
MODELING WIRE ANTENNAS 417

cluded for reference (1). The numerical approaches described
are rather general, and specific details are summarized as im-
plemented in two computer codes. One is Numerical Electro-
magnetics Code (NEC) (2) and the other is Thin-Wire Time
Domain (TWTD) (3). The former is a widely used frequency-
domain model, and the latter is its time-domain counterpart.
Both were developed at Lawrence Livermore National Labo-
ratory, and versions of both are in the public domain.

PRELIMINARIES

Integral Equations and Wire Modeling

The derivation of an integral equation for a perfect electric
conductor (PEC) is approached in various ways, but perhaps
the most physically appealing is to begin with Maxwell’s
equations written in their source-integral form whose kernel
is a Green’s function for an electric source in an infinite me-
dium. The source integral gives the secondary field (also
called induced, scattered, or radiated field) caused by a cur-
rent on the body flowing in response to a primary field (also
called incident, applied, or exciting field). By expressing the
secondary field over loci of points where the behavior of the
total field (applied plus radiated) is known via boundary or
continuity conditions, an integral equation for the induced
source is obtained.

Two broad general classes of integral equations are en-
countered, depending on whether the unknown source occurs
only under the integral (a first-kind Fredholm integral equa-
tion) or also outside of it (a second-kind integral equation) (4).
In electromagnetics, a first-kind integral equation arises
when the forcing function (primary field) is an electric field,
and a second-kind integral equation arises when the forcing
function is a magnetic field. Although it is usual for deriva-
tives of the unknown also to occur, the resulting equation is
commonly called an integral equation (IE), rather than an in-
tegro-differential equation as would be strictly correct.

Generally speaking, a magnetic-field IE (MFIE) is best
suited for smooth, closed objects, and it is analytically inappli-
cable to objects thin in one dimension, such as plates, shell-MODELING WIRE ANTENNAS
like structures, and wires. The electric-field IE (EFIE) is not
limited by these constraints, and so becomes the only practi-Wire antennas represent the oldest category of antenna types,

dating back to the successful transatlantic transmissions by cal type for modeling the wires of interest here. Because of
anomalous internal resonances, both the MFIE and the EFIEMarconi and even before that to the theoretical and experi-

mental efforts of Hertz, Maxwell, and others. In 1898, fail numerically near certain discrete frequencies, and a com-
bined-field IE (CFIE) comprised of their sum is needed forPocklington developed an integral equation for a dipole an-

tenna whose numerical solution remained relatively intracta- modeling smooth, closed objects.
At its simplest, a wire is a PEC of constant, circular crossble until the digital computer made its numerical solution

possible. This integral equation, and its various generaliza- section whose circumference in wavelengths C is no greater
than 1 so that its radius in wavelengths, a � C/2�, althoughtions, provide the starting point for essentially all wire-an-

tenna numerical modeling now routinely done and on which it is usual to employ a maximum radius only a tenth or so as
large. By definition, to be an ‘‘electromagnetic’’ wire, it mustthe discussion below focuses. The emphasis here is on describ-

ing and demonstrating the capabilities of wire-antenna mod- satisfy at least two conditions: (1) the effect of any circumfer-
ential or azimuthal current (one that flows on the wire sur-els rather than on cataloging a large number of antenna types

and characteristics, because the extremely large variety of the face in a direction normal to its axis) is negligible; and (2) the
longitudinal current (the surface current flowing along itslatter is incompatible with the space available and the scope

of the discussion. axis) is independent of the azimuth angle, that is, it is uni-
form around the circumference.Because our primary goal here is to summarize the model-

ing and use of wire antennas rather than to concentrate on A further requirement also usually imposed for analytical
and numerical convenience is that the thin-wire (or reduced-their numerical modeling alone, we consider only the Pocklin-

gton form of the types of integral equations available for wire- kernel) approximation is employed, so that the two-dimen-
sional surface integration required to evaluate the fields ofantenna analysis and design, although several others are in-
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sources on a general surface is approximated by a line inte-
gral along the wire’s axis. This is discussed later.

Most wire modeling, even when approximating a closed
surface by a wire mesh or grid, is done with piecewise linear
(straight) segments. Because meshes used as approximations
to curvilinear surfaces cannot be made of planar square or
rectangular elements, this means that junctions of wires
meeting at variable angles are encountered. Although re-
quirement (2) above is then almost certainly violated, the
thin-wire approximation remains accurate enough to produce
useful results. The added difficulty of including such higher-
order effects as a circumferentially nonuniform longitudinal
current is evidently not commensurate with the improvement
that might be realized. Use of straight segments is also com-
mon in modeling such simple objects as circular loops, helices,
conical spirals, etc.

Guidelines have been developed over the years to help us-
ers of wire codes choose modeling parameters more likely to
lead to acceptable results. For example, when modeling circu-
lar loops, the centerline circumference of the polygonal ap-
proximation should equal the circumference of the actual loop
and a minimum of six wire segments must be used to model
the loop in the vicinity of its first resonance, that is, where
C � 1. This relates to the fact that experience has shown that
nominally six wire segments per wavelength are needed to
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achieve acceptable accuracy, when the sampling density of Figure 2. This two-dimensional backscreen model, consisting of
the unknown current is ‘‘wavelength-driven.’’ When more seg- equally spaced, infinite wires with an excited element in front, was
ments are needed to properly represent the geometry of the studied parametrically to determine the wire radius with the largest

front-to-back ratio (FBR) to gain insight about modeling a continuousobject being modeled, the required segment lengths are re-
surface with wires (5). For a 50-wire backscreen, a � 2�D providesquired to be much smaller, and the sampling density is geom-
the maximum FBR, where the wire and a continuous backscreen haveetry-driven.’’ When approximating a solid surface with a wire
equal areas over a 3 : 1 frequency range.mesh as shown in Fig. 1, the maximum mesh openings are no

greater than 0.1 wavelength on a side. The radius of the mesh
wires also needs to be such that their total area is twice that
of the surface they represent, so that the wire area in each
direction of a local, orthogonal coordinate system approxi-
mates that of the surface being modeled (6), the ‘‘equal-area’’ equal-area rule is satisfied is shown in Fig. 2 (5). Modeling
rule. A computed result showing that the front-to-back ratio guidelines for wire antennas are discussed in more detail
of a backscreen of parallel wires is maximized when the elsewhere (6).

Finally, it should be recognized that a wire model is not
limited to circular PECs. A thin-wire model can be used for
literally any object that satisfies condition (1) previously
stated. Its cross section can vary from a flat strip to an arbi-
trarily irregular shape. For a flat strip of width w, an equiva-
lent radius is found to be a � w/2. Other simple cross sec-
tions, such as triangular, are also amenable to thin-wire
modeling, where the radius of the equivalent circular wire is
established from simple formulas by quasi-static analysis (8).

IMPORTANT PROPERTIES OF WIRE ANTENNAS

The purpose of the analytical treatment and its implementa-
tion to develop a numerical model, described later, is to assess

Figure 1. This wire-grid model of a ship (7) is intended for the HF
the performance characteristics of antennas of interest, ofband and lower, where the length of the grid wires is less than 0.1
which some of the more important are described here (1).wavelength and has more than 829 segments. Because the ship is in

salt water, which becomes a perfectly conducting half-space to which
all of the wires forming its lower sides are connected, the model is

Input Impedance and Admittance. The input impedancenot closed on the bottom. Wire-grid models with thousands of seg-
ments have been used. Zin, of an antenna is needed to match an antenna to its source
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and is also an important quantity in determining its effi- the far field in the direction (�, �) to its average value over
S, so thatciency, defined as

η = Prad/(Prad + Ploss) = Prad/Pin (1)

where Prad and Ploss are the radiated powers and Ploss arises
from the losses to which the antenna is subject. From a nu-
merical and analytical perspective, the antenna’s admittance

GD(θ, ϕ) = Re[(E × H∗) · r̂]

lim
r→∞

[(
1

4πr2

)
Re

∫ ∫
S
(E × H∗ ) · r̂ds

]

= 2πr2 Re[(E × H∗) · r̂]
Prad

(4a)

