if there is at least some input which,
on partial differential equations, the papers (15), (16), andwhen applied to the system in initial state �, gives a different
(17), among others, provided many of the basic accessibilityoutput than when applied to the system in state �. An observ-
and controllability results. In discrete time, one of the earlyable system is one with the property that every pair of dis-
papers was (18). For more details on accessibility at an expos-tinct states is distinguishable. Thus an observable system is
itory level, see for instance Refs. 19, 20, 21, or 6 in continuousone for which, at least in principle, it is possible to distinguish
time, and 22 in discrete time. These references should also bebetween internal states by means of input/output measure-
consulted for justifications of all statements given here with-ments alone.
out proof. For affine systems without drift, for which the ac-Consider the vector space spanned by the set of all func-
cessibility rank condition completely characterizes controlla-tions of the type
bility, Lie techniques can be used to provide efficient
algorithms for constructing controls; see for instance Ref. 23.Lgi1

. . . Lgik
h j (x) (43)

Similarly, there are useful controllability algorithms avail-
able for special classes of systems such as so-called ‘‘flat sys-

over all possible sequences i1, . . ., ik, k � 0, out of �0, . . ., tems,’’ and for systems exhibiting special symmetries which
m� and all j � 1, . . ., p, where Lg� � ��.g for any function arise from mechanical constraints; see, e.g., Ref. 24, and ref-
� and any vector field g (�f denotes the gradient of f ). This is erences therein.
called the observation space, which we denote as O , associated A complete characterization of controllability, as opposed
to the system. We say that two states x1 and x2 are separated to the weaker accessibility property, has eluded solution, even
by O if there exists some � � O such that �(x1) � �(x2). though substantial progress has been made (see for instance

One can prove that if two states are separated by O then Ref. 25 and the references there). One way to understand the
they are distinguishable. A sketch of the argument is as difficulty inherent in checking controllability is by formulat-
follows. Assume that �1 is indistinguishable from �2 and con- ing the problem in terms of computational complexity. In Ref.
sider a piecewise constant control which is equal to u1 on 26, it is shown that, for wide classes of systems, testing for
[0, t1), equal to u2 on [t1, t1 � t2), . . ., and equal to uk on controllability is an NP-hard problem (hence most likely im-
[t1 � 
 
 
 � tk�1, t1 � 
 
 
 � tk). By indistinguishability, possible to ever be amenable to an efficiently computable
we know that the resulting output at time t � t1 � 
 
 
 � characterization); this contrasts with accessibility, which, for
tk is equal for both. In general, we denote the jth coordinate the same classes of systems, can be checked in polynomial
of this output value by time.

A different type of ‘‘linearization’’ is also of interest in con-
trol theory. Instead of merely taking first-order approxima-hj (t1, t2, . . ., tk, u1, u2, . . ., uk, ξ ) (44)
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tions, one searches for changes of state and input variables
which render a nonlinear system linear. For example, take
the nonlinear system ẋ � x2 � u. This system becomes linear
if we consider the new input variable v � x2 � u, since the
equations become ẋ � v. Observe that this linearized system
may be stabilized globally by means of the feedback v � �x.

G0 H0

F0

F1

u(t) y(t)v(t) v(t – h)
1/s e–hs

+

+ +

(In terms of the original variables, this means that we picked
Figure 2. Retarded delay-differential system.the feedback law u � �x2 � x.) In general, finding linearizing

transformations is not as obvious as in this example, of
course; much theory has been devoted to the search for Lie-
algebraic conditions which guarantee that a system can be so example, F is defined only on a domain D (F) which is a dense
transformed, or as one says, feedback linearized. This line of subspace of the state space X.
work started with Brockett in the late 1970s, and major re- Another example often encountered in practice is provided
sults were obtained by Jakubczyk, Respondek, Hunt, Su, and by delay systems. Consider a retarded delay-differential sys-
Meyer, in the early 1980s. See Ref. 6 for an elementary intro- tem (see Fig. 2):
duction to the subject. For some related recent developments,
see Ref. 27.

