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The remainder of this article describes the measurement
of JC, the basic theory of critical currents in type I and type
II superconductors, the flux-line lattice and flux pinning, and
thermal effects in determining the JC. As an overview of a
large and complex subject that has occupied many research-SUPERCONDUCTING CRITICAL CURRENT
ers, this article cannot be complete. For a more detailed dis-
cussion of general superconductivity, see texts by Rose-InnesIn the application of superconductors, the superconducting

critical current density is often the most important parameter (4), Tinkham (5), and especially Orlando (6) for an excellent
presentation from an electrical engineering perspective. De-in the design and engineering of practical devices. The reason

is that the majority of applications for superconducting wires tailed surveys of flux pinning and critical current density may
be found in the monographs by Campbell and Evetts (7), andinvolve building electromagnets, which develop their mag-

netic field by virtue of the number of ampere-turns in the Ullmaier (8), which form the basis of much of the discussion
following. Although the majority of the references and discus-magnet winding. Examples of electromagnets presently in the

marketplace include magnetic resonance imaging (MRI) mag- sion uses examples from low-temperature superconductivity
(LTS), the principles described are also equally applicable tonets; high field research magnets; beam-bending, focusing,

and detector magnets for high-energy physics research; su- high-temperature superconducting (HTS) materials.
perconducting energy storage systems; and superconducting
motors and generators (1). As the critical current density of THE RESISTIVE MEASUREMENT OF CRITICAL
the superconducting wire increases, the achievable magnetic CURRENT DENSITY
field increases, and the amount of superconductor needed for
constructing the magnet decreases. Thus, there is a direct The critical current is usually found by a simple four-point
driving force to increase the critical current density of super- measurement, using the change in the resistance of the sam-
conductors for magnet applications. ple to determine the transition between superconductivity

As with the critical temperature (TC) and critical magnetic and normal conductivity (see Fig. 1). The sample, a long coil
field (HC2), the critical current density (JC) marks the limit of
the superconducting state. For direct current (dc) densities
less than the JC, the current is carried without resistive
losses, and thus no power input. For current densities greater
than JC, a voltage develops along the superconductor, and the
zero resistance condition breaks down.

The TC and HC2, which are both determined by the chemis-
try and physics of the superconducting system, are relatively
unaffected by the processing of the superconductor. The same
is not true for the JC, which can be radically changed within
a given superconducting material by varying the fabrication
process and therefore the material’s microstructure. For ex-
ample, within the Nb–Ti alloy system, once the composition
of the alloy has been chosen, the TC and HC2 are essentially
determined. However, by varying the metallurgical treat-
ments of the alloy as it is processed into wire, it is possible to
vary the JC by factors of 1000 or more (2,3). The potential for
controlling the critical current density through processing
provides materials science researchers with hope for improv-
ing the properties of technical superconductors.

In describing the theory of critical current density in su-
perconductors, it will be useful to consider two length scales.
The first is the London penetration depth �, which is the dis-
tance over which an externally applied magnetic field pene-
trates into a superconductor. This is essentially the distance
over which we expect to see large changes in the magnitude
of the magnetic fields inside the superconductor. The second
length scale is the coherence length 
, which is the distance
over which the superconducting order parameter (or alterna-
tively, the density of superelectrons) varies.

In the Ginzburg–Landau theory of superconductivity, the
ratio of the penetration depth to the coherence length is called
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Figure 1. Schematic of the resistive measurement of the critical cur-

burg–Landau parameter distinguishes between the two broad rent density. The superconducting sample in the center of a high
classes of superconductors; type I, for which 	 
 1/�2, and magnetic field solenoid produces a voltage when the current exceeds
type II, for which 	 � 1/�2. The high critical current density the critical current. The plot shows the V(I) characteristic of the su-
superconductors are all type II materials, and 	 is quite large perconducting wire. The critical current IC is defined at the appear-

ance of a measurable voltage.for many of these materials, on the order of 50 or so.
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of wire, is placed in the bore of a high field electromagnet,
and a dc current is passed through it. The voltage along the
length of the superconducting wire is measured. A zero volt-
age indicates superconductivity, whereas a nonzero measure-
ment indicates resistive dissipation and loss of superconduc-
tivity. This ‘‘resistive’’ measurement technique may be used
to measure critical temperatures by passing a small constant
current, varying the sample temperature, and measuring the
sample voltage. It can also be used to measure the critical
magnetic field HC2 of type II superconductors by varying the
magnetic field on the sample. Of more concern to the present
discussion is measuring the critical current IC. This is done
by holding the sample in a constant magnetic field and in-
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creasing the current through the superconductor until a volt- Figure 3. Schematic of the full V(I) characteristic of a superconduct-
age increase is measured (see Fig. 1). In this way the critical ing wire. At low currents the superconductor exhibits zero resistance
current is determined. and zero voltage. At the critical current there is a transition into the

As the current is increased through the superconducting flux-flow regime, and the voltage increases. At larger currents, ohmic
heating causes the temperature to rise above the critical tempera-wire, the voltage along the wire slowly increases from zero
ture, and the sample thermally runs away to the normal state resis-until a rapid increase occurs near the critical current. If the
tance behavior.V(I) characteristic is measured over a large enough voltage

range, the curve looks like that shown in Fig. 2. Early experi-
ments (9) showed that the V(I) characteristic at high currents

can be described by a power lawbecomes linear, and the resistivity depends on the applied
magnetic field, roughly following

V (I) = K
�

I
IC

�n

(2)

ρff =
�

H
HC2

�
ρn (1)

so that a plot of logV versus logI from the IC measurement
yields a straight line whose slope is sample-dependent and

where �ff and �n are the high current resistivity (flux flow re- also depends on the applied magnetic field (10). Recent mea-
sistivity) and normal state resistivity of the superconductor, surements on high temperature superconducting (HTS) mate-
respectively. This linear region at high currents is called the rials also show this power law behavior. Typically HTS mate-
‘‘flux-flow’’ regime for reasons that are described following. rials are measured over a much larger range of current and

Eventually, the increasing power dissipation due to the voltage than is usual in the LTS materials (11,12).
flux flow resistivity causes the temperature of the supercon- Over the years of development of LTS wires, it has been
ductor to rise above TC and there is a phase transition to the empirically determined that larger slopes of the log V versus
normal state (Fig. 3). An important point to note is that logI plot were correlated with higher current density or
within the flux flow regime the sample is still superconduct- higher ‘‘quality’’ superconducting wires. This slope has come
ing, though it is no longer in the zero dissipation (or zero re- to be known as the ‘‘n-value’’ of a wire and is commonly re-
sistance) condition. ported by LTS wire manufacturers. Values of n between 40

Empirically it has been found that the shape of the V(I) and 100 are generally considered to indicate good quality
curve at low voltages (well below the linear flux-flow regime) wires. From Eq. (2) one can see that, as the n-value for a wire

increases, the transition from the zero resistance state to the
flux flow state becomes steeper and narrower.

Because of the gradual transition from zero voltage to the
linear flux-flow regime, the critical current is usually deter-
mined by using a standard measurement criterion. For many
years magnet designers preferred a constant resistivity crite-
rion, for example, � � 10�14 �-m. A line is drawn on the V(I)
data plot with a resistive slope corresponding to 10�14 �-m,
based on the dimensions of the sample. The intersection of
this line with the V(I) measurement is the critical current IC.
Because the V(I) characteristic is curved, the measured value
of the IC depends on the criterion used, so this information
must be provided along with the measurement value. Histori-
cally, the 10�14 �-m criterion has been used by magnet design-
ers because it was found that early superconducting magnets
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thermally ran away to the normal state (quench) at a magnetFigure 2. Schematic of the voltage versus current measurement of
resistivity of about 10�14 �-m. A second commonly used crite-the critical current of a superconducting wire as a function of the
rion is the constant electric field criterion, in which the IC isapplied magnetic field. The zero voltage points have been offset for
given by the current at which the V(I) measurement exceedsclarity. As the field increases, the critical current decreases, and the

high current slope �ff increases. a constant electric field value, for instance, 10 �V/m.
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It is important here to draw a distinction between the criti- superconducting states:
cal current IC, which has units of amperes, and the critical
current density JC, which has units of amperes per unit cross-
sectional area. The fundamental property of the supercon-

1
2

µ0H2
c = 1

2
N(εF)[�(0)]2 (4)

ducting state is the JC, which is the maximum current per
where N(�F) is the density of states at the Fermi energy andunit cross-sectional area of superconductor that is carried
�o is the permittivity of free space. Thus, the critical magneticwithout resistive losses. The JC is determined by measuring
field is that magnetic field for which the magnetic energy isthe critical current IC of the specimen and dividing by the
large enough to break apart the electron pair.cross-sectional area of the superconductor: JC � IC/A.