Yin is normally the more accurately obtainable quantity, be-
cause the real conductance Gin is determined wholly by Pin, where Prad/(4�r2) is equivalent to the power density of an iso-
whereas the reactive susceptance Bin is very sensitive to feed- tropic antenna radiating the power Prad. The directivity D of
region geometry (discussed later). The real and reactive com- an antenna is defined as the maximum value of the directive
ponents of the impedance, on the other hand, which is simply gain, or
the inverse of the admittance, is affected by whatever errors
arise in the susceptance. Furthermore, when there are no D = max{GD(θ, ϕ)} (4b)
losses, it is straightforward to obtain the conductance by sim-
ply integrating the far-field power flow, a quantity that is also and finally the gain is defined as in Eq. (4a) but including the
relatively insensitive to errors in the computed current distri- losses so that
bution. By contrast, the susceptance requires an accurate so-
lution of the antenna’s near fields, because it is related to the
stored power that they represent. G(θ, ϕ) = 2πr2 Re[(E × H∗ ) · r̂]

Pin
= ηGD(θ, ϕ) (4c)

The admittance is defined as

A Summary of Analytical Results for Some Common AntennasYin = I(sin)/V (sin) = Iin/Vin = 1/Zin (2)

Although the complexity of real antennas located in their ac-
where sin is the place at which the driving voltage Vin is ap- tual environments precludes analytical solutions, and neces-
plied and Iin is the current there. Determining a realistic sitates numerical models like those previously discussed, a
value of Vin from a numerical model presents a problem be- wide variety of simple antennas have been studied over the
cause it is sensitive to the way the feed region is described years. Some important properties of a large number of these
and it is difficult to replicate the physical arrangement with antennas are summarized for ready reference in Table 1 (1,9).
good fidelity. Feedpoint-modeling errors affect both Gin and
Bin though uncertainty in Vin is sometimes resolved, as far as

NUMERICAL MODELING OF ANTENNASits effect on Gin is concerned, by far-field integration. In a com-
puter code like NEC that uses point matching where it is as-

Although attention here addresses specifically only the nu-sumed that Vin � �Ein	, with 	 the length of the feed segment
merical treatment of the Pocklington-type IE, for complete-(see section later on numerical implementation), this uncer-
ness, several different types of thin-wire IEs are included intainty is usually resolved by integrating Etan in the vicinity of
Table 2 (1). These are all frequency-domain IEs, because mostthe feedpoint.
wire modeling uses that approach, but a brief review of wire
time-domain modeling concludes this section.

The Far-Field and Radiated Power. The power radiated by
As a starting point, we include the EFIE and MFIE for

an antenna is usually determined by integrating the far-field smooth surfaces from which such equations can be derived
power flow over a closed surface containing the antenna as (1):
given by

n̂ × Ei(r) = −n̂ ×
[

1
4π jωε∞

∫
S

JS(r) ·
⇒
G∞(r,r′)d2r′

]
(5)

Prad = 1
2

Re
[∫ ∫

S
E × H∗ · ds

]
≡ 1

2
I2

inRrad (3a)

and
where S is the enclosing surface, usually a sphere centered
on a convenient part of the antenna, Re denotes the real part,
ds has a unit normal in the outward direction, E and H are JS(r) = 2n̂ × Hi(r) + 1

2π

∫
S

JS(r′) · ⇒
�∞(r,r′)d2r′ (6)

the peak values of the fields and Rrad is the radiation resis-
tance. The input power equals Prad unless there are losses, in where
which case it is found from

Pin = 1
2

Re(VinI∗
in) (3b)

⇒
G∞(r,r′) = (∇∇ + k2

∞)g∞(R)

⇒
�∞(r,r′) =

⇒
I × ∇′g∞(R)

(7)

Directivity and Gain. The directive gain of an antenna Equation (1) is the EFIE and Eq. (2) is the MFIE, where the
unknown surface-current density is Js(r), n̂ is an outward-GD(�, �) is defined as the ratio of real-power flux density in
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Table 1. Properties of Some Simple Antennas
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pointing, surface-normal, unit vector and the other quantities Extension of the previous infinite-medium IEs is straight-
forward for a perfectly conducting half-space, a common start-are defined in Table 2. The quantities G

⇒
�(r, r) and �

⇒
�(r, r)

are known as Green’s dyads for the electric and magnetic ing point for treating imperfectly conducting or electromag-
netically penetrable grounds, an especially importantfields of electric current sources.

It should be understood that C(r) in the equations of Table application of wire-antenna modeling. By convention, the
half-space occupies the region z � 0. It can be deduced that2 represents the geometrical configuration of the wire or col-

lection of wires to be modeled and, therefore, does not need to (1), because an object located above a PEC half-space is elec-
tromagnetically ‘‘imaged’’ or mirrored in it, the vertical com-be spatially continuous. The subscript ‘‘�’’ is used on various

quantities in the table to emphasize their association with an ponents of the image electric currents flow in the same direc-
tion as the actual currents and the horizontal components areinfinite medium, as we next consider the half-space problem.



MODELING WIRE ANTENNAS 421

Table 1. (Continued)
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reversed. Thus, the electric-field Green’s dyad for the PEC with a similar expression for the magnetic-field form
becomes ⇒

�PG(r, r′) = ⇒
�∞(r,r′) + ⇒

� I(r,r′) (8c)
⇒
GPG(r, r′) =

⇒
G∞(r,r′) +

⇒
GI(r, r′) (8a) ⇒

� I(r,r′) = −
⇒
I R · ⇒

�∞(r,
⇒
I R · r′) (8d)

where the image term, denoted by subscript ‘‘I’’ is given by Then the Pocklington IE is written without any additional
approximation as

ŝ · Ei(s) = 1
4π jωε

∫
C(r)

I(s′)[G∞(s, s′) + GI(s, s′∗)]ds′

⇒
GI(r,r′) = −

⇒
I R ·

⇒
G∞(r,

⇒
I R · r′)

⇒
I R = x̂x̂ + ŷŷ − ẑẑ

(8b)
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Table 1. (Continued)
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with with the effect of the PEC ground included in the GI (image)
term of the modified IE and where s* is the axial coordinate
of the image current. Note that image theory is useful in nu-
merous other ways in electromagnetics, but space precludes
discussing details here.

Imperfectly Conducting Ground

Modified Image Theory or Reflection-Coefficient Approxima-
tion. When the half-space of interest is finitely conducting or

GI(s, s′∗ ) = [k2
∞ŝ · ŝ′∗ + (ŝ · ∇)(ŝ′∗ · ∇)]gI(R

∗)

gI(R
∗) = e− jk∞ R∗

R∗
R∗ = |r − r′∗|

r′∗(x, y, z) = r′(x, y, −z)

ŝ′∗ = ∇C(r′∗)
|∇C(r′∗)|

(9)



MODELING WIRE ANTENNAS 423

Table 1. (Continued)
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a simple dielectric, then the image-theory approach for the type IE which follows from the following RCA Green’s dyads
PEC half-space is no longer exact. Nevertheless, as a means of
approximating the effect of the half-space, and thereby
avoiding the considerable complexity that otherwise results
from the rigorous Sommerfeld approach, a modified image the-
ory is useful. This leads to the reflection-coefficient approxima-
tion (RCA) (1,10) and yields a new form for the Pocklington-

⇒
GIG(r,r′) =

⇒
G∞(r,r′)+ RM

⇒
GI(r,r′)+ (RE −RM)[

⇒
GI(r,r′) · p̂]p̂

⇒
� IG(r,r′) =

⇒
�∞(r,r′)+ RE

⇒
�I(r,r′)+ (RM − RE)[

⇒
�I(r,r′) · p̂]p̂

p̂ = (r − r′) × ẑ
|(r − r′) × z| (10)
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Table 2. Different Forms of Thin-Wire-Approximation Integral Equationsa

ŝ · Ei(s) �
1

4�j���
� �

�s
� · � k2

�ŝ ·� �
C(r)

ŝI(s)g�(R)ds

ŝ · Ei(s) �
1

4�
�

C(r)
�ŝ · ŝj���I(s)g(R) �

1
j���

�I(s)
�s

ŝ · �g�(R)	ds

ŝ · Ei(s) �
1

4�
�

C(r)
ŝ · ŝj���I(s)g�(R)ds �

1
4�j���

�

�S �
C(r)