LINEAR INFINITE-DIMENSIONAL SYSTEMS

d
dt

v(t) = F0v(t) + F1v(t − h) + G0u(t)

y(t) = H0v(t − h), v(t) ∈ Rn
(47)

Distributed parameter systems are those where the state This system is described by the functional differential
variable is spatially dependent. Typical examples are systems equation
described by the heat equation, wave equation, beam equa-
tions, or delay-differential equations. Due to such a depen-
dence on spatial variables, the state space generally becomes
infinite-dimensional. The term ‘‘distributed parameter sys-
tems’’ is thus often used synonymously for systems with infi-

d
dt

[
v(t)
zt(·)

]
=

F0 F1E−h

0
∂

∂θ


[ v(t)

zt(θ )

]
+
[

G0

0

]
u(t)

=: Fx(t) + Gu(t) (48)
nite-dimensional state space. In what follows, we shall also
employ this convention, and discuss controllability/observ-
ability of infinite-dimensional systems.

y(t) = [0 H0E−h]

[
x(t)
zt(·)

]
, zt(·) ∈ (L2[−h,0])n (49)

A formal generalization of the finite-dimensional (continu-
ous-time) definitions would lead to the following state equa- where x(t) :� [v(t) zt( 
 )]�, and zt( 
 ) is the state in the delay
tions: element e�hs which is related to v(t) via zt(�) � v(t � �). E�h

denotes the point evaluation operator E�hz( 
 ) :� z(�h). The
domain of F in Eq. (48) is �[v z( 
 )]� � R n � (H2(�h, 0))n :

d
dt

x(t) = Fx(t) + Gu(t) (45)
z(0) � v�. Here the input operator G is bounded but the output
operator C � [0 C0E�h] is not. (Point evaluation in L2 cannoty(t) = Hx(t) + Ju(t) (46)
be continuous.)

where the input values u(t), state x(t), and output values y(t) We thus consider the abstract system Eqs. (45), (46) with
are elements of, for instance, Hilbert spaces. For example, if x(t) in a Hilbert space X, with input/output variables u(t) and
we consider the heat equation y(t) being �m- and �p-valued. The operators G : �m � X and

H : X � �p are often assumed to be bounded. However, there
are many systems that do not satisfy this property: G may
not take values in X or H may be only densely defined. The

∂x
∂t

(t, ξ ) = ∂2x
∂ξ 2 (t, ξ ) + G(ξ )u(t)

system described by Eqs. (48), (49) is an example of the latter
with state space L2[0, 1] with boundary condition x(t, 0) � case. For brevity of exposition, however, we will not be very
x(t, 1) � 0, then F is set to be the differential operator �2/��2 rigorous about this point in what follows. Also, since J plays
with domain no role in controllability/observability, we will assume J � 0.

Denote this system by � � (X, F, G, H).
The solution of Eq. (45) can be written asD(F ) := {x ∈ H2(0,1) : x(0) = x(1) = 0}

Here H2(0, 1), which is the natural state space for these equa-
tions, is the space of functions in L2[0, 1] whose second-order x(t) = S(t)x0 +

∫ t

0
S(t − τ )Gu(τ ) dτ

derivatives again belong to L2[0, 1]. The important point to
notice is that the F operator is in general, as in this example, We assume that u is square integrable. Such a solution is
not defined on the whole space, and is discontinuous (un- often called the mild solution.
bounded). Thus, some care has to be taken when extending
the finite-dimensional framework. We need to assume that F

Controllability and Observability
is the infinitesimal generator of a strongly continuous semi-
group S(t), which plays a role analogous to that played by eFt The technical problems that arise due to the infinite-dimen-

sionality include the following:in the finite-dimensional case. Typically, as in the previous
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• In general, canonical (controllable and observable) real- subspace of X and is indeed extendable to X as a continuous
mapping. While H is often unbounded, �(T) still happens toizations are not unique
be continuous in many examples [for example, for delay sys-• Controllability need not guarantee stabilizability; simi-
tems such as Eqs. (48), (49)].larly, observability need not imply existence of an ob-