In a similar approach to the arguments used to estimateAn additional definition of importance is the engineering
TC and HC, one would expect that there is an ultimate criticalJC which is defined as the maximum transport current per
current density limited by the kinetic energy of the superelec-unit cross section of superconducting wire. Most technological
tron pairs in a transport current. When the kinetic energy ofsuperconductors are fabricated as a composite of supercon-
the electrons exceeds the energy gap, the pairs break apartducting and normal metal for thermal and mechanical stabil-
and become normal (resistive) charge carriers. The kinetic en-ity (1,13). For the magnet designer, the engineering JC (some-
ergy of the superelectrons can be written astimes abbreviated as JE) determines the available current in

the magnet windings. The distinction between JC and JE is
especially important when magnet designers are working KE = (m∗v2

F)

2
= p2

F

2m∗ ≈ 2�(0) (5)
with superconducting composites in which the superconduct-
ing area is a small fraction of the total wire cross section, as

where m* is the effective mass of the charge carriers (in thisin tape composites and many early HTS wires.
case m* � 2me, two times the mass of an electron), and vFIt is also worthwhile at this point to describe the difference
and pF are the Fermi velocity and momentum, respectively.between transport currents and shielding currents. Supercon-

The current density produced by these charge carriers isductors placed in a magnetic field exclude some or all of the
given bymagnetic flux from the bulk of the superconductor (known as

the Meissner–Ochsenfeld effect). For this exclusion to occur,
J = qnsv = 2ensvF (6)shielding currents flow on the surface of the superconductor

such that the magnetic field produced by the shielding cur-
where q is the charge of the current carrier (� 2e for electronrents opposes the applied field and cancels it out. In general,
pairs) and nS is the density of superelectron charge carriers.the shielding currents flow in loops that are closed entirely

The depairing critical current density can be found by com-within the superconductor. In contrast, transport currents are
bining Eqs. (5) and (6):those currents applied from outside the superconductor using

external current sources. The transport currents are the cur-
rents used to produce magnetic fields in the superconducting JD ≈ 10 ens�(0)

pF
(7)

magnets and to make the resistive measurements of the criti-
cal parameters of superconductivity. Orlando (6) derives an equivalent form of Eq. (7) from Ginz-

With this basic understanding of how the JC is typically burg–Landau theory as
measured we can begin to discuss the physical mechanisms
limiting JC in practical materials.

JD = φ0

3
√

3πµ0λ
2ξ

(8)

ULTIMATE LIMITS TO JC: THE DEPAIRING CRITICAL where � and 
 are the penetration depth and coherence
CURRENT DENSITY length, respectively, and �o is the magnetic flux quantum. Us-

ing either Eqs. (7) or (8) we can calculate the depairing criti-
In the Bardeen–Cooper–Schrieffer theory of superconductiv- cal current density shown in Table 1 at zero kelvin and zero
ity, the charge carriers are pairs of electrons bound together magnetic field for several superconducting systems.
by a positive electron–phonon interactive force. The bonding As can be seen from Table 1, the depairing critical current
energy of the superelectron pair at zero kelvin is denoted as densities are quite large, especially when compared with the
the energy gap �(0). The critical temperature can be deter- typical current density in standard copper household wiring
mined from the energy gap as the temperature at which the of about 107 A/m2. The superconducting materials shown here
thermal excitation energy kT is equal to the energy gap bond- have theoretical critical current densities at least 104 times
ing the superelectron pair together. More rigorously this rela-
tionship is

2�(0) = 3.5 kTC (3)

The superconductivity stops because the thermal energy is
sufficient to ‘‘depair’’ or ‘‘decouple’’ the superelectrons.

Similarly, the thermodynamic critical magnetic field HC at
zero kelvin can be determined from the energy gap by using

Table 1. Theoretical Depairing Critical Current Densitya

Superconductor �, nm 
, nm JD , A/m2

NbTi 300 4 2 � 1011

Nb3Sn 65 3 8 � 1012

YBa2Cu3O (ab plane) 30 3 4 � 1013

YBa2Cu3O (c plane) 200 0.4 6 � 1012

a Calculated using Eq. (8) for several important superconductors.the magnetic free energy difference between the normal and
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larger than copper. It is because of these large values of criti- where both H and J are vector quantities. For the one-dimen-
sional case of a semi-infinite slab of type I superconductor incal current density with no resistive losses (and therefore no

power dissipation) that superconductors are so important in the y–z plane, and an applied field H, parallel to the slab in
the z-direction, Ampere’s law becomeslarge electromagnet applications (1).

It should be remembered that the values of JD listed in
dHz/dx = Jy (10)Table 1 are calculated for zero kelvin and zero magnetic field,

and in practice these conditions do not hold. In fact, these
Because the magnetic field decays over a length � into thevalues of current density have never been reached because of
superconductor, we know that the applied field and theother practical limitations. One of these limitations is the
shielding current density are related approximately asself-field produced by a wire carrying a transport current. As

the transport current through the wire is increased, the self-
field at the surface of the superconductor increases. At some

HA

λ
= Jy (11)

point, the magnetic field due to the transport current becomes
equal to the critical magnetic field of the wire, and the super- As the magnitude of the applied field increases, the magni-
conductivity breaks down. This model of the practical limit to tude of the current density increases to shield the supercon-
JC is know as Silsbee’s hypothesis (14), and is usually applied ductor from the field. The maximum current density is ob-
to find the critical current limit of type I superconductors. tained when the applied field at the surface of the type I

Of greater technological importance than the Silsbee limit superconductor is equal to HC, in which case JMAX � HC/�.
in type I materials is the limitation of the JC in type II super- This shielding current density is the same as the depairing
conductors because type II superconductors display supercon- current density described by Eqs. (7) and (8).
ductivity up to larger magnetic field values than type I super- The shielding currents in the type I superconductor effec-
conductors. To understand the factors limiting the JC in type tively provide a diamagnetic magnetization, M � �HA, as
II materials, it is necessary to review the magnetic properties shown in Fig. 4(a), called the Meissner–Ochsenfeld effect.
of these superconductors and introduce the concept of the For type II superconductors, the magnetic response is
flux-line lattice. somewhat different. Up to a lower critical field HC1, the mag-

netic response of type II superconductors is the same as that
of type I and shows a full flux expulsion, with M � �HA (seeTHE MAGNETIC FLUX LINE LATTICE
Fig. 4b). In this region, the superconductor is said to be in the