�I(s)
�s

g�(R)ds

Pocklington’s Integral Equation

ŝ · Ei(s) �
1

4�j���
�

C(r)
I(s)G�(s, s)ds, with G�(s, s) � [k2

�ŝ · ŝ � (ŝ · �)(ŝ · �)]g�(R)

Magnetic Vector Potential Integral Equation for Arbitrarily Curved Wires

�
C(r)

I(s) �g�(R)ŝ · ŝ �
1
2 �

C(r)
d��(� � s)e�jk

�
�s��� 
 �

�s
g�(R)(�̂ · ŝ) �

�

��
[(�̂ · ŝ)g�(R)]��ds

� Ae�jk
�

s � Bejk
�

s �
1

2�(��/��)
�

C(r)
ŝ · Ei(s)e�jk

�
�s�s� ds

�(u) � 1, u � 0; �(u) � 0, u � 0

Magnetic Vector Potential Integral Equation for Straight Wires
(Hallen’s Integral Equation)

�
C(r)

I(s)g�(R)ds � A�jk
�

s � Bjk
�

s �
1

2�(��/��)
�

C(r)
ŝ · Ei(s)e�jk

�
�s�s� ds

In the previous equations:

s and s denote the axial coordinates at the observation and source points, respec-
tively;

r and r are the vector coordinates at the observation and source points;

ŝ �
�C(r)
�C(r)�

and ŝ �
�C(r)
�C(r)�

are unit tangent vectors at r and r;

C(r) is the range of integration over the wire;

a(r) is the wire radius at r;

s � C(r) � a(r) so that R � a(r) as required by the thin-wire approximation;

g�(R) �
e�jk

�
R

R
;

R � [a(r)2 � �r � r�2]1/2;

k� � �/(����)1/2 is the wave number of the infinite medium in which the wire is lo-
cated; the superscript ‘‘i’’ denotes an incident-field quantity;
and the ‘‘ ˆ ’’ denotes a unit-length vector.

aAfter (1).

as and

ϕ(r) = tan−1
[

(y − y′ )
(x − x′ )

]
(11c)

Here RE and RM are the Fresnel plane-wave reflection coeffi-

ŝ ·Ei(s)= 1
4π jωε

∫
C(r)

I(s′)[G∞(s, s′) + RMGI(s, s′∗)

+(RE−RM) sinβ sinβ ′ sin(ϕ−α) sin(φ − α′)gI(R
∗)]ds′

(11a)
cients for transverse-electric (TE) and transverse-magnetic

where (TM) polarizations, respectively and the subscript ‘‘IG’’ signi-
fies an imperfect ground. Also, �(r, r) is the angle with re-
spect to a normal to the interface and a straight line in the
vertical plane that joins s and s (known as the specular re-
flection point from optics), and �(r) and �(r) are the direc-
tional angles of the wire at r with respect to the x and z axes,
but these explicit dependencies are omitted for clarity. Note

RE = (εE − sin2
θ )1/2 − cos θ

(εE − sin2
θ )1/2 + cos θ

RM = εE cos θ − (εE − sin2
θ )1/2

εE cos θ + (εE − sin2
θ )1/2

(11b)
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terms in the RCA. Thus, one form of the Pocklington-type
EFIE for the imperfect ground is written as follows
(1,9,11,12):

ŝ · Ei(s) = 1
4π jω∞ε∞

∫
C(r)

I(s′)
(

G∞(s, s′) + GI(s, s′∗)

+
[
k2

∞ cos β + ∂2

∂s∂z

]
[sinβ ′gHz − cos β ′gVz

]

+ sinβ ′
[
k2

∞ sinβ cos(α − α′) + ∂2

∂s∂t ′

]
gHt

)
ds′

(13)

where the partial derivative with respect to t is in the direc-
tion of the horizontal projection of the wire at s. Also

90 45
θ

(a)

0

1

0

R

90 45
θ

(b)

0

1

0

R

Figure 3. The real component of the radial electric field of a hori-
zontal, delta-functional current source in free space is shown as a
function of distance R and elevation angle � near a half-space for
�IG/�� � 4, �IG � 0.001 S/m, and (b) �IG/�� � 16, �IG � 0 (17). The latter
exhibits the beating effect of waves in the upper and lower half-spaces
with two different wavelengths which the loss in the former elimi-
nates.

that �E is the permittivity of the lower half-space relative to
the upper, that is,

gHt = 2
∫ ∞

0

λ

γ∞ + γE
J0(λρ)e−γ∞ (z+z′ )dλ

gHz = − cos(ϕ − α′)
k2∞

∫ ∞

0

γ∞ − γE

εEγ∞ + γE
J1(λρ)e−γ∞ (z+z′ )λ2dλ

gVz = 2
∫ ∞

0

γE

εEγ∞ + γE
J0(λρ)e−γ∞ (z+z′ ) λ

γ∞
dλ

ρ =
√

(x − x′)2 + (y − y′ )2 + a2

γ∞ =
√

λ2 − k2
∞

γE =
√

λ2 − εEk2
∞

(14)

εE = εIG

ε∞
− j

σIG

ωε∞
= εEr − jεEi (12)

where the integrals are the field expansions mentioned pre-
viously, first derived by Sommerfeld (11,13). The quantitywhere �IG and �IG are the permittivity and conductivity of the

lower half-space, the subscripts ‘‘r’’ and ‘‘i’’ denote real and Jn(x) is a Bessel function of order n and argument x, z and z
are the source and observation heights above the interface,imaginary components, and it should be understood that ��

itself can be complex, should the above-ground medium be and the ‘‘a’’ in the expression for radial separation � imposes
the minimum separation required by the thin-wire approxi-conducting.

The RCA provides reasonably good results for input imped- mation. Note that these integrals are functions of only two
variables � and z � z.ance and radiation patterns, with errors of 10% or less in the

former, for wires no closer than 0.1 wavelength of the inter- The treatment thus far is limited to the ‘‘one-sided’’ prob-
lem, where the object being modeled is entirely contained onface. For situations requiring greater accuracy or involving

wires closer to the interface, the Sommerfeld approach, or its one side of the interface, so that the source and observation
points are always in the same medium. Similar, but still moreequivalent, is needed.
complicated expressions result when the object(s) being mod-
eled occupy both half-spaces, that is, the ‘‘two-sided’’ problem.The Sommerfeld Approach. The Sommerfeld approach ex-

pands the fields of point sources in a continuous-wave expan- It is worth noting that the RCA has been extended to the two-
sided problem (14), but the latter primarily has been ap-sion along the interface, which leads to infinite-range inte-

grals for the reflected fields that appear in place of the image proached with the Sommerfeld theory or its equivalent. Ana-

Figure 4. These three results for the in-
put admittance of a monopole antenna of
length h with air insulation b/a � 2.5 in
water having �IG/�� � 80 � j0.197 as a
function of the composite wave number
demonstrate the general validity of the
sheath model described above. The x’s are
from NEC, the solid lines are independent
computations (21), and the solid circles
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are measurements (22).
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replaces the Sommerfeld fields with a series of images in com-
plex space that provide the interface-reflected fields. Another
alternative is to generalize the problem to include the tangen-
tial electric and magnetic fields on the interface as additional
unknowns in the model (16). Because the interface extends to
infinity, this is impractical because the number of unknowns
is commensurate with the area being modeled. However, in
terms of accounting for the interaction of an object with the
interface, only a limited area of the interface under the ob-
ject’s projection onto it measurably affects the object’s cur-
rents. Thus, the number of interface unknowns is limited.
Furthermore, for a particular choice of ground parameters
and frequency, the interface part of the problem needs to be
solved only once and then continues to be reused for whatever
object is to be modeled for those specific conditions.