The system � is said to be observable in bounded timeserver
T 
 0 if �(T) is a one-to-one mapping, that is, if �(T)x � 0
(almost everywhere) implies x � 0. It is observable if �(T)x �The problems involved are mostly topological, and this is one
0 for all T 
 0 occur only if x � 0. (This concept is often calledof the reasons why there are several nonequivalent
approximate observability, indicating its duality to approxi-controllability/observability notions. We start by introducing
mate controllability.) To state the observability condition dif-controllability concepts.
ferently, define the observability mapIn analogy with the finite-dimensional case, one wants to

say that a system is controllable (or reachable) if every state

 : X → L2

loc[0,∞) : x �→ HS(t)x, t ≥ 0 (53)x � X can be reached from the origin by suitable application
of an input. For distributed parameter systems, however, this

where L2
loc[0, �) is the space of locally square integrable func-does not usually occur due to the infinite-dimensionality of

tions. Then � is observable if and only if � is one-to-one.the state space.
For finite-dimensional systems these observability notionsFor each T 
 0, define a map �(T) : L2[0, T] � X by

imply the following consequences:

• Observability always implies observability in bounded�(T )u :=
∫ T

0
S(T − τ )Gu(τ )dτ (50)

time
• Initial states can be determined continuously from out-We say that a state x is controllable from zero in time T if x

put databelongs to the range of �(T). The system � is simply said to
be controllable from zero if

The latter is an important key to constructing observers and
state estimators. For infinite-dimensional systems, this prop-
erty does not hold, and we define a topological notion of ob-

x ∈
⋃
T>0

range �(T )

servability as follows.
The system � is said to be exactly controllable (reachable) The system � is said to be topologically observable if � is

if continuously invertible when its codomain is restricted to
im �. It is topologically observable in bounded time T 
 0 if
the same holds of �(T). (For the same reason as in the case
of approximate observability, some authors adopt the termi-

X =
⋃
T>0

range �(T ) (51)

nology exact observability, again indicating its duality to exact
Unlike the finite-dimensional case, exact controllability does controllability.)
not occur very often. In fact, when the G operator is bounded Topological observability requires that the initial state de-
(and takes values in X), it has finite rank, and hence it can termination be well posed. The system given by Eqs. (48) and
be shown that �(T) is a compact operator. Thus the right- (49) is topologically observable. This property is also crucial
hand side of Eq. (51) cannot be equal to X as the union of in proving uniqueness of canonical realizations. That is, if we
images of compact operators. (Of course, this argument does understand that a canonical realization is one that is approxi-
not apply when G does not take values in X; extended study mately controllable and topologically observable, then there
has been made on systems with boundary controls; see Refs. is essentially only one canonical realization for a given input/
28–30.) output behavior (31).

We are thus interested in a less restrictive condition of ap-
proximate controllability (reachability). This requires that, in Duality
place of Eq. (51),

Controllability and observability are dual concepts to each
other. Reversing the time axis, we see that the controllable
states are those in the image of the mapping

X =
⋃
T>0

range �(T ) (52)

Here M denotes the closure of M in X. This means that any
state x � X can be approximated arbitrarily closely by control-

� :
⋃
T>0

L2[0,T] → X : u �→
∫ ∞

0
S(t)Gu(t)dt (54)

lable elements. When X is a finite-dimensional space, approxi-
The adjoint of � is easily computable (at least formally) asmate controllability coincides with standard controllability.

We now give definitions for several notions of observabil-
ity. Fix T 
 0. Define �(T) : X � L2[0, T] by �∗ : X → L2

loc[0,∞) : x �→ G∗S∗(t)x, t ≥ 0 (55)

Define �* :� (X, F*, H*, G*) as the dual system of �. Then
(T ) : x �→ HS(t)x, 0 ≤ t ≤ T
the mapping of Eq. (55) is the observability map of �*. Since
a bounded linear f : X � Y has dense image if and only if itsBecause of the strong continuity of S(t), this mapping is well

defined if H is a bounded operator. If H is unbounded, we adjoint satisfies ker f* � �0�, we can say that � is approxi-
mately controllable if and only if �* is observable. Similarly,generally require that this mapping be defined on a dense
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� is observable if and only if �* is approximately controllable. complete with suitable feedback. Since feedback does not al-
ter controllability, this latter condition preserves controlla-Also, � is topologically observable if and only if the adjoint

mapping of � in Eq. (53) is a surjective mapping. bility.
Similar spectral tests are possible for systems with spec-

tral F operators. For example, consider the case where F isRelated Concepts and Controllability Criteria
the self-adjoint operator defined by a spectral representation

When � is exponentially stable in the sense that there exist (32):
M, � 
 0 such that

