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as performance indexes in terms of state variables, then mod-
ern control approaches must be used.

The systems that may be designed by a conventional or
classical approach are usually limited to single-input–single-
output, linear time-invariant systems. The designer seeks to
satisfy all performance specifications by means of educated
trial-and-error repetition. After a system is designed, the de-
signer checks to see if the designed system satisfies all the
performance specifications. If it does not, then he or she re-
peats the design process by adjusting parameter settings or
by changing the system configuration until the given specifi-
cations are met. Although the design is based on a trial-and-
error procedure, the ingenuity and know-how of the designer
will play an important role in a successful design. An experi-
enced designer may be able to design an acceptable system
without using many trials.

The primary objective of this article is to present proce-
dures for the design and compensation of single-input–single-
output linear time-invariant control systems. Compensation
is the modification of the system dynamics to satisfy the given
specifications. The methods to the control system design and
compensation used in this article are the root-locus method
and frequency-response method. These methods are com-
monly called the classical or conventional methods of control
systems design. Note that in designing control systems by the
root-locus or frequency-response methods the final result is
not unique, because the best or optimal solution may not be
precisely defined if the time-domain specifications or fre-
quency-domain specifications are given.

SYSTEM COMPENSATION

Setting the gain is the first step in adjusting the system for
satisfactory performance. In many practical cases, however,
the adjustment of the gain alone may not provide sufficient
alteration of the system behavior to meet the given specifica-
tions. As is frequently the case, increasing the gain value will
improve the steady-state behavior but will result in poor sta-
bility or even instability. It is then necessary to redesign the
system by modifying the structure or by incorporating addi-
tional devices or components to alter the overall behavior so
that the system will behave as desired. A device inserted into
the system for the purpose of satisfying the specifications isCONTROL SYSTEM DESIGN, CONTINUOUS-TIME
called a compensator. The compensator compensates for defi-
cit performance of the original system.This article discusses a means of improving performance of

existing control systems and of designing new control systems In discussing compensators, we frequently use such termi-
nologies as lead network, lag network, and lag-lead network.with satisfactory performance. The most common approach to

improving the performance of single-input–single-output con- If a sinusoidal input ei is applied to the input of a network
and the steady-state output eo (which is also sinusoidal) hastrol systems is to insert a suitable compensator in the system.

In this article we are concerned with the design of various a phase lead, then the network is called a lead network. (The
amount of phase lead angle is a function of the input fre-types of compensators.

Actual control systems are generally nonlinear. However, quency.) If the steady-state output eo has a phase lag, then
the network is called a lag network. In a lag-lead network,if they can be approximated by linear mathematical models,

we may use one or more of the well-developed design meth- both phase lag and phase lead occur in the output but in dif-
ferent frequency regions; phase lag occurs in the low-fre-ods. In a practical sense, the performance specifications given

to the particular system suggest which method to use. If the quency region and phase lead occurs in the high-frequency
region. A compensator having a characteristic of a lead net-performance specifications are given in terms of transient-re-

sponse characteristics and/or frequency-domain performance work, lag network, or lag-lead network is called a lead com-
pensator, lag compensator, or lag-lead compensator.measures, then we have no choice but to use a conventional or

classical approach based on the root-locus and/or frequency- In this article we specifically consider the design of lead
compensators, lag compensators, and lag-lead compensators.response methods. If the performance specifications are given
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In such design problems, we place a compensator in series
with the unalterable plant transfer function G(s) to obtain de-
sirable behavior. The main problem then involves the judi-
cious choice of the pole(s) and zero(s) of the compensator
Gc(s) to alter the root loci or frequency response so that the
performance specifications will be met.

+
–
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C(s)R(s)
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In the actual design of a control system, whether to use an
Figure 1. Control system.electronic, pneumatic, or hydraulic compensator is a matter

that must be decided partially based on the nature of the con-
trolled plant. For example, if the controlled plant involves

rameter is usually the gain, but any other variable of theflammable fluid, then we have to choose pneumatic compo-
open-loop transfer function may be used. Unless otherwisenents (both a compensator and an actuator) to avoid the pos-
stated, we shall assume that the gain of the open-loop trans-sibility of sparks. If, however, no fire hazard exists, then elec-
fer function is the parameter to be varied through all values,tronic compensators are most commonly used. In fact, we
from zero to infinity.often transform nonelectrical signals into electrical signals

because of the simplicity of transmission, increased accuracy,
Angle and Magnitude Conditionsincreased reliability, ease of compensation, and the like.

The basic idea behind the root-locus method is that the values
Lead, Lag, and Lag-Lead Compensation of s that make the transfer function around the loop equal �1

must satisfy the characteristic equation of the system. Con-Lead compensation essentially yields an appreciable improve-
sider the system shown in Fig. 1. The closed-loop transferment in transient response and a small change in steady-
function isstate accuracy. It may accentuate high-frequency noise

effects. Lag compensation, on the other hand, yields an appre-
ciable improvement in steady-state accuracy at the expense
of increasing the transient response time. Lag compensation

C(s)
R(s)

= G(s)
1 + G(s)H(s)

will suppress the effects of high-frequency noise signals. Lag-
The characteristic equation for this closed-loop system is ob-lead compensation combines the characteristics of both lead
tained by setting the denominator of the right-hand side ofcompensation and lag compensation. The use of a lead or lag
this last equation equal to zero. That is,compensator raises the order of the system by 1 (unless can-

cellation occurs between the zero of the compensator and a
1 + G(s)H(s) = 0pole of the uncompensated open-loop transfer function). The

use of a lag-lead compensator raises the order of the system
orby 2 [unless cancellation occurs between zero(s) of the lag-

lead compensator and pole(s) of the uncompensated open-loop
G(s)H(s) = −1 (1)transfer function], which means that the system becomes

more complex and it is more difficult to control the transient Here we assume that G(s)H(s) is a ratio of polynomials in s.
response behavior. The particular situation determines the Since G(s)H(s) is a complex quantity, Eq. (1) can be split into
type of compensation to be used. two equations by equating the angles and magnitudes of both

sides, respectively, to obtain the following:
ROOT-LOCUS METHOD

The basic characteristic of the transient response of a closed-
Angle condition:/

G(s)H(s) = ±180◦(2k + 1) (k = 0, 1, 2, . . . )
loop system is closely related to the location of the closed-loop
poles. If the system has a variable loop gain, then the location
of the closed-loop poles depends on the value of the loop gain

Magnitude condition:

|G(s)H(s)| = 1
chosen. It is important, therefore, that the designer know how
the closed-loop poles move in the s-plane as the loop gain is The values of s that fulfill both the angle and magnitude con-
varied. ditions are the roots of the characteristic equation, or the

From the design viewpoint, in some systems simple gain closed-loop poles. A plot of the points of the complex plane
adjustment may move the closed-loop poles to desired loca- satisfying the angle condition alone is the root locus. The
tions. Then the design problem may become the selection of roots of the characteristic equation (the closed-loop poles) cor-
an appropriate gain value. If the gain adjustment alone does responding to a given value of the gain can be determined
not yield a desired result, addition of a compensator to the from the magnitude condition.
system will become necessary.