The principal difference between type I and type II supercon- Meissner state. For magnetic fields higher than HC1, the mag-
ducting materials lies in their response to an applied mag- netic free energy balance of the superconductor makes it ener-
netic field. Type I superconductors exclude an applied mag- getically favorable for the magnetic field to enter the bulk of
netic field from the body of the superconductor up to the the superconductor. As the magnetic flux enters the bulk su-
thermodynamic critical field HC. To exclude this magnetic perconductor, it breaks into quantized units of flux �0, vari-
flux, a shielding current is established on the surface of the ously called the flux quantum, fluxon, fluxoid, flux vortex, or
superconductor that flows in a direction so as to produce a flux line. The flux quantum has a magnitude of �0, � 2.0679
flux density equal and opposite to the applied field. This sur- � 10�15 T-m2.
face current flows in a surface layer whose thickness is equal The individual flux quanta, or flux lines, orient themselves
to the magnetic penetration depth �. The magnitude of the parallel to the applied field and effectively reduce the magne-
surface current can be found by using Ampere’s law which tization of the type II superconductor below that of the perfect
states that the spatial variation in the magnetic field is pro- diamagnetism of the Meissner state. This state of lower mag-
portional to the current density flowing: netization is called the mixed state. As the applied field in-

creases, the number of flux lines per unit area increases in∇∇∇ × HHH = JJJ (9) the superconductor and M approaches zero. Eventually the
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Figure 4. The magnetic behavior of type I and type II superconductors. Type I superconductors
exclude the applied field from the bulk of the superconductor by producing a supercurrent on the
surface to cancel the applied field, yielding the magnetization versus field plot shown in (a). Type
II superconductors exclude the applied field up to a lower critical field HC1 and then allow the
field to enter the bulk as flux quanta �o, until the upper critical field HC2 is reached (b). At this
point the superconductivity is destroyed by the applied field.
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flux lines touch one another, and the field inside the super-
conductor becomes equal to the applied magnetic field, driv-
ing the magnetization to zero at the upper critical magnetic
field HC2. The superconducting material remains supercon-
ducting up to large values of the applied magnetic field
(HC2), and this is one of the main reasons that the type II
materials are used for electromagnet applications.

The interaction of the individual flux lines with one an-
other is similar to that of two parallel bar magnets. Because
the orientation of the field in the flux lines is the same, they
repel one another strongly. This causes the flux lines to dis-
tribute themselves in a periodic lattice to minimize the in-
terflux line interactions (Fig. 5). This periodic structure,
called the flux line lattice (FLL), was theoretically predicted
by Abrikosov (15) using extensions of the Ginzburg–Landau
theory of superconductivity. Abrikosov found that the lowest
free energy configuration for the FLL is a triangular or hexag-
onal ‘‘crystal.’’ The FLL has been experimentally verified in
several ways, including magnetic particle decoration tech-
niques (16) and diffraction from the flux line crystal by using
the magnetic moment of neutrons (17). The magnetic decora-
tion technique, in particular, provides a striking visualization Figure 6. The magnetic flux line lattice imaged using a magnetic
of the periodicity of the flux line lattice, as shown in Fig. 6. particle decoration technique. The small scale magnetic particles are

We can model an isolated flux line as a cylindrical core of attracted to the regions of large flux gradient at the flux line cores
normal-phase material in which the superconductivity has and then can be imaged by transmission electron microscopy. The
been destroyed by the magnetic field and which is surrounded periodic triangular flux line lattice can be clearly distinguished. Re-

printed with permission from H. Trauble and U. Essmann, J. Appl.by a circulating supercurrent. The magnetic flux resides
Phys., 39(9): 4052–4056, 1968. Copyright 1968, American Institutewithin the core and decays into the bulk of the superconduc-
of Physics.tor over a distance of the magnetic penetration depth � (Fig.

7). Within this range, the local magnetic field strength H is
changing, and therefore, by using Ampere’s law [Eq. (9)],

7). The field strength in the core can be estimated as the mag-there is a current flowing in the superconductor. This current
netic flux divided by the cross sectional area of the flux line:is analogous to the shielding current that flows on the super-

conductor surface to exclude the magnetic field. In this case
it is a circulating current that flows around the flux-line core HCORE = φ0

µ0πξ 2
= HC2 (12)

and has an orientation and magnitude needed to produce the
�0 of magnetic flux in the core (Fig. 7). This circulating cur-

As we introduce more flux lines into the interior of the super-rent is the origin of the name ‘‘flux vortex.’’
conductor, the circulating supercurrents of the neighboringThe cylindrical core has a diameter twice the coherence
flux lines begin to interact and repel one another, leading tolength (2
). The coherence length is the distance over which
the periodic structure of the flux-line lattice. The flux densitythe superconducting order parameter ���2 (or the density of

superconducting electron pairs nS) changes from its maximum
value at the core radius to zero in the center of the core (Fig.

B, local field

J, circulating
current density

0φ

ξ

λ

ns, density of
superelectrons

Fluxon
core

Applied field, HA
Superconductor

Flux line

Figure 7. Model of an isolated flux line as a core of normal material
containing the magnetic flux quantum �0. The magnetic field falls offFigure 5. Schematic of the magnetic flux line lattice in a type II

superconductor for applied fields between HC1 
 HA 
 HC2. The flux over a distance of �, the penetration depth. The core has a radius of

, the superconducting coherence length, and the density of superelec-lines arrange themselves in a triangular or hexagonal lattice due to

the inter-flux-line magnetic repulsive forces. trons falls to zero at the center of the flux line core.



664 SUPERCONDUCTING CRITICAL CURRENT

at any point in the superconductor is found from the number fields less than the upper critical field HC2 at temperatures
lower than TC and carries transport currents less than JD, itdensity of flux lines as B � n��o/A, where n� is the number

of flux quanta in the cross-sectional area A. In a homogeneous is in the superconducting state. The nonzero resistance occurs
only because the FLL is moving under the Lorentz force pro-type II superconductor in the mixed state (i.e., in an applied

field between HC1 and HC2), the magnetic flux breaks up into duced by the transport current and changing the magnetic
flux linked by the superconductor. This is the ‘‘flux-flow’’ re-flux lines, each containing one quantum (�o), of magnetic flux

that are periodically arranged in this two-dimensional ‘‘crys- gime described earlier. If we could prevent the FLL from mov-
ing because of the Lorentz force, the zero resistance conditiontal’’ lattice.

If a transport current is applied to such a superconducting would persist to higher transport currents, effectively increas-
ing the critical current density.wire, where the current flow is along the axis of the wire and

the applied magnetic field is perpendicular to the axis (as The bulk pinning force density FP (N/m3), is defined for
samples carrying a transport current in a transverse field asshown in Fig. 8), there is an interactive force between the flux

lines and the transport current. Lorentz’s law for the force on the critical Lorentz force:
a charged particle moving through a magnetic field is given
by FFFP = |FFFLC| = JJJC × BBB (15)

FFFL = JJJ × BBB (13)
where JC is the current density at which voltage losses occur
in the superconductor.

where FL is the Lorentz force density acting between the cur- In essence, holding the FLL against the Lorentz force adds
rent of J and the flux density B. The FL has units of Newtons a transition line for the change from flux pinning to flux flow
per cubic meter and acts in a direction perpendicular to both to the phase diagram of the type II superconductor in Fig.
the flux density B and the transport current density J (Fig. 9. The solid lines represent thermodynamic phase transitions
8). between the superconducting (Meissner and mixed) states

The result of the Lorentz force acting on the FLL is to push and the normal state, and the dashed line shows the transi-
the flux lines across the superconductor. The movement of the tion from the flux-pinning (zero resistance) condition to the
flux lines corresponds to a change in the flux density within dissipative flux-flow condition.
the superconducting circuit with time (Fig. 1), and from Max- Ideally, one would like to move the dashed line up in cur-
well’s equations for such a case (6), rent density as close to the phase transition line (determined

by JD) as possible. This is the goal of the flux pinning dis-
cussed in the next section.

dBBB
dt

= −∇∇∇ × EEE (14)

In other words, the moving magnetic flux lines produce an
FLUX PINNINGelectric field gradient (or voltage) in the direction of the trans-

port current flow. As the FLL moves, a voltage is generated
To increase the current that a superconductor may carrythat must be supplied by the external power supply. The con-
without power dissipation, it is necessary to restrain the FLLsequence of this flux motion is that the superconductor no
against the Lorentz force by ‘‘pinning’’ it in place. There arelonger supports a transport current with zero dissipation, and
several mechanisms by which the FLL may be pinned, andtherefore the zero resistance state no longer exists.
generally these rely on developing microstructural featuresIt is important here to draw a distinction between the loss
that interact with the individual flux lines. Examples of mi-of the superconducting state and the loss of the zero resis-
crostructural features that provide pinning resistance to thetance condition. As long as the superconductor remains in
Lorentz force include normal conducting precipitates, inclu-
sions, voids, and grain boundaries.