Approaches that fall in category (3) are of a generally dif-
ferent character and are described as employing a signal-pro-
cessing philosophy. The basic motivation here is to compute
a minimum number of Sommerfeld-integral values, or their
equivalent, beyond which the field values needed in the IE

���
1.40∼ ∼ 1.<180°

  /4λ

  /4λ

Figure 5. The two-element monopole array shown produces the
ground-plane currents presented as a vector plot (24). By revealing
the current-flow pattern in a perfect ground, such plots indicate the
most effective ground-screen geometry. The arrows represent the
semimajor and semiminor axes of the ground-current polarization el-
lipse, respectively.

lytical treatment of the two-sided problem is beyond the scope
of this discussion. The details are found elsewhere (e.g.,
(12,13), but it is relevant to mention that the fields for the
two-sided case are functions of the three variables �, z and z�.

Simplifying the Sommerfeld Treatment. The appearance of
the Sommerfeld integrals as part of its kernel function adds
significant further computational complexity to solving the IE
in Eq. (6). There are at least three ways of reducing the com-
puter cost of solving interfacial problems while retaining the
rigor of the Sommerfeld-type approach:

1. develop more efficient ways of evaluating the Sommer-
feld integrals;

2. develop an alternative, more efficient formulation in
their place;

3. minimize the need for evaluating these integrals in the
numerical model.

Category (1) has long been pursued, and a variety of analyti-
cal approximations have been derived for various regions of
the parameter space for which Sommerfeld-integral values
are needed, as have been numerous numerical approaches.
Unfortunately, although some very useful results have been
obtained, individual approaches generally do not cover the pa-
rameter space encountered in many practical problems, so
this possibility has had only limited success. The Sommerfeld
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integrals are one of the wave-type, or Fourier-type expan-
Figure 6. Input impedance of a quarter-wave monopole antenna

sions, developed for the interface problem, of which a sum- driven against a buried ground screen with N wires subtracted from
mary is found in (13). its impedance for a perfect ground with �E � 10 � j100 (25). The NEC

As an alternative to wave expansions that lead to Sommer- results, which represent a numerically rigorous solution of the prob-
feld-type integrals, one example of category (2) is the develop- lem are compared with approximate results from the compensation

theorem (26) discussed in the next section.ment of complex-image theory (15). This particular approach
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Figure 7. These plots of the input resis-
tance of (a) a half-wave vertical dipole and
(b) a half-wave horizontal dipole as a
function of ground conductivity for vari-
ous antenna heights compare the RCA
(solid line), the Sommerfeld theory (o’s),
and the compensation theorem (x’s) for
the vertical antenna (10). The frequency
is 3.0 MHz, �E � 10, and the antenna ra-
dius is 5 � 10�4 wavelengths. The RCA
becomes exact for PEC and so is expected
to be most reliable for reasonably conduc-
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tive grounds.

model are obtained from a reduced-order analytical approxi- However, the fields for the two-sided problem are functions
of three variables and are less amenable to interpolation. Butmation based on these values. A motivation for doing this is

demonstrated in Fig. 3 (17), where the real component in the they have been similarly treated using a procedure called
model-based parameter estimation (MBPE) (12). This in-radial direction of the interfacially reflected field for a hori-

zontal delta-function electric-current source is shown graphi- volves using approximate, asymptotic formulas for the fields,
derived from the Sommerfeld integrals as the interpolating,cally as a function of the two applicable variables R �

�[�2 � (z � z�)2] and � � tan�1[(z � z�)/�]. The spatial varia- or fitting, functions. Matching the sum of the fitting models
to rigorously computed field values provides multiplying coef-tion of the fields is quite smooth, certainly less complex than

the analytical descriptions of Eq. (14) imply. Furthermore the ficients (the parameters) for the fitting models (the parame-
ter-estimation step). As in the simple interpolative approach,possibility is suggested that, if the fields are sampled over

a mesh, simple interpolation might provide accurate enough the fitting models are subsequently used in place of the Som-
merfeld integrals in the numerical solution, where, for thevalues between these samples, so that no further rigorous

field computations are required in numerically modeling ob- interface problem, the computetime saving is a factor of 100–
1000.jects near an interface, as was shown feasible (18).

A principle that needs to be kept in mind whenever com-
paring alternate approaches to a given problem is that of ‘‘the
conservation of difficulty.’’ Alternative formulations that lead
to integrals different from, but comparable to, the Sommer-
feld integrals, may offer no computational advantage. An-
other principle is that of the ‘‘information content’’ of the phe-
nomenon of interest. From an engineering viewpoint, only
some minimum of detail is needed to acceptably represent
that phenomenon, so that when there is the possibility of
choosing between mathematical rigor and computational
practicability, in this case between the Sommerfeld integrals
and a model-based procedure, the latter offers an attractive
option.

Modeling Finitely Conducting, Loaded, and Sheathed Wires

When modeling wire antennas, it is often desirable or neces-
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sary to include such effects as the distributed impedance dueFigure 8. These results for the input resistance of the SLT as a func-
to a wire’s finite conductivity, lumped loads when used as ter-tion of depth to a salt-water half-space show that between 240 and
minations or for matching, and dielectric sheaths used for in-360 radials are needed to limit the input-resistance change to less
sulation or for other purposes. The original integral equationthan 10% (28). They are based on combining the RCA with Eqs. (19),

(21), and (24). Also, �E,1r � 15, 	1 � 0.01, and �E,2r � 81, 	1 � 4. is simply modified by including a voltage-drop term, where
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Figure 9. A hybrid of an integral equa-
tion and GTD model is used here to obtain
the input impedance of a monopole an-
tenna at the center of an octagonal plate
(29). Agreement between the experimen-
tal results (open circles) and the computa-
tions (solid line) is within 10%.
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ES(s) represents the field scattered from the wire by the inci- tions, with the requirement that their effect is truly local and
that the load is itself nonradiating except for the currentdent field, as follows (1,2):
flowing through it at its connection point si (2).

Loading Due to a Sheath. The effect of a sheathed wire is
handled by including an equivalent electric current Js radiat-

ŝ · [Ei(s) + Es(s)] = ŝ · Ei(s) − 1
4π jω∞

∫
C(r)

I(s′ )G∞(s, s′)ds′

= ZL(s, s′)I(s′) (15)
ing in an infinite medium as given by (2,20)

where ZL(s, s�) is the load value affecting the field at s because
of a current at s�, to allow for mutual and self-loading and Js(ρ, s, ϕ) = jωε∞(εs − 1)[Es(ρ, s, ϕ) + Ei(ρ, s, ϕ)] (18a)
whose specific value is determined as described later. For self-

where �s is the permittivity of the sheath relative to the infi-loading, where ZL(s, s�) � ZL(s)�(s � s�), the effect of loading
nite medium where the wire is located. So as not to destroyis simply to modify the system matrix (see below) along its
the one-dimensional nature of the wire integral equation, thediagonal, whereas mutual loading more generally affects any
sheath is assumed to be electrically thin, and the total sheathof the system-matrix coefficients. Mathematically, the effect
field is assumed to be dominated by its radial component,of a load is the same as that of the incident-field term, except
which is due to the wire charge, so thatit is of opposite sign (unless it is an active load); the former

represents a voltage ‘‘rise’’ along the wire and the latter a
voltage drop. Es(s) ≈ jI′

(s)
2πωε∞εsρ

ρ̂ (18b)

Distributed Loading Due to Finite Conductivity. For a wire of
where I�(s) is the spatial derivative of the current at s. Be-radius ai, conductivity 	i, permeability �i, and length 
i, the
cause the incident electric field in the radial direction can beimpedance per segment i is approximately given by (2,19)
neglected relative to that due to I�(s), the equivalent sheath
current becomes

Js(ρ, s, ϕ) ≈ −(εs − 1)

2πεsρ
I′(s)ρ̂ (18c)

ZL(si) = j�i

ai

√
ωµi

2πσi

(
Ber(qi) + jBei(qi)

Ber′
(qi) + jBei′(qi)

)

where

qi = √
ωµiσiai

(16)

for a(s) � � � b(s), where b is the sheath radius and a is the
wire radius. As shown elsewhere (2), with some additionaland Ber and Bei are Kelvin functions.
approximations, the sheath is predominantly a ‘‘self-term’’ ef-
fect, whose axial field is given byLumped-Impedance Loading. A lumped impedance is gener-

ally described as a complex quantity given by

ŝi · Es
s(si) ≈ − jk2

s (εs − 1)

2πωε∞εs
CiLn

[
b(si)

a(si)

]
(18d)

ZL(si) = Ri + j
(

ωLi − 1
ωCi

)
(17)

where ks is the sheath wave number, to be included in the
thin-wire integral equation. An example of modeling thefor a series R, L, C load located at observation point si. Other

combinations are readily introduced for more general situa- sheath effect is shown in Fig. 4.
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the angle of incidence at the specular reflection point and also
by the effective value of the surface impedance there. To be-
gin with, note that the surface impedance of the imperfect
ground itself is given by

Zsurf = √
µIG/εIG = η∞/

√
εE (19a)

where �� is the wave impedance of the upper medium. Then
the SIA is expressed as

Ex,IG = −ZsurfHy,IG

and

Ey,IG = ZsurfHx,IG

(19b)

which is valid when �sin2�/�E�  1 is satisfied.