A simple method for finding the roots of the characteristic
equation has been developed by W. R. Evans and used exten- FREQUENCY-RESPONSE METHOD
sively in control engineering. This method, called the root-
locus method, is one in which the roots of the characteristic By the term frequency response, we mean the steady-state re-

sponse of a system to a sinusoidal input. In frequency-equation are plotted for all values of a system parameter. The
roots corresponding to a particular value of this parameter response methods, we vary the frequency of the input signal

over a certain range and study the resulting response.can then be located on the resulting graph. Note that the pa-
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The Nyquist stability criterion enables us to investigate fied, then a suitable compensator that will reshape the open-
loop transfer function is determined. Finally, if there are anyboth the absolute and relative stabilities of linear closed-loop

systems from a knowledge of their open-loop frequency- other requirements to be met, we try to satisfy them, unless
some of them are contradictory to the other.response characteristics. An advantage of the frequency-

response approach is that frequency-response tests are, in
general, simple and can be made accurately by use of readily ROOT-LOCUS APPROACH TO THE
available sinusoidal signal generators and precise measure- DESIGN OF CONTROL SYSTEMS
ment equipment. Often the transfer functions of complicated
components can be determined experimentally by frequency- The root-locus approach to design is very powerful when the
response tests. In addition, the frequency-response approach specifications are given in terms of time-domain quantities,
has the advantage that a system may be designed so that such as the damping ratio and undamped natural frequency
the effects of undesirable noise are negligible and that such of the desired dominant closed-loop poles, maximum over-
analysis and design can be extended to certain nonlinear con- shoot, rise time, and settling time.
trol systems. Consider a design problem in which the original system

either is unstable for all values of gain or is stable but has
undesirable transient-response characteristics. In such aFrequency-Response Approach to the
case, the reshaping of the root locus is necessary in the broadDesign of Control Systems
neighborhood of the j� axis and the origin in order that the

It is important to note that in a control system design, tran- dominant closed-loop poles be at desired locations in the com-
sient-response performance is usually most important. In the plex plane. This problem may be solved by inserting an appro-
frequency-response approach, we specify the transient-re- priate lead compensator in cascade with the feedforward
sponse performance in an indirect manner. That is, the tran- transfer function.
sient-response performance is specified in terms of the phase If it is desired to improve steady-state performance (such
margin, gain margin, and resonant peak magnitude (they as to reduce the error in following the ramp input), insertion
give a rough estimate of the system damping); the gain cross- of a lag compensator in the feedforward path will do the job.
over frequency, resonant frequency, and bandwidth (they give If it is desired to improve both the transient-response and
a rough estimate of the speed of transient response); and steady-state performance, insertion of a lag-lead compensator
static error constants (they give the steady-state accuracy). will accomplish the job. In what follows we discuss the lead,
Although the correlation between the transient response and lag, and lag-lead compensation techniques.
frequency response is indirect, the frequency-domain specifi-
cations can be conveniently met in the Bode diagram ap- Lead Compensation
proach.

The procedure for designing a lead compensator for the sys-After the open loop has been designed by the frequency-
tem shown in Fig. 2 by the root-locus method may be statedresponse method, the closed-loop poles and zeros can be deter-
as follows:mined. The transient-response characteristics must be

checked to see whether the designed system satisfies the re-
1. From the performance specifications, determine the de-quirements in the time domain. If it does not, then the com-

sired location for the dominant closed-loop poles.pensator must be modified and the analysis repeated until a
2. By drawing the root-locus plot, ascertain whether or notsatisfactory result is obtained.

the gain adjustment alone can yield the desired closed-Design in the frequency domain is simple and straight-
loop poles. If not, calculate the angle deficiency 	. Thisforward. The frequency-response plot indicates clearly the
angle must be contributed by the lead compensator ifmanner in which the system should be modified, although
the new root locus is to pass through the desired loca-the exact quantitative prediction of the transient-response
tions for the dominant closed-loop poles.characteristics cannot be made. The frequency-response ap-

proach can be applied to systems or components whose dy- 3. Assume the lead compensator Gc(s) to be
namic characteristics are given in the form of frequency-re-
sponse data. Note that because of difficulty in deriving the
equations governing certain components, such as pneumatic
and hydraulic components, the dynamic characteristics of
such components are usually determined experimentally

Gc(s) = Kcα
Ts + 1
αTs + 1

= Kc

s + 1
T

s + 1
αT

, (0 < α < 1) (2)

through frequency-response tests. The experimentally ob-
where � and T are determined from the angle defi-tained frequency-response plots can be combined easily with
ciency. Kc is determined from the requirement of theother such plots when the Bode diagram approach is used.
open-loop gain.Note also that in dealing with high-frequency noise we find

that the frequency-response approach is more convenient
than other approaches.

A common approach to the design by use of the Bode dia-
gram is that we first adjust the open-loop gain so that the
requirement on the steady-state accuracy is met. Then the
magnitude and phase curves of the uncompensated open loop

+
–

Gc(s) G(s)

(with the open-loop gain just adjusted) is plotted. If the speci-
fications on the phase margin and gain margin are not satis- Figure 2. Control system.
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Figure 3. (a) Control system; (b) root-locus plot.
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4. If static error constants are not specified, determine the to the desired location by simple gain adjustment. This is,
however, not the case for the present system. Therefore, welocation of the pole and zero of the lead compensator so

that the lead compensator will contribute the necessary shall insert a lead compensator in the feedforward path.
A general procedure for determining the lead compensatorangle 	. If no other requirements are imposed on the

system, try to make the value of � as large as possible. is as follows: First, find the sum of the angles at the desired
location of one of the dominant closed-loop poles with theA larger value of � generally results in a larger value

of Kv, which is desirable. (If a particular static error con- open-loop poles and zeros of the original system, and deter-
mine the necessary angle 	 to be added so that the total sumstant is specified, it is generally simpler to use the fre-

quency-response approach.) of the angles is equal to �180� (2k � 1). The lead compensator
must contribute this angle 	. (If the angle 	 is quite large,5. Determine the open-loop gain of the compensated sys-
then two or more lead networks may be needed rather than atem from the magnitude condition.
single one.)

If the original system has the open-loop transfer functionOnce a compensator has been designed, check to see
G(s), then the compensated system will have the open-loopwhether all performance specifications have been met. If the
transfer functioncompensated system does not meet the performance specifi-

cations, then repeat the design procedure by adjusting the
compensator pole and zero until all such specifications are
met. If a large static error constant is required, cascade a lag
network or alter the lead compensator to a lag-lead compen-

Gc(s)G(s) =

�
Kc

s + 1
T

s + 1
αT

�
G(s)

sator.

where
Example 1. Consider the system shown in Fig. 3(a). The

feedforward transfer function is

Gc(s) = Kcα
Ts + 1
αTs + 1

= Kc

s + 1
T

s + 1
αT

, (0 < α < 1)

G(s) = 4
s(s + 2)

Notice that there are many possible values for T and � that
The root-locus plot for this system is shown in Fig. 3(b). The will yield the necessary angle contribution at the desired
closed-loop poles are located at closed-loop poles.

The next step is to determine the locations of the zero and
pole of the lead compensator. There are many possibilities fors = −1 ± j

√
3

the choice of such locations. (See the comments at the end of
The damping ratio of the closed-loop poles is 0.5. The un- this example problem.) In what follows, we shall introduce a
damped natural frequency of the closed-loop poles is 2 rad/s. procedure to obtain the largest possible value for �. (Note that
The static velocity error constant is 2 s�1. a larger value of � will produce a larger value of Kv. In most

It is desired to modify the closed-loop poles so that an un- cases, the larger the Kv is, the better the system perfor-
damped natural frequency �n � 4 rad/s is obtained, without mance.) First, draw a horizontal line passing through point
changing the value of the damping ratio, � � 0.5. In the pres- P, the desired location for one of the dominant closed-loop
ent example, the desired locations of the closed-loop poles are poles. This is shown as line PA in Fig. 4. Draw also a line

connecting point P and the origin. Bisect the angle between
the lines PA and PO, as shown in Fig. 4. Draw two lines PCs = −2 ± j2

√
3

and PD that make angles �	/2 with the bisector PB. The
intersections of PC and PD with the negative real axis giveIn some cases, after the root loci of the original system have

been obtained, the dominant closed-loop poles may be moved the necessary location for the pole and zero of the lead net-
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where K � 4Kc. The root-locus plot for the compensated sys-
tem is shown in Fig. 5. The gain K is evaluated from the mag-
nitude condition as follows: Referring to the root-locus plot for
the compensated system shown in Fig. 5, the gain K is evalu-
ated from the magnitude condition as∣∣∣∣ K(s + 2.9)

s(s + 2)(s + 5.4)

∣∣∣∣
s=−2+ j2

√
3

= 1

or

K = 18.7

0 σ

ωj

P

DBC

A

1
α–

φ
2

φ
2

1
T

–

T

It follows thatFigure 4. Determination of the pole and zero of a lead network.