The basic theory of flux pinning in type II superconductors
is conveniently broken into three sections. These are basic in-
teractive forces, summation theory, and scaling laws (7,8).

Basic Interactive Forces

The basic interactive forces are the forces between single, iso-
lated flux lines and individual pinning centers. The usual
model for the basic interactive force is that the pinning center
must provide a spatial variation of the thermodynamic free
energy of the flux line. This can be visualized as either an
energy well (Fig. 10) or an energy hill. In the case shown in
the upper part of Fig. 10 the flux line has a lower free energy
when it sits in the energy well of the pinning center than it

Transport
current, J

Applied field, HA

Lorentz force on flux lines, FL does in the bulk superconductor, and thus there is a pinning
force holding the flux line in the well. The pinning force isFigure 8. The orientation of the magnetic field, transport current,
related to the free energy by the first derivative with respectand Lorentz force acting on the flux line lattice. The Lorentz force
to position, so that the pinning force curve looks like thatbetween the flux lines and the transport current causes the flux lines

to move across the superconductor. shown in the lower part of Fig. 10. The deeper the potential
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Figure 9. The H–T and J–H phase diagrams for type II superconductors. At low applied fields
the superconductor is in the Meissner state. At higher fields the superconductor enters the mixed
state with the creation of the flux line lattice (FLL). As the transport current is increased from
zero, the Lorentz force on the FLL eventually causes it to move, causing flux-flow dissipation
and a resistive voltage, shown as the dotted line. The superconducting state does not end until
the current density exceeds the depinning current density or the temperature rises above TC. As
flux pinning increases, the transition to flux flow occurs closer to the depairing critical current
density limit.

well, the steeper the energy profile, and the larger the pin- must provide enough energy to convert the core of the flux
ning force. line to the normal state. This energy (per unit length of flux

If a Lorentz force is applied to a flux line trapped in this line), called the condensation energy, is given by the volumet-
potential well, the flux line moves in the direction of the Lo- ric free energy due to the magnetic field within the flux line
rentz force until it is balanced by the oppositely directed pin- and the cross-sectional area of the fluxon core as
ning force. Thus the flux line is held in place, there is no flux
movement, and Eq. (14) shows that there is no dissipation.
The transport current is carried without power dissipation, ECOND =

�
µ0H2

C

2

�
πξ 2 (16)

and the zero resistance condition is in effect. Superconducting
materials that pin magnetic flux are sometimes called ‘‘hard’’

where HC is the thermodynamic critical field and 
 is the su-superconductors analogous to engineering alloys that have
perconducting coherence length.been mechanically hardened by treatments to pin the move-

Imagine that the superconductor contains a cylindricalment of dislocations.
void of diameter 2
 and its axis is oriented parallel to theOne type of basic interactive force between a single flux

line and a single pinning center is called the core interaction. flux-line axis. If the flux line were centered on this void, the
To nucleate a flux line within the superconductor, the system condensation energy needed to produce the normal core of the

flux line would be saved, and the flux line would see a lower
free energy at the location of the void than it would in the
bulk, similar to Fig. 10. The result of this free energy change
is that the flux line requires an increase in its energy per unit
length equal to the condensation energy, Eq. (16), to move
away from the void. Thus the void acts as a pinning center
holding the flux line in place.

As the current density is increased, the Lorentz force on
the pinned flux line increases until it exceeds the maximum
gradient of the free energy versus position curve (Fig. 10). At
this point the flux line is free of the pinning center and moves
under the Lorentz force, creating a dissipative loss due to
Eq. (14).

There are many different interactions between the flux line
and microstructural defects that lead to basic interactive
forces and pinning. The core interaction may be applied to
voids and also to normal conducting precipitates (as in the

Pinning
center

Bulk
superconductor

Flux line
energy

Flux line

Pinning
force

Nb–Ti system) or weakly superconducting inclusions, forFigure 10. The variation in the free energy of the flux line in the
which there is a spatial dependence of the superconductingvicinity of a pinning center. The energy well produces a net force on
condensation energy. A different interaction that is thoughtthe flux line centering it in the pinning center and constraining it

against the Lorentz force of the transport current. to be important in flux pinning in single-phase superconduc-
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through changes in the electron mean free path and therefore
affect 	 through the coherence length.

A class of basic interactive forces that can be modeled us-
ing ‘‘image’’ vortices to calculate the pinning forces are
grouped together as magnetic interactions. In these cases the
interaction between the circulating supercurrents and micro-
structural defects leads to pinning forces, rather than interac-
tions involving the normal core. An example is the pinning
force between a flux vortex and an electrically insulating
plane. The interactive force is calculated by introducing an
identical ‘‘image vortex’’ on the opposite side of the insulating

Grain boundary

Flux line core

l, electronic
mean free

path

bulk
ξ

bulk
ξ

reduced
ξ

plane. The overlapping supercurrents of the real flux line and
Figure 11. The superconducting coherence length is reduced within the image vortex repel one another and produce a force be-
an electron mean free path of a scattering defect, such as a grain

tween the flux line and the insulating plane.boundary. This causes the flux line core to distort so that the volume
A recent addition to the theory of basic interactive forcesof the flux line changes as it approaches the grain boundary. The

is that of the Josephson vortex (19,20). The Josephson vortexvariation of the flux-line energy with distance from the grain bound-
model accounts for the large pinning forces found in opti-ary causes a pinning interaction between the flux line and the grain

boundary. mized Nb–Ti alloys for which the pinning centers are thin
sheet-like ribbons of normal conducting �-Ti. These ribbons
are much thinner than the flux line core, so that the core

tors, such as Nb3Sn, is the grain boundary interaction, first interaction does not accurately describe the pinning interac-
proposed by Zerweck (18). tion. At the same time, the ribbons are not insulators, so that

In the grain boundary interactive model, the grain bound- the magnetic interaction also does not apply. The model esti-
aries are viewed as strong scattering centers for the normal mates the basic interactive force by considering what happens
electrons in the metal, thereby reducing the mean free path to the circulating supercurrent around the flux line, as it ap-
of the electrons near the grain boundary. When the electron proaches a normal conducting planar pinning center. Given
mean free path l is less than the coherence length, the coher- that the supercurrent cannot readily penetrate the (normal)
ence length depends on the mean free path as pinning plane, the supercurrent spreads out along the planar

defect, slowly tunneling through the pinning plane as a super-
conducting Josephson tunneling current to complete the cur-ξdirty = 0.85(ξ0l)1/2 (17)

rent loop on the other side of the pinning plane (Fig. 12). The
This is often referred to as the ‘‘dirty limit’’ since the mean effect is that the flux line becomes distributed over a broad
free path of the electrons is much shorter than that of a area of the pinning plane and produces a pinning force due to
‘‘clean’’ high-purity metal (5). the Josephson current interactions.