–6.00e–4

–4.00e–4

–2.00e–4

0.00e+0

2.00e–4

4.00e–4

6.00e–4

1008060

G One-segment
B Source

G Constant-width
B source

40
Number of segments (unknowns)

(a)

200

G
, 

B
(m

h
o

s)

For a wire ground screen located at the interface and in
good electrical contact with the lower half-space so that it is
considered electrically in parallel with the ground, the modi-
fied surface impedance for the imperfect ground is given by
(23)

Z′
surf = Zsurf Zscreen

Zsurf + Zscreen
(20)

where Zscreen is the screen impedance. The screen impedance
for a radial screen at a distance � from its center and com-
prised of N wires of radius a is given by

Zscreen,rad = jµ∞ωρ

N
Ln

( ρ

Na

)
(21a)
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and a corresponding formula for a parallel grid of wires whose
center spacing is d isFigure 10. The input impedance (b) and admittance (a) are shown

for an L � 2�, center-fed dipole antenna as a function of the number
of unknowns, where only the center segment is excited. The results
imply that the impedance is not well-converged whereas the admit-

Zscreen,par = jµ∞ωd
2π

Ln
(

d
2πa

)
(21b)

tance behavior suggests otherwise. When multiple segments are ex-
cited to keep the physical width of the source region a constant value thus providing a means of obtaining a value for the relative
of L/11, the additional results of (b) are obtained. It’s clear that physi- permittivity of the ground using Eq. (20) and thereby the
cal and numerical effects influence the apparent convergence rate of Fresnel reflection coefficient for the RCA. It is worth observ-
the numerical solution. ing that the latter becomes zero when d � 2�a, that is, when

the area of the screen wires equals that of the surface they
cover, as previously discussed in connection with using wire

Modeling Ground Screens meshes as approximations to continuous surfaces.
Unless made of a square mesh, the impedance of a groundWhen used via MBPE as outlined previously, the Sommerfeld

screen varies with direction in the x–y plane, that is, is aniso-treatment can be regarded as a numerically rigorous ap-
tropic. Thus, implementing the RCA requires a further de-proach for modeling antenna-ground-screen combinations for
composition of the interactive field between source and obser-not too great an increase in computational cost compared with
vation segments that takes this anisotropy into account. Themodeling the same configuration in an infinite medium. How-
electric field is first decomposed into components along theever, the size in wavelengths of complex screen geometries
principal directions of the screen wires relative to the specu-can be so large itself to make a more efficient model desirable
lar point. For example, in the case of the parallel screen ofso long as it offers acceptable accuracy. Two approaches to
Eq. (21b), the component parallel to the screen wires reflectsground-screen modeling are outlined here, one using a sur-
from a medium whose effective permittivity, then is, given byface-impedance approximation together with the RCA and the

other a technique known as the compensation theorem.

Surface-Impedance Approximation for Ground Screens. The
surface-impedance approximation (SIA) represents the wires
in an actual ground screen by approximating the change they
cause in the reflecting properties of the imperfect ground.
Thus the reflection coefficients in the RCA are determined by

√
ε ′

E = η∞/Z′
surf = η∞

(
Zsurf + Zscreen

Zsurf Zscreen

)

= η∞




η∞+√
εE

jµ∞ωd
2π

Ln
(

d
2πa

)

η∞
jµ∞ωd

2π
Ln

(
d

2πa

)



(22)
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Figure 11. Current and charge ‘‘snap-
shots’’ at several time steps for a Guas-
sian-pulse-excited dipole exhibit a variety
of important physics (31). Two outward-
propagating same-sign current pulses,
and opposite-sign charge pulses originate
from the source. A slight diminution of
the pulse amplitudes occurs because of ra-
diation damping, and a further diminu-
tion occurs upon end reflection, a strong
source of radiation. Plots like these are re-
markably insightful in revealing why an-
tennas behave the way they do.

(b)(a) (c)

(e)

Current
Charge

(d) (f)

(h)(g) (i)

whereas the orthogonal component reflects from a medium of
permittivity �E. Then each of these two fields is further decom-
posed into TE and TM components relative to the specular
plane and for which the appropriate Fresnel plane-wave re-
flection coefficients are computed and applied to determine
the total reflected field at the observation segment.

Application to Ground-Screen Design. A ground screen is
used to improve antenna performance by simulating a per-
fect-image plane to the degree necessary for the particular
problem requirements. Any overdesign of the ground screen
which provides an improvement greater than that sought is
regarded as an inefficient allocation of resources. A reliable
and credible method for optimizing the ground-screen design
has a significant impact on the installation and operating
costs of large antenna systems.

Observe that simulating a perfect-image plane with the
ground screen implies that the ground screen should simulate
current-conduction paths similar to those that occur when the
same antenna is located over a perfect ground. If the current
flow in the perfect ground is confined along particular paths,
for example, then a ground screen with relatively few wires
is still highly efficient if the wires, which it has, follow the
same paths. Hence, a radial-wire ground screen is very effec-
tive for monopole antennas located at its center, because the
monopole produces entirely radial ground currents.

A method for determining an optimum ground-screen ge-
ometry for a given antenna system can be developed based on
the RCA as described below. The antenna is first modeled us-
ing a PEC ground from which the current-flow pattern in the
ground plane under the antenna is obtained. Next, the initial
ground-screen design is achieved with a wire geometry that
replicates the current-flow pattern in the PEC ground with
a wire spacing inversely proportional to the surface-current
density and chosen to produce a specified power loss per unit
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area. To reduce the screen complexity, some relaxation in the
Figure 12. Comparison of current on a two-wire transmission line

actual screen geometry from the ideal pattern should be an-obtained from the analytical solution (solid line) and from a thin-wire
ticipated, possibly limiting the final form to a combination ofintegral equation (x’s) for an (a) open circuit, (b) short circuit, and (c)
rectangular cells and radial lines. To illustrate this approach,matched load (16). Although these results do not check the radiative-
the perfect ground currents for a simple antenna are pre-predictive properties of the numerical model, they do provide some

assurance that the model can handle a non-radiating problem. sented in Fig. 5.



MODELING WIRE ANTENNAS 431

1

10

100

1000

200180160140120100
Frequency (kHz)

8060

+X–X

40200
R

e
a

ct
a

n
ce

 (
Ω

)

Figure 14. A comparison of the input impedance of a Vee-dipole an-
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tenna obtained from several different wire IE models shows that they
Figure 13. Comparison of results from the analytical formula of (35) agree to an order of �30% except for the resistance at lower frequen-
(lines) with a thin-wire IE for a short antenna in free space and in a cies when decreases as f 2 (16).
lossy plasma (x’s) provides mutual validation for both approaches
(16). This is an important extension of the IE model because handling
lossy media is necessary for modeling antennas buried in the ground. then the IG input impedance is obtained entirely in terms

of the PG result. Some results comparing the compensation
theorem, the RCA, and the Sommerfeld integrals for modeling
half-wave vertical and horizontal dipoles are included in

Using Sommerfeld Theory to Model Ground Screens. Al- Fig. 7.
though intended primarily for modeling antennas near an in-
terface, the Sommerfeld approach, as included in the NEC, is Modeling Layered Grounds
also efficient enough to include the ground-screen wires for

The SIA can also be used as an approximation for modelingsome of the simpler designs. An example demonstrating this
layered grounds in place of the even more complicated Som-application is presented in Fig. 6 (25).
merfeld approach. A particular example of interest is that of

Using the Compensation Theorem. An alternative approach
to including the effects of ground screens and the interface
itself on antenna impedance is a technique widely used before
computer solutions became practical, but still effective for
some applications. This is the compensation theorem (26),
whereby the input impedance in an antenna located near an
interface is estimated from a reference solution for a PEC
half-space, as

Zin,IG = Zin,PG + 1
Iin,PGI∗

in,PG

∫
A

HPG(x, y) · ẑ × EIG(x, y)dxdy

(23a)

where the subscripts PG and IG, as before, refer to quantities
associated with a perfect ground and imperfect ground, re-
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spectively. Upon using the surface-impedance approximation
Figure 15. The computed and measured resonance frequency of aof Eq. (19b) and further assuming that
29.6-in zigzag dipole comprised of 1-in pieces of wire agree to within
2–3%, demonstrating the capability of the wire IE model to handle a
slow-wave structure (16).