Gc(s)G(s) = 18.7(s + 2.9)

s(s + 2)(s + 5.4)
work. The compensator thus designed will make point P a
point on the root locus of the compensated system. The open- The constant Kc of the lead compensator is
loop gain is determined by use of the magnitude condition.

In the present system, the angle of G(s) at the desired
closed-loop pole is Kc = 18.7

4
= 4.68

Hence, Kc� � 2.51. The lead compensator, therefore, has the
transfer function

4
s(s + 2)

∣∣∣∣∣∣∣
s=−2+ j2

√
3

= −210◦

Gc(s) = 2.51
0.345s + 1
0.185s + 1

= 4.68
s + 2.9
s + 5.4Thus, if we need to force the root locus to go through the de-

sired closed-loop pole, the lead compensator must contribute
The static velocity error constant Kv is obtained from the ex-

	 � 30� at this point. By following the foregoing design proce-
pressiondure, we determine the zero and pole of the lead compensator,

as shown in Fig. 5, to be

Zero at s = −2.9, Pole at s = −5.4

or

Kv = lim
s→0

sGc(s)G(s)

= lim
s→0

s18.7(s + 2.9)

s(s + 2)(s + 5.4)

= 5.02 s−1

Note that the third closed-loop pole of the designed system isT = 1
2.9

= 0.345, αT = 1
5.4

= 0.185
found by dividing the characteristic equation by the known
factors as follows:

Thus � � 0.537. The open-loop transfer function of the com-
pensated system becomes s(s + 2)(s + 5.4) + 18.7(s + 2.9)

= (s + 2 + j2
√

3)(s + 2 − j2
√

3)(s + 3.4)
Gc(s)G(s) = Kc

s + 2.9
s + 5.4

4
s(s + 2)

= K(s + 2.9)

s(s + 2)(s + 5.4)
The foregoing compensation method enables us to place

the dominant closed-loop poles at the desired points in the
complex plane. The third pole at s � �3.4 is close to the
added zero at s � �2.9. Therefore, the effect of this pole on
the transient response is relatively small. Since no restriction
has been imposed on the nondominant pole and no specifica-
tion has been given concerning the value of the static velocity
error coefficient, we conclude that the present design is satis-
factory.

Comments. We may place the zero of the compensator at
s � �2 and pole at s � �4 so that the angle contribution of
the lead compensator is 30�. (In this case the zero of the lead
compensator will cancel a pole of the plant, resulting in the
second-order system, rather than the third-order system as

j2

j2

j4

j4

–5.4
–6–8 0–2

–2.9
2

15˚
15˚

σ

ωj

–4

we designed.) It can be seen that the Kv value in this case is
4 s�1. Other combinations can be selected that will yield 30�Figure 5. Root-locus plot of the compensated system.
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phase lead. (For different combinations of a zero and pole of error constant without appreciably altering the original
the compensator that contribute 30�, the value of � will be root loci. (Note that the ratio of the value of gain re-
different and the value of Kv will also be different.) Although quired in the specifications and the gain found in the
a certain change in the value of Kv can be made by altering uncompensated system is the required ratio between
the pole-zero location of the lead compensator, if a large in- the distance of the zero from the origin and that of the
crease in the value of Kv is desired, then we must alter the pole from the origin.)
lead compensator to a lag-lead compensator. 6. Draw a new root-locus plot for the compensated system.

Locate the desired dominant closed-loop poles on theLag Compensation
root locus. (If the angle contribution of the lag network

Consider the case where the system exhibits satisfactory is very small—that is, a few degrees—then the original
transient-response characteristics but unsatisfactory steady- and new root loci are almost identical. Otherwise, there
state characteristics. Compensation in this case essentially will be a slight discrepancy between them. Then locate,
consists of increasing the open-loop gain without appreciably on the new root locus, the desired dominant closed-loop
changing the transient-response characteristics. This means poles based on the transient-response specifications.)
that the root locus in the neighborhood of the dominant 7. Adjust gain K̂c of the compensator from the magnitude
closed-loop poles should not be changed appreciably, but the condition so that the dominant closed-loop poles lie at
open-loop gain should be increased as much as needed. This the desired location.can be accomplished if a lag compensator is put in cascade
with the given feedforward transfer function. Example 2. Consider the system shown in Fig. 6(a). The

The procedure for designing lag compensator for the sys- root-locus plot for the system is shown in Fig. 6(b). The closed-
tem shown in Fig. 2 by the root-locus method may be stated

loop transfer function becomesas follows:

1. Draw the root-locus plot for the uncompensated system
whose open-loop transfer function is G(s). Based on the
transient-response specifications, locate the dominant
closed-loop poles on the root locus.

C(s)
R(s)

= 1.06
s(s + 1)(s + 2) + 1.06

= 1.06
(s + 0.3307 − j0.5864)(s + 0.3307 + j0.5864)(s + 2.3386)

2. Assume the transfer function of the lag compensator to
The dominant closed-loop poles arebe

s = −0.3307 ± j0.5864

The damping ratio of the dominant closed-loop poles is � �
0.491. The undamped natural frequency of the dominant

Gc(s) = K̂cβ
Ts + 1
βTs + 1

= K̂c

s + 1
T

s + 1
βT

(β > 1) (3)

closed-loop poles is 0.673 rad/s. The static velocity error con-
Then the open-loop transfer function of the compen- stant is 0.53 s�1.
sated system becomes Gc(s)G(s). It is desired to increase the static velocity error constant

3. Evaluate the particular static error constant specified Kv to about 5 s�1 without appreciably changing the location of
in the problem. the dominant closed-loop poles. To meet this specification, let

4. Determine the amount of increase in the static error us insert a lag compensator as given by Eq. (3) in cascade
constant necessary to satisfy the specifications. with the given feedforward transfer function. To increase the

static velocity error constant by a factor of about 10, let us5. Determine the pole and zero of the lag compensator that
produce the necessary increase in the particular static choose � � 10 and place the zero and pole of the lag compen-

Figure 6. (a) Control system; (b) root-locus plot.
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sator at s � �0.05 and s � �0.005, respectively. The transfer
function of the lag compensator becomes

Gc(s) = K̂c
s + 0.05

s + 0.005

The angle contribution of this lag network near a dominant
closed-loop pole is about 4�. Because this angle contribution
is not very small, there is a small change in the new root
locus near the desired dominant closed-loop poles.

The open-loop transfer function of the compensated system
then becomes

Gc(s)G(s) = K̂c
s + 0.05

s + 0.005
1.06

s(s + 1)(s + 2)

= K(s + 0.05)

s(s + 0.005)(s + 1)(s + 2)

where

K = 1.06K̂c

The block diagram of the compensated system is shown in
Fig. 7(a). The root-locus plot for the compensated system near
the dominant closed-loop poles is shown in Fig. 7(b), together
with the original root-locus plot. Figure 7(c) shows the root-
locus plot of the compensated system near the origin.

If the damping ratio of the new dominant closed-loop poles
is kept the same, then the poles are obtained from the new
root-locus plot as follows:

s1 = −0.31 + j0.55, s2 = −0.31 − j0.55

The open-loop gain K is

K =
∣∣∣∣s(s + 0.005)(s + 1)(s + 2)

s + 0.05

∣∣∣∣
s=−0.31+ j0.55

= 1.0235

Then the lag compensator gain K̂c is determined as

K̂c = K
1.06

= 1.0235
1.06

= 0.9656

Thus the transfer function of the designed lag compensator is

Gc(s) = 0.9656
s + 0.05

s + 0.005
= 9.656

20s + 1
200s + 1

Then the compensated system has the following open-loop
transfer function:

s +0.05

s + 0.005

1.06

s(s + 1) (s + 2)
+

–

(a)

(b)
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Figure 7. (a) Compensated system; (b) root-locus plots of the com-

G1(s) = 1.0235(s + 0.05)

s(s + 0.005)(s + 1)(s + 2)

= 5.12(20s + 1)

s(200s + 1)(s + 1)(0.5s + 1) pensated system and the uncompensated system; (c) root-locus plot of
compensated system near the origin.