From Eq. (17), the coherence length is reduced within an In summary, basic interactive forces can arise from many
electron mean free path of the grain boundary. The effect of different physical mechanisms, of which only a few have been
the change in the coherence length is that as the flux line core described here. By providing a spatial variation in the free
moves closer to the grain boundary, it becomes deformed (Fig. energy of the individual flux lines, the pinning centers pro-
11) and changes its volume so that the total energy (conden- duce a pinning force that holds the flux lines stationary
sation energy times the core volume) changes with distance against the Lorentz force, thus increasing the critical current
from the grain boundary. The free energy difference with po- density of the superconductor.
sition leads to a pinning force, as with the core interactive
model. Summation Theory

A more general approach to basic interactive forces derives
The second key part in the discussion of flux pinning is sum-from the Ginzburg–Landau theory of superconductivity,
mation theory. Given a model for the basic interactive forceswhich can be written to show that the variation in the free
between individual pinning centers and individual flux lines,energy of a flux line depends on spatial variations of the criti-
now we must consider the effect of large numbers of flux linescal field and the Ginzburg–Landau parameter 	. One version

of this derivation (7) is to write the variation in the free en-
ergy of the flux line due to pinning defects as

δE =
∫

µ0H2
C

[
−
�

δHC2

HC2

�
|ψ |2 + 1

2

�
δκ2

κ2

�
|ψ |4

]
dV (18)

where � is the unperturbed order parameter of the supercon-
ductor.

Supercurrent
vortex

Flux core

Pinned Josephson 
vortex

Normal conducting
sheet pinning center

From this perspective, any spatial variation in either criti-
Figure 12. In the Josephson vortex model the supercurrents sur-cal field (dHC2/HC2) or 	 (d	/	) produces a change in the free
rounding a flux line are distorted as they approach a normal conduct-

energy of the flux line that leads to a basic interactive force ing sheet pinning center. The current spreads to the left and right of
for pinning. Examples of pinning defects of this sort include the flux line to tunnel through the sheet and complete the circuit on
normal and weakly superconducting inclusions and precipi- the opposite side. When the flux line rests on the sheet, it spreads
tates, dislocation clusters (subgrain boundaries), and chemi- out along the length of the pinning center, losing the normal core and

distributing the flux quantum over a large area.cal inhomogeneities, which produce pinning interactions
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interacting with large numbers of pinning centers. The princi-
ple complication of summation is that the flux lines interact
repulsively with one another and, in the absence of a pinning
force, order themselves in the flux line lattice. Thus, the flux
line lattice acts as a two-dimensional, elastic, crystalline
solid.

If the inter-flux-line forces are weak compared to the basic
interactive forces with the pinning centers, then the individ-
ual flux lines move out of the periodic FLL and arrange them-
selves so that as many flux lines as possible are located on
the pinning centers. If the number density of flux lines is less
than or equal to the number of pinning centers (for instance,
at small applied fields), then each flux line is individually
pinned, and the bulk pinning force is large. This is called di-
rect summation, and the bulk pinning force density is just the
number density of pinning centers times the basic inter-
active force.

At the other extreme in which the interaction between the
flux lines in the flux line lattice is infinitely strong, the FLL
is completely rigid, and there can be no bulk pinning force
due to a collection of randomly distributed pinning centers
because, for any position of the FLL relative to the random
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array of pinning centers, there will be as many basic inter-
active forces pulling the FLL to the left as to the right, and Figure 13. Labusch calculation of the elastic constants of the flux
the bulk pinning force density averages to zero. Even though line lattice in Nb–Ta. Notice that the C11 and C44 elastic constants
the basic interactive forces are very large, if the FLL acts as increase with magnetic field, whereas the shear modulus C66 de-
a rigid solid because of interfluxon forces, there will be no creases with field at high fields. The b and h are the reduced fields

B/BC2 and H/HC2, respectively. Reprinted with permission from Ref. 8.bulk pinning force, and the FLL will move under the Lorentz
force due to the transport current, yielding a low JC.

The correct description of pinning certainly lies somewhere
between these two extremes of direct summation and the

bending of flux lines along their axis. C66 is the shear modu-rigid FLL lattice. There are several models proposed to ac-
lus, which describes the resistance of the FLL to the shear ofcount for the summation of the basic interactive forces, and
flux lines past one another. An excellent discussion of the ef-all of them depend strongly on the elastic properties of the
fect of the FLL elastic constants on the deformation of theFLL as determined by the inter-flux-line forces. In essence,
flux line lattice may be found in Ref. 8.the FLL is a crystalline solid that is placed under an external

When the number density of flux lines is larger than theload by the competition of the transport-current-induced Lo-
number density of pinning centers (as is often the case), thererentz forces and the restraint of the pinning forces. As the
are two primary models of the summation behavior of theLorentz force loading increases, the FLL elastically distorts
FLL. These are the flux line lattice shear model and the col-until either the pinning forces are exceeded, at which point
lective-pinning model.the entire FLL breaks free and moves in unison through the

In the FLL shear model, individual flux lines are stronglysuperconductor, or the load overcomes the inter-flux-line
pinned on individual pinning centers, and the excess fluxforces, and the periodic FLL breaks apart.
lines not directly pinned are held in place against the LorentzThis is analogous to mechanically loading a tensile speci-
force due to the interfluxon forces. At large enough transportmen above its elastic limit and into the plastic deformation
currents, the Lorentz force becomes larger than the elasticregion. As the mechanical test specimen is plastically dis-
shear modulus (C66) can support, and the FLL shears,torted, crystalline defects in the specimen are created (dislo-
allowing unpinned flux lines to flow between those stronglycations), and the mechanical properties depend strongly on
pinned by the pinning centers. Therefore the critical currentthe presence of these crystal defects. In the superconductor
is determined, not by the strength of the pinning forces, butwith pinning centers, the increasing Lorentz force begins to
by the shear stiffness of the FLL, given by C66.introduce crystal defects which fragment the FLL into a poly-

In the Brandt model of the flux line elastic constants, thecrystalline FLL. The crystalline nature of the FLL has been
compressive modulus C11 and the tilt modulus C44 both de-experimentally observed, as has the polycrystalline and defec-
pend on the magnetic field roughly astive FLL, by using both magnetic particle decoration tech-

niques and neutron scattering (21,22). It is also the case that
the presence of FLL crystal defects strongly affect its mechan-
ical properties and response to Lorentz force loading (7). C11 ≈ C44 ≈ H2

4π
(19)

There have been several calculations of the elastic behav-
ior of the FLL. An example is shown in Fig. 13 (8,23) for a whereas the shear modulus near HC2 is approximated by
NbTa alloy superconductor. C11 is the elastic modulus in the
plane normal to the flux line axes. This is a measure of the
stiffness of the FLL while pushing the flux lines closer to-
gether. C44 is the elastic tilt modulus which describes the

C66 ≈ K
�

1 − H
HC2

�2

(20)
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where K is a proportionality constant. At high magnetic the rigid FLL are well understood, the behavior of real mate-
fields, the FLL is very stiff in bending and compression, but rials is less clear. Several models for summation have been
becomes softer and softer in shear as the field approaches proposed, primarily the FLL shear and the collective-pinning
HC2. Therefore from this summation model one would expect models, and validation of them with experimental measure-
that the high field critical current density would be deter- ments shows that they all have some merit, but none are ca-
mined by the FLL shear and would be somewhat independent pable of a complete description of the origins of the bulk pin-
of the basic pinning interaction. A detailed model of the FLL ning force. A final tool for understanding the physical
shear mechanism developed by Kramer (24,25) predicts a dif- mechanisms behind the pinning force and JC is scaling laws.
ferent high field behavior of the bulk pinning force density
compared to the predictions of the simple direct summation

Scaling Laws for Flux Pinningmodel. Both kinds of behavior have been experimentally ob-
served. Experimentally it has been found that as the testing tempera-

An alternative model for summation that applies in the ture is varied, many superconductors exhibit scaling of the
limit of a larger number density of flux lines than pinning bulk pinning force density versus applied magnetic field (28).
centers is the collective-pinning model (26,27). In collective- This is observed by first measuring the JC as a function of
pinning theory, the FLL is thought to consist of a polycrystal- magnetic field and developing a curve of the bulk pinning
line collection of ‘‘grains’’ in which the periodic order of the force density versus magnetic field using Eq. (15): FP � JCB.
flux line lattice is reasonably well maintained by inter-flux- This curve has a characteristic shape. It is zero at zero ap-
line forces, but the neighboring grains are uncorrelated with plied field, increases through a maximum with increasing
one another. Within a flux lattice grain, the flux lines are field, and drops to zero again as the Jc drops to zero at H �
strongly pinned to one or more pinning centers, and the corre- HC2 (Fig. 14).
lated group is held in place by the combined action of the As the test temperature changes, the HC2 of the sample
basic pinning forces and the inter-flux-line forces. changes, and as a result, the bulk pinning force changes at a