‖S(t)‖ ≤ Me−αt Fx =
∞∑

n=1

λn

rn∑
j=1

(x, φn j
)φn j

then it is possible to relate controllability/observability to Ly-
where ��n : n � 1, 2, . . .� are distinct real numbers listed inapunov equations. In this case it is possible to extend the do-
decreasing order, �	nj

, j � 1, 2, . . ., rn, n � 1, 2, . . .� is anmain of � and restrict the codomain of � to L2[0, �). Define
orthonormal basis in X, and ( 
 , 
 ) denotes the inner product.
Let G be given by

Gu :=
m∑

i=1

giui, gi ∈ X

P := ��∗ =
∫ ∞

0
S(t)GG∗S∗(t) dt

Q := 

∗ =
∫ ∞

0
S∗(t)H∗HS(t) dt

Then (F, G, H) (H is irrelevant here and hence not defined) is
Then � is approximately controllable if and only if P is posi-

approximately controllable if and only if
tive definite, and observable if and only if Q is positive defi-
nite. P and Q are called controllability and observability
Grammians. Actually, when � is observable, Q is a unique
self-adjoint solution to the Lyapunov equation rank




(g1, φn1
) · · · (gm, φn1

)

...
...

(g1, φnrn
) · · · (gm, φnrn

)


 = rn

〈Qx1, Fx2〉 + 〈Fx1, Qx2〉 = −〈Hx1, Hx2〉, x1, x2 ∈ D(F )

RemarksA similar statement holds for controllability.
Null controllability refers to the property that every state Controllability/observability questions for distributed param-

can be steered back to the origin by application of a suitable eter systems were first addressed by Fattorini (33). Since then
input. Its dual concept is the final state observability (or recon- numerous papers have appeared, and the literature is too
structibility). Similar theory is possible for these properties. vast to be listed or surveyed here. For developments up to

Closely related concepts are those of stabilizability and de- 1978, consult Russel’s survey (34). The recent textbook by
tectability. However, in the infinite-dimensional context, con- Curtain and Zwart (32) gives an extensive set of further refer-
trollability need not imply stabilizability. The same can be ences. For abstract operator settings of linear systems, see
said of observability and detectability. With a finite-rank in- Refs. 35, 36, and 37. There is also a vast amount of literature
put term one may not have enough control freedom to stabi- concerning controllability of systems described by partial dif-
lize possibly infinitely many unstable poles. Stabilizability of- ferential equations. For the developments along this line, con-
ten requires that there be only finitely many unstable poles. sult Refs. 28, 29, and 30. We discuss here some limited refer-

One may also wish to say that a system is spectrally con- ences that deal with further related subjects.
trollable if all its finite-dimensional modal subsystems are Controllability/observability for delay systems has re-
controllable (in the usual sense for finite-dimensional sys- ceived considerable attention: see the work by Datko, Delfour,
tems). Some care must be exercised to be clear about the Langenhop, Kamen, Manitius, Mitter, O’Connor, Pandolfi,
meaning of modal subsystems. Even if there exists a decom- Salamon, Triggiani, Yamamoto, and others [references cited
position to modal subsystems, some modes may not be finite- in (32)]. The spectral condition for approximate controllability
dimensional. of retarded delay systems cited previously is due to the work

For systems where eigenfunction expansion is possible, one of Manitius and Triggiani (38,39). It is also extended to vari-
can say that the system is approximately controllable if its ous situations including neutral systems; see, for example,
eigenfunctions are complete and it is spectrally controllable. Refs. 40, 41, and 42.
Systems with self-adjoint F operators are easy examples. Controllability and observability are also important in re-
Then several rank conditions are possible in testing controlla- alization theory. It was shown by Baras, Brockett, and Fuhr-
bility of each subsystem. Another class of systems that satisfy mann (43) that an approximately controllable and observable
this condition is that of delay differential systems. For exam- realization need not be unique. One needs a stronger condi-
ple, the retarded system of Eqs. (48), (49) is approximately tion to guarantee uniqueness; the results cited in Ref. 31 are
controllable if and only if one example.