The static velocity error constant Kv is

Kv = lim
s→0

sG1(s) = 5.12 s−1

In the compensated system, the static velocity error constant
has increased to 5.12 s�1, or 5.12/0.53 � 9.66 times the origi-
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nal value. (The steady-state error with ramp inputs has de-
creased to about 10% of that of the original system.) We have
essentially accomplished the design objective of increasing
the static velocity error constant to about 5 s�1.

Note that, since the pole and zero of the lag compensator
are placed close together and are located very near the origin,
their effect on the shape of the original root loci has been
small. Except for the presence of a small closed root locus
near the origin, the root loci of the compensated and the un-
compensated systems are very similar to each other. How-
ever, the value of the static velocity error constant of the com-
pensated system is 9.66 times greater than that of the
uncompensated system.

The two other closed-loop poles for the compensated sys-
tem are found as follows:

s3 = −2.326, s4 = −0.0549

The addition of the lag compensator increases the order of the
system from 3 to 4, adding one additional closed-loop pole
close to the zero of the lag compensator. (The added closed-
loop pole at s � �0.0549 is close to the zero at s � �0.05.)
Such a pair of a zero and pole creates a long tail of small
amplitude in the transient response, as we will see later in
the unit-step response. Since the pole at s � �2.326 is very
far from the j� axis compared with the dominant closed-loop
poles, the effect of this pole on the transient response is also
small. Therefore, we may consider the closed-loop poles at
s � �0.31 � j0.55 to be the dominant closed-loop poles.

The undamped natural frequency of the dominant closed-
loop poles of the compensated system is 0.631 rad/s. This
value is about 6% less than the original value, 0.673 rad/s.
This implies that the transient response of the compensated
system is slower than that of the original system. The re-
sponse will take a longer time to settle down. The maximum
overshoot in the step response will increase in the compen-
sated system. If such adverse effects can be tolerated, the lag
compensation as discussed here presents a satisfactory solu-
tion to the given design problem.
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(b)Figures 8(a) and 8(b) show the unit-step response curves
and unit-ramp response curves, respectively, of the compen- Figure 8. (a) Unit-step response curves for the compensated and un-

compensated systems; (b) unit-ramp response curves for bothsated and uncompensated systems.
systems.

Lag-Lead Compensation

Lead compensation basically speeds up the response and in-
creases the stability of the system. Lag compensation im-
proves the steady-state accuracy of the system but reduces where � 
 1. The design procedure may be stated as follows:
the speed of the response.

If improvements in both transient response and steady-
1. From the given performance specifications, determinestate response are desired, then both a lead compensator and

the desired location for the dominant closed-loop poles.a lag compensator may be used simultaneously. Rather than
2. If the static velocity error constant Kv is specified, deter-introducing both a lead compensator and a lag compensator

mine the value of constant Kc from the following equa-as separate elements, however, it is economical to use a single
tion:lag-lead compensator.

Consider the system shown in Fig. 2. Assume that we use
the following lag-lead compensator: Kv = lim

s→0
sGc(s)G(s)

= lim
s→0

sKcG(s)

3. To have the dominant closed-loop poles at the desired
location, calculate the angle contribution 	 needed from
the phase lead portion of the lag-lead compensator.

Gc(s) = Kc
(T1s + 1)(T2s + 1)�T1

β
s + 1

�
(βT2s + 1)

= Kc

�
s + 1

T1

��
s + 1

T2

�
�

s + β

T1

��
s + 1

βT2

�

(4)
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The open-loop transfer function of the compensated system is
+

–
4

s(s + 0.5)

Gc(s)G(s) = Kc

�
s + 1

T1

��
s + 1

T2

�
�

s + β

T1

��
s + 1

βT2

� · 4
s(s + 0.5)

Figure 9. Control system.
Since the requirement on the static velocity error constant
Kv is 80 s�1, we have

4. For the lag-lead compensator, we later choose T2 suffi- Kv = lim
s→0

sGc(s)G(s) = lim
s→0

Kc
4

0.5
= 8Kc = 80

ciently large so that

Thus

Kc = 10

Noting that

∣∣∣∣∣∣∣∣
s + 1

T2

s1 + 1
βT2

∣∣∣∣∣∣∣∣
is approximately unity, where s � s1 is one of the domi-
nant closed-loop poles. Determine the values of T1 and
� from the magnitude and angle conditions:

4
s(s + 0.5)

∣∣∣∣∣∣∣∣∣∣
s=−2.50+ j4.33

= −235◦

the time constant T1 and the value of � are determined from

∣∣∣∣∣∣∣∣Kc

�
s1 + 1

T1

s1 + β

T1

�
G(s1)

∣∣∣∣∣∣∣∣ = 1

s1 + 1
T1

s1 + β

T1

= φ

5. Using the value of � just determined, choose T2 so that

∣∣∣∣∣∣∣∣
s + 1

T1

s + β

T1

∣∣∣∣∣∣∣∣
∣∣∣∣ 40
s(s + 0.5)

∣∣∣∣
s=−2.5+ j4.33

=

∣∣∣∣∣∣∣∣
s + 1

T1

s + β

T1

∣∣∣∣∣∣∣∣
8

4.77
= 1

s + 1
T1

s + β

T1

∣∣∣∣∣∣∣∣∣∣
s=−2.5+ j4.33

= 55◦

Referring to Fig. 10, we can easily locate points A and B such
that

/
APB = 55◦,

PA

PB
= 4.77

8

∣∣∣∣∣∣∣∣
s1 + 1

T2

s1 + 1
βT2

∣∣∣∣∣∣∣∣ � 1

−5◦ <

s1 + 1
T2

s1 + 1
βT2

< 0◦

The value of �T2, the largest time constant of the lag-
lead compensator, should not be too large to be physi-
cally realized.

Example 3. Consider the control system shown in Fig. 9. It
is desired to make the damping ratio of the dominant closed-
loop poles equal to 0.5 and to increase the undamped natural
frequency to 5 rad/s and the static velocity error constant to
80 s�1. Design an appropriate compensator to meet all the de-
sign specifications.

Let us use a lag-lead compensator of the form given by Eq.
(4). The desired locations for the dominant closed-loop poles
are at

ω

j5

j4

j3

j2

j1

j1

j2

j3

j4

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2
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j

55˚

σ

s = −2.50 ± j4.33 Figure 10. Determination of the desired pole-zero location.
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(Use a graphical approach or a trigonometric approach.) The
result is

AO = 2.38, BO = 8.34

or

T1 = 1
2.38

= 0.420, β = 8.34T1 = 3.503

The phase lead portion of the lag-lead network thus becomes

10
�s + 2.38

s + 8.34

�

For the phase lag portion, we may choose

T2 = 10

Then

1
βT2

= 1
3.503 × 10

= 0.0285

Thus, the lag-lead compensator becomes

Gc(s) = (10)

� s + 2.38
s + 8.34

�� s + 0.1
s + 0.0285

�
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The compensated system will have the open-loop transfer Figure 11. (a) Unit-step response curves for the compensated and
function uncompensated systems; (b) unit-ramp response curves for both

systems.