In the collective-pinning model, the size of the correlated given applied field. By scaling the ordinate using the reduced
FLL grains is determined by the number density of pinning field, h � H/HC2, and scaling the abscissa as the reduced pin-
centers and the relative strength of the pinning force and the

ning force density, fP � FP/FP MAX, where FP MAX is the maxi-inter-flux-line forces. In one limit, where the inter-flux-line
mum measured bulk pinning force density, the experimentalforces are large compared to the pinning forces, the flux lat-
data frequently collapse onto a single line for all test tempera-tice is elastically stiff and the correlated flux grain size is
tures (Fig. 14).large and involves many pinning centers. In this limit, the

Although the majority of the experiments on scaling JCbulk pinning force is small, as in the infinitely stiff FLL limit
have been performed in low temperature superconductors, adescribed previously. As the pinning force increases relative
large literature has also developed for scaling behavior into the inter-flux-line forces, the correlated grains become
high temperature superconductors. The terminology used insmaller and approach a limiting grain size equal to the mean
HTS materials has evolved along different lines than thosepinning center spacing, so that each flux lattice grain inter-
used here, but the basic result is that temperature scaling ofacts with only one pinning center. In this limit, the bulk pin-
the pinning force is also a common feature of these materi-ning force is at its maximum, because each pinning center is
als (29,30).applying a maximal constraint on the FLL. The bulk pinning

It is important that the pinning force follows a scaling lawforce is close to the direct summation pinning force in this
with changes in magnetic field and temperature because scal-limit.
ing implies a single mechanism for flux pinning in the mate-In summary, then, the central problem of summation the-
rial as a function of temperature, which should be amenableory is how one combines the effects of the individual fluxon-
to theoretical prediction. Additionally, if scaling holds for apinning center interactions and the interfluxon forces to pro-
given material, one only needs to measure the critical currentduce a bulk pinning force to hold the FLL against the Lorentz

force. Although the limiting cases of direct summation and at one temperature and field to estimate the performance at

Figure 14. To determine whether a supercon-
ducting material displays scaling of the flux pin-
ning curve, the pinning force density versus ap-
plied field for several different test temperatures
is measured (a). The data are scaled using h �

H/HC2 (b) and fP � FP/FPMAX (c). If the sample
displays scaling, the different temperatures col-
lapse onto a single plot (c).
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other temperatures, which can be useful for magnet de-
signers.

In general terms, scaling follows an equation, such as

FP = K(HC2)m f (h) (21)

where K and m are empirically determined constants, f (h) is
a function only of reduced applied field, and the temperature
dependence is carried in the variation of HC2. Typically in LTS
materials, m varies between 1.5 and 2.5. The field function
f (h) may display many different kinds of scaling behavior
with magnetic field (31). The two most common are the linear
scaling and the quadratic scaling functions.

Fp

h h
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pinning centers

Increasing
basic interaction

force High field
saturation

Partial
synchronization

Linear as (1 – h
)

Q
uadratic as (1 – h
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(a) (b)In linear scaling, the field function is given by
Figure 15. In the summation model of Campbell and Evetts, the
pinning force curve is linear at both low fields and high fields, andf (h) = h(1 − h) (22)
the position of the peak pinning force density shifts depending on the
number of pinning centers in the superconductor (a). The KramerThis is a symmetrical function of reduced field that has a
model, on the other hand, shows a quadratic high field behavior, and

peak in the pinning force density at h � 0.5. Often, optimized the pinning force density saturates at high fields, as the strength of
Nb-Ti superconductors follow a linear scaling behavior (32). the basic interaction increases (b).

The quadratic scaling field function is expressed by

ning peak at a field determined by the number of pinningf (h) = h1/2(1 − h)2 (23)

centers, and a linear high field region. As the basic interactive
force increases, the pinning force curve increases in all fields.which displays a peak pinning force density at h � 0.25 and

a strong quadratic curvature as the applied field nears HC2. An alternative model of summation due to Kramer (25) de-
scribes the low field portion of the pinning force curve by par-The quadratic behavior is usually associated with Nb3Sn and

other single-phase superconductors (33). tial synchronization, as in the Campbell and Evetts model.
However, the high field behavior is determined by the shearBecause many superconductors exhibit scaling, it is inter-

esting to see if a theoretical model can predict the measure- of the flux lattice past strongly pinned individual fluxons.
Therefore, the high field pinning force has a magnetic fieldments and provide some insight into flux pinning behavior.

Because the theoretical picture of summation is somewhat di- dependence determined by the C66 elastic constant, which
from Eq. (20) decreases as (1 � h)2. Kramer also predicts thatverse, it is not surprising that the theory of pinning force den-

sity scaling is not completely clear. However, there are quali- the high field behavior will exhibit saturation such that varia-
tions in processing leading to changes in the basic interactivetative models that explain some of the experimental behavior.

Campbell and Evetts (7) examined the low field region of forces will affect the magnitude and position of the peak but
will not affect the high field pinning force behavior (Fig. 15).the pinning force curve, which is roughly linear with field for

nearly all of the scaling models and experiments. In this re- In most flux pinning theories the basic interactive force is
a function of temperature. For instance, in the core pinninggion, there are a small number of flux lines compared to the

number of pinning centers. Campbell and Evetts propose that model, the basic interactive force depends on the condensa-
tion energy and therefore on HC. As the temperature changes,direct summation should apply because the spacing between

flux lines is large enough that the interactive forces between so does HC. This leads to the observed temperature scaling of
FP.them are weak. As the field is increased from zero, the bulk

pinning force density increases linearly because of the in- However, the temperature dependence is more complicated
for some basic interactions. For example, if the pinning centercreased number of flux lines being pinned. This is often re-

ferred to as the ‘‘partial synchronization’’ range of fields be- were a superconducting precipitate with TC and HC2 below
that of the bulk material, one would expect a difference in thecause the flux lines become ‘‘synchronized’’ with the pinning

center array. strength of the core pinning interaction as the temperature is
varied above and below the pinning center critical tempera-At some magnetic field, the number of flux lines is equal

to the number of pinning centers, and the maximum bulk pin- ture and as the field moves above and below HC2 of the pinner.
This effect is normally observed as a lack of scaling and com-ning force density is reached. Therefore, the field of the pin-

ning peak depends on the number of pinning centers, and the monly as a shift of the peak in the pinning force curve as a
function of temperature.magnitude of the peak depends on the strength of the basic

interactive forces (Fig. 15). A second example of a lack of scaling is a superconductor
in which the pinning force on the FLL is a combination ofAt higher fields, there are more flux lines than pinning

centers, and one expects a crossover from synchronization to several different basic interactive mechanisms. Such a super-
conductor might be a two-phase alloy in which pinning resultswhere the bulk pinning force is limited by other effects. In

the Campbell and Evetts model the high field pinning force from both core interactions with normal precipitates and
grain boundary pinning. The different temperature and fieldfalls off because of the variation of the basic interactive force

with field, which falls as (1 � h) for the core interaction. Thus, dependencies of the two operating pinning mechanisms lead
to a lack of scaling (34).Campbell and Evetts predict a linear low field region, a pin-
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The main points to understand from this overview of the
flux pinning mechanism are the following:

• Bulk flux pinning depends on the basic interactive forces
between individual flux lines and individual pinning cen-
ters.

• Bulk flux pinning depends on the relative strength of the
basic interactive forces and the fluxon-fluxon forces,
which affects the summation of the individual interac-
tions into the bulk pinning force acting on the FLL.