Hx,IG = Hx,PG and Hy,IG = Hy,PG (23b)
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Figure 16. Although the thin-wire ap-
proximation limits how close a wire can
approach an interface, by using a small
radius of 10�8 wavelengths in free space,
the 0.1 wavelength wire can be brought
much closer than its length to an interface
of relative permittivity � 16 (17). The
above-ground results approach an asymp-
totic value, whereas those below ground
continue to change. The smoothness of the
behavior shown here does not prove the
validity of the model, but does show that
the model, based on the MBPE form of the
Sommerfeld approach, exhibits appro-
priate behavior.
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antennas located near a body of water, fresh or saline, where Hybrid Models
tidal effects vary the ground-water depth beneath the an- Unfortunately, a numerical model based on a single formula-
tenna with time of day. When an antenna’s input impedance tion is not equally applicable to all problems. Even though a
must be limited between narrowly defined values to maintain wire code models surfaces approximated as grids, there are
matched conditions with the generator, it is necessary to de- more efficient and accurate ways to handle PEC objects. It is
termine the ground-screen parameters that make this possi- equally true that not all parts of a given problem are suitable
ble. It is straightforward to obtain an approximate value for for modeling with a single formulation. Wires attached to
the effective surface impedance (27) for a layer of thickness h solid PEC objects or located near inhomogeneous dielectric
over a lower half-space from the expression bodies are simple examples. For this reason, it is desirable to

combine two (or more) approaches to develop what is called a
‘‘hybrid’’ model to handle such problems.

Considering that there are four kinds of numerical models
Z′

surf = Zsurf

√
εE,1 + j

√
εE,2 tan[k∞h

√
εE,1 ]√

εE,2 + j
√

εE,1 tan[k∞h
√

εE,1 ]
(24)

presently used in electromagnetics (EM), based on integral
equations, differential equations, modal expansions and thewhere the subscript ‘‘1’’ applies to the upper layer and ‘‘2’’ to
geometrical theory of diffraction (GTD), formulated in eitherthe lower half-space and, as before, �x is the permittivity rela-
the frequency domain or time domain, hybrid models havetive to that of the uppermedium ��. Including this SIA with a
been developed using various combinations of these (seeground-screen approximation and the RCA provides a means
(29,30) for two examples). An especially useful hybrid modelfor modeling the combined effect of a layered ground and
involving wires is one that combines a wire IE with the GTD,ground screen. Use of the SIA for the U.S. Coast Guard Sec-
an example of which is shown in Fig. 9. The benefit of thistionalized Loran Transmitting (SLT) antenna (28) (see Fig.
kind of hybrid model is that only the unknowns for the cur-22 for a computer plot of the SLT geometry) antenna is illus-

trated in Fig. 8.
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Figure 17. The real (x) and imaginary (o) components of the current
on a conical spiral antenna obtained from a Pocklington IE compared Figure 18. The normalized, near, radial electric field of a circular

loop antenna obtained from the electric-field IE (o’s) (16) agreeswith a Hallen IE (solid and dashed lines) (36) show agreement to
within about 10% (16). The difficulty of generalizing the Hallen IE to within a few percent, on a normalized basis, with analytical results

(solid line) (37).arbitrary geometries restricts its application.
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Figure 19. This comparison between the electric-field IE (o) and
measured data (solid line) of the frequency response of a circular loop
continuously loaded with capacitors demonstrates the possibility of
modeling a distributed capacitive load (16).
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Figure 20. Lumped loading is employed here to foreshorten the fourrents on the wire need to solved for, because the currents on
longest elements in a 19-element log-periodic antenna, withthe plate, against which the monopole is driven, are ac-
agreement to �1 dB relative to the pattern maximum obtained be-counted for via GTD diffraction coefficients.
tween experimental measurements (lines) and numerical results
(solid circles) (16).

Modeling in the Time Domain

Equations analogous to those in the frequency domain can be
derived for many situations directly in the time domain. For
a wire in free space, an IE comparable to the Pocklington IE
can be developed as follows (31):

ŝ · Ei(s, t) = µ∞
4π

∫
C(r)

{
ŝ · ŝ′

R
∂I(s′, t ′ )

∂t ′

+
[

c∞s · R
R2

][
∂I(s′, t ′)

∂s′ − c∞
R

Q(s′, t ′)
]}

ds′

Q(s′, t ′) = −
∫ t ′

−∞

∂I(s′, t ′)
∂s′ dt ′

(25)

where Q(s, t) is the charge density at space location s and time
t and the ‘‘retarded time’’ t� � R/c�, where c�is the speed of
light in the medium. A time-domain IE like that in Eq. (25)
is readily solved by ‘‘time stepping’’ whereby the solution is
developed as a function of space and time, as described later.

NUMERICAL IMPLEMENTATION VIA THE MOMENT METHOD

The Frequency Domain

A generic form of the frequency-domain IEs thus far consid-
ered can be written as (1,32)

L(s, s′) f (s′ ) = g(s) (26a)
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where L(s, s�) is the integral operator, f (s�) is the unknown
Figure 21. These plots compare the input admittance of a dipole

current, and g(s) is the known source or forcing function, antenna driven by a tangential electric field (dashed line) compared
which, for our application, is sampled values of a specified with one attached to a two-wire transmission line and excited at the
tangential electric field. The method of moments (MOM) is far end (solid line) (16). The upward frequency shift caused by the
an intuitively logical way of solving this operator equation, transmission line is evidently caused by the capacitive-loading effect

of the antenna–transmission–line junction.whereby the unknown is expressed (or sampled) in terms of a
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Figure 22. The computer model of the SLT antenna, containing a
total of 237 wire segments demarcated by the arrows (28). At the time
this work was done, a 237-segment model was state-of-the-art, but
now this problem is considered small for desk-top computers.

set of basis or expansion functions f i(s�) and unknown coeffi-

–30

–20

–10

0

10

110105100
Frequency (kHz)

Reactance

Resistance

9590

R
es

is
ta

nc
e 

or
 r

ea
ct

an
ce

 (
Ω

)
cients ai: Figure 24. The modeled (o’s) SLT resistance results compare within

a few percent of the scale-model measurements (solid lines) while the
reactance values are shifted by about 2% in frequency (16) for 120
radials in the ground screen and �E � 15 and 	IG � 2 � 10�2 S. Such
reactance shifts are fairly common in numerical modeling, and can

f (s′) =
Ns∑
i=1

ai fi(s
′) (27a)

have a number of causes (34). Of course, besides limitations in the
numerical model, incomplete knowledge of the experimental condi-

so that the operator equation is then written tions can also be a source of such differences.

where Ns is the number of spatial unknowns. Then upon sam-
pling the operator Eq. (26b) with a set of testing or weight

L(s, s′)
Ns∑
i=1

ai fi(s
′) =

Ns∑
i=1

aiL(s, s′ ) fi(s
′) = g(s) (26b)

functions

{wj(s)}, m = 1, . . ., M (27b)