Gc(s)G(s) = 40(s + 2.38)(s + 0.1)

(s + 8.34)(s + 0.0285)s(s + 0.5)

uncompensated systems are shown in Fig. 11(a). The unit-
ramp response curves for both systems are depicted in Fig.No cancellation occurs in this case, and the compensated sys-
11(b).tem is of fourth order. Because the angle contribution of the

phase lag portion of the lag-lead network is quite small, the
dominant closed-loop poles are located very near the desired

FREQUENCY-RESPONSE APPROACHlocation. In fact, the dominant closed-loop poles are located at
TO THE DESIGN OF CONTROL SYSTEMSs � �2.4539 � j4.3099. The two other closed-loop poles are

located at
Lead Compensation

We shall first examine the frequency characteristics of thes = −0.1003, s = −3.8604
lead compensator. Then we present a design technique for the
lead compensator by use of the Bode diagram.

Since the closed-loop pole at s � �0.1003 is very close to a
zero at s � �0.1, they almost cancel each other. Thus, the

Characteristics of Lead Compensators. Consider a lead com-effect of this closed-loop pole is very small. The remaining
pensator defined byclosed-loop pole (s � �3.8604) does not quite cancel the zero

at s � �2.4. The effect of this zero is to cause a larger over-
shoot in the step response than a similar system without such
a zero. The unit-step response curves of the compensated and

Kcα
jωT + 1

jωαT + 1
(0 < α < 1)
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+
–

Gc(s) G(s)

Figure 14. Control system.

Lead Compensation Techniques Based on the Frequency-Re-

Im

ω m

ω = 0 ω  = ∞

φm

α

(1 +   )α1
2

(1 –   )α1
2

Re0 1

sponse Approach. The primary function of the lead compensa-
Figure 12. Polar plot of a lead compensator �( j�T � 1)/( j��T � 1), tor is to reshape the frequency-response curve to provide suf-
where 0 � � � 1. ficient phase-lead angle to offset the excessive phase lag

associated with the components of the fixed system.
Consider the system shown in Fig. 14. Assume that theFigure 12 shows the polar plot of this compensator with Kc �

performance specifications are given in terms of phase mar-1. For a given value of �, the angle between the positive real
gin, gain margin, static velocity error constants, and so on.axis and the tangent line drawn from the origin to the semi-
The procedure for designing a lead compensator by the fre-circle gives the maximum phase lead angle, 	m. We shall call
quency-response approach may be stated as follows:the frequency at the tangent point �m. From Fig. 12 the phase

angle at � � �m is 	m, where
1. Assume the following lead compensator:

sin φm =
1 − α

2
1 + α

2

= 1 − α

1 + α
(5)

Gc(s) = Kcα
Ts + 1
αTs + 1

= Kc

s + 1
T

s + 1
αT

(0 < α < 1) (7)

Equation (5) relates the maximum phase lead angle and the
Definevalue of �.

Figure 13 shows the Bode diagram of a lead compensator Kcα = K
when Kc � 1 and � � 0.1. The corner frequencies for the lead
compensator are � � 1/T and � � 1/(�T) � 10/T. By examin- Then
ing Fig. 13, we see that �m is the geometric mean of the two
corner frequencies, or

Gc(s) = K
Ts + 1
αTs + 1

The open-loop transfer function of the compensated sys-
log ωm = 1

2

�
log

1
T

+ log
1

αT

�

tem is
Hence,

ωm = 1√
aT

(6)
Gc(s)G(s) = K

Ts + 1
αTs + 1

G(s) = Ts + 1
αTs + 1

KG(s)

= Ts + 1
αTs + 1

G1(s)
As seen from Fig. 13, the lead compensator is basically a high-
pass filter. (The high frequencies are passed, but low frequen- where
cies are attenuated.)

G1(s) = KG(s)

Determine gain K to satisfy the requirement on the
given static error constant.

2. Using the gain K thus determined, draw a Bode dia-
gram of G1( j�), the gain-adjusted but uncompensated
system. Evaluate the phase margin.

3. Determine the necessary phase lead angle 	 to be added
to the system.

4. Determine the attenuation factor � by use of Eq. (5).
Determine the frequency where the magnitude of the
uncompensated system G1( j�) is equal to �20 log (1/
��). Select this frequency as the new gain crossover
frequency. This frequency corresponds to �m � 1/ω  in rad/s

φm

0.1
T

1
T

10
T

100
T

10

0

–10

–20

90°

0°

dB

10
T

√

(��T), and the maximum phase shift 	m occurs at thisFigure 13. Bode diagram of a lead compensator �( j�T � 1)/
( j��T � 1), where � � 0.1. frequency.
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5. Determine the corner frequencies of the lead compensa-
tor as follows:

Zero of lead compensator: ω = 1
T

Pole of lead compensator: ω = 1
αT

6. Using the value of K determined in step 1 and that of �
determined in step 4, calculate constant Kc from

Kc = K
α

7. Check the gain margin to be sure it is satisfactory. If
not, repeat the design process by modifying the pole-
zero location of the compensator until a satisfactory re-
sult is obtained.

40

20

0

–20

–40
0°

–90°

–180°
1 2 4 810 20 40 60 100

ω  in rad/s

dB

17°

Figure 16. Bode diagram for G1( j�) � 10G( j�) � 40/[j�( j� � 2)].
Example 4. Consider the system shown in Fig. 15. The

open-loop transfer function is

Figure 16 shows the magnitude and phase angle curves of
G1( j�). From this plot, the phase and gain margins of the

G(s) = 4
s(s + 2)

system are found to be 17� and �� dB, respectively. (A phase
It is desired to design a compensator for the system so that margin of 17� implies that the system is quite oscillatory.
the static velocity error constant Kv is 20 s�1, the phase mar- Thus, satisfying the specification on the steady state yields a
gin is at least 50�, and the gain margin is at least 10 dB. poor transient-response performance.) The specification calls

We shall use a lead compensator of the form defined by Eq. for a phase margin of at least 50�. We thus find the additional
(7). Define phase lead necessary to satisfy the relative stability require-

ment is 33�. To achieve a phase margin of 50� without de-
creasing the value of K, the lead compensator must contribute
the required phase angle.

G1(s) = KG(s) = 4K
s(s + 2)

Noting that the addition of a lead compensator modifies
where K � Kc�. the magnitude curve in the Bode diagram, we realize that the

The first step in the design is to adjust the gain K to meet gain crossover frequency will be shifted to the right. We must
the steady-state performance specification or to provide the offset the increased phase lag of G1( j�) due to this increase
required static velocity error constant. Since this constant is in the gain crossover frequency. Considering the shift of the
given as 20 s�1, we obtain gain crossover frequency, we may assume that 	m, the maxi-

mum phase lead required, is approximately 38�. (This means
that 5� has been added to compensate for the shift in the gain
crossover frequency.)

Since

Kv = lim
s→0

sGc(s)G(s) = lim
s→0

s
Ts + 1
αTs + 1

G1(s)

= lim
s→0

s4K
s(s + 2)

= 2K = 20

or sinφm = 1 − α

1 + α

K = 10
	m � 38� corresponds to � � 0.24. Once the attenuation factor

With K � 10, the compensated system will satisfy the steady- � has been determined on the basis of the required phase lead
state requirement. angle, the next step is to determine the corner frequencies

We shall next plot the Bode diagram of � � 1/T and � � 1/(�T) of the lead compensator. To do so, we
first note that the maximum phase lead angle 	m occurs at
the geometric mean of the two corner frequencies, or � �

1/(��T). [See Eq. (6).] The amount of the modification in the
G1( jω) = 40

jω( jω + 2)
= 20

jω(0.5 jω + 1)

magnitude curve at � � 1/(��T) due to the inclusion of the
term (Ts � 1)/(�Ts � 1) is

+
–

4
s(s + 2)

Figure 15. Control system.