• Scaling, or lack of scaling, provides a tool for understand-
ing the pinning mechanisms operating in different field
and temperature regions. This understanding can help
direct modifications of the pinning microstructures by us-
ing suitable processing to optimize the pinning force and
JC of hard superconductors.

THE CRITICAL STATE MODEL OF MAGNETIZATION

The previous discussion has centered on the electrical behav-
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ior of the superconductor, but magnetic behavior is also an
Figure 17. In the Bean critical state model, the semi-infinite slabimportant aspect of many applications. The magnetic re-
develops the flux and current density profiles shown on the applica-sponse of the superconductor can be a valuable tool for mea-
tion of a magnetic field larger than HC1.suring the critical current density.

An important consequence of pinning the magnetic FLL is
that the magnetic behavior of hard superconductors is conductor as the flux line lattice. For simplification, the Meis-
strongly hysteretic (Fig. 16). To understand the development sner state below HC1 is ignored in the critical state model.
of the hysteretic magnetization curve, a simple but powerful This is not a bad approximation, especially for the technologi-
model was proposed by Bean (35) and has since been modified cal superconductors which have large values of the Ginzburg–
and further refined (36). Landau parameter 	 and therefore small values of HC1.To simplify discussion of the model, we use a sample geom- If the sample has pinning centers to hold the entering FLL
etry of an infinite superconducting plate of thickness W. The in place, a magnetic field gradient is established at the sur-
applied magnetic field will be parallel to the surfaces of the face of the superconductor which falls off into the body of the
plate, as in Fig. 17. As the magnetic field is increased from sample. From earlier discussions of Ampere’s law, we know
zero, superconducting magnetization currents develop on the that the current density flowing in a superconductor is di-
surfaces, so that they shield the interior of the superconduc- rectly related to the magnetic field gradient, Eqs. (9) and (10).
tor from the applied field (the Meissner–Ochsenfeld effect). The situation looks schematically like that shown in Fig. 17,
These shielding currents flow only within a distance � (the where the z-directed applied field falls off into the sample
penetration depth) of the surface and fall off exponentially with a gradient in the x-direction that produces a current den-
into the superconductor. This condition persists until the ex- sity flowing in the y-direction (into the page).
ternal applied field exceeds the lower critical magnetic field The current density flowing is equal to the critical current
HC1. For fields larger than HC1 the superconductor is thermo- density. If the flux gradient were steeper, the current density
dynamically more stable if the applied field enters the super- would be larger than the JC, and the FLL would not be fully

pinned, leading to flux flow. The flux motion lowers the field
gradient until the FLL is pinned by the pinning centers, leav-
ing a critical flux gradient and a current density equal to JC.
For this reason the model is known as the ‘‘critical state
model.’’

In Bean’s original version of the critical state model, the
JC is assumed to be a constant, independent of applied field
from HC1 
 HA 
 HC2. This assumption makes the flux profile
in the sample linear such that

dHz

dx
= �Hz

�x
= Jy = constant = JC (24)

 HA

M

As the applied field is increased from HA � 0, the field pene-
trates the sample from both sides, and generates a circulatingFigure 16. Schematic of the hysteretic magnetization curve in strong
shielding current equal to JC (Fig. 17). The magnetization ofpinning superconductors. The arrows indicate the direction of travel
the slab can be found from examination of the field versusaround the hysteresis loop during a typical magnetization mea-

surement. position plot. From the definition of magnetization, we know
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that the local magnetization response of the superconductor
to the applied field can be written as the difference between
the applied field and the local internal magnetic field:

M(x) = HI(x) − HA (25)

where HI(x) is the local internal magnetic field. To find the
bulk magnetization, we must integrate the local magnetiza-
tion over the sample volume. Because the sample is infinite
in the y- and z-directions, we can turn this into a one-dimen-
sional integral over x, such that

Mbulk =
� 1

W

� ∫
HI(x) dx −

� 1
W

� ∫
HA dx

=
� 1

W

� ∫
[HI(x) − HA] dx (26)

Comparing Eq. (26) with Fig. 18 shows graphically that the
second term is the area of the entire rectangular region,
whereas the first term is given by the area of the two darker
triangular regions. The bulk magnetization is the volume av-
eraged difference between these, or the light gray trapezoidal
area of Fig. 18, divided by the sample width W.

Using this simple model we can determine the behavior of
the superconductor during a half magnetic field cycle used to
generate a magnetization loop of M versus HA. The process is
shown schematically in Fig. 19. For small applied fields
(points a, b) the field penetrates, and the magnetization in-
creases rapidly with applied field. At point c the applied field
is large enough to push the magnetic flux line lattice all the
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way to the center of the sample. This field is called the full
Figure 19. Schematic of a half hysteresis loop measurement of thepenetration field HP.
magnetization in a Type II superconductor. The flux profiles at eightFor applied fields larger than the full penetration field, the
points around the magnetization loop are derived from the Bean criti-magnetization does not change, even though the internal and cal state model and illustrate the source of the dependence of the

external fields increase. The magnetization curve remains flat magnetization on the pinning of magnetic flux within the supercon-
(points d, e). ductor.

Now, if the applied field were to be reduced, the flux lat-
tice, which is being pinned in place by the pinning centers,
responds only near the surface region, as shown at point f. positive and constant (g). Finally, at HA � 0, the magnetiza-
The magnetization becomes rapidly smaller with decreasing tion is positive because of the magnetic fields trapped in the
field. Now, the circulating supercurrents flowing in the sam- body of the superconductor by the pinning forces acting on
ple have the spatial dependence shown in Fig. 20. Both the the FLL.
positive and negative flowing currents are assumed to be Because the flux gradient is a constant, the full penetra-
flowing at the critical current density. Recall that the magni- tion field HP, varies with the width of the sample. Examina-
tude of the critical current density in the Bean critical state
model is constant with magnetic field.

As the applied field is further reduced, the current density
profile eventually inverts, and the magnetization becomes

x0

 HA

 HI(x)

 Hz

x

x0

0

 HA

 Hz

Jy

JC

–JC

Figure 18. The flux profile in the superconductor on applying a field
HA. This is useful for understanding the origin of the terms in the Figure 20. The flux profile and the accompanying current density

profile for point (f) of Fig. 19. The current density profile matches theintegral of Eq. (26). The magnetization response to the applied field
HA is proportional to the area of the light gray trapezoid. profile of the magnetic flux at all points in the superconductor.
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tion of Fig. 19 at the full penetration field (point c) shows that the case, however, that these models predict a direct relation-
ship between the height of the magnetization loop at a giventhe magnetic flux gradient
field and the critical current density multiplied by the sam-
ple dimension.

Other modifications to the Bean Critical State Model have

dH
dx

= − HP

(W/2)
= JC (27)

incorporated the change in magnetization due to finite sample
We can also see that the magnitude of the magnetization at sizes (37) and demagnetization factors for non-spherical sam-
this field is given by ples (38).

The most important result of the Bean model is that the
magnetization behavior can be used as a probe of the critical
current density within the superconductor by using a tech-

M(HP) = 2
W

∫ [�
HP + x

dH
dx

�
− HP

]
dx = JC�W

2

�
∫

x dx (28)

nique different from the four-point resistive measurement.
For many emerging superconducting materials, magnetiza-integrated from x � 0 to W/2. This gives the constant value
tion measurements have allowed measuring the critical cur-of the magnetization with applied field (points c, d, e) as
rent density before long lengths of wire were available for re-
sistive testing. It is also possible to measure JCs that would
be difficult to measure with a conventional resistive tech-

M = JC

�W
2

�
(29)

nique. An example is a cabled conductor with an IC of thou-
Figure 19 also illustrates that, when one considers the entire sands of amperes. Multikiloamp power supplies are expensive
hysteresis loop of the magnetization measurement, the dis- to purchase and operate, and the high current significantly
tance between the increasing field and decreasing field mag- complicates the experimental design. Magnetization measure-
netization at any applied field is twice the result of Eq. (29), ments of JC are not limited by the need for high current power
or the more usual result from the critical state model, supplies. The magnetization measurement of JC continues to

be an important tool for the materials engineer in optimizing
�M = JCW (30)

the flux pinning process.