Ns∑
i=1

ai〈wj (s), L(s, s′ fi(s
′)〉 = 〈wj (s),g(s)〉, m = 1, . . ., M (27c)
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Figure 25. A numerical model like NEC makes it possible to evalu-
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ate the influence of parameters such as the length of a ground stake
against which a monopole antenna is driven, as illustrated here (24),Figure 23. The influence of the number of wires in a radial-wire

ground screen on the input impedance of the SLT antenna as modeled computed using the rigorous Sommerfeld approach for a wire radius
of 2.5 � 10�6 (solid line), 2.5 � 10�5 (dotted line), and 2.5 � 10�4using the RCA and ground-screen approximation shows that the re-

actance is much less affected by a changing ground conductivity than (dashed line), respectively, for a ground of �E � 16 � j16. Results like
this make it feasible to determine what kind of ground stake isis the resistance (16). For the dashed curves, �E � 15 and 	IG � 10�2

S and for the solid curves �E � 15 and 	IG � 10�3 S. needed to stabilize the input impedance.
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The admittance matrix is a numerical representation of the
complete EM properties of the object being modeled, within
the approximations made in its computation, and as such it
has some interesting properties. First, it provides a solution
for arbitrary excitation. Second, it can be stored for subse-
quent reuse. Perhaps most interesting, in a very real sense,
it possesses the properties of a hologram, as seen by writing
the field radiated by the object as

Er =
Ns∑
i=1

Eo
i

Ns∑
j=1

YijE
i
j (30a)

where the first sum yields a solution for the current distribu-
tion and the second sums the field at a specified observation
point caused by that current. Also

Eo
i = ŝi · Eo(si) and Ei

j = ŝ j · Ei(s j ) (30b)

where the exciting field Ei and the ‘‘observation’’ field Eo are
tangential projections onto the object of an arbitrary incident
field and the field from a point source located at the observa-
tion point.

Much work has been done to identify the ‘‘best’’ expansion
and testing functions. A variety of combinations are described
by Poggio and Miller (1). Those in NEC use what is called
‘‘sub-sectional collocation,’’ wherein the wire is divided into

1 Wire

2 Wire
3 Wire

(c)

(b)

(b) Azimuth pattern

(a) Elevation pattern

Monopole

Feedpoint

Dipole

1 Wire

Continuous
wire

(a)

2 Wire
3 Wirea

Dipole

L

Ns ‘‘segments’’ with
Figure 26. Sparse ground screens like that shown here (a) cannot be
modeled using the simple ground-screen formulas, but can be handled
using the interpolated Sommerfeld approach (38), to obtain the eleva-
tion (b) and azimuth (c) patterns, with the number of ground wires

fi(s
′) = Ai + Bi sin[k(s′ − si)] + Ci{cos[k(s′ − si )] − 1},

si − �i/2 ≤ s′ ≤ si + �i/2, i = 1, . . ., Ns
(31a)

as a parameter. The frequency is 10 MHz and the ground has �E � 4
and 	IG � 10�3 S. and

wj (s) = δ(s − s j ), j = 1, . . ., Ns (31b)
where the � � signifies what is called an ‘‘inner product’’ (the
inner product of two functions p(r) and q(r) over a surface S where 
i is the length of segment i and �(s � sj) is a delta-
defined as �s p(r)q(r)d2s). function, thus producing point sampling of the tangential

Now the original operator equation is written in a discret- electric field. Of the 3Ns unknowns in Eq. (31), 2Ns are elimi-
ized, sampled approximation as nated by enforcing current and current-slope (charge) conti-

Ns∑
i=1

Zjiai = bj, j = 1, . . ., M (28a)

where

Zji = 〈wj (s), L(s, s′ ) fi(s
′)〉

and

bj = 〈wj (s), g(s)〉
(28b)

Finally, the coefficients that quantify the numerical solution
for the current distribution are obtained as
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Figure 27. Comparison of the TCA (dashed line) with the Sommer-
ai =

M∑
j=1

Yijb j, i = 1, . . ., Ns (29)

feld theory (solid line) demonstrates the former’s potential applicabil-
ity to subsurface probing (14) for a ground of �E � 9 and 	IG � 10�3 Swhere Zij is known as the impedance matrix and Yij is the
and with both wires 0.5 wavelengths long and for a frequency of 10admittance matrix, its inverse. Equations (28a) and (29) are
MHz. The goal here is to detect a buried object from its effect on the

written more compactly in symbolic form as impedance of an above-ground probing antenna whose effect is plot-
ted as a normalized difference between its value with and without
the object.

⇒
Z · A = B ⇒ A =

⇒
Y · B
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Upon sampling the field with the testing functions

{Wkm(s, t)} = {wk(s)vm(t)}, k = 1, . . ., Ns, m = 1, . . ., Nt (33b)

the operator equation is written in a discretized, sampled ap-
proximation as

Ns∑
i=1

Nt∑
j=1

Aij〈vm(t), 〈wk(s), O(s, t ′; s′, t ′ )Pij(s
′, t ′ )〉〉

= 〈vm(t), 〈wk(s),G(s, t)〉〉 (32c)

where the inner product now involves a space integration and
also a time integration.

Employing subsectional collocation in both space and time,
the unknown current is written as
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Figure 28. Here the TCA is used to determine the variation in the
input impedance of an above-ground, horizontal antenna (L � 0.457
wavelengths) as it rotates about a vertical axis above a horizontal,
buried wire (L � 0.152 wavelengths) (14) whose center is on the same
vertical axis with a ground of �E � 9 and 	IG � 0 for a frequency of 1
MHz. When the wires are orthogonal, there is no interaction while
the maximum effect is produced when they are parallel.

Pij(s
′, t ′) = A1,i j + A2,i j(s

′ − si ) + A3,i j(s
′ − si )

2 + A4,i j(t
′ − t j )

+ A5,i j(t
′ − t j )

2 + A6,i j(s
′ − si )(t

′ − t j )

+ A7,i j(s
′ − si)

2(t ′ − t j ) + A8,i j(s
′ − si)

2(t ′ − t j )
2

+ A9,i j(s
′ − si)

2(t ′ − t j )
2,

si − �i/2 ≤ s′ < si + �i/2, i = 1, . . ., Ns;
t j − δ/2 ≤ t ′ ≤ t j + δ/2, j = 1, . . ., Nt (34a)

and the constant time step is �, whereas while the testingnuity at the junctions between segments, so that the final
function is given bynumber is Ns.

The behavior of a numerical model, as Ns is increased, is
Wkm(s, t) = δ(s − s j )δ(t − t j ) (34b)

often examined in what is called a ‘‘convergence test.’’ Al-
though a convergence test is reassuring if the numerical re-

so that the tangential field is point-sampled in both space andsults approach an asymptote, it is not guaranteed that con-
time, and the time solution is developed from time stepping.vergence takes place, or if it does, that the convergence is to
There are nine unknown coefficients associated with eachthe correct answer. In addition, depending on how results of
space-time step, eight of which are eliminated in a fashionthe convergence test are examined, quite different conclusions
similar to that described for NEC, by matching the current tomight be reached, as demonstrated in Fig. 10.

The Time Domain

A similar approach is used to solve the time-domain version
of the EFIE, Eq. (25), which is first written in operator form
as (31,33)

O(s, t; s′, t ′)F(s′, t ′ ) = G(s, t) (32a)

where t� is used here to denote the retarded time, that is t� �

t � R/c�. Then we might represent the space and time depen-
dence of F(s�, t�) as

F(s′, t ′ ) =
Ns∑
i=1

Nt∑
j=1

AijPij(s
′, t ′ ) (33a)

where the Aij are space-time samples of the unknown (i is the
space index and j the time index) of which there are Ns and
Nt space and time samples, respectively, so that Eq. (27) be-
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Figure 29. The TCA is used here to determine the above-ground ra-
diation pattern of a dipole antenna as it rotates in a vertical plane
(14). When the antenna is vertical or horizontal, the above-ground
patterns are symmetric about a surface normal, but the patterns are
otherwise slightly skewed.