∣∣∣∣ 1 + jωT
1 + jωαT

∣∣∣∣
ω=1/(

√
aT )

=

∣∣∣∣∣∣∣∣
1 + j

1√
α

1 + jα
1√
α

∣∣∣∣∣∣∣∣ =
1√
α
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Note that

1√
α

= 1√
0.24

= 1
0.49

= 6.2 dB

+
–

4
s(s + 2)

41.7(s + 4.41)
s + 18.4

and �G1( j�)� � �6.2 dB corresponds to � � 9 rad/s. We shall Figure 18. Compensated system.
select this frequency to be the new gain crossover frequency
�c. Noting that this frequency corresponds to 1/(��T), or
�c � 1/(��T), we obtain

The magnitude curve and phase-angle curve for Gc( j�)/10 are
shown in Fig. 17. The compensated system has the following1

T
= √

αωc = 4.41
open-loop transfer function:

and
Gc(s)G(s) = 41.7

s + 4.41
s + 18.4

4
s(s + 2)1

αT
= ωc√

α
= 18.4

The solid curves in Fig. 17 show the magnitude curve and
phase-angle curve for the compensated system. The lead com-

The lead compensator thus determined is pensator causes the gain crossover frequency to increase from
6.3 to 9 rad/s. The increase in this frequency means an in-
crease in bandwidth. This implies an increase in the speed ofGc(s) = Kc

s + 4.41
s + 18.4

= Kcα
0.227s + 1
0.054s + 1

response. The phase and gain margins are seen to be approxi-
mately 50� and �� dB, respectively. The compensated systemwhere the value of Kc is determined as
shown in Fig. 18 therefore meets both the steady-state and
the relative-stability requirements.

Note that for type 1 systems, such as the system just con-Kc = K
α

= 10
0.24

= 41.7

sidered, the value of the static velocity error constant Kv is
merely the value of the frequency corresponding to the inter-Thus, the transfer function of the compensator becomes
section of the extension of the initial �20 dB/decade slope
line and the 0 dB line, as shown in Fig. 17.

Figures 19 and 20 show, respectively, the unit-step and
Gc(s) = 41.7

s + 4.41
s + 18.4

= 10
0.227s + 1
0.054s + 1

unit-ramp responses of both the compensated system and un-
Note that compensated system.

Lag Compensation
Gc(s)

K
G1(s) = Gc(s)

10
10G(s) = Gc(s)G(s)

Characteristics of Lag Compensators. Consider the lag com-
pensator given by Eq. (3). Figure 21 shows a polar plot of
the lag compensator. Figure 22 shows a Bode diagram of the
compensator, where Kc � 1 and � � 10. The corner frequen-
cies of the lag compensator are at � � 1/T and � � 1/(�T).
As seen from Fig. 22, where the values of Kc and � are set
equal to 1 and 10, respectively, the magnitude of the lag com-

O
ut

pu
ts

Compensated system

Uncompensated system

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0

1 2 3 4 5 6
t (s)

40

20

0

–20

–40

1 2 4 6 10 20 40 60 100

0°

–90°

–180°

–6.2 dB

G1 = 10G

50°

Gc
10

GcG

Gc
10

Kv

dB

GcG

G1 = 10G

ω  in rad/s Figure 19. Unit-step response curves of the compensated and un-
compensated systems.Figure 17. Bode diagram for the compensated system.
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Figure 20. Unit-ramp response curves of the compensated and un-
compensated systems. Kcβ = K

Then

pensator becomes 10 (or 20 dB) at low frequencies and unity Gc(s) = K
Ts + 1
βTs + 1(or 0 dB) at high frequencies. Thus, the lag compensator is

essentially a low-pass filter.
The open-loop transfer function of the compensated sys-
tem is

Lag Compensation Techniques Based on the Frequency-Re-
sponse Approach. The primary function of a lag compensator
is to provide attenuation in the high-frequency range to give
a system sufficient phase margin. The phase lag characteris-
tic is of no consequence in lag compensation.

Gc(s)G(s) = K
Ts + 1
βTs + 1

G(s) = Ts + 1
βTs + 1

KG(s)

= Ts + 1
βTs + 1

G1(s)

The procedure for designing lag compensators for the sys-
tem shown in Fig. 14 by the frequency-response approach where
may be stated as follows:

G1(s) = KG(s)

1. Assume the following lag compensator: Determine gain K to satisfy the requirement on the
given static error constant.

2. If the uncompensated system G1( j�) � KG( j�) does not
satisfy the specifications on the phase and gain mar-
gins, then find the frequency point where the phase
angle of the open-loop transfer function is equal to

Gc(s) = Kcβ
Ts + 1
βTs + 1

= Kc

s + 1
T

s + 1
βT

(β > 1)

�180� plus the required phase margin. The required
phase margin is the specified phase margin plus 5� to
12�. (The addition of 5� to 12� compensates for the phase
lag of the lag compensator.) Choose this frequency as
the new gain crossover frequency.

3. To prevent detrimental effects of phase lag due to the
lag compensator, the pole and zero of the lag compensa-
tor must be located substantially lower than the new
gain crossover frequency. Therefore, choose the corner
frequency � � 1/T (corresponding to the zero of the lag
compensator) 1 octave to 1 decade below the new gain
crossover frequency. (If the time constants of the lag
compensator do not become too large, the corner fre-
quency � � 1/T may be chosen 1 decade below the new
gain crossover frequency.)

4. Determine the attenuation necessary to bring the mag-

Im

ω = 0ω  = ∞ Re0

KcKc β

nitude curve down to 0 dB at the new gain crossover
frequency. Noting that this attenuation is �20 log �,Figure 21. Polar plot of a lag compensator Kc�( j�T � 1)/( j��T � 1).
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determine the value of �. Then the other corner fre-
quency (corresponding to the pole of the lag compensa-
tor) is determined from � � 1/(�T).

5. Using the value of K determined in step 1 and that of �
determined in step 4, calculate constant Kc from

Kc = K
β

Example 5. Consider the system shown in Fig. 23. The
open-loop transfer function is given by

G(s) = 1
s(s + 1)(0.5s + 1)

It is desired to compensate the system so that the static veloc-
ity error constant Kv is 5 s�1, the phase margin is at least 40�,
and the gain margin is at least 10 dB.
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We shall use a lag compensator of the form

Figure 24. Bode diagrams for the uncompensated system, the com-
pensator, and the compensated system. (G1: uncompensated system,
Gc: compensator, GcG: compensated system.)

Gc(s) = Kcβ
Ts + 1
βTs + 1

= Kc

s + 1
T

s + 1
βT

(β > 1)

The magnitude curve and phase-angle curve of G1( j�) are
shown in Fig. 24. From this plot, the phase margin is found

Define to be �20�, which means that the system is unstable.
Noting that the addition of a lag compensator modifies the

phase curve of the Bode diagram, we must allow 5� to 12� toKcβ = K
the specified phase margin to compensate for the modification
of the phase curve. Since the frequency corresponding to aDefine also
phase margin of 40� is 0.7 rad/s, the new gain crossover fre-
quency (of the compensated system) must be chosen near this
value. To avoid overly large time constants for the lag com-G1(s) = KG(s) = K

s(s − 1)(0.5s + 1) pensator, we shall choose the corner frequency � � 1/T
(which corresponds to the zero of the lag compensator) to be
0.1 rad/s. Since this corner frequency is not too far below theThe first step in the design is to adjust the gain K to meet the
new gain crossover frequency, the modification in the phaserequired static velocity error constant. Thus,
curve may not be small. Hence, we add about 12� to the given
phase margin as an allowance to account for the lag angle
introduced by the lag compensator. The required phase mar-
gin is now 52�. The phase angle of the uncompensated open-
loop transfer function is �128� at about � � 0.5 rad/s. So we

Kv = lim
s→0

sGc(s)G(s) = lim
s→0

s
Ts + 1
βTs + 1

G1(s) = lim
s→0

sG1(s)

= lim
s→0

sK
s(s + 1)(0.5s + 1)

= K = 5
choose the new gain crossover frequency to be 0.5 rad/s. To
bring the magnitude curve down to 0 dB at this new gain

With K � 5, the compensated system satisfies the steady- crossover frequency, the lag compensator must give the neces-
state performance requirement. sary attenuation, which in this case is �20 dB. Hence,

We shall next plot the Bode diagram of

20 log
1
β

= −20
G1( jω) = 5

jω( jω + 1)(0.5 jω + 1)

or

β = 10

The other corner frequency � � 1(�T), which corresponds
to the pole of the lag compensator, is then determined as

1

s(s + 1) (0.5s + 1)
+

–

Figure 23. Control system.