The Bean critical state model has been modified to account DISSIPATION EFFECTS IN HIGH CURRENT
for the fact that the critical current density is not a constant DENSITY SUPERCONDUCTORS
with applied field (36). These modifications lead to curved

The movement of the FLL within the superconductor hasmagnetic field and current density profiles (Fig. 21) in addi-
many consequences for the applications of superconductors.tion to more realistic magnetization loops (Fig. 16). It is still
Examples include flux jumping (the rapid movement of mag-
netic flux within the superconductor which leads to localized
heating effects and the loss of the superconducting state), flux
flow near the JC, flux creep (the slow movement of the FLL
caused by random thermal jumping of flux lines out of the
pinning potentials), and magnetic hysteresis (which causes an
additional heating effect and resistive loss in ac applications
of superconductors). Because of their importance to applica-
tions, the dissipative effects have been carefully studied and
have led to some useful insights into the flux pinning process.

Flux Flow and Resistive Transition Analysis

As we have seen previously, the transition from the flux pin-
ning to the flux flow state is generally not sharp but occurs
over a range of currents during a resistive critical current
measurement. Several models for the shape of the resistive
transition have been developed to account for this behavior
(39–41), but they all assume a distribution of pinning center
strengths within the wire. The idea was first proposed by
Baixeras and Fournet (42) but was not fully developed and
applied to technological superconductors until the 1980s. If
one assumes that the superconducting wire is made of an as-
sortment of independent, current-carrying segments in series,

x
0

 Hz

 Jy

x
0

each with its own value of critical current (as determined by
the flux pinning defects within each segment), then the equa-Figure 21. The Bean critical state model assumes that the critical
tion for the V(I) curve can be written ascurrent density is constant with the magnetic field. In modified ver-

sions of the critical state model, the critical current density is allowed
to vary with the magnetic field. The effects on the magnetic flux pro- V (I) = A

∫
(I − I′ ) f (I′) dI′ (31)

files and accompanying current density profiles are shown here for
where I� is the local critical current of an individual wire seg-four different applied fields. As the applied field becomes larger, the
ment, A is a constant, f (I) is the critical current distributioncritical current decreases. The slope of the flux profile changes with
of the segments in the wire, and the integral is performedthe magnetic field, and it is also no longer linear with position in

the superconductor. from zero current to I.
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In essence this states that the voltage at any transport from a diffusion argument is
current I results from the segments with IC 
 I and are there-
fore in flux flow. Variations in the critical current of each seg-
ment may occur because of variations in processing, chemical

dB
dt

= Aw0 exp
�
− U

kT

�
(34)

inhomogeneities, or changes in geometry. For wires that are
very homogeneous along their lengths, the distribution in where A is a factor that depends on the local magnetic field
critical currents f (I) is very narrow, and the V(I) characteris- and field gradient and wo is the frequency with which the flux
tic is quite sharp and steep, leading to large n-values and the line tries to jump out of the well.
associated measure of ‘‘high-quality’’ in technological super- The flux gradient provides a driving force that leads to dif-
conductors (43). At the other extreme, a large variation in the fusion of the flux line preferentially down the flux gradient.
critical current distribution leads to a broad V(I) transition This produces a changing magnetic flux density according to
and a low n-value. Eq. (34) which can be experimentally measured. The flux gra-

The importance of the model for helping the development dient can exist because of the presence of either a transport
of high JC superconductors is that it can be used in reverse to

current or a magnetization current in the sample.
determine the critical current distribution function from a

In the case of a magnetization-induced flux gradient, themeasurement of the V(I) curve. By taking the second deriva-
flux gradient would decay, eventually disappearing, eventive of both sides of Eq. (31),
though the flux gradient (or magnetization current density) is
less than the critical current density. This is in contrast to
the assumptions of the Bean critical state model, in which the

d2V
dI2 = A f (I) (32)

flux gradient adjusts itself to match the critical current den-
sity at all points in the sample. In the original experimentalThe second derivative of the experimentally determined V(I)
work on flux creep (46), the measured decay of the magnetiza-curve yields the distribution f (I) of critical currents within the
tion currents translated into a decay time of 1092 years, effec-sample. In practice it is found that the resistive critical cur-
tively infinite time, so that, even with flux creep, the persis-rent measurement is always at a current well below the peak
tent magnetization supercurrents that flow as a result of theof the critical current distribution f (I). Technological super-
Meissner–Ochsenfeld effect are truly persistent.conductors are limited by the weakest flux pinning segment

The situation is somewhat different when the flux gradientalong the sample length.
driving force is produced by an externally applied transport
current. In this case, the flux gradient crosses the supercon-Temperature Dependence: Flux Creep and FLL Melting
ductor, and the effect of the flux creep is to move flux lines

As the temperature of a strongly pinned superconductor is across the sample in a manner identical to the flux depinning
increased, the thermal energy available to the pinned flux process at JC. In the same way that the FLL motion causes a
lines increases, allowing the possibility of thermally induced resistive-like dissipation in the superconductor, the flux creep
flux depinning. The higher temperatures lead to thermal exci- motion also contributes to the dissipation. This results in a
tation of the flux lines within the pinning potential wells. In power loss in the superconductor that must be supplied by
low temperature superconductors where the thermal energies the external power supply and a consequent heating of the
are low, the thermal energy is typically much smaller than superconductor caused by the flux motion. If the flux motion
the depth of the pinning potential. This led early investiga- is too great, the temperature increases, which increases the
tors to name the effect ‘‘flux creep’’ because of the similarity probability of thermally activated flux motion, and a thermal
to mechanical creep of crystalline materials at stresses much runaway to the normal state ensues.
lower than the yield stress.

At higher temperatures, the thermal excitation of the flux
The theory and model for flux creep was developed by An-

lines becomes comparable to the pinning potential, and thederson (44) and elaborated by Kim and Anderson (45). The
FLL is expected to move more easily. This, in fact, was onebasic premise is that flux lines at any finite temperature, ex-
early argument against the possibility of technologically im-perience a thermal excitation due to the thermal energy kT.
portant superconductors at high temperatures. The argumentThe excitation energy has a statistical probability of causing
was that no known basic pinning interactions are stronga flux line pinned by a pinning center to become unpinned.
enough to prevent thermal excitation of the FLL at high tem-The probability of this thermal depinning occurring is given
peratures (e.g., at 77 K, liquid nitrogen), even at very smallby the Arrhenius factor
transport currents. Fortunately for high temperature super-
conductors, this has not been the case. However, the concerns
about the higher thermal energy available for excitation ofp = exp

�
− U

kT

�
(33)

the FLL out of the HTS pinning centers led along a path dif-
ferent from the original flux creep models into the theories ofwhere U is the depth of the energy well of the pinning center
flux lattice melting.(Fig. 10).

Much of the theoretical picture of thermal effects on theFor an isolated flux line, assuming no temperature gradi-
FLL in HTS materials is at heart the same as in low tempera-ent, there is no preferred jump direction because both the pin-
ture materials. The basic interests are in the possibility ofning potential and the thermal excitation are spatially sym-
scaling the pinning force with temperature, magnetic field de-metrical. Thus the flux line would execute a random walk as
pendence of the JC, and the importance of the higher thermalthe thermal excitation allowed it to leave the pinning poten-
energy in the depinning and motion of the FLL. The terminol-tials, and no net change in flux would occur.
ogy has developed differently, but the physical mechanisms ofFor a flux line in a magnetic field gradient, the flux motion

associated with the thermal activation of the flux line derived flux pinning and depinning do not differ substantially.
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