As with finite-dimensional systems, controllability and ob-
1. rank[�I � F0 � F1e�h� G0] � n for every � � � and servability are closely related to the question of coprimeness
2. rank[F1 G0] � n of factorizations of transfer functions. For example, a factor-

ization is (left) coprime (in an appropriately defined sense) if
a certain system associated with this factorization is approxi-The first condition guarantees spectral controllability and the

second guarantees that the system can be made eigenfunction mately controllable (see, for example, Ref. 44). However, in
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18. M. Fliess and D. Normand-Cyrot, A group-theoretic approach tocontrast to the finite-dimensional context, there is a large va-
discrete-time nonlinear controllability, Proc. IEEE Conf. Dec. Con-riety of freedom in choosing the algebra over which the factor-
trol, 1981.ization is considered. Typical examples are the Callier-Desoer

19. R. Hermann and A. J. Krener, Nonlinear controllability and ob-algebra, the space of H� functions, and the algebra of distri-
servability, IEEE Trans. Autom. Control, 22: 728–740, 1977.butions with compact support. Each different choice leads to

20. H. J. Sussmann, Lie brackets, real analyticity, and geometrica different theory of realization/stabilization/controller pa-
control, in R. W. Brockett, R. S. Millman, and H. J. Sussmann,rameterization as is the case with the finite-dimensional the-
(eds.), Differential Geometric Control Theory, Boston: Birk-ory, but with much wider freedom. Each has its advantage in
hauser, 1983.different contexts, reflecting the variety of distributed param-

21. A. Isidori, Nonlinear Control Systems, 3rd ed., London: Springer-eter systems. The theories can therefore hardly be expected
Verlag, 1995.to be complete.

22. B. Jakubczyk and E. D. Sontag, Controllability of nonlinear dis-Another topic that is in close connection with
crete-time systems: a Lie-algebraic approach, Invited Expositorycontrollability/observability is the existence and uniqueness Article, SIAM J. Control Opt., 28: 1–33, 1990.

of solutions to Riccati equations. This topic is also related
23. I. Kolmanovsky and N. H. McClamroch, Developments in nonho-

with H� control theory and under active research. The current lonomic control problems, Control Syst. Mag., 15 (6): 20–36, De-
trend is in spectral factorization in an abstract functional cember, 1995.
equation setting. To this end, various questions concerning 24. M. Kawski and H. J. Sussmann, Noncommutative power series
the well-posedness of system equations and transfer functions and formal Lie-algebraic techniques in nonlinear control theory,
arise and are currently under study. in U. Helmke, D. Praetzel-Wolters, and E. Zerz (eds.), Operators,

Systems and Linear Algebra: Three Decades of Algebraic Systems
Theory, Stuttgart: B. G. Teubner, 1997, pp. 111–129.
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13. W. L. Chow, Über Systeme von linearen partiellen differen- 854, 1994.
tialgleichungen erster ord-nung, Math. Ann., 117: 98–105, 1939. 38. A. Manitius and R. Triggiani, Function space controllability of

14. R. Hermann, On the accessibility problem in control theory, in linear retarded systems: a derivation from abstract operator con-
Int. Symp. Differ. Equations and Mech., New York: Academic ditions, SIAM J. Control Optimiz., 16: 595–645, 1978.
Press, 1973. 39. A. Manitius, Necessary and sufficient conditions of approximate
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CONTROL, LIGHTING. See LIGHTING CONTROL.
CONTROL, NYQUIST CRITERION. See NYQUIST CRI-

TERION, DIAGRAMS, AND STABILITY.
CONTROL OF EXCITATION. See EXCITATION CONTROL

IN POWER SYSTEMS.
CONTROL OF INDUSTRIAL SYSTEMS. See INDUS-

TRIAL CONTROL.
CONTROL OF JET ENGINES. See JET ENGINE CONTROL,

IMPLEMENTATIONS.
CONTROL OF PERIODIC SYSTEMS. See PERIODIC

CONTROL.
CONTROL, OSCILLATORY. See OPEN-LOOP OSCILLA-

TORY CONTROL.
CONTROL, POWER SYSTEM. See POWER SYSTEM CON-

TROL; POWER SYSTEM TRANSIENTS.
CONTROL, PROCESS. See PROCESS CONTROL.
CONTROL, RELAY. See RELAY CONTROL.
CONTROL, ROBUST. See ROBUST CONTROL; ROBUST CON-

TROL ANALYSIS.
CONTROL SYSTEM ANALYSIS. See INTERVAL ANALYSIS

FOR CIRCUITS; SERVOMECHANISMS.