1
βT

= 0.01 rad/s
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Thus, the transfer function of the lag compensator is

Gc(s) = Kc(10)
10s + 1

100s + 1
= Kc

s + 1
10

s + 1
100

Since the gain K was determined to be 5 and � was deter-
mined to be 10, we have

Kc = K
β

= 5
10

= 0.5

The open-loop transfer function of the compensated system is

Gc(s)G(s) = 5(10s + 1)

s(100s + 1)(s + 1)(0.5s + 1)
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Figure 26. Unit-ramp response curves for the compensated and un-The magnitude and phase-angle curves of Gc( j�)G( j�) are
compensated systems.also shown in Fig. 24.

The phase margin of the compensated system is about 40�,
which is the required value. The gain margin is about 11 dB,
which is quite acceptable. The static velocity error constant is

Let us assume that the lag-lead compensator is of the fol-5 s�1, as required. The compensated system, therefore, satis-
lowing form:fies the requirements on both the steady state and the rela-

tive stability.
Note that the new gain crossover frequency is decreased

from approximately 2 to 0.5 rad/s. This means that the band-
width of the system is reduced.

Figures 25 and 26 show, respectively, the unit-step and
unit-ramp responses of the compensated and uncompensated

Gc(s) = Kc
(T1s + 1)(T2s + 1)�T1

β
s + 1

�
(βT2s + 1)

= Kc

�
s + 1

T1

��
s + 1

T2

�
�

s + β

T1

��
s + 1

βT2

�

(8)
systems. (The uncompensated system is shown in Fig. 23.)

where � 
 1. The phase lead portion of the lag-lead compen-
sator (the portion involving T1) alters the frequency-responseLag-Lead Compensation
curve by adding phase lead angle and increasing the phase

Lag-Lead Compensation Based on the Frequency-Response Ap- margin at the gain crossover frequency. The phase lag portion
proach. The design of a lag-lead compensator by the fre- (the portion involving T2) provides attenuation near and
quency-response approach is based on the combination of the above the gain crossover frequency and thereby allows an in-
design techniques discussed under lead compensation and crease of gain at the low-frequency range to improve the
lag compensation. steady-state performance.

Figure 27 shows a Bode diagram of a lag-lead compensator
when Kc � 1, � � 10, and T2 � 10T1. Notice that the magni-
tude curve has the value 0 dB at both low-frequency and high-
frequency regions.
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Figure 27. Bode diagram of a lag-lead compensator given by Eq. (8)Figure 25. Unit-step response curves for the compensated and un-
compensated systems. with Kc � 1, � � 10, and T2 � 10T1.
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Once we choose the gain crossover frequency to be 1.5 rad/
s, we can determine the corner frequency of the phase lag
portion of the lag-lead compensator. Let us choose the corner
frequency � � 1/T2 (which corresponds to the zero of the
phase-lag portion of the compensator) to be 1 decade below
the new gain crossover frequency, or at � � 0.15 rad/s.

Recall that for the lead compensator the maximum phase
lead angle 	m is given by Eq. (5), where � in Eq. (5) is 1/� in
the present case. By substituting � � 1/� in Eq. (5), we have

sinφm =
1 − 1

β

1 + 1
β

= β − 1
β + 1

Notice that � � 10 corresponds to 	m � 54.9�. Since we need
a 50� phase margin, we may choose � � 10. (Note that we will
be using several degrees less than the maximum angle, 54.9�.)
Thus,0.01 0.1 0.2 0.4 21 4 6 100.04

40

20

0

–20

–40

0°

–90°

–180°

–270°

90°

dB

G

GcG

GcG

Gc

Gc

G

50°
–32°

16 dB

ω  in rad/s

60

β = 10Figure 28. Bode diagrams for the uncompensated system, the com-
pensator, and the compensated system. (G: uncompensated system,

Then the corner frequency � � 1/�T2 (which corresponds toGc: compensator, GcG: compensated system.)
the pole of the phase lag portion of the compensator) becomes
� � 0.015 rad/s. The transfer function of the phase lag por-
tion of the lag-lead compensator then becomesWe shall illustrate the details of the procedure for design-

ing a lag-lead compensator by an example.

Example 6. Consider the unity-feedback system whose
s + 0.15
s + 0.015

= 10
�6.67s + 1

66.7s + 1

�

open-loop transfer function is
The phase lead portion can be determined as follows: Since

the new gain crossover frequency is � � 1.5 rad/s, from Fig.
28, G( j1.5) is found to be 13 dB. Hence, if the lag-lead com-

G(s) = K
s(s + 1)(s + 2)

pensator contributes �13 dB at � � 1.5 rad/s, then the new
It is desired that the static velocity error constant be 10 s�1, gain crossover frequency is as desired. From this require-
the phase margin be 50�, and the gain margin be 10 dB or ment, it is possible to draw a straight line of slope 20 dB/
more. decade, passing through the point (�13 dB, 1.5 rad/s). The

Assume that we use the lag-lead compensator given by Eq. intersections of this line and the 0 dB line and �20 dB line
(8). The open-loop transfer function of the compensated sys- determine the corner frequencies. Thus, the corner frequen-
tem is Gc(s)G(s). Since the gain K of the plant is adjustable, cies for the lead portion are � � 0.7 rad/s and � � 7 rad/s.
let us assume that Kc � 1. Then lims�0 Gc(s) � 1. Thus, the transfer function of the lead portion of the lag-lead

From the requirement on the static velocity error constant, compensator becomes
we obtain

s + 0.7
s + 7

= 1
10

� 1.43s + 1
0.143s + 1

�
Kv = lim

s→0
sGc(s)G(s) = lim

s→0
sGc(s)

K
s(s + 1)(s + 2)

= K
2

= 10

Combining the transfer functions of the lag and lead portions
Hence, of the compensator, we obtain the transfer function of the lag-

lead compensator. Since we chose Kc � 1, we have
K = 20

We shall next draw the Bode diagram of the uncompensated Gc(s) =
� s + 0.7

s + 7

�� s + 0.15
s + 0.015

�
=
� 1.43s + 1

0.143s + 1

��6.67s + 1
66.7s + 1

�

system with K � 20, as shown in Fig. 28. The phase margin
of the uncompensated system is found to be �32�, which indi-

The magnitude and phase-angle curves of the lag-lead com-
cates that the incompensated system is unstable.

pensator just designed are shown in Fig. 28. The open-loop
The next step in the design of a lag-lead compensator is to

transfer function of the compensated system is
choose a new gain crossover frequency. From the phase angle
curve for G( j�), we notice that 	G( j�) � �180� at � � 1.5
rad/s. It is convenient to choose the new gain crossover fre-
quency to be 1.5 rad/s so that the phase-lead angle required
at � � 1.5 rad/s is about 50�, which is quite possible by use
of a single lag-lead compensator.

Gc(s)G(s) = (s + 0.7)(s + 0.15)20
(s + 7)(s + 0.015)s(s + 1)(s + 2)

= 10(1.43s + 1)(6.67s + 1)

s(0.143s + 1)(66.7s + 1)(s + 1)(0.5s + 1)

(9)
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more susceptible to noise signals because of increase in
the high-frequency gain.

3. Lead compensation requires an additional increase in
gain to offset the attenuation inherent in the lead net-
work. This means that lead compensation will require
a larger gain than that required by lag compensation. A
larger gain, in most cases, implies larger space, greater
weight, and higher cost.