Ns∑
i=1

Nt∑
j=1

AijO(s, t; s′, t ′)Pij(s
′, t ′) = G(s, t) (32b)
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Figure 30. The source current (a) and
the broadside electric field (b) for a dipole
excited at its center by a Gaussian voltage
as obtained using TWTD are quite simi-
lar, with the latter demonstrating the ra-
diation for these conditions is first pro-
duced as the voltage is applied and then
subsequently as the current–charge wave
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reflects from the wire ends (31).

its neighbors in the adjacent eight space-time samples (31,33) wire excited by a Gaussian voltage pulse, V � V0exp(�t2a2), is
given in Fig. 11, where the spatial distribution of current andat i � 1, j; i, j � 1; i � j, j � i. An alternative approach is to

write the basis function as Pij(s�, t�) � Ri(s�)Sj(t�), which then charge are plotted at several instants of time (31).
involves five unknowns (by setting the constant term in Sj(t�)
to unity) and four are eliminated by matching at i � 1, j; i, j Some Observations Concerning Numerical Modeling
� 1. Finally, the space-time current samples are written in

Numerical models based on integral equations, like those pre-the form
sented in previously and solved by the moment method, as
described previously, yield the source distribution, typically
current for a wire antenna, for an arbitrary right-hand-side or
incident field. All other observables of interest to the antenna
designer or user are subsequently determined from this so-

Iij = I(si, t j ) = YikEt
k j = Yik(E

i
kj + Es

kj)

= Yik

[
Et

kj +
Ns∑

i′=1

Zii′ Ii′ ,m− f (i,i′ )

]
(35)

lution.
The code, or model, user usually devotes most attention towhere Et

ij � total Eij, Es
ij � scattered Eij.

input impedance, radiation efficiency, and the directive gainFor a straight wire, f (i,i�) � �i � i��, but it is generally a
or other antenna properties judged most important for themore complicated function of object geometry. Also, Yik repre-
intended application. The model developer, on the other hand,sents the inverse of the time-independent matrix that ac-
is usually at least as interested in the current distribution,counts for field-current interactions in the time step j, and
the convergent behavior of the numerical result revealed byZii, accounts for the fields produced over the object from cur-
its dependence on Ns, the near fields, and so on. For both therents that occurred at earlier times. Developed in this way,
code user and code developer, validation of the code and thethe time-stepping model is called ‘‘implicit,’’ whereas if no in-
results obtained from it are crucially important. Validationteractions are allowed within time-step j, the model is ‘‘ex-

plicit.’’ An example of a time-domain solution for a straight ultimately consumes more time in computational electromag-

Figure 31. This comparison of the mea-
sured and computed, using TWTD, input
impedance of a Gaussian-pulse excited
antenna shows the two results are graphi-
cally indistinguishable for about the first
8 resonances (31), providing mutual vali-
dation, as well as demonstrating the
broadband capability of a time-domain

0 –0.4

–0.2

0

0.2

0.4

0 1
Frequency (GHz)

Experiment
Calculated

(a)

2 3

0.2

0.4

0.6

0.8

1

R
e

si
st

a
n

ce
 (

kΩ
)

R
e

si
st

a
n

ce
 (

kΩ
)

0 1
Frequency (GHz)

(b)

2 3

Experiment
Calculated

computation and measurement.



438 MODELING WIRE ANTENNAS

netics than any other single activity, but a discussion of it the angle between the adjacent one-inch segments, for which
the measured and computed resonances agree within 5%.goes beyond the scope of this article. Some examples selected

to exhibit the relative validity of numerical results are pre- A different kind of validation test is demonstrated in Fig.
16 where the input impedance of a dipole is presented as asented later, and further information about validation is

found elsewhere (34). function of distance from the interface between free space and
a dielectric half-space (17).The results presented later are selected from two perspec-

tives. Aside from those chosen for explicit validation, one is to
demonstrate some of the kinds of capabilities that wire mod- Infinite-Medium Applications
els provide, primarily through results generated from NEC

Wire codes are typically used to determine input impedance,
and TWTD. The other is to show the kinds of agreement ex-

current distribution and radiation patterns of candidate an-
pected between computation and measurement or other inde-

tennas, but are also used for a variety of other applications.
pendent results.

Some examples of these applications are shown here. In Fig.
17, the current distributions on a log-conical spiral antenna
obtained from two different codes are compared. They agreeSOME REPRESENTATIVE RESULTS

OF WIRE-ANTENNA MODELING within 10% relative to the peak values except right at the
source (16). The radial component of the near field of a loop

Validating the Numerical Model antenna is compared with independent data in Fig. 18. In Fig.
19, the input impedance of a loaded loop antenna is compared

There are few analytical solutions for wire objects that vali-
with measurement (16). A comparison of the measured and

date a computer model, one exception being the well-known
computed radiation patterns of a log-periodic dipole array an-

two-wire transmission line. A comparison of the results pro-
tenna with foreshortened elements to reduce its physical size

vided by an earlier version of NEC with those from analytical
is presented in Fig. 20 (16). Finally, the frequency-depen-

formulas is shown in Fig. 12 (16). For small antennas, there
dence of the input impedance of a dipole antenna is illus-

are also simple, analytical formulas for the input admittance
trated in Fig. 21 for what are termed implicit and explicit

(35), one of which used for an antenna in a plasma to check
source models (16). All of these results demonstrate the appli-

the results from NEC for a wire antenna in a lossy medium
cability of wire codes to various kinds of antennas for ob-

is shown in Fig. 13. In both cases, the IE model agrees with
taining various observables.

the analytical results to within a few percent.
Several different numerical models were used to determine

Interface Applications
the frequency response of a Vee-dipole, an antenna with V-
shaped end loads connected by a short, straight center section Because the ‘‘segmentation’’ or description of a continuous

wire object using a piecewise linear approximation is not eas-where the antenna is excited (16). These model results, com-
pared with each other over the frequency of the first reso- ily visualizable, a computer model of the Sectionalized-Loran

Transmitting (SLT where LORAN stands for long range navi-nance in Fig. 14, generally agree within 10%.
To be useful, wire codes must also model objects with fine gation) antenna is presented in Fig. 22 (28). The segments

that comprise the numerical model are shown by arrows,detail, such as the zigzag shown in Fig. 15 (16). The first reso-
nance of a constant-length zigzag is shown as a function of where the reference direction for the current is in the direc-

tion to which the arrow points. This model contains 237 seg-
ments, or unknowns, a rather small number by today’s stan-
dards where problems with thousands of unknowns are
routinely modeled. This particular antenna was modeled over
an imperfect ground with a radial-wire ground screen cen-
tered at the antenna feedpoint, using the combined RCA-
ground-screen approach outlined previously.

Because a ground screen for an antenna this large requires
a large amount of copper wire, it is desirable to use no more
than necessary to achieve the desired performance character-
istics. Therefore, parametric experiments were performed to
determine the SLT’s impedance sensitivity to its ground
screen and the ground parameters, an example of which is
shown in Fig. 23 (28).

One difficulty with modeling antennas located on or near
the ground is validating the results of computer experiments,
such as illustrated in Fig. 23. Fortunately, the U.S. Coast
Guard, which operates the LORAN system obtained experi-
mental measurements using a 1/25th scale-model antenna
with 120 radials and with �IG � 15, 	IG � 2 � 10�2 S, for which
some results are compared with computer predictions in Fig.
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24 (28).Figure 32. This comparison of the measured center current on a
Two rather different kinds of interface modeling are pre-Vee-dipole due to a broadside-incident Gaussian plane wave with a

sented next in Figs. 25 and 26. The effect on the input imped-TWTD prediction provides a mutual validation for both (31). The time
displacement is evidently due to a slight time-scale difference. ance of a vertical monopole antenna excited just above the
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Figure 33. Nonlinear problems can be
modeled in the time domain, as this result
demonstrates. A dipole antenna continu-
ously loaded with diodes that permit it to
conduct in only one direction has the feed-
point current in (a), and broadside radi-
ated field in (b) when excited by a
Gaussian pulse (31). The spectrum of the
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radiated field is as shown in (c).

Figure 34. Time varying problems are
also well-suited to time-domain modeling
as demonstrated here (31). A 16 MHz,
broadside-incident, plane wave illumi-
nates a half-wave diople having a center
load whose resistance varies sinusoidally
at 4 MHz, producing the broadside scat-
tered field in (a) whose spectrum is shown
in (b). Dynamically varying the reflecti-
vity of a scatterer can be used to change
the scattered-field spectrum from what it
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