4. Lag compensation reduces the system gain at higher
frequencies without reducing the system gain at lower
frequencies. Since the system bandwidth is reduced, the
system has a slower speed to respond. Because of the
reduced high-frequency gain, the total system gain can
be increased, and thereby low-frequency gain can be in-
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creased and the steady-state accuracy can be improved.
Figure 29. Unit-step response of the compensated system. Also, any high-frequency noises involved in the system

can be attenuated.
5. If both fast responses and good static accuracy are de-The magnitude and phase-angle curves of the system of Eq.

sired, a lag-lead compensator may be employed. By use(9) are also shown in Fig. 28. The phase margin of the com-
of the lag-lead compensator, the low-frequency gain canpensated system is 50�, the gain margin is 16 dB, and the
be increased (which means an improvement in steady-static velocity error constant is 10 s�1. All the requirements
state accuracy), while at the same time the systemare therefore met, and the design has been completed.
bandwidth and stability margins can be increased.The unit-step response and unit-ramp response of the de-

signed system are shown in Figs. 29 and 30, respectively. 6. Although a large number of practical compensation
tasks can be accomplished with lead, lag, or lag-lead
compensators, for complicated systems, simple compen-

COMPARISON OF LEAD, LAG, LAG-LEAD COMPENSATION
sation by use of these compensators may not yield satis-
factory results. Then different compensators having dif-

1. Lead compensation achieves the desired result through
ferent pole-zero configurations must be employed.

the merits of its phase-lead contribution, whereas lag
compensation accomplishes the result through the mer-
its of its attenuation property at high frequencies. (In MULTI-DEGREES-OF-FREEDOM CONTROL
some design problems both lag compensation and lead
compensation may satisfy the specifications.) In the classical design approaches presented in this article,

we design control systems such that the response to the refer-2. Lead compensation is commonly used for improving sta-
ence input is satisfactory. If the control system is subjected tobility margins. Lead compensation yields a higher gain
other inputs, such as disturbance input and noise input, it iscrossover frequency than is possible with lag compensa-
not possible to design the system such that the responses totion. The higher gain crossover frequency means larger
the disturbance input and noise input are also satisfactory, inbandwidth. A large bandwidth means reduction in the
addition to the primary requirement that the response to thesettling time. The bandwidth of a system with lead com-
reference input is satisfactory. This is because the systems wepensation is always greater than that with lag compen-
considered so far simply do not have the freedom to satisfysation. Therefore, if a large bandwidth or fast response
requirements on the responses to disturbances and noises.is desired, lead compensation should be employed. If,

If we wish to design high-performance control systems inhowever, noise signals are present, then a large band-
the presence of disturbances and sensor noises, we mustwidth may not be desirable, since it makes the system
change the configuration of the control system. This means
that we must provide additional degrees of freedom to the
control system to handle additional requirements.
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Figure 30. Unit-ramp response of the compensated system. Figure 31. One-degree-of-freedom control system.
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Gc1(s) Gp(s)
R(s) U(s) Y(s)
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+
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+ +
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+
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–
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+
+

+
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Figure 32. Two-degrees-of-freedom control system. Figure 33. Two-degrees-of-freedom control system.

In what follows we first discuss the single-degree-of-free-
dom control systems and then discuss the two-degrees-of- Among the three closed-loop transfer functions Gyr, Gyn, and
freedom control systems. Finally, we present an example of Gyd, if one of them is given, the remaining two are fixed. This
three-degrees-of-freedom control systems that can satisfy the means that the system shown in Fig. 31 is a one-degree-of-
requirements on the responses to the reference input, distur- freedom system.
bance input, and noise input.

Two-Degrees-of-Freedom ControlSingle-Degree-of-Freedom Control
Next consider the system shown in Fig. 32, where Gp(s) is theConsider the system shown in Fig. 31, where the system is
transfer function of the plant and is assumed to be fixed andsubjected to the disturbance input D(s) and noise input N(s).
unalterable. For this system, closed-loop transfer functionsGc(s) is the transfer function of the controller and Gp(s) is the
Gyr, Gyn, and Gyd are given, respectively, bytransfer function of the plant. We assume that Gp(s) is fixed

and unalterable.
For this system, three closed-loop transfer functions

Y(s)/R(s) � Gyr, Y(s)/D(s) � Gyd, and Y(s)/N(s) � Gyn may be
derived. They are

Gyr = Y (s)
R(s)

= Gc1Gp

1 + (Gc1 + Gc2)Gp

Gyd = Y (s)
D(s)

= Gp

1 + (Gc1 + Gc2)Gp

Gyn = Y (s)
N(s)

= − Gc1 + Gc2)Gp

1 + (Gc1 + Gc2)Gp

Hence, we have

Gyr = Y (s)
R(s)

= GcGp

1 + GcGp

Gyd = Y (s)
D(s)

= Gp

1 + GcGp

Gyn = Y (s)
N(s)

= GcGp

1 + GcGp

[In deriving Y(s)/R(s), we assumed D(s) � 0 and N(s) � 0.
Similar comments apply to the derivations of Y(s)/D(s) and

Gyr = Gc1Gyd

Gyn = Gyd − Gp

Gp
Y(s)/N(s).] The degrees of freedom of the control system refers
to how many of these closed-loop transfer functions are inde-

In this case, if Gyd is given, then Gyn is fixed, but Gyr is notpendent. In the present case, we have
fixed, because Gc1 is independent of Gyd. Thus, two closed-loop
transfer functions among three closed-loop transfer functions
Gyr, Gyd, and Gyn are independent. Hence, this system is a two-
degrees-of-freedom control system.

Similarly, the system shown in Fig. 33 is also a two-
degrees-of-freedom control system, because for this system

Gyr = Gp − Gyd

Gp

Gyn = Gyd − Gp

Gp

+
+

Gc1 G2G1Gc3

R(s) Y(s)

D(s)

+
– –

+
+

+
+

N(s)

Gc2

Figure 34. Three-degrees-of-freedom system.
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CONTROL SYSTEM SYNTHESIS. See DELAY SYSTEMS;

Gyr = Gc2Gyd + Gp − Gyd

Gp

Gyn = Gyd − Gp

Gp
SERVOMECHANISMS.

CONVERSION, THERMIONIC. See THERMIONIC CON-Clearly, if Gyd is given, then Gyn is fixed, but Gyr is not fixed
because Gc2 is independent of Gyd. VERSION.

CONVERTERS. See ANALOG-TO-DIGITAL CONVERSION.
Three-Degrees-of-Freedom Control CONVERTERS, AC-AC. See AC-AC POWER CONVERTERS.

CONVERTERS, AC-DC. See AC-DC POWER CONVERTERS.In the control system shown in Fig. 34, the transfer functions
Gc1, Gc2, and Gc3 are controllers, and transfer functions G1 and CONVERTERS, DC-AC. See DC-AC POWER CONVERTERS.
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shown that this control system is a three-degrees-of-freedom NOUS CONVERTER TO BOOST BATTERY VOLTAGE.
system. If a system has this configuration, then it is possible
to design three controllers by use of the root-locus method
and/or frequency-response method (or other methods) such
that the responses to all three inputs are acceptable.

CONCLUDING COMMENTS

This article has presented easy-to-understand procedures for
designing lead compensators, lag compensators, and lag-lead
compensators by use of the root-locus method or frequency-
response method. The systems are limited to single-input–
single-output, linear time-invariant control systems. For such
systems various design methods are available in addition to
the root-locus method and frequency-response method. Inter-
ested readers are referred to specialized books on control sys-
tems, as listed in the Reading List.

Toward the end of this article we included discussions on
multi-degrees-of-freedom control systems for the informed
specialist.

Most of the materials presented in this article were taken,
with permission, from Katsuhiko Ogata, Modern Control En-
gineering 3/e,  1997. Prentice Hall, Upper Saddle River,
New Jersey.
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